1
|
Momoh M, Rathan-Kumar S, Burman A, Brown ME, Adeniran F, Ramos C, Goldenring JR, Roland JT, Kaji I. Altered cellular metabolic pathway and epithelial cell maturation induced by MYO5B defects are partially reversible by LPAR5 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610579. [PMID: 39282272 PMCID: PMC11398351 DOI: 10.1101/2024.09.03.610579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Functional loss of the motor protein, Myosin Vb (MYO5B), induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). Utilizing the MVID model mice, Vil1-Cre ERT2 ;Myo5b flox/flox (MYO5BΔIEC) and Vil1-Cre ERT2 ;Myo5b flox/G519R (MYO5B(G519R)), we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in MVID intestine. Along with a decrease in fatty acid oxidation, the lipogenesis pathway was enhanced in the MYO5BΔIEC small intestine. Consistent with these observations in vivo , RNA-sequencing of enteroids generated from two MVID mouse strains showed similar downregulation of energy metabolic enzymes, including mitochondrial oxidative phosphorylation genes. In our previous studies, lysophosphatidic acid (LPA) signaling ameliorates epithelial cell defects in MYO5BΔIEC tissues and enteroids. The present study demonstrates that the highly soluble LPAR5-preferred agonist, Compound-1, improved sodium transporter localization and absorptive function, and tuft cell differentiation in patient-modeled MVID animals that carry independent mutations in MYO5B. Body weight loss in male MYO5B(G519R) mice was ameliorated by Compound-1. These observations suggest that Compound-1 treatment has a trophic effect on intestine with MYO5B functional loss through epithelial cell-autonomous pathways that may improve the differentiation of progenitor cells and the maturation of enterocytes. Targeting LPAR5 may represent an effective therapeutic approach for treatment of MVID symptoms induced by different point mutations in MYO5B. NEW & NOTEWOTHY This study demonstrates the importance of MYO5B for cellular lipid metabolism and mitochondria in intestinal epithelial cells, a previously unexplored function of MYO5B. Alterations in cellular metabolism may underlie the progenitor cell malfunction observed in microvillus inclusion disease (MVID). To examine the therapeutic potential of progenitor-targeted treatments, the effects of LPAR5-preferred agonist, Compound-1, was investigated utilizing several MVID model mice and enteroids. Our observations suggests that Compound-1 may provide a therapeutic approach for treating MVID. Graphic Abstract
Collapse
|
2
|
Spector Cohen I, Belza C, Courtney-Martin G, Srbely V, Wales PW, Muise A, Avitzur Y. Improved long-term outcome of children with congenital diarrhea followed by an intestinal rehabilitation program. J Pediatr Gastroenterol Nutr 2024; 79:269-277. [PMID: 38828718 DOI: 10.1002/jpn3.12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Long-term outcomes of congenital diarrheas and enteropathies (CODE) are poorly described. We evaluated the morbidity and mortality of children with CODE followed by an intestinal rehabilitation program (IRP) compared to children with short bowel syndrome (SBS). METHODS Matched case-control study of children with intestinal failure (IF) due to CODE (diagnosed between 2006 and 2020; N = 15) and SBS (N = 42), matched 1:3, based on age at diagnosis and duration of parenteral nutrition (PN). Nutritional status, growth, and IF-related complications were compared. Survival and enteral autonomy were compared to a nonmatched SBS cohort (N = 177). RESULTS Fifteen CODE patients (five males, median age 3.2 years) were followed for a median of 2.9 years. Eleven children were alive at the end of the follow-up, and two achieved enteral autonomy. The CODE group had higher median PN fluid and calorie requirements than their matched SBS controls at the end of the follow-up (83 vs. 45 mL/kg/day, p = 0.01; 54 vs. 30.5 kcal/kg/day, p < 0.01), but had similar rates of growth parameters, intestinal failure associated liver disease, central venous catheter complications and nephrocalcinosis. Kaplan-Meier analyses of 10-year survival and enteral autonomy were significantly lower in CODE patients compared to the nonmatched SBS population (60% vs. 89% and 30% vs. 87%, respectively; log-rank p < 0.008). CONCLUSIONS Despite higher PN needs in CODE, rates of IF complications were similar to matched children with SBS. Enteral autonomy and survival rates were lower in CODE patients. Treatment by IRP can mitigate IF-related complications and improve CODE patient's outcome.
Collapse
Affiliation(s)
- Inna Spector Cohen
- Group for Improvement of Intestinal Function and Treatment (GIFT), Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Pediatric Gastroenterology and Nutrition Institute, Ruth Children's Hospital of Haifa, Rambam Medical Center, Haifa, Israel
| | - Christina Belza
- Group for Improvement of Intestinal Function and Treatment (GIFT), Toronto, Ontario, Canada
| | - Glenda Courtney-Martin
- Group for Improvement of Intestinal Function and Treatment (GIFT), Toronto, Ontario, Canada
| | - Victoria Srbely
- Group for Improvement of Intestinal Function and Treatment (GIFT), Toronto, Ontario, Canada
| | - Paul W Wales
- Cincinnati Center of Excellence in Intestinal Rehabilitation (CinCEIR), Cincinnati, Ohio, USA
- Division of General and Thoracic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Aleixo Muise
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Szabó L, Pollio AR, Vogel GF. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. Traffic 2024; 25:e12954. [PMID: 39187475 DOI: 10.1111/tra.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
Collapse
Affiliation(s)
- Luca Szabó
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adam R Pollio
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Friedrich Vogel
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Kaji I, Thiagarajah JR, Goldenring JR. Modeling the cell biology of monogenetic intestinal epithelial disorders. J Cell Biol 2024; 223:e202310118. [PMID: 38683247 PMCID: PMC11058565 DOI: 10.1083/jcb.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville VA Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
6
|
Babcock SJ, Flores-Marin D, Thiagarajah JR. The genetics of monogenic intestinal epithelial disorders. Hum Genet 2023; 142:613-654. [PMID: 36422736 PMCID: PMC10182130 DOI: 10.1007/s00439-022-02501-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Monogenic intestinal epithelial disorders, also known as congenital diarrheas and enteropathies (CoDEs), are a group of rare diseases that result from mutations in genes that primarily affect intestinal epithelial cell function. Patients with CoDE disorders generally present with infantile-onset diarrhea and poor growth, and often require intensive fluid and nutritional management. CoDE disorders can be classified into several categories that relate to broad areas of epithelial function, structure, and development. The advent of accessible and low-cost genetic sequencing has accelerated discovery in the field with over 45 different genes now associated with CoDE disorders. Despite this increasing knowledge in the causal genetics of disease, the underlying cellular pathophysiology remains incompletely understood for many disorders. Consequently, clinical management options for CoDE disorders are currently limited and there is an urgent need for new and disorder-specific therapies. In this review, we provide a general overview of CoDE disorders, including a historical perspective of the field and relationship to other monogenic disorders of the intestine. We describe the genetics, clinical presentation, and known pathophysiology for specific disorders. Lastly, we describe the major challenges relating to CoDE disorders, briefly outline key areas that need further study, and provide a perspective on the future genetic and therapeutic landscape.
Collapse
Affiliation(s)
- Stephen J Babcock
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - David Flores-Marin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Klee KMC, Hess MW, Lohmüller M, Herzog S, Pfaller K, Müller T, Vogel GF, Huber LA. A CRISPR screen in intestinal epithelial cells identifies novel factors for polarity and apical transport. eLife 2023; 12:e80135. [PMID: 36661306 PMCID: PMC9889089 DOI: 10.7554/elife.80135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush-border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knockout of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.
