1
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
2
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
3
|
Barker RA. The Origins of the Protein Spread in Parkinson's Disease. Mov Disord Clin Pract 2021; 8:1194-1197. [PMID: 34765685 DOI: 10.1002/mdc3.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Roger A Barker
- Wellcome-MRC Stem Cell institute and Department of Neurology, Addenbrooke's Hospital University of Cambridge Cambridge United Kingdom
| |
Collapse
|
4
|
Liberski PP. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: a comparison 40 years later. Prion 2019; 13:83-93. [PMID: 30966865 PMCID: PMC7000151 DOI: 10.1080/19336896.2019.1595315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major neurological feature of prion diseases is a neuronal loss accomplished through either apoptosis or autophagy. In this review, I compared axonal alterations in prion diseases to those described 40 years earlier as a result of nerve ligation. I also demonstrated that autophagic vacuoles and autophagosomes are a major part of dystrophic neurites. Furthermore, I summarized the current status of the autophagy in prion diseases and hypothesize, that spongiform change may originate from the autophagic vacuoles. This conclusion should be supported by other methods, in particular laser confocal microscopy. We observed neuronal autophagic vacuoles in different stages of formation, and our interpretation of the ‘maturity’ of their formation may or may not equate to actual developmental stages. Initially, a part of the neuronal cytoplasm was sequestrated within double or multiple membranes (phagophores) and often exhibited increased electron-density. The intracytoplasmic membranes formed labyrinth-like structures that suggest a multiplication of those membranes. The autophagic vacuoles then expand and eventually, a vast area of the cytoplasm was transformed into a merging mass of autophagic vacuoles. Margaret R. Matthews published a long treatise in the Philosophical Transactions of the Royal Society of London in which she had described in great detail the ultrastructure of postganglionic branches of the superior cervical ganglion in the rat following ligation of them. The earliest changes observed by Matthews between 6 h to 2 days in the proximal stump were distensions of proximal axons. Analogously, in our models, an increased number of ‘regular’ (round) and ‘irregular’ MVB and some autophagic vacuoles were observed collectively, both processes were similar.
Collapse
Affiliation(s)
- Paweł P Liberski
- a Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
5
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
6
|
Physiological and pathophysiological functions of Swiprosin-1/EFhd2 in the nervous system. Biochem J 2017; 473:2429-37. [PMID: 27515255 DOI: 10.1042/bcj20160168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction and dysregulation of Ca(2+) are linked to neurodegenerative processes and behavioural disorders. Our understanding of the causes and factors involved in behavioural disorders and neurodegeneration, especially Alzheimer's disease (AD), a tau-related disease, is on the one hand limited and on the other hand controversial. Here, we review recent data about the links between the Ca(2+)-binding EF-hand-containing cytoskeletal protein Swiprosin-1/EFhd2 and neurodegeneration. Specifically, we summarize the functional biochemical data obtained in vitro with the use of recombinant EFhd2 protein, and integrated them with in vivo data in order to interpret the emerging role of EFhd2 in synaptic plasticity and in the pathophysiology of neurodegenerative disorders, particularly involving the tauopathies. We also discuss its functions in actin remodelling through cofilin and small GTPases, thereby linking EFhd2, synapses and the actin cytoskeleton. Expression data and functional experiments in mice and in humans have led to the hypothesis that down-regulation of EFhd2, especially in the cortex, is involved in dementia.
Collapse
|
7
|
Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 2016; 74:409-434. [PMID: 27600680 PMCID: PMC5241350 DOI: 10.1007/s00018-016-2351-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.
Collapse
|
8
|
Chen T, Han X, Peng Z, Li A, Liu J. Improvement of the hydrophilicity of 7, 8-dihydroxyflavone by in situ grafting of PEG-A via RAFT polymerization and the drug efficacy tests. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Nadeem M, Spitzbarth I, Haist V, Rohn K, Tauscher K, Rohn K, Bossers A, Langeveld J, Papasavva-Stylianou P, Groschup MH, Baumgärtner W, Gerhauser I, Fast C. Immunolabelling of non-phosphorylated neurofilament indicates damage of spinal cord axons in TSE-infected goats. Vet Rec 2016; 178:141. [PMID: 26795219 DOI: 10.1136/vr.103425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Affiliation(s)
- M Nadeem
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany Center for Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany Center for Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - V Haist
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - K Rohn
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - K Tauscher
- Friedrich Loeffler Institute, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - K Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine, Hannover, Germany
| | - A Bossers
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
| | - J Langeveld
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
| | | | - M H Groschup
- Friedrich Loeffler Institute, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany Center for Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - I Gerhauser
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - C Fast
- Friedrich Loeffler Institute, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| |
Collapse
|
10
|
|
11
|
Purdey M. Are Organophosphate Pesticides Involved in the Causation of Bovine Spongiform Encephalopathy (BSE)? Hypothesis Based upon a Literature Review and Limited Trials on BSE Cattle. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/13590849409034540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Fiala JC. Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 2007; 114:551-71. [PMID: 17805553 DOI: 10.1007/s00401-007-0284-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 12/25/2022]
Abstract
The first ultrastructural investigations of Alzheimer's disease noted the prominence of degenerating mitochondria in the dystrophic neurites of amyloid plaques, and speculated that this degeneration might be a major contributor to plaque pathogenesis. However, the fate of these organelles has received scant consideration in the intervening decades. A number of hypotheses for the formation and progression of amyloid plaques have since been suggested, including glial secretion of amyloid, somal and synaptic secretion of amyloid-beta protein from neurons, and endosomal-lysosomal aggregation of amyloid-beta protein in the cell bodies of neurons, but none of these hypotheses fully account for the focal accumulation of amyloid in plaques. In addition to Alzheimer's disease, amyloid plaques occur in a variety of conditions, and these conditions are all accompanied by dystrophic neurites characteristic of disrupted axonal transport. The disruption of axonal transport results in the autophagocytosis of mitochondria without normal lysosomal degradation, and recent evidence from aging, traumatic injury, Alzheimer's disease and transgenic mice models of Alzheimer's disease, suggests that the degeneration of these autophagosomes may lead to amyloid production within dystrophic neurites. The theory of amyloid plaque pathogenesis has thus come full circle, back to the intuitions of the very first researchers in the field.
Collapse
Affiliation(s)
- John C Fiala
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Tayebi M, Bate C, Hawke S, Williams A. A role for B lymphocytes in anti-infective prion therapies? Expert Rev Anti Infect Ther 2007; 5:631-8. [PMID: 17678426 DOI: 10.1586/14787210.5.4.631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The deposition of proteins in the form of amyloid fibrils and plaques is the characteristic feature of a number of neurodegenerative conditions affecting the nervous system. These disorders include prion and Alzheimer's diseases and are of enormous importance for public health. It has become apparent over the last 20 years that specificity and application in prion diseases' diagnostic and therapeutic situations are the most important considerations in designing strategies for the generation of antiprion antibodies. Specific antiprion therapeutics have been suggested and the establishment of the 'proof-of-principle' that the use of epitope-specific antiprion antibodies leads to indefinite delay of disease onset, has increased momentum for its use, although caution should be exerted prior to the application of new therapeutic strategies in a clinical set up. Furthermore, in vivo stimulation of immune-competent cells to specifically recognize and neutralize the abnormally folded isoform should also be pursued.
