1
|
Ghiasi Hafezi S, Behkamal B, Rashidmayvan M, Hosseini M, Yadegari M, Ghoflchi S, Mansoori A, Ghamsary M, Ferns G, Saberi MR, Esmaily H, Ghayour-Mobarhan M. Comparison between statistical and machine learning methods to detect the hematological indices with the greatest influence on elevated serum levels of low-density lipoprotein cholesterol. Chem Phys Lipids 2024; 265:105446. [PMID: 39369864 DOI: 10.1016/j.chemphyslip.2024.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Elevated levels of low-density lipoprotein-cholesterol (LDL-C) is a significant risk factor for the development of cardiovascular diseases (CVD)s. Furthermore, studies have revealed an association between indices of the complete blood count (CBC) and dyslipidemia. We aimed to investigate the relationship between CBC parameters and serum levels of LDL. METHOD In a prospective study involving 9704 participants aged 35-65 years, comprehensive screening was conducted to estimate LDL-C levels and CBC indicators. The association between these biomarkers and high LDL-C (LDL-C≥130 mg/dL (3.25 mmol/L)) was investigated using various analytical methods, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) methodologies. RESULT The present study found that age, hemoglobin (HGB), hematocrit (HCT), platelet count (PLT), lymphocyte (LYM), PLT-LYM ratio (PLR), PLT-High-Density Lipoprotein (HDL) ratio (PHR), HGB-LYM ratio (HLR), red blood cell count (RBC), Neutrophil-HDL ratio (NHR), and PLT-RBC ratio (PRR) were all statistically significant between the two groups (p<0.05). Another important finding was that red cell distribution width (RDW) was a significant predictor for higher LDL levels in women. Furthermore, in men, RDW-PLT ratio (RPR) and PHR were the most important indicators for assessing the elevated LDL levels. CONCLUSION The study found that sex increases LDL-C odds in females by 52.9 %, while age and HCT increase it by 4.1 % and 5.5 %, respectively. RPR and PHR were the most influential variables for both genders. Elevated RPR and PHR were negatively correlated with increased LDL levels in men, and RDW levels was a statistically significant factor for women. Moreover, RDW was a significant factor in women for high levels of HDL-C. The study revealed that females have higher LDL-C levels (16 % compared to 14 % of males), with significant differences across variables like age, HGB, HCT, PLT, RLR, PHR, RBC, LYM, NHR, RPR, and key factors like RDW and SII.
Collapse
Affiliation(s)
- Somayeh Ghiasi Hafezi
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Behkamal
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Medicinal, Chemistry Department, School of Pharmacy, Mashhad University Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Marzieh Hosseini
- Department of Biostatistics, College of health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Yadegari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mark Ghamsary
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Gordon Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Mohammad Reza Saberi
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Giordano S, Franchi F, Rollini F, Al Saleh T, Uzunoglu E, Costa F, Angiolillo DJ, Ortega-Paz L. Effect of lipid-lowering therapy on platelet reactivity in patients treated with and without antiplatelet therapy. Minerva Cardiol Angiol 2024; 72:489-505. [PMID: 37870424 DOI: 10.23736/s2724-5683.23.06411-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Circulating lipoproteins may interact with platelets, increasing platelet sensitivity to aggregating agonists and their tendency towards activation and thrombus formation. In particular, patients with hypercholesterolemia exhibit a higher degree of platelet reactivity compared to normolipidemic. Moreover, accruing evidence report that lipid-lowering therapies can reduce thrombus formation, particularly in the absence of concomitant antiplatelet therapy. However, the underlying biological mechanism(s) explaining these clinical observations are not completely understood. Baseline platelet reactivity and high on-treatment platelet reactivity while on antiplatelet therapy (e.g., aspirin and clopidogrel) are associated with poor clinical outcomes. Therefore, strategies to reduce baseline platelet reactivity or improve the pharmacodynamic profile of antiplatelet therapies are an unmet clinical need. The potential use of lipid-lowering therapies for optimizing platelet reactivity provides several advantages as there is strong evidence that reducing circulating lipoproteins can improve clinical outcomes, and they may avoid the need for potent antiplatelet therapies that, although more effective, are associated with increased bleeding risk. This review will provide a systematic overview of the effects of lipid-lowering therapy on platelet reactivity in patients treated with and without antiplatelet therapy. We will focus on the potential biological mechanism(s) of action and the effect of statins, ezetimibe, proprotein convertase subtilisin/kexin 9 inhibitors, omega-3 fatty acids, and recombinant high-density lipoprotein on platelet reactivity. Ultimately, we will assess the current gaps in the literature and future perspective in the field.
Collapse
Affiliation(s)
- Salvatore Giordano
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Francesco Franchi
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Fabiana Rollini
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Tala Al Saleh
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Ekin Uzunoglu
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Francesco Costa
- Interventional Cardiology Unit, BIOMORF Department, University of Messina, Messina, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Luis Ortega-Paz
- Division of Cardiology, College of Medicine, University of Florida, Jacksonville, FL, USA -
| |
Collapse
|
3
|
Yu Y, Wu Y, Xie L, Chang C. The effect of water-soluble tomato concentrate on elevated serum cholesterol in the middle-aged and elderly Chinese individuals. Front Nutr 2024; 11:1410420. [PMID: 39323569 PMCID: PMC11422214 DOI: 10.3389/fnut.2024.1410420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Water-soluble tomato concentrate (WSTC) has demonstrated beneficial effect on blood flow in healthy populations. The prospective, randomized, double-blind, and placebo-controlled clinical trial was conducted to explore the impact of WSTC on individuals with elevated cholesterol levels. Sixty participants aged 35-65 with high cholesterol were enrolled and evenly divided into a treatment group (FFG) and a placebo group (PCG). Over a 60-day period comprising a 45-day treatment phase followed by a 15-day observational follow-up. Participants in the FFG received 300 mg daily of Fruitflow tablets, while the PCG were received placebos. The study showed that there were no significant differences in baseline parameters between the FFG and PCG (p > 0.05). Post-intervention, the FFG exhibited significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP) by 4.2% (SBP, p < 0.001) and 3.8% (DBP, p = 0.015), respectively, compared to the PCG (p = 0.041). These reductions were sustained during the follow-up period. In contrast, the PCG showed no significant changes in SBP and DBP (p > 0.05). Stratified analysis by hypertension status revealed a significant SBP reductions both hypertensive and non-hypertensive FFG subjects (p < 0.05), with a trend towards DBP reduction. No significant changes in SBP and DBP were observed in the PCG. Moreover, the FFG group showed a significant increase in high-density lipoprotein (HDL) cholesterol (p < 0.05), along with a marked reduction in both weight and body mass index (BMI) (p < 0.05). The FFG also showed decreased levels of homocysteine, high-sensitivity C-reactive protein, and fasting blood glucose compared to the PCG (p < 0.05). In conclusion, WSTC has the potential to lower blood pressure and cardiovascular risk profiles in hypercholesterolemic individuals, presenting a viable non-harmacological option for enhancing cardiovascular health. Clinical trial registration: https://www.chictr.org.cn/showproj.html?proj=27052, identifier ChiCTR1800015904.
Collapse
Affiliation(s)
- Yingxiang Yu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
| | - Yifan Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
| | - Lan Xie
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
| | - Cuiqing Chang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
4
|
Baidildinova G, ten Cate V, Panova-Noeva M, Dahlen B, Gieswinkel A, von Ungern-Sternberg S, Rapp S, Strauch K, Beutel ME, Pfeiffer N, Lackner KJ, Münzel T, ten Cate H, Wild PS, Jurk K. Cardiovascular and genetic determinants of platelet high responsiveness: results from the Gutenberg Health Study. Blood Adv 2024; 8:3870-3874. [PMID: 38776438 PMCID: PMC11321285 DOI: 10.1182/bloodadvances.2023012538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Gaukhar Baidildinova
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Vincent ten Cate
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - Marina Panova-Noeva
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - Bianca Dahlen
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Gieswinkel
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Saskia von Ungern-Sternberg
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffen Rapp
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manfred E. Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J. Lackner
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Philipp S. Wild
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
- Institute of Molecular Biology GmbH, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
5
|
Kumi D, Narh JT, Odoi SM, Oduro A, Gajjar R, Gwira-Tamattey E, Karki S, Abbasi A, Fugar S, Alyousef T. Current US prevalence of myocardial injury patterns and clinical outcomes among hospitalised patients with familial hypercholesterolaemia: insight from the National Inpatient Sample-a retrospective cohort study. BMJ Open 2024; 14:e077839. [PMID: 38806434 PMCID: PMC11138297 DOI: 10.1136/bmjopen-2023-077839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) increases propensity for premature atherosclerotic disease. Knowledge of inpatient outcomes among patients with FH admitted with acute myocardial injury (AMI) is limited. OBJECTIVES Our study aimed to identify myocardial injury types, including type 1 myocardial infarction (MI), type 2 MI and takotsubo cardiomyopathy, assess lesion severity and study adverse short-term inpatient outcomes among patients with FH admitted with AMI. SETTING Our study retrospectively queried the US National Inpatient Sample from 2018 to 2020. POPULATION Adults admitted with AMI and dichotomised based on the presence of FH. STUDY OUTCOMES We evaluated myocardial injury types and complexity of coronary revascularisation. Primary outcome of all-cause mortality and other clinical secondary outcomes were studied. RESULTS There were 3 711 765 admissions with AMI including 2360 (0.06%) with FH. FH was associated with higher odds of ST-elevation MI (STEMI) (adjusted OR (aOR): 1.62, p<0.001) and non-ST-elevation MI (NSTEMI) (aOR: 1.29, p<0.001) but lower type 2 MI (aOR: 0.39, p<0.001) and takotsubo cardiomyopathy (aOR: 0.36, p=0.004). FH was associated with higher multistent percutaneous coronary interventions (aOR: 2.36, p<0.001), multivessel coronary artery bypass (aOR: 2.65, p<0.001), higher odds of intracardiac thrombus (aOR: 3.28, p=0.038) and mechanical circulatory support (aOR: 1.79, p<0.001). There was 50% reduction in odds of all-cause mortality (aOR: 0.50, p=0.006) and lower odds of mechanical ventilation (aOR: 0.37, p<0.001). There was no difference in rate of ventricular tachycardia, cardioversion, new implantable cardioverter defibrillator implantation, cardiogenic shock and cardiac arrest. CONCLUSION Among patients hospitalised with AMI, FH was associated with higher STEMI and NSTEMI, lower type 2 MI and takotsubo cardiomyopathy, higher number of multiple stents and coronary bypasses, and mechanical circulatory support device but was associated with lower all-cause mortality and rate of mechanical ventilation.