Collapse
Affiliation(s)
- Katharina MC Klee
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael Lohmüller
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Georg F Vogel
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Lukas A Huber
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Sun Y, Leng C, van Ijzendoorn SCD. Fetal Bowel Abnormalities Suspected by Ultrasonography in Microvillus Inclusion Disease: Prevalence and Clinical Significance. J Clin Med 2022; 11:jcm11154331. [PMID: 35893420 PMCID: PMC9332086 DOI: 10.3390/jcm11154331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Microvillus inclusion disease (MVID) is a rare, inherited, congenital, diarrheal disorder that is invariably fatal if left untreated. Within days after birth, MVID presents as a life-threatening emergency characterized by severe dehydration, metabolic acidosis, and weight loss. Diagnosis is cumbersome and can take a long time. Whether MVID could be diagnosed before birth is not known. Anecdotal reports of MVID-associated fetal bowel abnormalities suspected by ultrasonography (that is, dilated bowel loops and polyhydramnios) have been published. These are believed to be rare, but their prevalence in MVID has not been investigated. Here, we have performed a comprehensive retrospective study of 117 published MVID cases spanning three decades. We find that fetal bowel abnormalities in MVID occurred in up to 60% of cases of MVID for which prenatal ultrasonography or pregnancy details were reported. Suspected fetal bowel abnormalities appeared in the third trimester of pregnancy and correlated with postnatal, early-onset diarrhea and case-fatality risk during infancy. Fetal bowel dilation correlated with MYO5B loss-of-function variants. In conclusion, MVID has already started during fetal life in a significant number of cases. Genetic testing for MVID-causing gene variants in cases where fetal bowel abnormalities are suspected by ultrasonography may allow for the prenatal diagnosis of MVID in a significant percentage of cases, enabling optimal preparation for neonatal intensive care.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
| | - Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Department of Thoracic Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China
| | - Sven C. D. van Ijzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
9
|
Ahsan MK, dos Reis DC, Barbieri A, Sumigray KD, Nottoli T, Salas PJ, Ameen NA. Loss of Serum Glucocorticoid-Inducible Kinase 1 SGK1 Worsens Malabsorption and Diarrhea in Microvillus Inclusion Disease (MVID). J Clin Med 2022; 11:jcm11144179. [PMID: 35887942 PMCID: PMC9319011 DOI: 10.3390/jcm11144179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) regulates intestinal carbohydrate and ion transporters including cystic fibrosis transmembrane conductance regulator (CFTR). We hypothesized that loss of SGK1 could reduce CFTR fluid secretion and MVID diarrhea. Using CRISPR-Cas9 approaches, we generated R26CreER;MYO5Bf/f conditional single knockout (cMYO5BKO) and R26CreER;MYO5Bf/f;SGK1f/f double knockout (cSGK1/MYO5B-DKO) mice. Tamoxifen-treated cMYO5BKO mice resulted in characteristic features of human MVID including severe diarrhea, microvillus inclusions (MIs) in enterocytes, defective apical traffic, and depolarization of transporters. However, apical CFTR distribution was preserved in crypts and depolarized in villus enterocytes, and CFTR high expresser (CHE) cells were observed. cMYO5BKO mice displayed increased phosphorylation of SGK1, PDK1, and the PDK1 target PKCι in the intestine. Surprisingly, tamoxifen-treated cSGK1/MYO5B-DKO mice displayed more severe diarrhea than cMYO5BKO, with preservation of apical CFTR and CHE cells, greater fecal glucose and reduced SGLT1 and GLUT2 in the intestine. We conclude that loss of SGK1 worsens carbohydrate malabsorption and diarrhea in MVID.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Pediatrics, Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06510, USA; (M.K.A.); (D.C.d.R.)
| | - Diego Carlos dos Reis
- Department of Pediatrics, Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06510, USA; (M.K.A.); (D.C.d.R.)
| | - Andrea Barbieri
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Kaelyn D. Sumigray
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Timothy Nottoli
- Genome Editing Center, Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Pedro J. Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Nadia A. Ameen
- Department of Pediatrics, Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06510, USA; (M.K.A.); (D.C.d.R.)
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Correspondence:
| |
Collapse
|
10
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
11
|
Bowman DM, Kaji I, Goldenring JR. Altered MYO5B Function Underlies Microvillus Inclusion Disease: Opportunities for Intervention at a Cellular Level. Cell Mol Gastroenterol Hepatol 2022; 14:553-565. [PMID: 35660026 PMCID: PMC9304615 DOI: 10.1016/j.jcmgh.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
Microvillus inclusion disease (MVID) is a congenital diarrheal disorder resulting in life-threatening secretory diarrhea in newborns. Inactivating and nonsense mutations in myosin Vb (MYO5B) have been identified in MVID patients. Work using patient tissues, cell lines, mice, and pigs has led to critical insights into the pathology of MVID and a better understanding of both apical trafficking in intestinal enterocytes and intestinal stem cell differentiation. These studies have demonstrated that loss of MYO5B or inactivating mutations lead to loss of apical sodium and water transporters, without loss of apical CFTR, accounting for the major pathology of the disease. In addition, loss of MYO5B expression induces the formation of microvillus inclusions through apical bulk endocytosis that utilizes dynamin and PACSIN2 and recruits tight junction proteins to the sites of bulk endosome formation. Importantly, formation of microvillus inclusions is not required for the induction of diarrhea. Recent investigations have demonstrated that administration of lysophosphatidic acid (LPA) can partially reestablish apical ion transporters in enterocytes of MYO5B KO mice. In addition, further studies have shown that MYO5B loss induces an imbalance in Wnt/Notch signaling pathways that can lead to alterations in enterocyte maturation and tuft cell lineage differentiation. Inhibition of Notch signaling leads to improvements in those cell differentiation deficits. These studies demonstrate that directed strategies through LPA receptor activation and Notch inhibition can bypass the inhibitory effects of MYO5B loss. Thus, effective strategies may be successful in MVID patients and other congenital diarrhea syndromes to reestablish proper apical membrane absorption of sodium and water in enterocytes and ameliorate life-threatening congenital diarrhea.
Collapse
Affiliation(s)
- Deanna M Bowman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
12
|
Li Q, Zhou Z, Sun Y, Sun C, Klappe K, van IJzendoorn SC. A Functional Relationship Between UNC45A and MYO5B Connects Two Rare Diseases With Shared Enteropathy. Cell Mol Gastroenterol Hepatol 2022; 14:295-310. [PMID: 35421597 PMCID: PMC9218578 DOI: 10.1016/j.jcmgh.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven C.D. van IJzendoorn
- Correspondence Address correspondence to: Sven C. D. van IJzendoorn, PhD, Department of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
13
|
Leng C, Sun Y, van IJzendoorn SCD. Risk and Clinical Significance of Idiopathic Preterm Birth in Microvillus Inclusion Disease. J Clin Med 2021; 10:jcm10173935. [PMID: 34501384 PMCID: PMC8432107 DOI: 10.3390/jcm10173935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare enteropathy caused by mutations in the MYO5B or STX3 gene. MVID is a disease that is difficult to manage with clinical heterogeneity. Therefore, knowledge about factors influencing MVID morbidity and mortality is urgently needed. Triggered by a recent study that reported a high percentage of preterm births in twelve cases of MVID, we have conducted a comprehensive retrospective study involving 88 cases of MVID with reported gestational ages. We found that moderate to late preterm birth occurred in more than half of all cases, and this was particularly prominent in MYO5B-associated MVID. Preterm birth in MVID counterintuitively correlated with higher birth weight percentiles, and correlated with higher stool outputs and a significantly shorter average survival time. Data from this study thus demonstrate an increased risk of preterm birth in MYO5B-associated MVID, with a clinical impact on morbidity and mortality. Adverse effects associated with preterm birth should be taken into account in the care of children diagnosed with MVID. Documentation of gestational age may contribute to a better prognostic risk assessment in MVID.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Centre for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (C.L.); (Y.S.)