Collapse
Affiliation(s)
- Mourad Tayebi
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK.
| | | | | | | |
Collapse
|
14
|
Perez SE, Dar S, Ikonomovic MD, DeKosky ST, Mufson EJ. Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse. Neurobiol Dis 2007; 28:3-15. [PMID: 17662610 PMCID: PMC2245889 DOI: 10.1016/j.nbd.2007.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/18/2022] Open
Abstract
The impact of Abeta deposition upon cholinergic intrinsic cortical and striatal, as well as basal forebrain long projection neuronal systems was qualitatively and quantitatively evaluated in young (2-6 months) and middle-aged (10-16 months) APPswe/PS1DeltaE9 transgenic (tg) mice. Cholinergic neuritic swellings occurred as early as 2-3 months of age in the cortex and hippocampus and 5-6 months in the striatum of tg mice. However, cholinergic neuron number or choline acetyltransferase (ChAT) optical density measurements remained unchanged in the forebrain structures with age in APPswe/PS1DeltaE9 tg mice. ChAT enzyme activity decreased significantly in the cortex and hippocampus of middle-aged tg mice. These results suggest that Abeta deposition has age-dependent effects on cortical and hippocampal ChAT fiber networks and enzyme activity, but does not impact the survival of cholinergic intrinsic or long projection forebrain neurons in APPswe/PS1DeltaE9 tg mice.
Collapse
Affiliation(s)
- Sylvia E. Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Saleem Dar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Steven T. DeKosky
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
15
|
Kratzel C, Mai J, Madela K, Beekes M, Krüger D. Propagation of scrapie in peripheral nerves after footpad infection in normal and neurotoxin exposed hamsters. Vet Res 2006; 38:127-39. [PMID: 17181988 DOI: 10.1051/vetres:2006047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 09/01/2006] [Indexed: 11/14/2022] Open
Abstract
As is known from various animal models, the spread of agents causing transmissible spongiform encephalopathies (TSE) after peripheral infection affects peripheral nerves before reaching the central nervous system (CNS) and leading to a fatal end of the disease. The lack of therapeutic approaches for TSE is partially due to the limited amount of information available on the involvement of host biological compartments and processes in the propagation of the infectious agent. The in vivo model presented here can provide information on the spread of the scrapie agent via the peripheral nerves of hamsters under normal and altered axonal conditions. Syrian hamsters were unilaterally footpad (f.p.) infected with scrapie. The results of the spatiotemporal ultrasensitive immunoblot-detection of scrapie-associated prion protein (PrP(Sc)) in serial nerve segments of both distal sciatic nerves could be interpreted as a centripetal and subsequent centrifugal neural spread of PrP(Sc) for this route of infection. In order to determine whether this propagation is dependent on main components in the axonal cytoskeleton (e.g. neurofilaments, also relevant for the component ;a' of slow axonal transport mechanisms), hamsters were treated -in an additional experiment- with the neurotoxin beta,beta-iminodiproprionitrile (IDPN) around the beginning of the scrapie infection. A comparison of the Western blot signals of PrP(Sc) in the ipsilateral and in the subsequently affected contralateral sciatic nerve segments with the results revealed from IDPN-untreated animals at preclinical and clinical stages of the TSE disease, indicated similar amounts of PrP(Sc). Furthermore, the mean survival time was unchanged in both groups. This in vivo model, therefore, suggests that the propagation of PrP(Sc) along peripheral nerves is not dependent on an intact neurofilament component of the axonal cytoskeleton. Additionally, the model indicates that the spread of PrP(Sc) is not mediated by the slow component ;a' of the axonal transport mechanism.
Collapse
Affiliation(s)
- Christine Kratzel
- Robert Koch-Institut, P24 - Transmissible Spongiforme Enzephalopathien, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
16
|
Tayebi M, Enever P, Sattar Z, Collinge J, Hawke S. Disease-associated prion protein elicits immunoglobulin M responses in vivo. Mol Med 2006; 10:104-11. [PMID: 15706401 PMCID: PMC1431372 DOI: 10.2119/2004-00027.tayebi] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 11/03/2004] [Indexed: 11/06/2022] Open
Abstract
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.
Collapse
Affiliation(s)
- Mourad Tayebi
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, UK
- Department of Neurogenetics, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, Norfolk Place, London, UK
| | - Perry Enever
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, UK
| | - Zahid Sattar
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, UK
- Department of Neurogenetics, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, Norfolk Place, London, UK
| | - Simon Hawke
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London, UK
- Department of Neurogenetics, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, Norfolk Place, London, UK
- Address correspondence and reprint requests to Simon Hawke, Department of Medicine, The University of Sydney, Blackburn Building D06, NSW 2006, Australia. Phone: +61-263620711; fax: + 61-263620129; e-mail:
| |
Collapse
|
17
|
Perez SE, Lazarov O, Koprich JB, Chen EY, Rodriguez-Menendez V, Lipton JW, Sisodia SS, Mufson EJ. Nigrostriatal dysfunction in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 transgenic mice. J Neurosci 2006; 25:10220-9. [PMID: 16267229 PMCID: PMC6725777 DOI: 10.1523/jneurosci.2773-05.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is often accompanied by extrapyramidal signs attributed to nigrostriatal dysfunction. The association between amyloid deposition and nigrostriatal degeneration is essentially unknown. We showed previously that the striatum and the substantia nigra of transgenic mice harboring familial AD (FAD)-linked APPswe/PS1DeltaE9 mutants exhibit morphological alterations accompanied by amyloid-beta (Abeta) deposition (Perez et al., 2004). In the present study, we further investigated the interaction between Abeta deposition and dopaminergic nigrostriatal dysfunction, by correlating morphological and biochemical changes in the nigrostriatal pathway with amyloid deposition pathology in the brains of 3- to 17-month-old APPswe/PS1DeltaE9 transgenic mice and age-matched wild-type controls. We show that Abeta deposition is pronounced in the striatum of APPswe/PS1DeltaE9 mice at 6 months of age, and the extent of deposition increases in an age-dependent manner. Tyrosine hydroxylase (TH)-positive dystrophic neurites with rosette or grape-like cluster disposition are observed adjacent to Abeta plaques and display multilaminar, multivesicular, and dense-core bodies as well as mitochondria. In addition, an age-dependent increase of TH protein levels are shown in nigral cells in these mutant mice. Using HPLC analysis, we found a reduction in the dopamine metabolite DOPAC in the striatum of these mice. These findings show a close association between amyloid deposition and nigrostriatal pathology and suggest that altered FAD-linked amyloid metabolism impairs, at least in part, the function of dopaminergic neurons.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Purdey M. Metal microcrystal pollutants: the heat resistant, transmissible nucleating agents that initiate the pathogenesis of TSEs? Med Hypotheses 2005; 65:448-77. [PMID: 15908137 DOI: 10.1016/j.mehy.2005.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 01/09/2023]
Abstract
This paper exposes the flaws in the conventional consensus on the origins of transmissible spongiform encephalopathies (TSEs) which decrees that the protein-only misfolded 'prion' represents the primary aetiological transmissible agent, and then reviews/presents the emerging data which indicates that environmental exposure to metal microcrystal pollutants (sourced from munitions, etc.) represents the heat resistant, transmissible nucleating agents which seed the metal-prion protein (PrP)-ferritin fibril crystals that cause TSE. Fresh analytical data is presented on the levels of metals in ecosystems which support populations affected by clusters of variant Creutzfeldt-Jacob disease (vCJD), sporadic/familial CJD, and the scrapie types of TSE that have emerged in the UK, Sicily, Sardinia, Calabria and Japan. This data further substantiates the abnormal geochemical template (e.g., elevated strontium (Sr), barium (Ba) and silver (Ag)) which was observed as a common hallmark of the TSE cluster ecosystems across North America, thereby supporting the hypothesis that these microcrystals serve as the piezoelectrion nucleators which seed the growth/multireplication of the aberrant metal-PrP-ferritin fibril features which characterise the neuropathology of the TSE diseased brain. A secondary pathogenic mechanism entails the inactivation of the sulphated proteoglycans which normally regulate the mineralisation process. This can be induced by a rogue metal mediated chelation of free sulphur, or by contamination with organo-sulphur pollutants that substitute at natural sulphur bonds, or via a mutation to the S-proteoglycan cell line; thereby enabling the aberrant overgrowth of rogue fibril crystal formations that possess a piezoelectric capacity which compromises the ability of the contaminated individual to process incoming acoustic/tactile pressure waves in the normal way. The crystals transduce incoming sonic energy into electrical energy, which, in turn, generates magnetic fields on the crystal surfaces that initiate chain reactions of free radical mediated spongiform neurodegeneration. Metal microcrystal nucleating agents provide a group of plausible aetiological candidates that explain the unique properties of the TSE causal agent - such as heat resistance, transmissibility, etc. - which the protein-only prion model fails to fulfill. This paper also discusses the possible nutritional measures that could best be adopted by populations living in high risk TSE ecosystems; as a means of preventing the successful implantation of these rogue microcrystals and their consequent hypermineralisation of the soft tissues within the CNS.