Collapse
Affiliation(s)
- Dennis Kumi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | | | | | - Anna Oduro
- Department of Emergency Medicine, Korle Bu Teaching Hospital, Accra, Greater Accra, Ghana
| | - Rohan Gajjar
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | - Edwin Gwira-Tamattey
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | - Sadichhya Karki
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | - Ayesha Abbasi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| | - Setri Fugar
- Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tareq Alyousef
- Division of Cardiology, John H Stroger Jr Hospital of Cook County, Chicago, Illinois, USA
| |
Collapse
|
6
|
Xu Q, Meng X, Li H, Xie X, Jing J, Lin J, Jiang Y, Wang Y, Zhao X, Li Z, Liu L, Wang A, Wang Y. The Influence of Non-High-Density Lipoprotein Cholesterol on the Efficacy of Genotype-Guided Dual Antiplatelet Therapy in Preventing Stroke Recurrence. J Stroke 2024; 26:231-241. [PMID: 38836270 PMCID: PMC11164593 DOI: 10.5853/jos.2024.00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Non-high-density lipoprotein cholesterol (non-HDL-C), which represents the total cholesterol content of all pro-atherogenic lipoproteins, has recently been included as a new target for lipid-lowering therapy in high-risk atherosclerotic patients in multiple guidelines. Herein, we aimed to explore the relationship between non-HDL-C level and the efficacy and safety of ticagrelor-aspirin versus clopidogrel-aspirin in preventing stroke recurrence. METHODS This study comprised a post hoc analysis of the CHANCE-2 (Ticagrelor or Clopidogrel in High-Risk Patients with Acute Nondisabling Cerebrovascular Events II) trial, from which 5,901 patients with complete data on non-HDL-C were included and categorized by median non-HDL-C levels, using a cutoff of 3.5 mmol/L. The primary efficacy and safety outcomes were recurrent stroke and severe or moderate bleeding within 90 days. RESULTS Ticagrelor-aspirin significantly reduced the risk of recurrent stroke in patients with low non-HDL-C (71 [4.8%] vs. 119 [7.7%]; adjusted hazard ratio [HR] 0.54; 95% confidence interval [CI], 0.40-0.74), but not in those with high non-HDL-C (107 [7.3%] vs. 108 [7.6%]; adjusted HR, 0.88; 95% CI, 0.67-1.16), compared with clopidogrel-aspirin (P for interaction=0.010). When analyzed as a continuous variable, the benefit of ticagrelor-aspirin for recurrent stroke decreased as non-HDL-C levels increased. No significant differences in the treatment assignments across the non-HDL-C groups were observed in terms of the rate of severe or moderate bleeding (5 [0.3%] vs. 8 [0.5%] in the low non-HDL-C group; 4 [0.3%] vs. 2 [0.1%] in the high non-HDL-C group; P for interaction=0.425). CONCLUSION CHANCE-2 participants with low non-HDL-C levels received more clinical benefit from ticagrelor-aspirin versus clopidogrel-aspirin compared to those with high non-HDL-C, following minor ischemic stroke or transient ischemic attack.
Collapse
Affiliation(s)
- Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuewei Xie
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Abstract
CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
8
|
Zhang Z, Rodriguez M, Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation Between Lipids and Blood Clotting. Arterioscler Thromb Vasc Biol 2024; 44:533-544. [PMID: 38235555 PMCID: PMC10922732 DOI: 10.1161/atvbaha.123.318286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.
Collapse
Affiliation(s)
- Ziyu Zhang
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Maya Rodriguez
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
9
|
Behnam M, Deyhim MR, Yaghmaei P. Can Rosuvastatin Reduce the Risk of Thrombosis in Patients with Hypercholesterolemia with its Effect on Coagulation Factors and Homocysteine Levels? Cardiovasc Hematol Agents Med Chem 2024; 22:495-502. [PMID: 38279709 DOI: 10.2174/0118715257279903231205110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Hypercholesterolemia is one of the main risk factors for vascular thrombosis in individuals. Therefore, the use of statins is very effective in reducing cholesterol and can reduce the risk of thrombosis in these patients. Rosuvastatin, a member of the statin family which, inhibits cholesterol synthesis. Very few studies have been done in relation to how rosuvastatin can affect thrombosis. So, this research has been tried whether rosuvastatin can have an effect on coagulation factors and homocysteine as risk factors for thrombosis in hypercholesterolemia? METHODS In this experimental study, 60 patients (30 men and 30 women with a mean age of 40- 70 years) diagnosed with hypercholesterolemia (cholesterol > 250 mg/dl) participated in this research. 30 patients were prescribed rosuvastatin (20 mg/day), and 30 patients were simultaneously taken placebo for three months. All parameters, including FVIII, FV, Fibrinogen, DDimer, plasma homocysteine level and lipid profile, were measured before and after treatment. All the results were statistically compared between the two groups. RESULTS In patients who took rosuvastatin, the drug was able to significantly reduce the concentrations of total cholesterol, triglycerides, and low-density lipoprotein (LDL) (P < 0.001). Also, rosuvastatin was able to reduce the concentrations of homocysteine significantly, D-Dimer (P < 0.001), coagulation factor VIII and factor V (P < 0.05). In patients with hypercholesterolemia who took the placebo, did not affect the mentioned variables (P > 0.05). CONCLUSION According to the results, it seems that rosuvastatin may be able to reduce the risk of thrombosis in patients by affecting coagulation factors and homocysteine levels.
Collapse
Affiliation(s)
- Mostafa Behnam
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Reza Deyhim
- Clinical Chemistry, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
10
|
Kaur R, Mittal K, Cheema RK, Gupta S, Sood T, Kaur P. Association of blood donor characteristics with in vitro platelet storage properties. Transfus Apher Sci 2023; 62:103746. [PMID: 37286442 DOI: 10.1016/j.transci.2023.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The study was planned to determine the association of blood donor characteristics with in vitro quality of platelets. MATERIAL AND METHODS In the prospective observational study, a total of 85 male whole blood donors in the age group of 18-30 and 45-65 years were enrolled using purposive sampling method. Serum total cholesterol, glycosylated hemoglobin (HbA1c), and LDH levels were performed on donor pre-donation sample. Buffy coat platelet concentrates were prepared from 450 mL quadruple blood bags. Samples from platelets were taken on day one and five of storage and biochemical properties were observed. RESULTS Median MPV was higher in platelets from older blood donors on day five (9.8 vs 9.4, p = 0.037). Median LDH levels were also higher in platelets on day one and five from older donors (Day one: 204.5 vs 147, p = <0.000; day five: 278 vs 224, p = 0.001 respectively). Platelets from donors with high HbA1c levels had lower median pH (Day one: 7.31 vs 7.37, p = 0.024) and higher median glucose levels on day one of storage (Day one: 358 vs 311, p = 0.001). Higher median lactate levels throughout the storage period were also seen in platelets from donors with higher HbA1c levels (Day one: 7 vs 5.7, p = 0.037; Day five: 16 vs 12.2, p = 0.032). Glucose consumption (108 vs 66, p = 0.025) and lactate production (9 vs 6.4, p = 0.019) was higher in platelets from donors with higher HbA1c levels. CONCLUSION In vitro platelet storage properties are affected by blood donor characteristics.
Collapse
Affiliation(s)
- Ravneet Kaur
- Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India.
| | - Kshitija Mittal
- Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Rajbir Kaur Cheema
- Department of Transfusion Medicine, Maharishi Markandeshwar College of Medical Sciences and Research, Sadopur, Ambala, India
| | - Seema Gupta
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Tanvi Sood
- Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Paramjit Kaur
- Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
11
|
Parker K, Ragy O, Hamilton P, Thachil J, Kanigicherla D. Thromboembolism in nephrotic syndrome: controversies and uncertainties. Res Pract Thromb Haemost 2023; 7:102162. [PMID: 37680313 PMCID: PMC10480654 DOI: 10.1016/j.rpth.2023.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Thromboembolism is one of the most serious complications of nephrotic syndrome, including both arterial and venous thromboembolic events. Rates of thromboembolism depend on a multitude of factors, including the severity and cause of nephrotic syndrome, with primary membranous nephropathy having the highest reported rates. In relation to arterial thromboembolism, the risk can be as high as 8 times that of an age- and sex-matched population. However, extrapolating risks is challenging, with published studies not being homogeneous, several being single center and retrospective, and including different causes of primary nephrotic syndrome. Determining thromboembolic risk in nephrotic syndrome is essential to enable decision making on preventive strategies. However, lack of proven strategies to help estimate risk-benefit aspects underpins variations in clinical practice. Although the use of anticoagulation following a thrombotic event is clear, this still leaves us with a clinical dilemma as to if, and who, should receive prophylactic anticoagulation, with what agent, and for how long. In the absence of clear evidence to answer these questions, prophylactic anticoagulation strategies for nephrotic syndrome currently rely on expert consensus opinion, such as in the recently published 2021 Kidney Disease Improving Global Outcomes glomerular disease guidelines. In the mainstay, these recommendations relate to patients with membranous nephropathy. Here, we detail the current controversies still faced by clinicians around the risk of thromboembolism in nephrotic syndrome, use of prophylactic anticoagulation in nephrotic syndrome and propose ways of advancing existing knowledge and practice in this field to unravel the conundrum.