- Department of Thoracic Surgery, Guangdong Esophageal Cancer Institute, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China
| | - Yue Sun
- Department of Biomedical Sciences of Cells and Systems, Centre for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (C.L.); (Y.S.)
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Centre for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (C.L.); (Y.S.)
- Correspondence:
| |
Collapse
|
14
|
Advanced Microscopy for Liver and Gut Ultrastructural Pathology in Patients with MVID and PFIC Caused by MYO5B Mutations. J Clin Med 2021; 10:jcm10091901. [PMID: 33924896 PMCID: PMC8125609 DOI: 10.3390/jcm10091901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in the actin motor protein myosinVb (myo5b) cause aberrant apical cargo transport and the congenital enteropathy microvillus inclusion disease (MVID). Recently, missense mutations in myo5b were also associated with progressive familial intrahepatic cholestasis (MYO5B-PFIC). Here, we thoroughly characterized the ultrastructural and immuno-cytochemical phenotype of hepatocytes and duodenal enterocytes from a unique case of an adult MYO5B-PFIC patient who showed constant hepatopathy but only periodic enteric symptoms. Selected data from two other patients supported the findings. Advanced methods such as cryo-fixation, freeze-substitution, immuno-gold labeling, electron tomography and immuno-fluorescence microscopy complemented the standard procedures. Liver biopsies showed mislocalization of Rab11 and bile canalicular membrane proteins. Rab11-positive vesicles clustered around bile canaliculi and resembled subapical clusters of aberrant recycling endosomes in enterocytes from MVID patients. The adult patient studied in detail showed a severe, MVID-specific enterocyte phenotype, despite only a mild clinical intestinal presentation. This included mislocalization of numerous proteins essential for apical cargo transport and morphological alterations. We characterized the heterogeneous population of large catabolic organelles regarding their complex ultrastructure and differential distribution of autophagic and lysosomal marker proteins. Finally, we generated duodenal organoids/enteroids from biopsies that recapitulated all MVID hallmarks, demonstrating the potential of this disease model for personalized medicine.
Collapse
|
15
|
A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. BIOLOGY 2021; 10:biology10020119. [PMID: 33557414 PMCID: PMC7914782 DOI: 10.3390/biology10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cholestasis refers to a medical condition in which the liver is not capable of secreting bile. The consequent accumulation of toxic bile components in the liver leads to liver failure. Cholestasis can be caused by mutations in genes that code for proteins involved in bile secretion. Recently mutations in other genes have been discovered in patients with cholestasis of unknown origin. Interestingly, many of these newly discovered genes code for proteins that regulate the intracellular distribution of other proteins, including those involved in bile secretion. This group of genes thus suggests the deregulated intracellular distribution of bile-secreting proteins as an important but still poorly understood mechanism that underlies cholestasis. To expedite a better understanding of this mechanism, we have reviewed these genes and their mutations and we discuss these in the context of cholestasis. Abstract Intrahepatic cholestasis is characterized by the accumulation of compounds in the serum that are normally secreted by hepatocytes into the bile. Genes associated with familial intrahepatic cholestasis (FIC) include ATP8B1 (FIC1), ABCB11 (FIC2), ABCB4 (FIC3), TJP2 (FIC4), NR1H4 (FIC5) and MYO5B (FIC6). With advanced genome sequencing methodologies, additional mutated genes are rapidly identified in patients presenting with idiopathic FIC. Notably, several of these genes, VPS33B, VIPAS39, SCYL1, and AP1S1, together with MYO5B, are functionally associated with recycling endosomes and/or the Golgi apparatus. These are components of a complex process that controls the sorting and trafficking of proteins, including those involved in bile secretion. These gene variants therefore suggest that defects in intracellular trafficking take a prominent place in FIC. Here we review these FIC-associated trafficking genes and their variants, their contribution to biliary transporter and canalicular protein trafficking, and, when perturbed, to cholestatic liver disease. Published variants for each of these genes have been summarized in table format, providing a convenient reference for those who work in the intrahepatic cholestasis field.
Collapse
|
16
|
Recruitment of Polarity Complexes and Tight Junction Proteins to the Site of Apical Bulk Endocytosis. Cell Mol Gastroenterol Hepatol 2021; 12:59-80. [PMID: 33548596 PMCID: PMC8082271 DOI: 10.1016/j.jcmgh.2021.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The molecular motor, Myosin Vb (MYO5B), is well documented for its role in trafficking cargo to the apical membrane of epithelial cells. Despite its involvement in regulating apical proteins, the role of MYO5B in cell polarity is less clear. Inactivating mutations in MYO5B result in microvillus inclusion disease (MVID), a disorder characterized by loss of key apical transporters and the presence of intracellular inclusions in enterocytes. We previously identified that inclusions in Myo5b knockout (KO) mice form from invagination of the apical brush border via apical bulk endocytosis. Herein, we sought to elucidate the role of polarity complexes and tight junction proteins during the formation of inclusions. METHODS Intestinal tissue from neonatal control and Myo5b KO littermates was analyzed by immunofluorescence to determine the localization of polarity complexes and tight junction proteins. RESULTS Proteins that make up the apical polarity complexes-Crumbs3 and Pars complexes-were associated with inclusions in Myo5b KO mice. In addition, tight junction proteins were observed to be concentrated over inclusions that were present at the apical membrane of Myo5b-deficient enterocytes in vivo and in vitro. Our mouse findings are complemented by immunostaining in a large animal swine model of MVID genetically engineered to express a human MVID-associated mutation that shows an accumulation of Claudin-2 over forming inclusions. The findings from our swine model of MVID suggest that a similar mechanism of tight junction accumulation occurs in patients with MVID. CONCLUSIONS These data show that apical bulk endocytosis involves the altered localization of apical polarity proteins and tight junction proteins after loss of Myo5b.
Collapse
|
17
|
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations. J Clin Med 2021; 10:jcm10030481. [PMID: 33525641 PMCID: PMC7865828 DOI: 10.3390/jcm10030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling.