Collapse
Affiliation(s)
- Mark Purdey
- High Barn Farm, Elworthy, Taunton, Somerset TA4 3PX, UK.
| |
Collapse
|
19
|
Willis GL, Robertson AD. Recovery of experimental Parkinson's disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol Biochem Behav 2005; 79:413-29. [PMID: 15582013 DOI: 10.1016/j.pbb.2004.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 07/16/2004] [Accepted: 08/02/2004] [Indexed: 11/30/2022]
Abstract
Over the past 10 years, there has been a resurgence of interest in examining the role of melatonin in health and disease. While the brunt of research in this area has portrayed melatonin in a favorable light, there is a growing body of evidence suggesting that melatonin may possess adverse effects contributing to the development of various neuropsychiatric disease states. In preclinical models of Parkinson's disease (PD), melatonin has been shown to enhance the severity of this condition while its antagonism, using constant light or pinealectomy, facilitates recovery. To test this hypothesis further, the present study employed the melatonin analogues ML-23 and S-20928 in a post-6-OHDA injection regime to determine whether they may have a favorable effect on the symptoms of this more chronic model of PD. When ML-23 was injected I.P. in a dose of 3 mg/kg twice daily for 3.5 days after 6-OHDA, significant improvement in motor function and regulatory deficits was observed. Similarly, the injection of S-20928 in a 1 mg/kg dose (I.P.), in the same regimen, facilitated modest improvement in motor function and regulatory deficits while the larger dose enhanced the severity of behavioural deficits and produced severe side effects causing deterioration in condition during the course of drug administration. ML-23 administration totally abolished the 6-OHDA-induced mortality, which accompanies dopamine (DA) degeneration, while S-20928 had no effect on this parameter. These results suggest that some melatonin analogues can aid in recovery from DA depleting lesions after DA degeneration has commenced and the recovery is not attributable to the antioxidative properties of this hormone. While the exact mechanism by which ML-23 and S-20928 are exerting their therapeutic effect is unclear, it is possible that antagonism of melatonin receptors may play some role and this should be considered when assessing the potential of melatonin analogues for treatment of human neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Victoria 3444, Australia.
| | | |
Collapse
|
20
|
Willis GL. The therapeutic effects of dopamine replacement therapy and its psychiatric side effects are mediated by pineal function. Behav Brain Res 2005; 160:148-60. [PMID: 15836910 DOI: 10.1016/j.bbr.2004.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/16/2004] [Accepted: 11/25/2004] [Indexed: 11/24/2022]
Abstract
There are reports that melatonin secretion from the pineal gland gradually diminishes with advancing age. It has been suggested that various forms of neuropsychiatric disease, in particular, Parkinson's disease (PD), is consequentially related to this decrease by virtue of increased oxidative stress which enhances the process of dopamine (DA) degeneration. There is, however, considerable disagreement on this theme as very little is generally known about the role of the pineal gland in the aetiology and treatment of PD. To assess the role of the pineal gland in PD and in dopamine replacement therapy (DART), the effect of three anti-Parkinsonian drugs on motor and psychiatric function was assessed in normal, pinealectomized (PX) and DA deficient, PX rats. In the first study, rats underwent PX or sham operation and were then injected (IP) with Amantadine (30 or 50 mg/kg), Bromocriptine (5 or 10 mg/kg) or L-Dopa (30 or 60 mg/kg plus 50 mg/kg of R-044602) 3-8 weeks after surgery. Open field performance and motor reflex tests were assessed during the light and dark phases of the L/D cycle. In a second study, clinically effective doses of Bromocriptine (10 mg/kg) and L-Dopa (30 and 100 mg/kg with 50 mg/kg R-044602) were injected into depleted, PX or sham operated rats. In study I, sham operated and PX rats responded differently to Bromocriptine and L-Dopa, while Amantadine did not differentially effect motor performance in the two groups. In study II, 6-OHDA induced degeneration of the nigro-striatal system abolished the effects of Bromocriptine and dramatically altered the effects of L-Dopa seen in study I, in sham operated versus PX rats. DART significantly altered emotionality, as measured by escape attempts, agitation and rage in sham operated animals, compared to PX rats. DA deficiency abolished the tendency to escape in all groups except those treated with 100mg/kg of L-Dopa. Conversely, agitation and rage scores were greater after 100 mg/kg of L-Dopa, in rats with intact pineal function, than in PX rats. These results provide compelling evidence that altered pineal function plays a major role in the aetiology of PD, the therapeutic effect of anti-Parkinsonian drugs and in the psychiatric side effects of DART.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton 3444, Vic., Australia.
| |
Collapse
|
21
|
Liberski PP, Streichenberger N, Giraud P, Soutrenon M, Meyronnet D, Sikorska B, Kopp N. Ultrastructural pathology of prion diseases revisited: brain biopsy studies. Neuropathol Appl Neurobiol 2005; 31:88-96. [PMID: 15634235 DOI: 10.1111/j.1365-2990.2004.00595.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here a detailed ultrastructural comparison of brain biopsies from 13 cases of Creutzfeldt-Jakob disease (CJD) and from one case of fatal familial insomnia (FFI). The latter disease has not heretofore benefited from ultrastructural study. In particular, we searched for tubulovesicular structures (TVS), 35-nm particles regarded as the only disease-specific structures at the level of thin-section electron microscopy. Our material consisted of brain biopsies obtained by open surgery from one FFI case from a new French family, one case of variant CJD (vCJD), nine cases of sporadic CJD (sCJD), two cases of iatrogenic (human growth hormone) CJD and one case of hereditary CJD (Val203Iso). The ultrastructural picture of the cerebral cortex of the FFI patient was virtually indistinguishable from that of CJD. TVS were found, albeit only after prolonged search. Typical spongiform change was observed, consisting of intracellular membrane-bound vacuoles containing secondary chambers (vacuoles within vacuoles) and amorphous material. Neuronal degeneration was widespread: some processes contained degenerating mitochondria and lysosomal electron-dense bodies and these met the criteria for neuroaxonal dystrophy. Other processes contained branching cisterns; still others were filled with electron-dense masses and amorphous vesicles. The overall ultrastructural appearance of variant CJD was similar to that of FFI cerebral cortex, except for a much higher number of cellular processes containing TVS. We detected TVS in the majority of sCJD cases that, in addition to typical spongiform change and robust astrocytic reaction, showed widespread neuritic and synaptic degeneration and autophagic vacuoles. We conclude that TVS are readily found in FFI, vCJD and sCJD and that widespread neuritic degeneration is a part of ultrastructural pathology in prion diseases.