Collapse
Affiliation(s)
- Kathrine Parker
- Manchester Institute of Nephrology and Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Pharmacy and Optometry, the University of Manchester, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Omar Ragy
- Manchester Institute of Nephrology and Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Manchester, United Kingdom
| | - Patrick Hamilton
- Manchester Institute of Nephrology and Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Manchester, United Kingdom
| | - Jecko Thachil
- Department of Haematology, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Durga Kanigicherla
- Manchester Institute of Nephrology and Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Cardiovascular Sciences, the University of Manchester, School of Medical Sciences, Manchester, United Kingdom
| |
Collapse
|
12
|
Wolf O, Didier R, Chagué F, Bichat F, Rochette L, Zeller M, Fauchier L, Bonnotte B, Cottin Y. Nephrotic syndrome and acute coronary syndrome in children, teenagers and young adults: Systematic literature review. Arch Cardiovasc Dis 2023; 116:282-290. [PMID: 37088677 DOI: 10.1016/j.acvd.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
Myocardial infarction is rare in children, teenagers and young adults (aged<20 years). The most common aetiologies identified include Kawasaki disease, familial hypercholesterolaemia, collagen vascular disease-induced coronary arteritis, substance abuse (cocaine, glue sniffing), trauma, complications of congenital heart disease surgery, genetic disorders (such as progeria), coronary artery embolism, occult malignancy and several other rare conditions. Nephrotic syndrome is a very rare cause of myocardial infarction, but it is probably underestimated. The purpose of this review was to determine the current state of knowledge on acute coronary syndrome related to nephrotic syndrome. We thus performed a comprehensive structured literature search of the Medline database for articles published between January 1st, 1969 and December 31st, 2021. Myocardial infarction in young adults can be broadly divided into two groups: cases of angiographically normal coronary arteries; and cases of coronary artery disease of varying aetiology. There are several possible mechanisms underlying the association between acute coronary syndrome and nephrotic syndrome: (1) coronary thrombosis related to hypercoagulability and/or platelet hyperactivity; (2) atherosclerosis related to hyperlipidaemia; and (3) drug treatment. All of these mechanisms must be evaluated systematically in the acute phase of disease because they evolve rapidly with the treatment of nephrotic syndrome. In this review, we propose a decision algorithm for the management of acute coronary syndrome in the context of nephrotic syndrome. The final part of the review presents the short- and medium-term therapeutic strategies available. Thromboembolism related to nephrotic syndrome is a rare non-atherosclerotic cause of acute coronary syndrome, and prospective studies are needed to evaluate a systematic approach with personalized therapeutic strategies.
Collapse
Affiliation(s)
- Olivier Wolf
- Department of Cardiology, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Romain Didier
- Department of Cardiology, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Frédéric Chagué
- Department of Cardiology, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Florence Bichat
- Department of Cardiology, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Luc Rochette
- PEC2, EA 7460, University of Burgundy, 21000 Dijon, France
| | - Marianne Zeller
- Department of Cardiology, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France; PEC2, EA 7460, University of Burgundy, 21000 Dijon, France
| | - Laurent Fauchier
- Department of Cardiology, François-Rabelais University, University Teaching Hospital of Trousseau, 37044 Tours, France
| | - Bernard Bonnotte
- Department of Internal Medicine, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France
| | - Yves Cottin
- Department of Cardiology, University Teaching Hospital of Dijon Bourgogne, 21000 Dijon, France.
| |
Collapse
|
13
|
Maaninka K, Neuvonen M, Kerkelä E, Hyvärinen K, Palviainen M, Kamali-Moghaddam M, Federico A, Greco D, Laitinen S, Öörni K, Siljander PR. OxLDL sensitizes platelets for increased formation of extracellular vesicles capable of finetuning macrophage gene expression. Eur J Cell Biol 2023; 102:151311. [PMID: 36963245 DOI: 10.1016/j.ejcb.2023.151311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Platelet extracellular vesicles (PEVs) generated upon platelet activation may play a role in inflammatory pathologies such as atherosclerosis. Oxidized low-density lipoprotein (oxLDL), a well-known contributor to atherogenesis, activates platelets and presensitizes them for activation by other agonists. We studied the effect of oxLDL on the secretion, composition, and inflammatory functions of PEVs using contemporary EV analytics. Platelets were activated by co-stimulation with thrombin (T) and collagen (C) ± oxLDL and characterized by high-resolution flow cytometry, nanoparticle tracking analysis, proximity extension assay, western blot, and electron microscopy. The effect of PEVs on macrophage differentiation and functionality was examined by analyzing macrophage surface markers, cytokine secretion, and transcriptome. OxLDL upregulated TC-induced formation of CD61+, P-selectin+ and phosphatidylserine+ PEVs. Blocking the scavenger receptor CD36 significantly suppressed the oxLDL+TC-induced PEV formation, and HDL caused a slight but detectable suppression. The inflammatory protein cargo differed between the PEVs from stimulated and unstimulated platelets. Both oxLDL+TC- and TC-induced PEVs enhanced macrophage HLA-DR and CD86 expression and decreased CD11c expression as well as secretion of several cytokines. Pathways related to cell cycle and regulation of gene expression, and immune system signaling were overrepresented in the differentially expressed genes between TC PEV -treated vs. control macrophages and oxLDL+TC PEV -treated vs. control macrophages, respectively. In conclusion, we speculate that oxLDL and activated platelets contribute to proatherogenic processes by increasing the number of PEVs that provide an adhesive and procoagulant surface, contain inflammatory mediators, and subtly finetune the macrophage gene expression.
Collapse
Affiliation(s)
- Katariina Maaninka
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maarit Neuvonen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland.
| | - Erja Kerkelä
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland.
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland.
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland.
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.
| | - Pia Rm Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Ma M, Hou C, Liu J. Effect of PCSK9 on atherosclerotic cardiovascular diseases and its mechanisms: Focus on immune regulation. Front Cardiovasc Med 2023; 10:1148486. [PMID: 36970356 PMCID: PMC10036592 DOI: 10.3389/fcvm.2023.1148486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Atherosclerosis is a basic pathological characteristic of many cardiovascular diseases, and if not effectively treated, patients with such disease may progress to atherosclerotic cardiovascular diseases (ASCVDs) and even heart failure. The level of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) is significantly higher in patients with ASCVDs than in the healthy population, suggesting that it may be a promising new target for the treatment of ASCVDs. PCSK9 produced by the liver and released into circulation inhibits the clearance of plasma low-density lipoprotein-cholesterol (LDL-C), mainly by downregulating the level of LDL-C receptor (LDLR) on the surface of hepatocytes, leading to upregulated LDL-C in plasma. Numerous studies have revealed that PCSK9 may cause poor prognosis of ASCVDs by activating the inflammatory response and promoting the process of thrombosis and cell death independent of its lipid-regulatory function, yet the underlying mechanisms still need to be further clarified. In patients with ASCVDs who are intolerant to statins or whose plasma LDL-C levels fail to descend to the target value after treatment with high-dose statins, PCSK9 inhibitors often improve their clinical outcomes. Here, we summarize the biological characteristics and functional mechanisms of PCSK9, highlighting its immunoregulatory function. We also discuss the effects of PCSK9 on common ASCVDs.
Collapse
Affiliation(s)
- Minglu Ma
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
| | - Chang Hou
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
| | - Jian Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China
- Correspondence: Jian Liu
| |
Collapse
|
15
|
Research progress of nephrotic syndrome accompanied by thromboembolism. Int Urol Nephrol 2023:10.1007/s11255-023-03474-8. [PMID: 36757656 DOI: 10.1007/s11255-023-03474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Thromboembolism (TE) is a common and serious complication of nephrotic syndrome (NS). NS is associated with hypercoagulability, which may be induced by changes in coagulation, anticoagulant, and fibrinolytic factors. Moreover, accumulating evidence supports the hypothesis that the complex interactions between genetic and acquired risk factors in TE should be considered and that genetic susceptibility should not be ignored. Extracellular vesicles (EVs) also play unique roles. Further research on EVs may provide new insights into the discovery and treatment of TE associated with NS. The occurrence of NS accompanied by TE may be associated with various risk factors. Preventive anticoagulant therapy can not only reduce the risk of TE in patients but also aggravate the risk of bleeding. Heparin and vitamin K antagonists (VKAs), traditional anticoagulant drugs, have been extensively applied in the prevention and treatment of thromboembolic diseases, and emerging direct oral anticoagulants (DOACs) also provide an alternative choice. Owing to the particularity of NS, the safe application of DOACs still needs to be addressed. This review aimed to comprehensively describe the pathophysiology of TE in NS, as well as analyze the associated risk factors, the opportunity for preventive anticoagulation, and current anticoagulant information.
Collapse
|
16
|
Platelet Redox Imbalance in Hypercholesterolemia: A Big Problem for a Small Cell. Int J Mol Sci 2022; 23:ijms231911446. [PMID: 36232746 PMCID: PMC9570056 DOI: 10.3390/ijms231911446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance between reactive oxygen species (ROS) synthesis and their scavenging by anti-oxidant defences is the common soil of many disorders, including hypercholesterolemia. Platelets, the smallest blood cells, are deeply involved in the pathophysiology of occlusive arterial thrombi associated with myocardial infarction and stroke. A great deal of evidence shows that both increased intraplatelet ROS synthesis and impaired ROS neutralization are implicated in the thrombotic process. Hypercholesterolemia is recognized as cause of atherosclerosis, cerebro- and cardiovascular disease, and, closely related to this, is the widespread acceptance that it strongly contributes to platelet hyperreactivity via direct oxidized LDL (oxLDL)-platelet membrane interaction via scavenger receptors such as CD36 and signaling pathways including Src family kinases (SFK), mitogen-activated protein kinases (MAPK), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In turn, activated platelets contribute to oxLDL generation, which ends up propagating platelet activation and thrombus formation through a mechanism mediated by oxidative stress. When evaluating the effect of lipid-lowering therapies on thrombogenesis, a large body of evidence shows that the effects of statins and proprotein convertase subtilisin/kexin type 9 inhibitors are not limited to the reduction of LDL-C but also to the down-regulation of platelet reactivity mainly by mechanisms sensitive to intracellular redox balance. In this review, we will focus on the role of oxidative stress-related mechanisms as a cause of platelet hyperreactivity and the pathophysiological link of the pleiotropism of lipid-lowering agents to the beneficial effects on platelet function.