Collapse
|
18
|
Leng C, Rings EHHM, de Wildt SN, van IJzendoorn SCD. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. J Clin Med 2020; 10:jcm10010022. [PMID: 33374831 PMCID: PMC7794843 DOI: 10.3390/jcm10010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare inherited and invariably fatal enteropathy, characterized by severe intractable secretory diarrhea and nutrient malabsorption. No cure exists, and patients typically die during infancy because of treatment-related complications. The need for alternative treatment strategies is evident. Several pharmacological interventions with variable successes have been tried and reported for individual patients as part of their clinical care. Unfortunately, these interventions and their outcomes have remained hidden in case reports and have not been reviewed. Further, recent advances regarding MVID pathogenesis have shed new light on the outcomes of these pharmacological interventions and offer suggestions for future clinical research and trials. Hence, an inventory of reported pharmacological interventions in MVID, their rationales and outcomes, and a discussion of these in the light of current knowledge is opportune. Together with a discussion on MVID-specific pharmacokinetic, -dynamic, and -genetic concerns that pose unique challenges regarding pharmacological strategies, we envision that this paper will aid researchers and clinicians in their efforts to develop pharmacological interventions to combat this devastating disease.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Saskia N. de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-(0)50-3616209
| |
Collapse
|
19
|
Kwon O, Han TS, Son MY. Intestinal Morphogenesis in Development, Regeneration, and Disease: The Potential Utility of Intestinal Organoids for Studying Compartmentalization of the Crypt-Villus Structure. Front Cell Dev Biol 2020; 8:593969. [PMID: 33195268 PMCID: PMC7644937 DOI: 10.3389/fcell.2020.593969] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
The morphology and structure of the intestinal epithelium are rearranged dynamically during development, tissue regeneration, and disease progression. The most important characteristic of intestinal epithelial morphogenesis is the repetitive compartmentalized structures of crypt-villus units, which are crucial for maintaining intestinal homeostasis and functions. Abnormal structures are known to be closely associated with disease development and progression. Therefore, understanding how intestinal crypt-villus structures are formed and grown is essential for elucidating the physiological and pathophysiological roles of the intestinal epithelium. However, a critical knowledge gap in understanding the compartmentalization of the crypt-villus axis remains when using animal models, due to obvious inter-species differences and difficulty in real-time monitoring. Recently, emerging technologies such as organoid culture, lineage tracing, and single cell sequencing have enabled the assessment of the intrinsic mechanisms of intestinal epithelial morphogenesis. In this review, we discuss the latest research on the regulatory factors and signaling pathways that play a central role in the formation, maintenance, and regeneration of crypt-villus structures in the intestinal epithelium. Furthermore, we discuss how these factors and pathways play a role in development, tissue regeneration, and disease. We further explore how the current technology of three-dimensional intestinal organoids has contributed to the understanding of crypt-villus compartmentalization, highlighting new findings related to the self-organizing-process-driven initiation and propagation of crypt-villus structures. We also discuss intestinal diseases featuring abnormalities of the crypt-villus structure to provide insights for the development of novel therapeutic strategies targeting intestinal morphogenesis and crypt-villus formation.
Collapse
Affiliation(s)
- Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
20
|
van IJzendoorn SC, Li Q, Qiu Y, Wang J, Overeem AW. Unequal Effects of Myosin 5B Mutations in Liver and Intestine Determine the Clinical Presentation of Low-Gamma-Glutamyltransferase Cholestasis. Hepatology 2020; 72:1461-1468. [PMID: 32583448 PMCID: PMC7702107 DOI: 10.1002/hep.31430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Sven C.D. van IJzendoorn
- Department of Biomedical Sciences of Cells and SystemsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and SystemsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Yi‐ling Qiu
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina,The Center for Pediatric Liver DiseasesChildren's Hospital of Fudan UniversityShanghaiChina
| | - Jian‐She Wang
- Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina,The Center for Pediatric Liver DiseasesChildren's Hospital of Fudan UniversityShanghaiChina
| | - Arend W. Overeem
- Department of Biomedical Sciences of Cells and SystemsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
21
|
Badawy A, Elfadul M, Aziabi M, Ageel HI, Aqeel A. Challenges of Microvillus Inclusion Disease in the NICU. Neoreviews 2020; 21:e600-e604. [PMID: 32873653 DOI: 10.1542/neo.21-9-e600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mutations in the myosin 5β, syntaxin-binding protein 2, and syntaxin 3 genes lead to microvillus inclusion disease (MVID), an autosomal recessive congenital enteropathy. This rare disease is characterized by lack of microvilli on the surface of enterocytes in the small intestine, the presence of pathognomonic intracellular microvillus inclusions, and vesicular bodies within these enterocytes. This pathology leads to the characteristic intractable, life-threatening, watery diarrhea. In the more common early-onset form, affected patients present in the first few days after birth, whereas in the late-onset form, clinical manifestations appear at approximately 2 to 3 months of age. Genetic testing can confirm the diagnosis, but the infant's medical history, clinical presentation, and small intestinal biopsy results are strongly suggestive of the diagnosis. The prevalence of MVID is thought to be higher in countries with a high degree of consanguinity. Patients with MVID cannot tolerate feedings and require continuous total parenteral nutrition. Mortality is extremely high in the early-onset type with reports of survival in patients treated with small intestinal transplantation. Medical counseling for parents of infants with MVID needs to reflect our current understanding of the various genetic forms of this disease, the feasible management, and anticipated outcomes.
Collapse
Affiliation(s)
| | | | | | - Hossain Ibrahim Ageel
- Gastroenterology Unit, Pediatrics Department, King Fahd Central Hospital, Gazan, Saudi Arabia
| | | |
Collapse
|
22
|
Engevik AC, Coutts AW, Kaji I, Rodriguez P, Ongaratto F, Saqui-Salces M, Medida RL, Meyer AR, Kolobova E, Engevik MA, Williams JA, Shub MD, Carlson DF, Melkamu T, Goldenring JR. Editing Myosin VB Gene to Create Porcine Model of Microvillus Inclusion Disease, With Microvillus-Lined Inclusions and Alterations in Sodium Transporters. Gastroenterology 2020; 158:2236-2249.e9. [PMID: 32112796 PMCID: PMC7282982 DOI: 10.1053/j.gastro.2020.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | | | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Ramya Lekha Medida
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Anne R Meyer
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elena Kolobova
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melinda A Engevik
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mitchell D Shub
- Phoenix Children's Hospital and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | | | | | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
23
|
Jayawardena D, Alrefai WA, Dudeja PK, Gill RK. Recent advances in understanding and managing malabsorption: focus on microvillus inclusion disease. F1000Res 2019; 8. [PMID: 31824659 PMCID: PMC6896243 DOI: 10.12688/f1000research.20762.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare congenital severe malabsorptive and secretory diarrheal disease characterized by blunted or absent microvilli with accumulation of secretory granules and inclusion bodies in enterocytes. The typical clinical presentation of the disease is severe chronic diarrhea that rapidly leads to dehydration and metabolic acidosis. Despite significant advances in our understanding of the causative factors, to date, no curative therapy for MVID and associated diarrhea exists. Prognosis mainly relies on life-long total parenteral nutrition (TPN) and eventual small bowel and/or liver transplantation. Both TPN and intestinal transplantation are challenging and present with many side effects. A breakthrough in the understanding of MVID emanated from seminal findings revealing mutations in
MYO5B as a cause for MVID. During the last decade, many studies have thus utilized cell lines and animal models with knockdown of
MYO5B to closely recapitulate the human disease and investigate potential therapeutic options in disease management. We will review the most recent advances made in the research pertaining to MVID. We will also highlight the tools and models developed that can be utilized for basic and applied research to increase our understanding of MVID and develop novel and effective targeted therapies.