Collapse
Affiliation(s)
- P P Liberski
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka st. 8/10, 92-216 Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Roy S, Zhang B, Lee VMY, Trojanowski JQ. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 2005; 109:5-13. [PMID: 15645263 DOI: 10.1007/s00401-004-0952-x] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/09/2004] [Indexed: 02/05/2023]
Abstract
A core pathology central to most neurodegenerative diseases is the misfolding, fibrillization and aggregation of disease proteins to form the hallmark lesions of specific disorders. The mechanisms underlying these brain-specific neurodegenerative amyloidoses are the focus of intense investigation and defective axonal transport has been hypothesized to play a mechanistic role in several neurodegenerative disorders; however, this hypothesis has not been extensively examined. Discoveries of mutations in human genes encoding motor proteins responsible for axonal transport do provide direct evidence for the involvement of axonal transport in neurodegenerative diseases, and this evidence is supported by studies of animal models of neurodegeneration. In this review, we summarize recent findings related to axonal transport and neurodegeneration. Focusing on specific neurodegenerative diseases from a neuropathologic perspective, we highlight discoveries of human motor protein mutations in some of these diseases, as well as illustrate new insights from animal models of neurodegenerative disorders. We also review the current understanding of the biology of axonal transport including major recent findings related to slow axonal transport.
Collapse
Affiliation(s)
- Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-4283, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Lyme borreliosis in humans is an inflammatory disease affecting multiple organ systems, including the nervous system, cardiovascular system, joints and muscles. The causative agent, the spirochaete Borrelia burgdorferi, is transmitted to the host by a tick bite. The pathogenesis of the disease in its early stages is associated largely with the presence of viable bacteria at the site of inflammation, whereas in the later stages of disease, autoimmune features seem to contribute significantly. In addition, it has been suggested that chronic persistence of B. burgdorferi in affected tissues is of pathogenic relevance. Long-term exposure of the host immune system to spirochaetes and/or borrelial compounds may induce chronic autoimmune disease. The study of bacterium-host interactions has revealed a variety of proinflammatory and also immunomodulatory-immunosuppressive features caused by the pathogen. Therapeutic strategies using antibiotics are generally successful, but chronic disease may require immunosuppressive treatment. Effective and safe vaccines using recombinant outer surface protein A have been developed, but have not been propagated because of fears that autoimmunity might be induced. Nevertheless, new insights into the modes of transmission of B. burgdorferi to the warm-blooded host have been generated by studying the action of these vaccines.
Collapse
Affiliation(s)
- S K Singh
- Paediatric Rheumatology, Children's Hospital, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
24
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
25
|
Purdey M. Elevated levels of ferrimagnetic metals in foodchains supporting the Guam cluster of neurodegeneration: Do metal nucleated crystal contaminents evoke magnetic fields that initiate the progressive pathogenesis of neurodegeneration? Med Hypotheses 2004; 63:793-809. [PMID: 15488650 DOI: 10.1016/j.mehy.2004.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 04/20/2004] [Indexed: 11/15/2022]
Abstract
Elevated levels of aluminium (Al), strontium (Sr), barium (Ba), iron (Fe), manganese (Mn) cations - combined with deficiencies of magnesium (Mg)/calcium (Ca) - have been observed in the foodchains that traditionally support the Chamorro populations affected by high incidence clusters of Alzheimer (AD), Parkinson-like (PD), motor neurone diseases and multiple sclerosis on the island of Guam. Soils drawn from the cluster region demonstrated an excessive fivefold increase in 'magnetic susceptibility' readings in relation to soils from disease free adjoining regions. A multifactorial aetiological hypothesis is proposed that pivots upon the combined exposure to high levels of natural/industrial sources of ferrimagnetic/ferroelectric compounds incorporating Al, Fe, Mn, Sr, Ba (e.g., via yam/seafood consumption or exposure to world war 2 (WW2) munitions) and to low levels of Mg/Ca in all S. Pacific locations where these clusters of neurodegenerative disease have simultaneously erupted. Once gut/blood brain barrier permeability is impaired, the increased uptake of Al, Fe, Sr, Ba, or Mn into the Mg/Ca depleted brain leads to rogue metal substitutions at the Mg/Ca vacated binding domains on various enzyme/proteoglycan groups, causing a broad ranging disruption in Mg/Ca dependent systems - such as the glutamine synthetase which prevents the accumulation of neurotoxic glutamate. The rogue metals chelate sulphate, disrupting sulphated-proteoglycan mediated inhibition of crystal proliferation, as well as its regulation of the Fibroblast growth factor receptor complex which disturbs the molecular conformation of those receptors and their regulation of transphosphorylation between intracellular kinase domains; ultimately collapsing proteoglycan mediated cell-cell signalling pathways which maintain the growth and structural integrity of the neuronal networks. The depression of Mg/Ca dependent systems in conjunction with the progressive ferrimagnetisation of the CNS due to an overload of rogue ferroelectric/ferrimagnetic metal contaminants, enables 'seeding' of metal-protein crystalline arrays that can proliferate in the proteoglycan depleted brain. The resulting magnetic field emissions initiate a free radical mediated progressive pathogenesis of neurodegeneration. The co-clustering of these various types of disease in select geographical pockets around the world suggests that all of these conditions share a common early life exposure to ferromagnetic metal nucleating agents in their multifactorial aetiology. Factors such as individual genetics, the species of metal involved, etc., dictate which specific class of disease will emerge as a delayed neurotoxic response to these environmental insults.
Collapse
Affiliation(s)
- Mark Purdey
- High Barn Farm, Elworthy, Taunton, Somerset TA4 3PX, UK.
| |
Collapse
|
26
|
Abstract
The etiology of HIV-associated dementia (HAD) is still unknown although direct viral effects have not been supported. Although evidence supports a role for products of activated macrophages, other evidence suggested the possibility of associated autoimmune phenomena at least as a marker. In a blinded analysis, non-HIV-infected whole brain material was immunoblotted with samples of serum, and in certain cases cerebrospinal fluid (CSF), from HAD patients and controls. Distinct antibrain antibodies were detected in 11/12 of HIV+ HAD patients, 7/19 of HIV+ patients without HAD, and 0/11 HIV seronegative controls who were either healthy or had other neurologic diseases. Reactivity against control tissue was negative. Though the etiopathogenetic relation of these antibrain antibodies remains to be delineated, the data suggest that they may be a marker of HAD.