Collapse
|
17
|
Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int J Mol Sci 2022; 23:ijms23169199. [PMID: 36012465 PMCID: PMC9409144 DOI: 10.3390/ijms23169199] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dyslipidaemia leads to proatherogenic oxidative lipid stress that promotes vascular inflammation and thrombosis, the pathologies that underpin myocardial infarction, stroke, and deep vein thrombosis. These prothrombotic states are driven, at least in part, by platelet hyperactivity, and they are concurrent with the appearancxe of oxidatively modified low-density lipoproteins (LDL) in the circulation. Modified LDL are heterogenous in nature but, in a general sense, constitute a prototype circulating transporter for a plethora of oxidised lipid epitopes that act as danger-associated molecular patterns. It is well-established that oxidatively modified LDL promote platelet activation and arterial thrombosis through a number of constitutively expressed scavenger receptors, which transduce atherogenic lipid stress to a complex array of proactivatory signalling pathways in the platelets. Stimulation of these signalling events underlie the ability of modified LDL to induce platelet activation and blunt platelet inhibitory pathways, as well as promote platelet-mediated coagulation. Accumulating evidence from patients at risk of arterial thrombosis and experimental animal models of disease suggest that oxidised LDL represents a tangible link between the dyslipidaemic environment and increased platelet activation. The aim of this review is to summarise recent advances in our understanding of the pro-thrombotic signalling events induced in platelets by modified LDL ligation, describe the contribution of individual platelet scavenger receptors, and highlight potential future challenges of targeting these pathways.
Collapse
|
18
|
Importance of Coagulation Factors as Critical Components of Premature Cardiovascular Disease in Familial Hypercholesterolemia. Int J Mol Sci 2022; 23:ijms23169146. [PMID: 36012410 PMCID: PMC9409002 DOI: 10.3390/ijms23169146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
For almost a century, familial hypercholesterolemia (FH) has been considered a serious disease, causing atherosclerosis, cardiovascular disease, and ischemic stroke. Closely related to this is the widespread acceptance that its cause is greatly increased low-density-lipoprotein cholesterol (LDL-C). However, numerous observations and experiments in this field are in conflict with Bradford Hill’s criteria for causality. For instance, those with FH demonstrate no association between LDL-C and the degree of atherosclerosis; coronary artery calcium (CAC) shows no or an inverse association with LDL-C, and on average, the life span of those with FH is about the same as the surrounding population. Furthermore, no controlled, randomized cholesterol-lowering trial restricted to those with FH has demonstrated a positive outcome. On the other hand, a number of studies suggest that increased thrombogenic factors—either procoagulant or those that lead to high platelet reactivity—may be the primary risk factors in FH. Those individuals who die prematurely have either higher lipoprotein (a) (Lp(a)), higher factor VIII and/or higher fibrinogen compared with those with a normal lifespan, whereas their LDL-C does not differ. Conclusions: Many observational and experimental studies have demonstrated that high LDL-C cannot be the cause of premature cardiovascular mortality among people with FH. The number who die early is also much smaller than expected. Apparently, some individuals with FH may have inherited other, more important risk factors than a high LDL-C. In accordance with this, our review has shown that increased coagulation factors are the commonest cause, but there may be other ones as well.
Collapse
|
19
|
Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants (Basel) 2022; 11:995. [PMID: 35624860 PMCID: PMC9137594 DOI: 10.3390/antiox11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species are critical mediators of normal vascular physiology and have been shown to gradually increase in the vasculature with age. There is a growing appreciation for the complexity of oxidant and antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a causal association between oxidative stress and age-related vascular disease. Herein, we review the current understanding of mechanistic links between oxidative stress and thrombotic vascular disease and the changes that occur with aging. While several vascular cells are key contributors, we focus on oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to develop more targeted therapeutic strategies for the prevention and management of age-associated vascular disease.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
20
|
Affiliation(s)
- Carl E Orringer
- Department of Internal Medicine, Division of Cardiovascular Disease, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Diamond DM, Alabdulgader AA, de Lorgeril M, Harcombe Z, Kendrick M, Malhotra A, O'Neill B, Ravnskov U, Sultan S, Volek JS. Dietary Recommendations for Familial Hypercholesterolaemia: an Evidence-Free Zone. BMJ Evid Based Med 2021; 26:295-301. [PMID: 32631832 PMCID: PMC8639944 DOI: 10.1136/bmjebm-2020-111412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
We have evaluated dietary recommendations for people diagnosed with familial hypercholesterolaemia (FH), a genetic condition in which increased low-density lipoprotein cholesterol (LDL-C) is associated with an increased risk for coronary heart disease (CHD). Recommendations for FH individuals have emphasised a low saturated fat, low cholesterol diet to reduce their LDL-C levels. The basis of this recommendation is the 'diet-heart hypothesis', which postulates that consumption of food rich in saturated fat increases serum cholesterol levels, which increases risk of CHD. We have challenged the rationale for FH dietary recommendations based on the absence of support for the diet-heart hypothesis, and the lack of evidence that a low saturated fat, low cholesterol diet reduces coronary events in FH individuals. As an alternative approach, we have summarised research which has shown that the subset of FH individuals that develop CHD exhibit risk factors associated with an insulin-resistant phenotype (elevated triglycerides, blood glucose, haemoglobin A1c (HbA1c), obesity, hyperinsulinaemia, high-sensitivity C reactive protein, hypertension) or increased susceptibility to develop coagulopathy. The insulin-resistant phenotype, also referred to as the metabolic syndrome, manifests as carbohydrate intolerance, which is most effectively managed by a low carbohydrate diet (LCD). Therefore, we propose that FH individuals with signs of insulin resistance should be made aware of the benefits of an LCD. Our assessment of the literature provides the rationale for clinical trials to be conducted to determine if an LCD would prove to be effective in reducing the incidence of coronary events in FH individuals which exhibit an insulin-resistant phenotype or hypercoagulation risk.
Collapse
Affiliation(s)
- David M Diamond
- Psychology, Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida, USA
| | | | - Michel de Lorgeril
- Department of Equipe Coeur & Nutrition, University of Grenoble, Grenoble, France
| | | | - Malcolm Kendrick
- Macclesfield District General Hospital, Macclesfield, Cheshire East, UK
| | - Aseem Malhotra
- Department of Cardiology, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Blair O'Neill
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | | | - Sherif Sultan
- National University of Ireland, Western Vascular Institute, University Hospital Galway & The Galway Clinic, Galway, Ireland
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Saldanha Melo H, Monnerat JADS, Costa NDS, Bento Bernardes T, Magliano DC, Pereira AD, Almeida PP, Lima GF, Ferreira de Brito FC, Stockler Pinto MB, Kindlovits R, Nogueira AB, Sepúlveda-Fragoso V, Nóbrega ACLD, Motta NAVD, Medeiros RF. Impact of Brazil Nut ( Bertholletia excelsa, H.B.K.) Supplementation on Body Composition, Blood Pressure, and the Vascular Reactivity of Wistar Rats When Submitted to a Hypersodium Diet. J Am Coll Nutr 2021; 41:559-568. [PMID: 34156903 DOI: 10.1080/07315724.2021.1925995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introdution: Endothelium integrity is a key that maintains vascular homeostasis but it can suffer irreversible damage by blood pressure changes, reflecting an imbalance in the maintenance of vascular homeostasis.Objective: The aim of this study was to investigate the impact of Brazil nut (Bertholletia excelsa, H.B.K.) (BN) supplementation (10% in chow, wt/wt) on the vascular reactivity of Wistar rats during chronic exposure to a sodium overload (1% in water).Methods: First, male Wistar rats were allocated into two groups: Control Group (CG) and the Hypersodic Group (HG) for 4 weeks. Afterward, the CG was divided into the Brazil Nut Group (BNG) and the HG Group into the Hypersodic Brazil Nut Group (HBNG) for a further 8 weeks, totaling 4 groups. Blood pressure was measured during the protocol. At the end of the protocol, the vascular reactivity procedure was performed. Glucose, lipid profile, lipid peroxidation, and platelet aggregation were analyzed in the serum. Body composition was determined by the carcass technique.Results: The groups that were supplemented with the BN chow presented less body mass gain and body fat mass, together with lower serum glucose levels. The HG Group presented an increase in blood pressure and a higher platelet aggregation, while the BN supplementation was able to blunt this effect. The HG Group also showed an increase in contractile response that was phenylephrine-induced and a decrease in maximum relaxation that was acetylcholine-induced when compared to the other groups.Conclusion: The BN supplementation was able to prevent an impaired vascular function in the early stages of arterial hypertension, while also improving body composition, serum glucose, and platelet aggregation.