Collapse
Affiliation(s)
- Dulari Jayawardena
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
van IJzendoorn SCD, Agnetti J, Gassama-Diagne A. Mechanisms behind the polarized distribution of lipids in epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183145. [PMID: 31809710 DOI: 10.1016/j.bbamem.2019.183145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/28/2023]
Abstract
Epithelial cells are polarized cells and typically display distinct plasma membrane domains: basal plasma membrane domains face the underlying tissue, lateral domains contact adjacent cells and apical domains face the exterior lumen. Each membrane domain is endowed with a specific macromolecular composition that constitutes the functional identity of that domain. Defects in apical-basal plasma membrane polarity altogether or more subtle defects in the composition of either apical or basal plasma membrane domain can give rise to severe diseases. Lipids are the main component of cellular membranes and mechanisms that control their polarized distribution in epithelial cells are emerging. In particular sphingolipids and phosphatidylinositol lipids have taken center stage in the organization of the apical and basolateral plasma membrane domain. This short review article discusses mechanisms that contribute to the polarized distribution of lipids in epithelial cells.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jean Agnetti
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| |
Collapse
|
25
|
Luong P, Li Q, Chen PF, Wrighton PJ, Chang D, Dwyer S, Bayer MT, Snapper SB, Hansen SH, Thiagarajah JR, Goessling W, Lencer WI. A quantitative single-cell assay for retrograde membrane traffic enables rapid detection of defects in cellular organization. Mol Biol Cell 2019; 31:511-519. [PMID: 31774722 PMCID: PMC7202069 DOI: 10.1091/mbc.e19-07-0375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrograde membrane trafficking from plasma membrane to Golgi and endoplasmic reticulum typifies one of the key sorting steps emerging from the early endosome that affects cell surface and intracellular protein dynamics underlying cell function. While some cell surface proteins and lipids are known to sort retrograde, there are few effective methods to quantitatively measure the extent or kinetics of these events. Here we took advantage of the well-known retrograde trafficking of cholera toxin and newly defined split fluorescent protein technology to develop a quantitative, sensitive, and effectively real-time single-cell flow cytometry assay for retrograde membrane transport. The approach can be applied in high throughput to elucidate the underlying biology of membrane traffic and how endosomes adapt to the physiologic needs of different cell types and cell states.
Collapse
Affiliation(s)
- Phi Luong
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Qian Li
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200000, China
| | - Pin-Fang Chen
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Denis Chang
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Sean Dwyer
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Marie-Theres Bayer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Scott B Snapper
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Steen H Hansen
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Wolfram Goessling
- Harvard Stem Cell Institute, Cambridge, MA 02138.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Wayne I Lencer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Forteza R, Ahsan MK, Cartón-García F, Arango D, Ameen NA, Salas PJ. Glucocorticoids and myosin5b loss of function induce heightened PKA signaling in addition to membrane traffic defects. Mol Biol Cell 2019; 30:3076-3089. [PMID: 31664880 PMCID: PMC6938243 DOI: 10.1091/mbc.e18-07-0415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Loss-of-function mutations in the nonconventional myosin Vb (Myo5b) result in microvillus inclusion disease (MVID) and massive secretory diarrhea that often begins at birth. Myo5b mutations disrupt the apical recycling endosome (ARE) and membrane traffic, resulting in reduced surface expression of apical membrane proteins. ARE disruption also results in constitutive phosphoinositide-dependent kinase 1 gain of function. In MVID, decreased surface expression of apical anion channels involved in Cl- extrusion, such as cystic fibrosis transmembrane conductance regulator (CFTR), should reduce fluid secretion into the intestinal lumen. But the opposite phenotype is observed. To explain this contradiction and the onset of diarrhea, we hypothesized that signaling effects downstream from Myo5b loss of function synergize with higher levels of glucocorticoids to activate PKA and CFTR. Data from intestinal cell lines, human MVID, and Myo5b KO mouse intestine revealed changes in the subcellular redistribution of PKA activity to the apical pole, increased CFTR phosphorylation, and establishment of apical cAMP gradients in Myo5b-defective cells exposed to physiological levels of glucocorticoids. These cells also displayed net secretory fluid fluxes and transepithelial currents mainly from PKA-dependent Cl- secretion. We conclude that Myo5b defects result in PKA stimulation that activates residual channels on the surface when intestinal epithelia are exposed to glucocorticoids at birth.
Collapse
Affiliation(s)
- Radia Forteza
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - M Kaimul Ahsan
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06510
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain
| | - Nadia A Ameen
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06510
| | - Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
27
|
Engevik AC, Kaji I, Postema MM, Faust JJ, Meyer AR, Williams JA, Fitz GN, Tyska MJ, Wilson JM, Goldenring JR. Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes. J Cell Biol 2019; 218:3647-3662. [PMID: 31562230 PMCID: PMC6829668 DOI: 10.1083/jcb.201902063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In patients with inactivating mutations in myosin Vb (Myo5B), enterocytes show large inclusions lined by microvilli. The origin of inclusions in small-intestinal enterocytes in microvillus inclusion disease is currently unclear. We postulated that inclusions in Myo5b KO mouse enterocytes form through invagination of the apical brush border membrane. 70-kD FITC-dextran added apically to Myo5b KO intestinal explants accumulated in intracellular inclusions. Live imaging of Myo5b KO-derived enteroids confirmed the formation of inclusions from the apical membrane. Treatment of intestinal explants and enteroids with Dyngo resulted in accumulation of inclusions at the apical membrane. Inclusions in Myo5b KO enterocytes contained VAMP4 and Pacsin 2 (Syndapin 2). Myo5b;Pacsin 2 double-KO mice showed a significant decrease in inclusion formation. Our results suggest that apical bulk endocytosis in Myo5b KO enterocytes resembles activity-dependent bulk endocytosis, the primary mechanism for synaptic vesicle uptake during intense neuronal stimulation. Thus, apical bulk endocytosis mediates the formation of inclusions in neonatal Myo5b KO enterocytes.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anne R Meyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, Bio5 Institute, University of Arizona, Tucson, AZ
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN.,The Nashville VA Medical Center, Nashville, TN
| |
Collapse
|
28
|
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, Cole T, Pinsk V, Yerushalmi B, Gurkan OE, Yourshaw M, Hernandez E, Oesterreicher S, Naik S, Sanderson IR, Axelsson I, Agardh D, Boland CR, Martin MG, Putnam CD, Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 2018; 40:142-161. [PMID: 30461124 PMCID: PMC6328345 DOI: 10.1002/humu.23688] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022]
Abstract
The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane‐bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3′ end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556‐14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype–phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.
Collapse
Affiliation(s)
- Sagar J Pathak
- Department of Pediatrics, University of California, San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| | - James L Mueller
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jozef Hertecant
- Genetics/Metabolics Service, Tawam Hospital, Al Ain, United Arab Emirates
| | | | - Trevor Cole
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital, Birmingham, UK
| | - Vered Pinsk
- Division of Pediatrics, Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baruch Yerushalmi
- Division of Pediatrics, Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Odul E Gurkan
- Department of Pediatrics, Gazi University School of Medicine, Ankara, Turkey
| | - Michael Yourshaw
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Erick Hernandez
- Pediatric Gastroenterology, Miami Children's Health System, Miami, Florida
| | | | - Sandhia Naik
- Paediatric Gastroenterology, Barts and the London School of Medicine, London, UK
| | - Ian R Sanderson
- Paediatric Gastroenterology, Barts and the London School of Medicine, London, UK
| | - Irene Axelsson
- Department of Pediatrics, Skane University Hospital, Malmo, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - C Richard Boland
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Martin G Martin
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California
| | - Christopher D Putnam
- Department of Medicine, University of California, San Diego, La Jolla, California.,San Diego Branch, Ludwig Institute for Cancer Research, La Jolla, California
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, California.,Rady Children's Hospital, San Diego, California
| |
Collapse
|
29
|
Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci 2018; 131:131/20/jcs221853. [PMID: 30333133 DOI: 10.1242/jcs.221853] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anthony Bretscher
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Mosa MH, Nicolle O, Maschalidi S, Sepulveda FE, Bidaud-Meynard A, Menche C, Michels BE, Michaux G, de Saint Basile G, Farin HF. Dynamic Formation of Microvillus Inclusions During Enterocyte Differentiation in Munc18-2-Deficient Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2018; 6:477-493.e1. [PMID: 30364784 PMCID: PMC6198061 DOI: 10.1016/j.jcmgh.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Microvillus inclusion disease (MVID) is a congenital intestinal malabsorption disorder caused by defective apical vesicular transport. Existing cellular models do not fully recapitulate this heterogeneous pathology. The aim of this study was to characterize 3-dimensional intestinal organoids that continuously generate polarized absorptive cells as an accessible and relevant model to investigate MVID. METHODS Intestinal organoids from Munc18-2/Stxbp2-null mice that are deficient for apical vesicular transport were subjected to enterocyte-specific differentiation protocols. Lentiviral rescue experiments were performed using human MUNC18-2 variants. Apical trafficking and microvillus formation were characterized by confocal and transmission electron microscopy. Spinning disc time-lapse microscopy was used to document the lifecycle of microvillus inclusions. RESULTS Loss of Munc18-2/Stxbp2 recapitulated the pathologic features observed in patients with MUNC18-2 deficiency. The defects were fully restored by transgenic wild-type human MUNC18-2 protein, but not the patient variant (P477L). Importantly, we discovered that the MVID phenotype was correlated with the degree of enterocyte differentiation: secretory vesicles accumulated already in crypt progenitors, while differentiated enterocytes showed an apical tubulovesicular network and enlarged lysosomes. Upon prolonged enterocyte differentiation, cytoplasmic F-actin-positive foci were observed that further progressed into classic microvillus inclusions. Time-lapse microscopy showed their dynamic formation by intracellular maturation or invagination of the apical or basolateral plasma membrane. CONCLUSIONS We show that prolonged enterocyte-specific differentiation is required to recapitulate the entire spectrum of MVID. Primary organoids can provide a powerful model for this heterogeneous pathology. Formation of microvillus inclusions from multiple membrane sources showed an unexpected dynamic of the enterocyte brush border.