Collapse
Affiliation(s)
- Steven E Schutzer
- Department of Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
27
|
Sigal LH, Williams S, Soltys B, Gupta R. H9724, a monoclonal antibody to Borrelia burgdorferi's flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: a potential role for HSP60 in peptide hormone signaling and in an autoimmune pathogenesis of the neuropathy of Lyme disease. Cell Mol Neurobiol 2001; 21:477-95. [PMID: 11860186 PMCID: PMC11533818 DOI: 10.1023/a:1013815322485] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although Borrelia burgdorferi, the causative agent of Lyme disease, is found at the site of many disease manifestations, local infection may not explain all its features. B. burgdorferi's flagellin cross-reacts with a component of human peripheral nerve axon, previously identified as heat shock protein 60 (HSP60). The cross-reacting epitopes are bound by a monoclonal antibody to B. burgdorferi's flagellin, H9724. Addition of H9724 to neuroblastoma cell cultures blocks in vitro spontaneous and peptide growth-factor-stimulated neuritogenesis. Withdrawal of H9724 allows return to normal growth and differentiation. Using electron microscopy, immunoprecipitation and immunoblotting, and FACS analysis we sought to identify the site of binding of H9724, with the starting hypotheses that the binding was intracellular and not identical to the binding site of II-13, a monoclonal anti-HSP60 antibody. The current studies show that H9724 binds to an intracellular target in cultured cells with negligible, if any, surface binding. We previously showed that sera from patients with neurological manifestations of Lyme disease bound to human axons in a pattern identical to H9724's binding; these same sera also bind to an intracellular neuroblastoma cell target. II-13 binds to a different HSP60 epitope than H9724: II-13 does not modify cellular function in vitro. As predicted, II-13 bound to mitochondria, in a pattern of cellular binding very different from H9724, which bound in a scattered cytoplasmic, nonorganelle-related pattern. H9724's effect is the first evidence that HSP60 may play a role in peptide-hormone-receptor function and demonstrates the modulatory potential of a monoclonal antibody on living cells.
Collapse
Affiliation(s)
- L H Sigal
- Department of Medicine, Robert Wood Johnson Medical School. University of Medicine and Dentistry of New Jersey, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Nerve growth factor (NGF) was discovered 50 years ago as a molecule that promoted the survival and differentiation of sensory and sympathetic neurons. Its roles in neural development have been characterized extensively, but recent findings point to an unexpected diversity of NGF actions and indicate that developmental effects are only one aspect of the biology of NGF. This article considers expanded roles for NGF that are associated with the dynamically regulated production of NGF and its receptors that begins in development, extends throughout adult life and aging, and involves a surprising variety of neurons, glia, and nonneural cells. Particular attention is given to a growing body of evidence that suggests that among other roles, endogenous NGF signaling subserves neuroprotective and repair functions. The analysis points to many interesting unanswered questions and to the potential for continuing research on NGF to substantially enhance our understanding of the mechanisms and treatment of neurological disorders.
Collapse
Affiliation(s)
- M V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
29
|
Purdey M. Ecosystems supporting clusters of sporadic TSEs demonstrate excesses of the radical-generating divalent cation manganese and deficiencies of antioxidant co factors Cu, Se, Fe, Zn. Does a foreign cation substitution at prion protein's Cu domain initiate TSE? Med Hypotheses 2000; 54:278-306. [PMID: 10790765 DOI: 10.1054/mehy.1999.0836] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Analyses of food chains supporting isolated clusters of sporadic TSEs (CWD in N Colorado, scrapie in Iceland, CJD in Slovakia) demonstrate a consistent 2 1/2+ fold greater concentration of the pro-oxidant divalent cation, manganese (Mn), in relation to normal levels recorded in adjoining TSE-free localities. Deficiencies of the antioxidant co factors Cu/Se/Zn/Fe and Mg, P and Na were also consistently recorded in TSE foodchains. Similarities between the clinical/pathological profile of TSEs and Mn delayed psycho-neurotoxicity in miners are cited, and a novel theory generated which suggests that sporadic TSE results from early life dependence of TSE susceptible genotypes on ecosystems characterised by this specific pattern of mineral imbalance. Low Cu/Fe induces an excessive absorption of Mn in ruminants and an increased oxidation of Mn2+ into its pro oxidant species, Mn3+, which accumulates in mitochondria of CNS astrocytes in Mn SOD deficient genotypes. Deficiencies of scavenger co factors Cu/Zn/Se/Fe in the CNS permits Mn3+ initiated chain reactions of auto-oxidant mediated neuronal degeneration to proliferate, which, in turn, up-regulates the expression of the Cu-metalloprotein, prion protein (PrP). Once the rate of PrP turnover and its demand for Cu exceeds the already depleted supply of Cu within the CNS, PrP can no longer bind sufficient Cu to maintain its conformation. Mn3+ substitutes at the vacated Cu domain on PrP, thus priming up a latent capacity for lethal auto-oxidative activity to be carried along with PrP like a 'trojan horse'; where Mn 3+ serves as the integral 'infectious' transmissible component of the misfolded PrP-cation complex. The Mn overactivation of concanavalin A binding to glycoprotein and Mn-initiated autoxidation results in a diverse pathological profile involving receptor capping, aggregation/modification of CNS membrane/cytoskeletal proteins. TSE ensues. The BSE/nv CJD strain entails a 'synthetic' induction of the same CNS mineral disturbance, where 'in utero' exposure to Cu-chelating insecticides/Mn supplements accelerates the onset of a more virulent 'strain' of adolescent TSE.
Collapse
Affiliation(s)
- M Purdey
- High Barn Farm, Elworthy, Taunton, UK
| |
Collapse
|
30
|
Rao JK, Katsetos CD, Herman MM, Savory J. Experimental Aluminum Encephalomyelopathy: Relationship to Human Neurodegenerative Disease. Clin Lab Med 1998. [DOI: 10.1016/s0272-2712(18)30144-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sigal L. Lyme borreliosis (Lyme disease): interactions of Borrelia burgdorferi sensu lato with human (and other mammalian) hosts. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0020-2452(98)80013-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Abstract
Lyme disease is a treatable and curable infectious disease that can be diagnosed with relative confidence with attention to the details of the syndrome and proper use of serologic testing to confirm the clinical diagnosis. Lyme disease should not be a "diagnosis of exclusion," made on the basis of isolated serologic reactivity or because of the presence of symptoms compatible with Lyme disease. The pathogenesis of chronic complaints following infection with B. burgdorferi is often unclear, but such persistent complaints should not automatically be ascribed to ongoing infection. There is no proven role for long-term antibiotics or combination regimens.
Collapse
Affiliation(s)
- L H Sigal
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, USA
| |
Collapse
|
33
|
Sigal LH, Williams S. A monoclonal antibody to Borrelia burgdorferi flagellin modifies neuroblastoma cell neuritogenesis in vitro: a possible role for autoimmunity in the neuropathy of Lyme disease. Infect Immun 1997; 65:1722-8. [PMID: 9125553 PMCID: PMC175205 DOI: 10.1128/iai.65.5.1722-1728.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although Borrelia burgdorferi is found at the site of many manifestations of Lyme disease, local infection may not explain all features of the disease. Previous work has demonstrated that the organism's flagellin cross-reacts with a component of human peripheral nerve axon, heat shock protein 60. The cross-reacting epitope is identified by a single anti-B. burgdorferi flagellin monoclonal antibody, H9724. We now report that the spontaneous and peptide growth factor-stimulated in vitro neuritogenesis of SK-N-SH neuroblastoma cells and other neural tumor cell lines is suppressed by H9724. In contrast, changes induced by exposure of these cells to optimal and suboptimal concentrations of cyclic AMP, phorbol ester, or retinoic acid are not affected by H9724. H9724 does not decrease cell viability or the ability of the cells to anchor to the culture plate or extracellular matrix and does not block nerve growth factor binding to the cells. These findings are compatible with the premise that antiaxonal antibodies formed during the immune response to B. burgdorferi flagellin might modify axonal function in vivo and play a role in the pathogenesis of neurologic features of Lyme disease. A humoral immune response predicated on molecular mimicry could explain persistent or ongoing neurologic dysfunction occurring after elimination of the organism by appropriate antibiotic therapy.