Collapse
Affiliation(s)
- Henrique Saldanha Melo
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | | | - Nathalia da Silva Costa
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Thais Bento Bernardes
- Molecular Endocrinology Laboratory, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Aline D'Avila Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Patricia Pereira Almeida
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Gabriel Ferreira Lima
- Laboratory of Experimental Pharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Fernanda Carla Ferreira de Brito
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Experimental Pharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Milena Barcza Stockler Pinto
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Department of Nutrition and Dietetics, College of Nutrition, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Nutrition Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Raquel Kindlovits
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Anna Beatriz Nogueira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Vinicius Sepúlveda-Fragoso
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Nadia Alice Vieira da Motta
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Experimental Pharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Renata Frauches Medeiros
- Cardiovascular Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Department of Nutrition and Dietetics, College of Nutrition, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Nutrition Sciences Postgraduate Program, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Rai S, Bhatia V, Bhatnagar S. Drug repurposing for hyperlipidemia associated disorders: An integrative network biology and machine learning approach. Comput Biol Chem 2021; 92:107505. [PMID: 34030115 DOI: 10.1016/j.compbiolchem.2021.107505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia causes diseases like cardiovascular disease, cancer, Type II Diabetes and Alzheimer's disease. Drugs that specifically target HL associated diseases are required for treatment. 34 KEGG pathways targeted by lipid lowering drugs were used to construct a directed protein-protein interaction network and driver nodes were determined using CytoCtrlAnalyser plugin of Cytoscape 3.6. The involvement of driver nodes of HL in other diseases was verified using GWAS. The central nodes of the network and 34 overrepresented pathways had a critical role in Hyperlipidemia. The PI3K-AKT signalling pathway, non-essentiality, non-centrality and approved drug target status were the predominant features of the driver nodes. Next, a Random Forest classifier was trained on 1445 molecular descriptors calculated using PaDEL for 50 approved lipid lowering and 84 lipid raising drugs as the positive and negative training set respectively. The classifier showed average accuracy of 76.8 % during 5-fold cross validation with AUC of 0.79 ± 0.06 for the ROC curve. The classifier was applied to select molecules with favourable properties for lipid lowering from the 130 approved drugs interacting with the identified driver nodes. We have integrated diverse network data and machine learning to predict repurposing of nine drugs for treatment of HL associated diseases.
Collapse
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Venugopal Bhatia
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology Dwarka, New Delhi 110078, India.
| |
Collapse
|
24
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
Chatterjee M. Platelet lipidome: Dismantling the "Trojan horse" in the bloodstream. J Thromb Haemost 2020; 18:543-557. [PMID: 31868994 DOI: 10.1111/jth.14721] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
The platelet-lipid chapter in the story of atherothrombosis is an old one, recapitulated and revised in many contexts. For decades several stimulating facets have been added to it, both unraveling and increasing the perplexity of platelet-lipid interplay and its pathophysiological consequences. The recent paradigm shift in our perspective has evolved with lipidomic analysis of the intraplatelet compartment and platelet releasate. These investigations have disclosed that platelets are in constant interaction with circulatory lipids, often reflected in their lipid repertoire. In addition, they offer a shielded intracellular space for oxidative lipid metabolism generating "toxic" metabolites that escape degradation by plasma lipases and antioxidant defense, circulate undetected by conventional plasma lipid profile, and deposited at atherosclerotic lesions or thrombus. Lipidomics divulges this silent invader in platelet vehicles, thereby providing potential biomarkers of pathologic manifestations and therapeutic targets to be exploited, which is surmised in this review.
Collapse
Affiliation(s)
- Madhumita Chatterjee
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Mohammad HMF, Makary S, Atef H, El-Sherbiny M, Atteia HH, Ibrahim GA, Mohamed AS, Zaitone SA. Clopidogrel or prasugrel reduces mortality and lessens cardiovascular damage from acute myocardial infarction in hypercholesterolemic male rats. Life Sci 2020; 247:117429. [PMID: 32061670 DOI: 10.1016/j.lfs.2020.117429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
AIMS Hypercholesterolemia is a hazard for increasing susceptibility of the heart to myocardial infarction (MI) by inducing platelet hyperaggregability. Clopidogrel and prasugrel have documented cardioprotective effects in clinical studies. Herein, we investigated whether clopidogrel and prasugrel could protect against isoproterenol-induced acute MI (A-MI) under hypercholesterolemic conditions in rats. MAIN METHODS Dietary hypercholesterolemic rats were subjected to acute doses of isoproterenol. Serum lipids, inflammatory markers, aortic endothelin1 and endothelial nitric oxide synthase (eNOS) mRNAs expression and immunexpression of BCL2 were determined. KEY FINDINGS Hypercholesterolemic rats showed infiltration of inflammatory cells and reduction in aortic wall thickness, deposition of fibrous tissue between cardiac muscle fibers. Protective doses of prasugrel or clopidogrel for 28 days before A-MI increased survival, amended the ECG parameters -including ST segment elevation- and improved the histopathological picture in hypercholesterolemic rats. This was coupled with reductions in platelet aggregation, creatine kinase-MB activity, endothelin 1, systemic inflammation and cardiac lipid peroxidation and increment in aortic eNOS expression. Clopidogrel and prasugrel groups showed enhanced BCL2 expression in cardiac fibers and aortic wall. SIGNIFICANCE Prasugrel and clopidogrel protected against A-MI via anti-aggregatory and anti-inflammatory effects. These results add to the value of these drugs in correcting cardiovascular dysfunction in patients vulnerable to A-MI after confirmation by appropriate human studies.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Central Lab., Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hoda Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Anatomy department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Anatomy department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, El-Sharkia, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Gehan A Ibrahim
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdelaty Shawky Mohamed
- Pathology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pathology department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
27
|
Barale C, Russo I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int J Mol Sci 2020; 21:ijms21020623. [PMID: 31963572 PMCID: PMC7014042 DOI: 10.3390/ijms21020623] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are key players in the thrombotic processes. The alterations of platelet function due to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events in patients with cardiometabolic risk factors. Several lines of evidence strongly correlate metabolic disorders such as obesity, a classical condition of insulin resistance, dyslipidemia, and impaired glucose homeostasis with cardiovascular diseases. The presence of these clinical features together with hypertension and disturbed microhemorrheology are responsible for the prothrombotic tendency due, at least partially, to platelet hyperaggregability and hyperactivation. A number of clinical platelet markers are elevated in obese and type 2 diabetes (T2DM) patients, including the mean platelet volume, circulating levels of platelet microparticles, oxidation products, platelet-derived soluble P-selectin and CD40L, thus contributing to an intersection between obesity, inflammation, and thrombosis. In subjects with insulin resistance and T2DM some defects depend on a reduced sensitivity to mediators—such as nitric oxide and prostacyclin—playing a physiological role in the control of platelet aggregability. Furthermore, other alterations occur only in relation to hyperglycemia. In this review, the main cardiometabolic risk factors, all components of metabolic syndrome involved in the prothrombotic tendency, will be taken into account considering some of the mechanisms involved in the alterations of platelet function resulting in platelet hyperactivation.
Collapse
|
28
|
A Systematic Review of Prophylactic Anticoagulation in Nephrotic Syndrome. Kidney Int Rep 2019; 5:435-447. [PMID: 32274450 PMCID: PMC7136344 DOI: 10.1016/j.ekir.2019.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Nephrotic syndrome is associated with an increased risk of venous and arterial thromboembolism, which can be as high as 40% depending on the severity and underlying cause of nephrotic syndrome. The 2012 Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommend prophylactic anticoagulation only in idiopathic membranous nephropathy but acknowledge that existing data are limited and of low quality. There is a need for better identification of vulnerable patients in order to balance the risks of anticoagulation. Methods We undertook a systematic search of the topic in MEDLINE, EMBASE and COCHRANE databases, for relevant articles between 1990 and 2019. Results A total of 2381 articles were screened, with 51 full-text articles reviewed. In all, 28 articles were included in the final review. Conclusion We discuss the key questions of whom to anticoagulate, when to anticoagulate, and how to prophylactically anticoagulate adults with nephrotic syndrome. Using available evidence, we expand upon current KDIGO guidelines and construct a clinical algorithm to aid decision making for prophylactic anticoagulation in nephrotic syndrome.
Collapse
|
29
|
Kasatkina LA, Tarasenko AS, Krupko OO, Kuchmerovska TM, Lisakovska OO, Trikash IO. Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int J Biochem Cell Biol 2019; 119:105665. [PMID: 31821883 DOI: 10.1016/j.biocel.2019.105665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Vitamin D3 is among the major neurosteroids whose role in developing and adult brain is intensively studied now. Its active form 1,25(OH)2D3 regulates the expression and functioning of a range of brain-specific proteins, which orchestrate the neurotransmitter turnover, neurogenesis and neuroplasticity. Despite numerous studies of the vitamin D role in normal and pathological brain function, there is little evidence on the mechanisms of alterations in excitatory and inhibitory neurotransmission under vitamin D deficiency (VDD). Using the animal model we characterized the dysfunction of excitatory and inhibitory neurotransmission under alimentary VDD. The shift between unstimulated and evoked GABA release under VDD was largely reversed after treatment of VDD, whereas the impairments in glutamatergic system were only partially recovered after 1-month vitamin D3 supplementation. The increase of the external glutamate level and unstimulated GABA release in brain nerve terminals was associated with intensified ROS production and higher [Ca2+]i in presynapse. The negative allosteric modulation of presynaptic mGlu7 receptors significantly enhanced exocytotic GABA release, which was decreased under VDD, thereby suggesting the neuroprotective effect of such modulation of inhibitory neurotransmission. Synaptic plasma membranes and cytosolic proteins contribute to the decreased stimulated release of neurotransmitter, by being the crucial components, whose functional state is impaired under VDD. The critical changes with synaptic vesicles occurred at the docking step of the process, whereas malfunctioning of synaptic cytosolic proteins impacted the fusion event foremost. The decreased amplitude of exocytosis was inherent for non-excitable cells as well, as evidenced by lower platelet degranulation. Our data suggest the presynaptic dysfunction and proinflammatory shift as the early events in the pathogenesis of VDD-associated disorders and provide evidences for the neuroprotective role of vitamin D3.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine
| | - Alla S Tarasenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine
| | - Olga O Krupko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine
| | - Tamara M Kuchmerovska
- The Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030 Ukraine
| | - Olha O Lisakovska
- The Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030 Ukraine
| | - Irene O Trikash
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Street, Kyiv, 01030, Ukraine.