Collapse
Key Words
- 3D, 3-dimensional
- Apical Vesicular Transport
- Brush Border Formation
- DAPI, 4′,6-diamidino-2-phenylindole
- Disease Modeling
- EGFP, enhanced green fluorescent protein
- FHL5, familial hemophagocytic lymphohistiocytosis type 5
- IWP-2, inhibitor of WNT production-2
- KO, knock-out
- MVID, microvillus inclusion disease
- MVIs, microvillus inclusions
- Microvillus Atrophy
- PBS, phosphate-buffered saline
- STXBP2, syntaxin binding protein 2
- Stx3, syntaxin 3
- TEM, transmission electron microscopy
- VPA, valproic acid
- WT, wild-type
Collapse
Affiliation(s)
- Mohammed H. Mosa
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Ophélie Nicolle
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France
| | - Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France
| | - Fernando E. Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France
| | - Aurelien Bidaud-Meynard
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Birgitta E. Michels
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany,Faculty of Biological Sciences, Goethe University Frankfurt, Germany
| | - Grégoire Michaux
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France,Correspondence Address correspondence to: Grégoire Michaux, PhD, University Rennes, Institut de Génétique et Développement de Rennes, Rennes, France.
| | - Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France,Centre d’Etudes des Déficites Immunitaires, Assistance Publique-Hôpitaux de Paris, France,Geneviève de Saint Basile, MD, PhD, INSERM, Paris, France.
| | - Henner F. Farin
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany,Henner F. Farin, PhD, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Thiagarajah JR, Kamin DS, Acra S, Goldsmith JD, Roland JT, Lencer WI, Muise AM, Goldenring JR, Avitzur Y, Martín MG. Advances in Evaluation of Chronic Diarrhea in Infants. Gastroenterology 2018; 154:2045-2059.e6. [PMID: 29654747 PMCID: PMC6044208 DOI: 10.1053/j.gastro.2018.03.067] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/17/2022]
Abstract
Diarrhea is common in infants (children less than 2 years of age), usually acute, and, if chronic, commonly caused by allergies and occasionally by infectious agents. Congenital diarrheas and enteropathies (CODEs) are rare causes of devastating chronic diarrhea in infants. Evaluation of CODEs is a lengthy process and infrequently leads to a clear diagnosis. However, genomic analyses and the development of model systems have increased our understanding of CODE pathogenesis. With these advances, a new diagnostic approach is needed. We propose a revised approach to determine causes of diarrhea in infants, including CODEs, based on stool analysis, histologic features, responses to dietary modifications, and genetic tests. After exclusion of common causes of diarrhea in infants, the evaluation proceeds through analyses of stool characteristics (watery, fatty, or bloody) and histologic features, such as the villus to crypt ratio in intestinal biopsies. Infants with CODEs resulting from defects in digestion, absorption, transport of nutrients and electrolytes, or enteroendocrine cell development or function have normal villi to crypt ratios; defects in enterocyte structure or immune-mediated conditions result in an abnormal villus to crypt ratios and morphology. Whole-exome and genome sequencing in the early stages of evaluation can reduce the time required for a definitive diagnosis of CODEs, or lead to identification of new variants associated with these enteropathies. The functional effects of gene mutations can be analyzed in model systems such as enteroids or induced pluripotent stem cells and are facilitated by recent advances in gene editing procedures. Characterization and investigation of new CODE disorders will improve management of patients and advance our understanding of epithelial cells and other cells in the intestinal mucosa.
Collapse
Affiliation(s)
- Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel S. Kamin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sari Acra
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeffrey D. Goldsmith
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph T. Roland
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aleixo M. Muise
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada,SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Department of Paediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James R. Goldenring
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Martín G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|
32
|
Abstract
The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.
Collapse
Affiliation(s)
- Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
33
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
34
|
Dhekne HS, Pylypenko O, Overeem AW, Zibouche M, Ferreira RJ, van der Velde KJ, Rings EHHM, Posovszky C, van der Sluijs P, Swertz MA, Houdusse A, van IJzendoorn SCD. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum Mutat 2018; 39:333-344. [PMID: 29266534 PMCID: PMC5838515 DOI: 10.1002/humu.23386] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olena Pylypenko
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Arend W Overeem
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malik Zibouche
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rosaria J Ferreira
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Alsaleem BMR, Ahmed ABM, Fageeh MA. Microvillus Inclusion Disease Variant in an Infant with Intractable Diarrhea. Case Rep Gastroenterol 2017; 11:647-651. [PMID: 29282386 PMCID: PMC5731099 DOI: 10.1159/000479624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare autosomal recessive congenital enteropathy characterized by intractable secretory diarrhea. We report a case of MVID variant with a homozygous gene mutation in syntaxin 3 (STX3). The patient is a male Saudi infant who presented shortly after birth with severe vomiting, metabolic acidosis, and mild diarrhea. Electron microscopy study for small intestinal biopsy was consistent with MVID. MYO5B gene mutation was excluded; subsequently, whole exome sequencing (WES) was performed, which revealed homozygous gene mutation in STX3. Using WES in clinical environment can be a useful tool for diagnosing difficult and rare inherited congenital enteropathies.