Collapse
Affiliation(s)
- L H Sigal
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903, USA
| | | |
Collapse
|
34
|
Abstract
Lyme disease, caused by Borrelia burgdorferi, causes a multisystem inflammatory ailment, although the precise means of tissue damage are not well understood. It is clear that the organism is present at the site of inflammation in many organs and that many of the features of the illness are relieved by antibiotic therapy. A complex interaction between spirochete and immune systems of a number of mammalian hosts, in human disease and animal models, has been described. It is clear that T cells and macrophages are intimately associated with the pathogenesis of arthritis and that immune mechanisms are involved in other aspects of disease. Inflammation directed at persistence of Borrelial antigens is a plausible explanation for persisting arthritis. Autoimmunity based on molecular mimicry may play a role in the pathogenesis of Lyme disease. Humoral immunity plays a protective role, prompting interest in vaccine development. Significant variation in certain of the outer surface proteins suggests that multiple proteins, peptides, or chimeric vaccines may be needed to provide a sufficiently broad humoral protective response.
Collapse
Affiliation(s)
- L H Sigal
- Division of Rheumatology and Connective Tissue Research, UMDNJ-Robert Wood Johnson Medical School, New Brunswick 08903, USA
| |
Collapse
|
35
|
De Lacalle S, Cooper JD, Svendsen CN, Dunnett SB, Sofroniew MV. Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience 1996; 75:19-27. [PMID: 8923519 DOI: 10.1016/0306-4522(96)00239-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During ageing, basal forebrain cholinergic neurons are prone to degeneration for unknown reasons. In this study we morphometrically evaluated the retrograde labelling of basal forebrain neurons obtained after injection of FluoroGold into multiple sites in the cerebral neocortex in aged (24-33 months) as compared with young adult (four to six months) male Sprague-Dawley rats. In addition, we looked for differences in the distribution of degenerative changes in topographic subdivisions of the basal forebrain cholinergic complex of neurons identified by immunohistochemical detection of the cholinergic markers choline acetyltransferase or low-affinity neurotrophin receptor. After injection of FluoroGold into the cerebral neocortex, the number of retrogradely labelled neurons in the horizontal diagonal band/ substantia innominata and basal nucleus was significantly lower in aged rats, by 41% and 48%, respectively. In aged rats injected with FluoroGold as well as in non-injected aged rats, the numbers of neurons immunoreactive for choline acetyltransferase and low-affinity neurotrophin receptor were significantly lower, by 23-27% in the basal forebrain system as a whole, with no significant difference in the degree of decline amongst different subdivisions (i.e. medial septum, diagonal band, substantia innominata and basal nucleus). The ratios of the number of neurons labelled with FluoroGold as compared with the number of neurons immunoreactive for either cholinergic marker were significantly lower in aged rats, by 32-37%, indicating that the decline in the number of neurons retrogradely transporting tracer was greater than the decline in the number of immunoreactive neurons in aged animals. Immunoreactive as well as retrogradely labelled neurons showed a significant shrinkage of cell surface area of 6-13% in different subdivisions of the basal forebrain cholinergic system in aged rats. These findings confirm significant loss and atrophy of basal forebrain cholinergic neurons in aged rats, and demonstrate significantly reduced retrograde labelling of these neurons with fluorescent tracer applied to their target cortex. This reduced retrograde labelling suggests an impairment of either uptake or retrograde transport mechanisms in these neurons in aged rats. Such an impairment may contribute to the degenerative changes of basal forebrain cholinergic neurons observed in ageing and age-related degenerative conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- S De Lacalle
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|
36
|
Zhang ZX, Anderson DW, Mantel N, Román GC. Motor neuron disease on Guam: geographic and familial occurrence, 1956-85. Acta Neurol Scand 1996; 94:51-9. [PMID: 8874594 DOI: 10.1111/j.1600-0404.1996.tb00039.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the geographic and familial occurrence of motor neuron disease (MND) on Guam, and then considered etiologic hypotheses related to cycad use and metal intoxication. The research was based on 303 Chamorros from Guam and 3 Chamorros from other Mariana Islands, all with MND onset on Guam during 1956-85. Inarajan and Umatac, two southern districts, each had, for both sexes combined, an average incidence rate significantly higher than the corresponding overall rate for Guam. Also, for each sex, geographic patterns of incidence were significantly related to 1) socioeconomic level (men only), 2) cycasin concentrations in cycad flour samples (men and women), 3) iron concentrations in water samples (men and women), 4) silicon concentrations in water samples (men only), and 5) cobalt and nickel concentrations in soil samples (men and women). The MND risk in susceptible sibships was about 7-28 times greater than that in the general population. The cycad hypothesis conforms somewhat better than the metal intoxication hypothesis with the data presented.
Collapse
Affiliation(s)
- Z X Zhang
- Neuroepidemiology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892-9135, USA
| | | | | | | |
Collapse
|
37
|
Purdey M. The UK epidemic of BSE: slow virus or chronic pesticide-initiated modification of the prion protein? Part 1: Mechanisms for a chemically induced pathogenesis/transmissibility. Med Hypotheses 1996; 46:429-43. [PMID: 8735881 DOI: 10.1016/s0306-9877(96)90022-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is proposed that exposure of the bovine embryo to specific high-dose lipophilic formulations of organophosphate insecticide (containing phthalimide) applied exclusively in the UK during the 1980s/early 1990s was the primary trigger that initiated the UK's bovine spongioform encephalopathy epidemic. Multi-site binding organophosphate toxic metabolites penetrate the fetus, covalently binding with, phosphorylating and ageing serine, tyrosine or histidine active sites on fetal central nervous system prion protein. An abnormal negative charge corrupts prion protein molecular surface, which blocks both proteases and chaperones from accessing their cleavage/bonding sites. This impairs normal degradation and folding of prion protein respectively. Once the abnormally phosphorylated abnormal prion protein isoform agent is initiated, any stress event ensuing in adult life induces a nerve growth factor-mediated synthesis of normal cellular prion protein isoform that aggregates to abnormally phosphorylated abnormal prion protein isoform, thereby becoming 'infected'/transformed into the same; due to the vicious circle of positive feedback invoked by the blocking of a prion protein-specific kinase. Prion protein could therefore serve as a hitherto unrecognized critical link in a chain of delayed neuroexcitotoxic proteins that are triggered off by chronic exposure to specific classes of chemical/metal that 'hit and run' during the vulnerable in utero period, producing spongioform encephalopathy disease years later.
Collapse
|
38
|
Liberski PP. How do neurons degenerate in transmissible spongiform encephalopathies? MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 28:245-9. [PMID: 8871966 DOI: 10.1007/bf02815229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuroaxonal dystrophy is a feature of neuronal degeneration encountered in all subacute spongiform virus encephalopathies including scrapie and Creutzfeldt-Jakob disease (CJD). By immunohistochemical techniques, the accumulation of 200 kDa neurofilament protein was demonstrated in affected neurites in human CJD. These neurites exhibited the ultrastructural features of dystrophic neurites encountered in other neurodegenerative disorders, particularly Alzheimer's disease. These findings support the hypothesis that impairment of slow axoplasmic transport is a common pathogenetic mechanism for CJD and many other neurodegenerative conditions.