| |
Collapse
|
30
|
Razeghi Jahromi S, Ghorbani Z, Martelletti P, Lampl C, Togha M. Association of diet and headache. J Headache Pain 2019; 20:106. [PMID: 31726975 PMCID: PMC6854770 DOI: 10.1186/s10194-019-1057-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
The global prevalence of migraine as a primary headache has been estimated as 14.4% in both sexes. Migraine headache has been ranked as the highest contributor to disability in under 50 years old population in the world. Extensive research has been conducted in order to clarify the pathological mechanisms of migraine. Although uncertainties remains, it has been indicated that vascular dysfunction, cortical spreading depression (CSD), activation of the trigeminovascular pathway, pro-inflammatory and oxidative state may play a putative role in migraine pain generation. Knowledge about pathophysiological mechanisms of migraine should be integrated into a multimodal treatment approach to increase quality of life in patients. With respect to this, within the integrative health studies growing interest pertains to dietary interventions. Although the number of studies concerning effects of diet on headache/migraine is not yet very large, the current article will review the available evidence in this area. All publications on headache/migraine and dietary interventions up to May 2019 were included in the present review through a PubMed/MEDLINE and ScienceDirect database search. According to the current findings, Ketogenic diet and modified Atkins diet are thought to play a role in neuroprotection, improving mitochondrial function and energy metabolism, compensating serotoninergic dysfunction, decreasing calcitonin gene-related peptide (CGRP) level and suppressing neuro-inflammation. It can also be speculated that prescription of low glycemic diet may be promising in headache/migraine control through attenuating the inflammatory state. Moreover, obesity and headaches including migraine could be attributed to each other through mechanisms like inflammation, and irregular hypothalamic function. Thereby, applying dietary strategies for weight loss may also ameliorate headache/migraine. Another important dietary intervention that might be effective in headache/migraine improvement is related to balance between the intake of essential fatty acids, omega-6 and omega-3 which also affect inflammatory responses, platelet function and regulation of vascular tone. Regarding elimination diets, it appears that targeted these diets in migraine patients with food sensitivities could be effective in headache/migraine prevention. Taken together, dietary approaches that could be considered as effective strategies in headache/migraine prophylaxis include weight loss diets in obese headache patients, ketogenic and low-calorie diets, reducing omega-6 and increasing omega-3 fatty acid intakes.
Collapse
Affiliation(s)
- Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christian Lampl
- Headache Medical Center, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Headache Department, Neurology Ward, Sina University Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
31
|
Berger M, Raslan Z, Aburima A, Magwenzi S, Wraith KS, Spurgeon BEJ, Hindle MS, Law R, Febbraio M, Naseem KM. Atherogenic lipid stress induces platelet hyperactivity through CD36-mediated hyposensitivity to prostacyclin: the role of phosphodiesterase 3A. Haematologica 2019; 105:808-819. [PMID: 31289200 PMCID: PMC7049344 DOI: 10.3324/haematol.2018.213348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signaling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidized low density lipoproteins (oxLDL) associated with dyslipidemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signaling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a phosphodiesterase (PDE)-insensitive cAMP analog, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of PDE3A, leading to diminished cAMP signaling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signaling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidized phospholipids and ablated in CD36−/− murine platelets. The injection of oxLDL into wild-type mice strongly promoted FeCl3-induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2ex vivo and diminished PKA signaling. In contrast, platelet sensitivity to a PDE-resistant cAMP analog remained normal. Genetic deletion of CD36 protected dyslipidemic animals from PGI2 hyposensitivity and restored PKA signaling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signaling.
Collapse
Affiliation(s)
- Martin Berger
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK.,Department of Internal Medicine 1, University Hospital RWTH Aachen, Aachen, Germany.,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Zaher Raslan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ahmed Aburima
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Simbarashe Magwenzi
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Katie S Wraith
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Benjamin E J Spurgeon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robert Law
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Maria Febbraio
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalid M Naseem
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK .,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
32
|
Berger M, Wraith K, Woodward C, Aburima A, Raslan Z, Hindle MS, Moellmann J, Febbraio M, Naseem KM. Dyslipidemia-associated atherogenic oxidized lipids induce platelet hyperactivity through phospholipase Cγ2-dependent reactive oxygen species generation. Platelets 2019; 30:467-472. [PMID: 29733744 PMCID: PMC6457275 DOI: 10.1080/09537104.2018.1466386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidized low-density lipoprotein (oxLDL) and associated oxidized phosphocholine-headgroup phospholipids (oxPCs) activate blood platelets through ligation of the scavenger receptor CD36. Previously, we found that oxLDL stimulated phosphorylation of phospholipase Cγ2 (PLCγ2). However, the functional relevance of PLCγ2 phosphorylation in oxLDL-mediated platelet hyperactivity remained elusive. Here, we set out to explore the functional importance of PLCγ2 in oxLDL-mediated platelet activation using human and genetically modified murine platelets. The CD36-specific oxidized phospholipid (oxPCCD36) triggered the generation of reactive oxygen species (ROS) in platelets under static and arterial flow conditions. The ROS generation in response to oxPCCD36 was sustained for up to 3 h but ablated in CD36- and PLCγ2-deficient platelets. The functional importance of ROS generation in response to atherogenic lipid stress was examined through measurement of P-selectin expression. OxPCCD36 induced P-selectin expression, but required up to 60 min incubation, consistent with the timeline for ROS generation. P-selectin expression was not observed in CD36- and PLCγ2-deficient mice. The ability of oxPCCD36 and oxLDL to stimulate P-selectin expression was prevented by incubation of platelets with the ROS scavenger N-acetyl-cysteine (NAC) and the NOX-2 inhibitor gp91ds-tat, but not with the NOX-1 inhibitor ML171. In summary, we provide evidence that prolonged exposure to oxLDL-associated oxidized phospholipids induces platelet activation via NOX-2-mediated ROS production in a CD36- and PLCγ2-dependent manner.
Collapse
Affiliation(s)
- Martin Berger
- Centre for Atherothrombosis and Metabolic Disease, Hull-York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
- Department of Internal Medicine 1, University Hospital RWTH Aachen, Aachen, Germany
- Correspondence: Martin Berger, Department of Internal Medicine I, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany. E-mail:
| | - Katie Wraith
- Centre for Atherothrombosis and Metabolic Disease, Hull-York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Casey Woodward
- Centre for Atherothrombosis and Metabolic Disease, Hull-York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Ahmed Aburima
- Centre for Atherothrombosis and Metabolic Disease, Hull-York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Zaher Raslan
- Leeds Institute of Cardiovascular & Metabolic Medicine, The LIGHT Laboratories, University of Leeds, Leeds, UK
| | - Matthew S. Hindle
- Leeds Institute of Cardiovascular & Metabolic Medicine, The LIGHT Laboratories, University of Leeds, Leeds, UK
| | - Julia Moellmann
- Department of Internal Medicine 1, University Hospital RWTH Aachen, Aachen, Germany
| | - Maria Febbraio
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular & Metabolic Medicine, The LIGHT Laboratories, University of Leeds, Leeds, UK
| |
Collapse
|
33
|
Paes AMDA, Gaspar RS, Fuentes E, Wehinger S, Palomo I, Trostchansky A. Lipid Metabolism and Signaling in Platelet Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:97-115. [PMID: 31140174 DOI: 10.1007/978-3-030-11488-6_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern society has changed its diet composition, transitioning to a higher intake of saturated fat with a 50% increase of cardiovascular risk (CVD). Within the context of increased CVD, there is an induction of a prothrombotic phenotype mainly due to increased platelet reactivity as well as decreased platelet response to inhibitors. Platelets maintain haemostasis through both blood components and endothelial cells that secrete inhibitory or stimulatory molecules to regulate thrombus formation. There exist a correlation between platelets' polyunsaturated fatty acid (PUFA) and the increase in platelet reactivity. The aim of this chapter is to review the metabolism of the main PUFAs involved in platelet function associated with the role that their enzyme-derived oxidized metabolites exert in platelet function and fate. Finally, how lipid metabolism in the organism affect platelet aggregation and activation and the pharmacological modulation of these processes will also be discussed.