Collapse
Affiliation(s)
- Badr M Rasheed Alsaleem
- Department of Pediatric Gastroenterology and Department of Pathology, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amna Basheer M Ahmed
- Department of Pediatric Gastroenterology and Department of Pathology, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Musa Ahmad Fageeh
- Department of Pediatric Gastroenterology and Department of Pathology, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Cheng Y, Liang H, Cai NL, Guo L, Huang YG, Song YZ. [Clinical features and MYO5B mutations of a family affected by microvillus inclusion disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:968-974. [PMID: 28899465 PMCID: PMC7403068 DOI: 10.7499/j.issn.1008-8830.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Microvillus inclusion disease (MVID) is an autosomal recessive disorder caused by biallelic mutations in the MYO5B or STX3 gene. Refractory diarrhea and malabsorption are the main clinical manifestations. The aim of this study was to investigate the clinical features and MYO5B gene mutations of an infant with MVID. A 21-day-old female infant was referred to the hospital with the complaint of diarrhea for 20 days. On physical examination, growth retardation of the body weight and length was found along with moderately jaundiced skin and sclera. Breath sounds were clear in the two lungs and the heart sounds were normal. The abdomen was distended and the veins in the abdominal wall were observed. The liver and spleen were not palpable. Biochemical analysis revealed raised serum total bile acids, bilirubin, transaminases and γ-glutamyl transpeptidase while decreased levels of serum sodium, chloride, phosphate and magnesium. Blood gas analysis indicated metabolic acidosis. The preliminary diagnosis was congenital diarrhea, and thus parenteral nutrition was given along with other symptomatic and supportive measures. However, diarrhea, metabolic acidosis and electrolyte disturbance were intractable, and the cholestatic indices, including transaminases, γ-glutamyl transpeptidase, bilirubin and total bile acids, remained at increased levels. One month later, the patient was discharged and then lost contact. On genetic analysis, the infant was proved to be a compound heterozygote of the c.310+2Tdup and c.1966C>T(p.R656C) variants of the gene MYO5B, with c.310+2Tdup being a novel splice-site mutation. MVID was thus definitely diagnosed.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | | | |
Collapse
|
37
|
Vogel GF, van Rijn JM, Krainer IM, Janecke AR, Posovszky C, Cohen M, Searle C, Jantchou P, Escher JC, Patey N, Cutz E, Müller T, Middendorp S, Hess MW, Huber LA. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2017; 2:94564. [PMID: 28724787 DOI: 10.1172/jci.insight.94564] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis 5 (FHL5) is an autosomal recessive disease caused by mutations in STXBP2, coding for Munc18-2, which is required for SNARE-mediated membrane fusion. FHL5 causes hematologic and gastrointestinal symptoms characterized by chronic enteropathy that is reminiscent of microvillus inclusion disease (MVID). However, the molecular pathophysiology of FHL5-associated diarrhea is poorly understood. Five FHL5 patients, including four previously unreported patients, were studied. Morphology of duodenal sections was analyzed by electron and fluorescence microscopy. Small intestinal enterocytes and organoid-derived monolayers displayed the subcellular characteristics of MVID. For the analyses of Munc18-2-dependent SNARE-protein interactions, a Munc18-2 CaCo2-KO model cell line was generated by applying CRISPR/Cas9 technology. Munc18-2 is required for Slp4a/Stx3 interaction in fusion of cargo vesicles with the apical plasma membrane. Cargo trafficking was investigated in patient biopsies, patient-derived organoids, and the genome-edited model cell line. Loss of Munc18-2 selectively disrupts trafficking of certain apical brush-border proteins (NHE3 and GLUT5), while transport of DPPIV remained unaffected. Here, we describe the molecular mechanism how the loss of function of Munc18-2 leads to cargo-selective mislocalization of brush-border components and a subapical accumulation of cargo vesicles, as it is known from the loss of polarity phenotype in MVID.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I and.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jorik M van Rijn
- Division of Paediatrics, Department of Paediatric Gastroenterology and Regenerative Medicine Center Utrecht, Wilhelmina Children's Hospital, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Iris M Krainer
- Department of Paediatrics I and.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marta Cohen
- Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, United Kingdom
| | - Claire Searle
- Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Prevost Jantchou
- Gastroentérologie Hépatologie et Nutrition Pédiatrique Hôpital Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Natalie Patey
- Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ernest Cutz
- The Hospital for Sick Children, Toronto, Canada
| | | | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology and Regenerative Medicine Center Utrecht, Wilhelmina Children's Hospital, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
38
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
39
|
Feng Q, Bonder EM, Engevik AC, Zhang L, Tyska MJ, Goldenring JR, Gao N. Disruption of Rab8a and Rab11a causes formation of basolateral microvilli in neonatal enteropathy. J Cell Sci 2017; 130:2491-2505. [PMID: 28596241 DOI: 10.1242/jcs.201897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Misplaced formation of microvilli to basolateral domains and intracellular inclusions in enterocytes are pathognomonic features in congenital enteropathy associated with mutation of the apical plasma membrane receptor syntaxin 3 (STX3). Although the demonstrated binding of Myo5b to the Rab8a and Rab11a small GTPases in vitro implicates cytoskeleton-dependent membrane sorting, the mechanisms underlying the microvillar location defect remain unclear. By selective or combinatory disruption of Rab8a and Rab11a membrane traffic in vivo, we demonstrate that transport of distinct cargo to the apical brush border rely on either individual or both Rab regulators, whereas certain basolateral cargos are redundantly transported by both factors. Enterocyte-specific Rab8a and Rab11a double-knockout mouse neonates showed immediate postnatal lethality and more severe enteropathy than single knockouts, with extensive formation of microvilli along basolateral surfaces. Notably, following an inducible Rab11a deletion from neonatal enterocytes, basolateral microvilli were induced within 3 days. These data identify a potentially important and distinct mechanism for a characteristic microvillus defect exhibited by enterocytes of patients with neonatal enteropathy.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Amy C Engevik
- Department of Surgery, and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.,Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08536, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08903, USA
| | - Matthew J Tyska
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - James R Goldenring
- Department of Surgery, and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Nashville VA Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA .,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08903, USA
| |
Collapse
|
40
|
Vogel GF, Janecke AR, Krainer IM, Gutleben K, Witting B, Mitton SG, Mansour S, Ballauff A, Roland JT, Engevik AC, Cutz E, Müller T, Goldenring JR, Huber LA, Hess MW. Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease. Traffic 2017; 18:453-464. [PMID: 28407399 DOI: 10.1111/tra.12486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.
Collapse
Affiliation(s)
- Georg F Vogel
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris M Krainer
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Gutleben
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Witting
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sahar Mansour
- Human Genetics Research Center, St. George's University of London, London, UK
| | | | - Joseph T Roland
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Amy C Engevik
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ernest Cutz
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Abstract
Cell polarity refers to the asymmetric localization of cellular components that allows cells to carry out their specialized functions, be they epithelial barrier function, transmission of action potentials in nerve cells, or modulation of the immune response. The establishment and maintenance of cell polarity requires the directed trafficking of membrane proteins and lipids - essential processes that are mediated by Rab GTPases. Interestingly, several of the Rabs that impact polarity are present in the earliest eukaryotes, and the Rab polarity repertoire has expanded as cells have become more complex. There is a substantial conservation of Rab function across diverse cell types. Rabs act through an assortment of effector proteins that include scaffolding proteins, cytoskeletal motors, and other small GTPases. In this review we highlight the similarities and differences in Rab function for the instruction of polarity in diverse cell types.