Collapse
Affiliation(s)
- P P Liberski
- Laboratory of Election Microscopy and Neuropathology, Medical Academy Lodz, Poland
| |
Collapse
|
39
|
Zhang ZX, Anderson DW, Mantel N, Román GC. Motor neuron disease on Guam: temporal occurrence, 1941-85. Acta Neurol Scand 1995; 92:299-307. [PMID: 8848935 DOI: 10.1111/j.1600-0404.1995.tb00133.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a case registry, we investigated the temporal occurrence of motor neuron disease (MND) on Guam. MND with onset during 1941-85 was documented in 434 Chamorros and 9 non-Chamorro migrants who had lived on Guam before onset. Increased median age at onset and decreased age-adjusted incidence rates (since the early 1960s) were observed for Chamorros of both sexes. Our evidence about MND on Guam is consistent with: 1) The latent period duration has varied from years to decades; 2) With time, the exposure period or latent period, or both, have lengthened; 3) The high risk of acquiring the condition has been reduced since, at least, the early 1950s, and the most recent years of meaningful risk were the early to middle 1960s; 4) The critical age for acquiring the condition is in adolescence and adulthood; 5) Change of environment from Guam to overseas during childhood resulted in decreased risk of acquiring the condition.
Collapse
Affiliation(s)
- Z X Zhang
- Neuroepidemiology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9135, USA
| | | | | | | |
Collapse
|
40
|
Julien JP. A role for neurofilaments in the pathogenesis of amyotrophic lateral sclerosis. Biochem Cell Biol 1995; 73:593-7. [PMID: 8714677 DOI: 10.1139/o95-064] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset degenerative disease of motor neurons, characterized by abnormal accumulation of neurofilaments (NFs) in perikarya and proximal axons. Two lines of evidence suggest that neurofilament accumulation can play a crucial role in ALS pathogenesis. First, transgenic mouse models overexpressing NF proteins were found to develop motor neuron degeneration and, second, variant alleles of the NF heavy-subunit (NF-H) gene have been found in some human ALS patients. Our axonal transport studies with transgenic mice overexpressing the human NF-H gene, a model of ALS, revealed defects of intracellular transport not only for neurofilament proteins but also for other cytoskeletal proteins and organelles such as mitochondria. Therefore, we propose that neurofilament accumulation in mice causes neurodegeneration by disrupting axonal transport, a mechanism that may account for the pathogenesis of ALS.
Collapse
Affiliation(s)
- J P Julien
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, Canada
| |
Collapse
|
41
|
Sasaki S, Iwata M. Synaptic loss in the proximal axon of anterior horn neurons in motor neuron disease. Acta Neuropathol 1995; 90:170-5. [PMID: 7484093 DOI: 10.1007/bf00294317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This report deals with an ultrastructural investigation of the synapses of the proximal axons of normal-appearing anterior horn neurons of 7 patients with amyotrophic lateral sclerosis (ALS) and 4 patients with motor neuron disease who had no upper motor neuron and corticospinal tract involvement (lower motor neuron disease, LMND). Specimens from 12 age-matched individuals who died of non-neurological diseases served as controls. Proximal axons directly emanating from the normal-appearing neurons were examined: 42 axons were from ALS patients, 43 from LMND patients and 87 from controls. Our results show that the number of synapses on axon hillocks, as well as the lengths of the synaptic contact and of the active zone were reduced in both groups of patients (P < 0.0001), but no significant differences were seen between patients and controls with respect to the synaptic parameters of initial axon segments. There was no overall difference between ALS and LMND patients. These findings suggest that the electrophysiological functions pertaining to integration of electrical inputs into the axon and information transduction on the axon may be greatly impaired in the early stages of motor neuron diseases, and that the observed synaptic alterations may be pathological events, likely to be due to anterior horn neuron degeneration.
Collapse
Affiliation(s)
- S Sasaki
- Department of Neurology, Tokyo Women's Medical College, Japan
| | | |
Collapse
|
42
|
Abstract
Amyotrophic lateral sclerosis (ALS) is probably biphasic. An initial trigger(s) is followed by a terminal cascade coinciding with the onset of neurological deficits. The terminal cascade involves interactive multifactorial pathogenic mechanisms. Aging must play a crucial role leading to multiple defective or degraded gene products accumulating with progressing years. This in turn leads to failure of receptor integrity and resulting excitotoxicity, free radical accumulation, failure of neurotrophism, and possibly immunological disturbances. These events are predated by months or years by a trigger which is also likely to be multifactorial and cumulative. Evidence suggests that environmental factors may be important triggers. Failure of specific glutamate transporters and calcium binding proteins may account for selective vulnerability of the corticomotoneuronal system. It is postulated that in ALS the primary target cell is the corticomotoneuron or the local circuit interneurons which modulate its activity. Glia cells may play an important role in the demise of the corticomotoneuronal cell. The disordered corticomotoneuron induces excessive excitatory transmitter (glutamate?) release at the corticomotoneuronal-spinal-motoneuronal synapse resulting in the subsequent demise of this neuron.
Collapse
Affiliation(s)
- A Eisen
- Neuromuscular Diseases Unit, Vancouver General Hospital, British Columbia, Canada
| |
Collapse
|
43
|
Hilton DA, Love S, Ferguson I, Newman P. Motor neuron disease with neurofibrillary tangles in a non-Guamanian patient. Acta Neuropathol 1995; 90:101-6. [PMID: 7572072 DOI: 10.1007/bf00294466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurofibrillary tangles are described in Guamanian and post-encephalitic forms of motor neuron disease (MND) but not in sporadic MND. We report the neuropathological findings in a 79-year-old man who died after a 1-year history of MND without extrapyramidal features or dementia. There was no family history of neurological disease and he had not visited Guam. The spinal cord showed loss of anterior horn cells, and skeletal muscle typical changes of denervation. The brain appeared macroscopically normal but histology revealed many neurofibrillary tangles, particularly in medial temporal lobe structures, insula, nucleus basalis, hippocampus, oculomotor nucleus, raphe nuclei and locus ceruleus. Neurofibrillary tangles were not seen in the primary motor cortex, which appeared histologically unremarkable. Occasional tangles were present in the substantia nigra and pontine nuclei. None were seen in the cerebellum, medulla or spinal cord. The tangles were argyrophilic, and, in sections stained with thioflavin-S, both the intracellular and the extracellular tangles fluoresced strongly under ultraviolet light. The intracellular neurofibrillary tangles reacted strongly with an antibody to tau protein, and only occasional tangles showed weak ubiquitin immunoreactivity. Scattered neuropil threads were present in the cortex in the areas of neurofibrillary tangle formation. No plaques were present in any part of the brain and no A4/beta protein immunoreactivity was detected. Ultrastructural examination revealed Alzheimer-type neurofibrillary tangles composed of paired helical filaments. The present findings further extend the spectrum of diverse neurological disorders associated with neurofibrillary tangles.