Collapse
Affiliation(s)
- Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Renato Simões Gaspar
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Sergio Wehinger
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
34
|
Ravnskov U, de Lorgeril M, Kendrick M, Diamond DM. Inborn coagulation factors are more important cardiovascular risk factors than high LDL-cholesterol in familial hypercholesterolemia. Med Hypotheses 2018; 121:60-63. [DOI: 10.1016/j.mehy.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
|
35
|
Gabryelska A, Łukasik ZM, Makowska JS, Białasiewicz P. Obstructive Sleep Apnea: From Intermittent Hypoxia to Cardiovascular Complications via Blood Platelets. Front Neurol 2018; 9:635. [PMID: 30123179 PMCID: PMC6085466 DOI: 10.3389/fneur.2018.00635] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Obstructive sleep apnea is a chronic condition characterized by recurrent episodes of apneas or hypopneas during sleep leading to intermittent hypoxemia and arousals. The prevalence of the sleep disordered breathing is estimated that almost 50% of men and 24% of women suffer from moderate to severe form of the disorder. Snoring, collapse of upper airways and intermittent hypoxia are main causes of smoldering systemic inflammation in patients suffering from obstructive sleep apnea. The systematic inflammation is considered one of the key mechanisms leading to significant cardiovascular complications. Blood platelets, formerly not even recognized as cells, are currently gaining attention as crucial players in the immune continuum. Platelet surface is endowed with receptors characteristic for cells classically belonging to the immune system, which enables them to recognize pathogens, immune complexes, and interact in a homo- and heterotypic aggregates. Platelets participate in the process of transcellular production of bioactive lipids by delivering both specific enzymes and substrate molecules. Despite their lack of nucleus, platelets synthetize proteins in a stimuli-dependent manner. Atherosclerosis and consequent cardiovascular complications result from disruption in homeostasis of both of the platelet roles: blood coagulation and inflammatory processes modulation. Platelet parameters, routinely evaluated as a part of complete blood count test, were proposed as markers of cardiovascular comorbidity in patients with obstructive sleep apnea. Platelets were found to be excessively activated in this group of patients, especially in obese subjects. Persistent activation results in enhanced spontaneous aggregability and change in cytokine production. Platelet-lymphocyte ratio was suggested as an independent marker for cardiovascular disease in obstructive sleep apnea syndrome and continuous positive air pressure therapy was found to have an impact on platelet parameters and phenotype. In this literature review we summarize the current knowledge on the subject of platelets involvement in obstructive sleep apnea syndrome and consider the possible pathways in which they contribute to cardiovascular comorbidity.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Zuzanna M Łukasik
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Joanna S Makowska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Vasodilator-stimulated phosphoprotein (VASP) is not a major mediator of platelet aggregation, thrombogenesis, haemostasis, and antiplatelet effect of prasugrel in rats. Sci Rep 2018; 8:9955. [PMID: 29967338 PMCID: PMC6028634 DOI: 10.1038/s41598-018-28181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/18/2018] [Indexed: 01/29/2023] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is a member of actin regulatory proteins implicated in platelet adhesion. In addition, phosphorylation of VASP is utilised for the assessment of platelet reactivity in patients treated with P2Y12 receptor antagonists, a class of antiplatelet agents. However, the role of VASP in platelet aggregation, thrombogenesis, haemostasis, and the antiplatelet effect of P2Y12 receptor antagonists remains unclear. We investigated these effects using heterozygous and homozygous VASP knockout rats generated with a CRISPR/Cas9 system. Baseline characteristics, such as haematology and other biochemical parameters, were comparable among the genotypes. In vitro platelet aggregation stimulated by adenosine diphosphate (ADP) or collagen, P-selectin expression of rat platelets treated with ADP, and in vivo thrombocytopenia induced by collagen were also comparable among the genotypes. In addition, in vivo thrombogenesis in a ferric chloride-induced arterial thrombosis model and bleeding time were also comparable among the genotypes. Furthermore, the in vitro antiplatelet effect of prasugrel, a third-generation P2Y12 receptor antagonist, was unaffected by VASP knockout. Although phosphorylated VASP is still an important surrogate marker specific for P2Y12 antagonists, our findings demonstrate that VASP is not a major mediator of platelet aggregation, thrombogenesis, haemostasis, and the antiplatelet effect of prasugrel in rats.
Collapse
|
37
|
Deepika P, Rajeshwary A, Usha S, Goutham MK, Raghav S. Does dyslipidemia worsen the hearing level in diabetics? J Otol 2018; 12:198-201. [PMID: 29937856 PMCID: PMC6002627 DOI: 10.1016/j.joto.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023] Open
Abstract
Objective To identify the effect of dyslipidemia on auditory function detected by Pure Tone Audiometry. To check if dyslipidemia worsens the hearing level in diabetics. Design This was a comparative study where 120 subjects between the age group of 20 and 50 years underwent pure tone audiometry, lipid profile and blood sugars. Group 1 consisted of 30 subjects with type 2 diabetes and dyslipidemia; Group 2 had 30 subjects with isolated diabetes; Group 3 had 30 with isolated dyslipidemia and Group 4 included 30 normal subjects as control. Results Significant hearing loss was seen only in the group with isolated diabetes (63%). The most common type of hearing loss was high frequency sensorineural hearing loss. When comparison was made between the combinations of different lipid profiles, no association was found to the level of hearing. Conclusions Diabetics are more prone to high frequency hearing loss. Altered lipid profile has no role in causing hearing loss.
Collapse
Affiliation(s)
- Pratap Deepika
- Dept of Otorhinolaryngology, KSHEMA, Nitte University, Mangalore 575018, India
| | - A Rajeshwary
- Dept of Otorhinolaryngology, KSHEMA, Nitte University, Mangalore 575018, India
| | - Shastri Usha
- Dept of Audiology and Speech Language Pathology, Nitte Institute of Speech and Hearing, Mangalore 575018, India
| | - M K Goutham
- Dept of Otorhinolaryngology, KSHEMA, Nitte University, Mangalore 575018, India
| | - Sharma Raghav
- Dept of Medicine, KSHEMA, Nitte University, Mangalore 575018, India
| |
Collapse
|
38
|
Biswas S, Zimman A, Gao D, Byzova TV, Podrez EA. TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis Associated With Hyperlipidemia. Circ Res 2017; 121:951-962. [PMID: 28775078 DOI: 10.1161/circresaha.117.311069] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 01/19/2023]
Abstract
RATIONALE Platelet hyperreactivity, which is common in many pathological conditions, is associated with increased atherothrombotic risk. The mechanisms leading to platelet hyperreactivity are complex and not yet fully understood. OBJECTIVE Platelet hyperreactivity and accelerated thrombosis, specifically in dyslipidemia, have been mechanistically linked to the accumulation in the circulation of a specific group of oxidized phospholipids (oxPCCD36) that are ligands for the platelet pattern recognition receptor CD36. In the current article, we tested whether the platelet innate immune system contributes to responses to oxPCCD36 and accelerated thrombosis observed in hyperlipidemia. METHODS AND RESULTS Using in vitro approaches, as well as platelets from mice with genetic deletion of MyD88 (myeloid differentiation factor 88) or TLRs (Toll-like receptors), we demonstrate that TLR2 and TLR6 are required for the activation of human and murine platelets by oxPCCD36. oxPCCD36 induce formation of CD36/TLR2/TLR6 complex in platelets and activate downstream signaling via TIRAP (Toll-interleukin 1 receptor domain containing adaptor protein)-MyD88-IRAK (interleukin-1 receptor-associated kinase)1/4-TRAF6 (TNF receptor-associated factor 6), leading to integrin activation via the SFK (Src family kinase)-Syk (spleen tyrosine kinase)-PLCγ2 (phospholipase Cγ2) pathway. Intravital thrombosis studies using ApoE-/- mice with genetic deficiency of TLR2 or TLR6 have demonstrated that oxPCCD36 contribute to accelerated thrombosis specifically in the setting of hyperlipidemia. CONCLUSIONS Our studies reveal that TLR2 plays a key role in platelet hyperreactivity and the prothrombotic state in the setting of hyperlipidemia by sensing a wide range of endogenous lipid peroxidation ligands and activating innate immune signaling cascade in platelets.
Collapse
Affiliation(s)
- Sudipta Biswas
- From the Department of Molecular Cardiology, Cleveland Clinic, OH
| | - Alejandro Zimman
- From the Department of Molecular Cardiology, Cleveland Clinic, OH
| | - Detao Gao
- From the Department of Molecular Cardiology, Cleveland Clinic, OH
| | - Tatiana V Byzova
- From the Department of Molecular Cardiology, Cleveland Clinic, OH
| | - Eugene A Podrez
- From the Department of Molecular Cardiology, Cleveland Clinic, OH.
| |
Collapse
|
39
|
Unsworth AJ, Bye AP, Tannetta DS, Desborough MJR, Kriek N, Sage T, Allan HE, Crescente M, Yaqoob P, Warner TD, Jones CI, Gibbins JM. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets. Arterioscler Thromb Vasc Biol 2017; 37:1482-1493. [PMID: 28619996 PMCID: PMC5526435 DOI: 10.1161/atvbaha.117.309135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. APPROACH AND RESULTS We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. CONCLUSIONS We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo.
Collapse
Affiliation(s)
- Amanda J Unsworth
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Alexander P Bye
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Dionne S Tannetta
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Michael J R Desborough
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Neline Kriek
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Tanya Sage
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Harriet E Allan
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Marilena Crescente
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Parveen Yaqoob
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Timothy D Warner
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Chris I Jones
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Jonathan M Gibbins
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.).
| |
Collapse
|
40
|
Platelet populations and priming in hematological diseases. Blood Rev 2017; 31:389-399. [PMID: 28756877 DOI: 10.1016/j.blre.2017.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
In healthy subjects and patients with hematological diseases, platelet populations can be distinguished with different response spectra in hemostatic and vascular processes. These populations partly overlap, and are less distinct than those of leukocytes. The platelet heterogeneity is linked to structural properties, and is enforced by inequalities in the environment. Contributing factors are variability between megakaryocytes, platelet ageing, and positive or negative priming of platelets during their time in circulation. Within a hemostatic plug or thrombus, platelet heterogeneity is enhanced by unequal exposure to agonists, with populations of contracted platelets in the thrombus core, discoid platelets at the thrombus surface, patches of ballooned and procoagulant platelets forming thrombin, and coated platelets binding fibrin. Several pathophysiological hematological conditions can positively or negatively prime the responsiveness of platelet populations. As a consequence, in vivo and in vitro markers of platelet activation can differ in thrombotic and hematological disorders.