Collapse
Affiliation(s)
- Sara S Parker
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| | - Christopher Cox
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| | - Jean M Wilson
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| |
Collapse
|
42
|
Vogel GF, Hess MW, Pfaller K, Huber LA, Janecke AR, Müller T. Towards understanding microvillus inclusion disease. Mol Cell Pediatr 2016; 3:3. [PMID: 26830108 PMCID: PMC4733813 DOI: 10.1186/s40348-016-0031-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/07/2016] [Indexed: 01/07/2023] Open
Abstract
Microvillus inclusion disease (MVID) is characterised by onset of intractable life-threatening watery diarrhoea during infancy. Transmission electron microscopy demonstrates shortening or absence of apical microvilli, pathognomonic microvillus inclusions in mature enterocytes and subapical accumulation of periodic acid-Schiff-positive granules or vesicles confirming diagnosis. Mutations in MYO5B have been found to cause MVID. In two patients with MVID, whole-exome sequencing of DNA revealed homozygous truncating mutations in STX3. Mutations in these genes disrupt trafficking between apical cargo vesicles and the apical plasma membrane. Thus, disturbed delivery of certain brush border membrane proteins is a common defect in MVID.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristian Pfaller
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
43
|
Overeem AW, Posovszky C, Rings EHMM, Giepmans BNG, van IJzendoorn SCD. The role of enterocyte defects in the pathogenesis of congenital diarrheal disorders. Dis Model Mech 2016; 9:1-12. [PMID: 26747865 PMCID: PMC4728335 DOI: 10.1242/dmm.022269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Congenital diarrheal disorders are rare, often fatal, diseases that are difficult to diagnose (often requiring biopsies) and that manifest in the first few weeks of life as chronic diarrhea and the malabsorption of nutrients. The etiology of congenital diarrheal disorders is diverse, but several are associated with defects in the predominant intestinal epithelial cell type, enterocytes. These particular congenital diarrheal disorders (CDDENT) include microvillus inclusion disease and congenital tufting enteropathy, and can feature in other diseases, such as hemophagocytic lymphohistiocytosis type 5 and trichohepatoenteric syndrome. Treatment options for most of these disorders are limited and an improved understanding of their molecular bases could help to drive the development of better therapies. Recently, mutations in genes that are involved in normal intestinal epithelial physiology have been associated with different CDDENT. Here, we review recent progress in understanding the cellular mechanisms of CDDENT. We highlight the potential of animal models and patient-specific stem-cell-based organoid cultures, as well as patient registries, to integrate basic and clinical research, with the aim of clarifying the pathogenesis of CDDENT and expediting the discovery of novel therapeutic strategies. Summary: Overview of the recent progress in our understanding of congenital diarrheal disorders, and the available models to study these diseases.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Edmond H M M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, 3000 CB Rotterdam, The Netherlands Department of Pediatrics, Leiden University Medical Center, Leiden University, 2300 RC Leiden, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
44
|
Zhang X, Gao N. RAB and RHO GTPases regulate intestinal crypt cell homeostasis and enterocyte function. Small GTPases 2016; 7:59-64. [PMID: 27142493 DOI: 10.1080/21541248.2016.1159274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent human and mouse genetic studies have highlighted important contributions of several small GTPases, in particular Rab8a, (1) Cdc42, (2-4) and Rab11a, (5-8) to the proper morphogenesis and function of the mature intestinal epithelia. Additional insights about the involvement of these factors in maintaining intestinal stem cell homeostasis have also been obtained. (9,10) These studies suggest a conserved vesicular and membrane trafficking program utilized by the gastrointestinal tissue to support the rapid epithelial cell turnover and the highly sophisticated physiology of mature epithelial cells.
Collapse
Affiliation(s)
- Xiao Zhang
- a Department of Biological Sciences , Rutgers University , Newark , NJ , USA
| | - Nan Gao
- a Department of Biological Sciences , Rutgers University , Newark , NJ , USA
| |
Collapse
|
45
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
46
|
Vogel GF, Klee KMC, Janecke AR, Müller T, Hess MW, Huber LA. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J Cell Biol 2016; 211:587-604. [PMID: 26553929 PMCID: PMC4639860 DOI: 10.1083/jcb.201506112] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The motor protein Myo5B and t-SNARE Stx3 drive cargo-selective apical exocytosis in polarized epithelial cells in a pathway dependent on v-SNARE–like Slp4a, v-SNARE Vamp7, Sec1/Munc18-like protein Munc18-2, and the Rab11/8 cascade. Mutations in the motor protein Myosin Vb (Myo5B) or the soluble NSF attachment protein receptor Syntaxin 3 (Stx3) disturb epithelial polarity and cause microvillus inclusion disease (MVID), a lethal hereditary enteropathy affecting neonates. To understand the molecular mechanism of Myo5B and Stx3 interplay, we used genome editing to introduce a defined Myo5B patient mutation in a human epithelial cell line. Our results demonstrate a selective role of Myo5B and Stx3 for apical cargo exocytosis in polarized epithelial cells. Apical exocytosis of NHE3, CFTR (cystic fibrosis transmembrane conductance regulator), and GLUT5 required an interaction cascade of Rab11, Myo5B, Slp4a, Munc18-2, and Vamp7 with Stx3, which cooperate in the final steps of this selective apical traffic pathway. The brush border enzymes DPPIV and sucrase-isomaltase still correctly localize at the apical plasma membrane independent of this pathway. Hence, our work demonstrates how Myo5B, Stx3, Slp4a, Vamp7, Munc18-2, and Rab8/11 cooperate during selective apical cargo trafficking and exocytosis in epithelial cells and thereby provides further insight into MVID pathophysiology.
Collapse
Affiliation(s)
- Georg F Vogel
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria Division of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katharina M C Klee
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
47
|
Schillers H, Medalsy I, Hu S, Slade AL, Shaw JE. PeakForce Tapping resolves individual microvilli on living cells. J Mol Recognit 2016; 29:95-101. [PMID: 26414320 PMCID: PMC5054848 DOI: 10.1002/jmr.2510] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, Münster, 48149, Germany
| | - Izhar Medalsy
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Shuiqing Hu
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - Andrea L Slade
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| | - James E Shaw
- Bruker Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, CA, 93117, USA
| |
Collapse
|
48
|
Huber LA. New Mouse Models for Microvillus Inclusion Disease (MVID): Where Do the Inclusions Come From and Are They Cause or Consequence? Cell Mol Gastroenterol Hepatol 2016; 2:112-113. [PMID: 28174707 PMCID: PMC4980747 DOI: 10.1016/j.jcmgh.2015.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Lukas A. Huber
- Correspondence Address correspondence to: Lukas A. Huber, MD, Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria.Biocenter, Division of Cell BiologyInnsbruck Medical UniversityInnsbruckAustria
| |
Collapse
|
49
|
An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking. Proc Natl Acad Sci U S A 2015; 112:12408-13. [PMID: 26392529 DOI: 10.1073/pnas.1516672112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear. To address the specific role of MYO5B in the intestine, we generated an intestine-specific conditional Myo5b-deficient (Myo5bfl/fl;Vil-CreERT2) mouse model. We analyzed intestinal tissues and cultured organoids of Myo5bfl/fl;Vil-CreERT2 mice by electron microscopy, immunofluorescence, and immunohistochemistry. Our data showed that Myo5bfl/fl;Vil-CreERT2 mice developed severe diarrhea within 4 d after tamoxifen induction. Periodic Acid Schiff and alkaline phosphatase staining revealed subapical accumulation of intracellular vesicles in villus enterocytes. Analysis by electron microscopy confirmed an almost complete absence of apical microvilli, the appearance of microvillus inclusions, and enlarged intercellular spaces in induced Myo5bfl/fl;Vil-CreERT2 intestines. In addition, we determined that MYO5B is involved not only in apical but also basolateral trafficking of proteins. The analysis of the intestine during the early onset of the disease revealed that subapical accumulation of secretory granules precedes occurrence of microvillus inclusions, indicating involvement of MYO5B in early differentiation of epithelial cells. By comparing our data with a novel MVID patient, we conclude that our mouse model completely recapitulates the intestinal phenotype of human MVID. This includes severe diarrhea, loss of microvilli, occurrence of microvillus inclusions, and subapical secretory granules. Thus, loss of MYO5B disturbs both apical and basolateral trafficking of proteins and causes MVID in mice.
Collapse
|
50
|
Intestinal failure and transplantation in microvillous inclusion disease. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.anpede.2015.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|