Collapse
Affiliation(s)
- D A Hilton
- Department of Neuropathology, Frenchay Hospital, Bristol, UK
| | | | | | | |
Collapse
|
44
|
Hainfellner JA, Brantner-Inthaler S, Cervenáková L, Brown P, Kitamoto T, Tateishi J, Diringer H, Liberski PP, Regele H, Feucht M. The original Gerstmann-Sträussler-Scheinker family of Austria: divergent clinicopathological phenotypes but constant PrP genotype. Brain Pathol 1995; 5:201-11. [PMID: 8520719 DOI: 10.1111/j.1750-3639.1995.tb00596.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We present new data on the original Austrian kindred with Gerstmann-Sträussler-Scheinker disease (GSS) which encompasses currently 221 members in 9 generations. The mode of inheritance is autosomal dominant. Predominant clinical features are slowly progressive ataxia and late impairment of higher cerebral functions. In contrast, a recent case with proven P102L mutation of the PRNP gene had rapidly developing dementia and severe cortical damage indistinguishable from the clinicopathological phenotype of Creutzfeldt-Jakob disease (CJD). PRNP codon 129 was homozygous for methionine in both the historic and recent cases. Neuropathology confirms spongiosis of variable degree and numerous protease resistant/prion protein (PrP) amyloid plaques scattered throughout most of the brain as constant features in this family. Some amyloid deposits are surrounded by dystrophic neurites with accumulation of phosphorylated neurofilaments and abnormal organelles, reminiscent of Alzheimer-type plaques. Severe telencephalic damage and a synaptic-type fine granular immunoreactivity in laminar distribution in the cortex with anti-PrP after hydrated autoclaving of sections were seen only in the recent patient. In conclusion, factors in addition to the PRNP genotype at codons 102 and 129 must play a role in determining clinicopathological characteristics of this inherited brain amyloidosis.
Collapse
|
45
|
Meyer MA, Potter NT. Sporadic ALS and chromosome 22: evidence for a possible neurofilament gene defect. Muscle Nerve 1995; 18:536-9. [PMID: 7739642 DOI: 10.1002/mus.880180510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ALS is associated with the P2 blood group phenotype. Molecular evidence now shows the gene encoding this antigen to be on the long arm of human chromosome 22 near the newly discovered gene for heavy neurofilament (NF-H). Since an ALS-type condition can be generated in transgenic mice expressing the human NF-H gene, and since the gene for the CNTF-related cytokine leukemia inhibitory factor (LIF) is located adjacent to this gene, it is hypothesized that a defect on the chromosome 22 band region q12 is involved in the pathogenesis of sporadic ALS.
Collapse
Affiliation(s)
- M A Meyer
- Department of Internal Medicine (Neurology), University of Tennessee Medical Center, Knoxville
| | | |
Collapse
|
46
|
Julien JP, Côté F, Collard JF. Mice overexpressing the human neurofilament heavy gene as a model of ALS. Neurobiol Aging 1995; 16:487-90; discussion 490-2. [PMID: 7566355 DOI: 10.1016/0197-4580(94)00169-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We discuss the evidence, based on the analysis of transgenic mice overexpressing the human neurofilament (NF) heavy gene, that abnormal NF accumulations can provoke neurodegeneration of motor neurons. Transgenic mice overexpressing by two-fold the normal levels of human NF-H proteins develop a progressive motor neuron disease with several pathologic features reminiscent of those found in amyotrophic lateral sclerosis (ALS). A plausible mechanism for the selective motor neuron degeneration is that exceeding levels of NF-H cross-linkages impede transport of newly synthesized NF structures. The abnormal NF accumulations in perikarya and proximal axons is accompanied by a disruption in axonal transport of not only NF proteins but also of other components required for maintenance of axons. The relevance of the NF-H transgenics as a model of ALS is discussed in light of our current knowledge of motor neuron disease.
Collapse
Affiliation(s)
- J P Julien
- Centre for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, Canada
| | | | | |
Collapse
|
47
|
|
48
|
Liberski PP, Budka H, Yanagihara R, Gajdusek DC. Neuroaxonal dystrophy in experimental Creutzfeldt-Jakob disease: electron microscopical and immunohistochemical demonstration of neurofilament accumulations within affected neurites. J Comp Pathol 1995; 112:243-55. [PMID: 7560300 DOI: 10.1016/s0021-9975(05)80078-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuroaxonal dystrophy is a feature of neuronal degeneration encountered in all subacute spongiform "virus" encephalopathies, including scrapie and Creutzfeldt-Jakob disease (CJD). By immunohistochemical techniques, the accumulation of 200 kDa neurofilament protein was demonstrated in affected neurites in murine CJD. These neurites exhibited the ultrastructural features of dystrophic neurites encountered in other neurodegenerative disorders, particularly Alzheimer's disease. These findings support the hypothesis that impairment of slow axoplasmic transport is a common pathogenetic mechanism for CJD and many other neurodegenerative conditions.
Collapse
Affiliation(s)
- P P Liberski
- Department of Oncology, Medical Academy Lodz, Poland
| | | | | | | |
Collapse
|
49
|
Moos T. Age-dependent uptake and retrograde axonal transport of exogenous albumin and transferrin in rat motor neurons. Brain Res 1995; 672:14-23. [PMID: 7749735 DOI: 10.1016/0006-8993(94)01329-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study presents evidence for retrograde axonal transport of exogenous albumin and transferrin in adult brainstem motor neurons, whereas plasma proteins are not transported in neonatal motor neurons. The plasma protein uptake in motor neurons was dose-dependent, suggesting a nonspecific (fluid-phase) uptake mechanism. Further evidence for nonspecific uptake of exogenous transferrin in the motor neuron was found in the presence of transferrin receptor only on the soma and not on the axon terminal. The immunoreaction product of the exogenous plasma proteins was localized as perinuclear granules in association with the lysosomal system, as verified by staining for the lysosomal marker cathepsin D and by ultrastructural examinations. The results suggest that albumin and transferrin derived from hepatic synthesis gain access to motor neurons nonspecifically by retrograde axonal transport, whereas transferrin derived from intracerebral synthesis specifically gains access to motor neurons due to receptor-mediated uptake at the soma of the neuron. The lack of plasma proteins in developing motor neurons suggests that retrograde axonal transport of plasma proteins has no significance for developing axons. Plasma proteins have a potential for transporting toxic metals to motor neurons. Intraneuronal uptake of aluminum-transferrin either by nonspecific uptake in axon terminals or by receptor-mediated uptake at the soma may have a role in the pathogenesis of the motor neuron disease amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Moos
- Institute of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
50
|
Hedera P, Lerner AJ, Castellani R, Friedland RP. Concurrence of Alzheimer's disease, Parkinson's disease, diffuse Lewy body disease, and amyotrophic lateral sclerosis. J Neurol Sci 1995; 128:219-24. [PMID: 7738598 DOI: 10.1016/0022-510x(94)00222-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 71-year-old man developed signs of progressive dementia, followed by extrapyramidal and motor neuron disease symptoms, which led to death in 6 years. Neuropathological examination revealed neuritic plaques, neurofibrillary tangles, and Lewy bodies in the substantia nigra and neocortex. Atrophy and gliosis with intraneuronal ubiquitin inclusions were present in the anterior horns of the spinal cord. Overlapping of Alzheimer's disease, Parkinson's disease, diffuse Lewy body disease and amyotrophic lateral sclerosis is rare and can increase our understanding of the process of neurodegeneration.
Collapse
Affiliation(s)
- P Hedera
- University Hospitals of Cleveland, Department of Neurology, Case Western Reserve University, OH 44106, USA
| | | | | | | |
Collapse
|