Collapse
|
41
|
Wang W, Tang Y, Wang Y, Tascau L, Balcerek J, Tong W, Levine RL, Welch C, Tall AR, Wang N. LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. Circ Res 2016; 119:e91-e103. [PMID: 27430239 DOI: 10.1161/circresaha.116.308955] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
RATIONALE Human genome-wide association studies have revealed novel genetic loci that are associated with coronary heart disease. One such locus resides in LNK/SH2B3, which in mice is expressed in hematopoietic cells and suppresses thrombopoietin signaling via its receptor myeloproliferative leukemia virus oncogene. However, the mechanisms underlying the association of LNK single-nucleotide polymorphisms with coronary heart disease are poorly understood. OBJECTIVE To understand the functional effects of LNK single-nucleotide polymorphisms and explore the mechanisms whereby LNK loss of function impacts atherosclerosis and thrombosis. METHODS AND RESULTS Using human cord blood, we show that the common TT risk genotype (R262W) of LNK is associated with expansion of hematopoietic stem cells and enhanced megakaryopoiesis, demonstrating reduced LNK function and increased myeloproliferative leukemia virus oncogene signaling. In mice, hematopoietic Lnk deficiency leads to accelerated arterial thrombosis and atherosclerosis, but only in the setting of hypercholesterolemia. Hypercholesterolemia acts synergistically with LNK deficiency to increase interleukin 3/granulocyte-macrophage colony-stimulating factor receptor signaling in bone marrow myeloid progenitors, whereas in platelets cholesterol loading combines with Lnk deficiency to increase activation. Platelet LNK deficiency increases myeloproliferative leukemia virus oncogene signaling and AKT activation, whereas cholesterol loading decreases SHIP-1 phosphorylation, acting convergently to increase AKT and platelet activation. Together with increased myelopoiesis, platelet activation promotes prothrombotic and proatherogenic platelet/leukocyte aggregate formation. CONCLUSIONS LNK (R262W) is a loss-of-function variant that promotes thrombopoietin/myeloproliferative leukemia virus oncogene signaling and platelet and leukocyte production. In mice, LNK deficiency is associated with both increased platelet production and activation. Hypercholesterolemia acts in platelets and hematopoietic progenitors to exacerbate thrombosis and atherosclerosis associated with LNK deficiency.
Collapse
Affiliation(s)
- Wei Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yang Tang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Liana Tascau
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanna Balcerek
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Tong
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L Levine
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carrie Welch
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
42
|
Abstract
Platelets play an important, but often under-recognized role in cardiovascular disease. For example, the normal response of the platelet can be altered, either by increased pro-aggregatory stimuli or by diminished anti-aggregatory substances to produce conditions of increased platelet activation/aggregation and occur in active cardiovascular disease states both on a chronic (e.g. stable angina pectoris) and acute basis (e.g. acute myocardial infarction). In addition, platelet hyperaggregability is also associated with the risk factors for coronary artery disease (e.g. smoking, hypertension, and hypercholesterolaemia). Finally, the utility of an increasing range of anti-platelet therapies in the management of the above disease states further emphasizes the pivotal role platelets play in the pathogenesis of cardiovascular disease. This paper provides a comprehensive overview of the normal physiologic role of platelets in maintain homeostasis, the pathophysiologic processes that contribute to platelet dysfunction in cardiovascular disease and the associated role and benefits of anti-platelet therapies.
Collapse
Affiliation(s)
- Scott Willoughby
- Cardiology Unit, The Queen Elizabeth Hospital, Adelaide University, Adelaide, South Australia, Australia
| | - Andrew Holmes
- Cardiology Unit, The Queen Elizabeth Hospital, Adelaide University, Adelaide, South Australia, Australia
| | - Joseph Loscalzo
- The Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
43
|
Wang N, Tall AR. Cholesterol in platelet biogenesis and activation. Blood 2016; 127:1949-53. [PMID: 26929273 PMCID: PMC4841038 DOI: 10.1182/blood-2016-01-631259] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia is a risk factor for atherothrombotic disease, largely attributed to its impact on atherosclerotic lesional cells such as macrophages. Platelets are involved in immunity and inflammation and impact atherogenesis, primarily by modulating immune and inflammatory effector cells. There is evidence that hypercholesterolemia increases the risk of atherosclerosis and thrombosis by modulating platelet biogenesis and activity. This review highlights recent findings on the impact of aberrant cholesterol metabolism on platelet biogenesis and activity and their relevance in atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
44
|
Rai S, Bhatnagar S. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:152-68. [DOI: 10.1089/omi.2015.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
45
|
Bianciardi G, Tanganelli I. Fractal analysis of circulating platelets in type 2 diabetic patients. Clin Hemorheol Microcirc 2015; 61:91-7. [DOI: 10.3233/ch-141910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- G. Bianciardi
- Department of Medical Biotechnology, Universitá di Siena, Via delle Scotte, Siena, Italy
| | - I. Tanganelli
- Department of Odontostomatology, Diabetology Section, Universitá di Siena, Viale Bracci, Siena, Italy
| |
Collapse
|
46
|
Takahira S, Suzuki H, Watanabe Y, Kin H, Ooya Y, Sekine Y, Sonoda K, Ogawa H, Nomura Y, Takane H, Tsuchiya Y, Tsukamoto I, Nemoto M. Successful Plasma Exchange for Acute Pancreatitis Complicated With Hypertriglyceridemia: A Case Report. J Investig Med High Impact Case Rep 2015; 3:2324709615605635. [PMID: 26904702 PMCID: PMC4748507 DOI: 10.1177/2324709615605635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A 33-year-old male with acute pancreatitis induced by hypertriglyceridemia had problems during treatment with plasma exchange. The hypercoagulable state was prevented by introducing innovative methods for cleaning and warming of the circuit and dialyzer. This enabled successful therapy, and the patient fully recovered from life-threatening acute pancreatitis.
Collapse
Affiliation(s)
- Shuji Takahira
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiromichi Suzuki
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Yusuke Watanabe
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Hunsook Kin
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Yoshitaka Ooya
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasumasa Sekine
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Kenichiro Sonoda
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroshi Ogawa
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Yushi Nomura
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroshi Takane
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Youhei Tsuchiya
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Isao Tsukamoto
- Saitama Medical University International Medical Center, Saitama, Japan
| | - Manabu Nemoto
- Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
47
|
Bianciardi G, Aglianò M, Volpi N, Stefanutti C. Geometric complexity identifies platelet activation in familial hypercholesterolemic patients. Microsc Res Tech 2015; 78:519-22. [PMID: 25877374 DOI: 10.1002/jemt.22503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Familial hypercholesterolemia (FH), a genetic disease, is associated with a severe incidence of athero-thrombotic events, related, also, to platelet hyperreactivity. A plethora of methods have been proposed to identify those activated circulating platelets, none of these has proved really effective. We need efficient methods to identify the circulating platelet status in order to follow the patients after therapeutic procedures. We propose the use of computerized fractal analysis for an objective characterization of the complexity of circulating platelet shapes observed by means of transmission electron microscopy in order to characterize the in vivo hyperactivated platelets of familial hypercholesterolemic patients, distinguishing them from the in vivo resting platelets of healthy individuals. Platelet boundaries were extracted by means of automatically image analysis. Geometric complexity (fractal dimension, D) by box counting was automatically calculated. The platelet boundary observed by electron microscopy is fractal, the shape of the circulating platelets is more complex in FH (n = 6) than healthy subjects (n = 5, P < 0.01), with 100% correct classification in selected individuals. In vitro activated platelets from healthy subjects show an analogous increase of D. The observed high D in the platelet boundary in FH originates from the in vivo platelet activation. Computerized fractal analysis of platelet shape observed by transmission electron microscopy can provide accurate, quantitative data to study platelet activation in familial hypercholesterolemia and after administration of drugs or other therapeutic procedures.
Collapse
Affiliation(s)
- Giorgio Bianciardi
- Department of Medical Biotechnologies, Anatomia Patologica, University of Siena, Siena, Italy
| | - Margherita Aglianò
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nila Volpi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Stefanutti
- Department of Molecular Medicine, University of Rome "Sapienza", Roma, Italy
| |
Collapse
|
48
|
Icli A, Aksoy F, Nar G, Kaymaz H, Alpay MF, Nar R, Guclu A, Arslan A, Dogan A. Increased Mean Platelet Volume in Familial Hypercholesterolemia. Angiology 2015; 67:146-50. [DOI: 10.1177/0003319715579781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder of lipoprotein metabolism and increases the risk of premature cardiovascular diseases. In patients with FH, platelet function may be activated; however, the extent of this activation and its etiology are unclear. We aimed to evaluate the mean platelet volume (MPV), a marker of platelet activation, in patients with FH. The study group consisted of 164 patients with FH and 160 control patients. Controls were matched for age, gender, hypertension, and smoking. The MPV was significantly higher in patients with FH than in controls (9.2 ± 0.4 vs 7.9 ± 0.6 fL, respectively; P < .001). Platelet count was significantly lower among patients with FH when compared to control patients (259 ± 51 vs 272 ± 56 × 103/L, respectively; P = .03). In linear regression analysis, MPV was independently associated only with total cholesterol (β = .6, 95% confidence interval: 0.004-0.008, P < .001). We have shown that MPV was increased in patients with FH and that it was independently associated with total cholesterol level.
Collapse
Affiliation(s)
- Atilla Icli
- Department of Cardiology, Ahi Evran University, Kirsehir, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Gökay Nar
- Department of Cardiology, Ahi Evran University, Kirsehir, Turkey
| | - Haci Kaymaz
- Department of Neurosurgery, Ahi Evran University Education and Research Hospital, Kirsehir, Turkey
| | - Mehmet Fatih Alpay
- Department of Cardiovascular Surgery, Ahi Evran University, Kirsehir, Turkey
| | - Rukiye Nar
- Department of Biochemistry, Ahi Evran University, Kirsehir, Turkey
| | - Aydın Guclu
- Department of Nephrology, Ahi Evran University, Kirsehir, Turkey
| | - Akif Arslan
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Abdullah Dogan
- Department of Cardiology, Katip Celebi University, Izmir, Turkey
| |
Collapse
|
49
|
Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood 2015; 125:2693-703. [PMID: 25710879 DOI: 10.1182/blood-2014-05-574491] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 02/03/2015] [Indexed: 11/20/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36(-/-) murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2(-/-) mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3',5'-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling.
Collapse
|
50
|
Anti-inflammatory and antiplatelet activities of plasma are conserved across twelve mammalian species. Molecules 2014; 19:11385-94. [PMID: 25090125 PMCID: PMC6271971 DOI: 10.3390/molecules190811385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/25/2022] Open
Abstract
Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins.
Collapse
|