1
|
Chen Y, Tu Y, Cao J, Wang Y, Ren Y. Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. Cardiovasc Toxicol 2024; 24:1139-1150. [PMID: 39240427 DOI: 10.1007/s12012-024-09917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Collapse
Affiliation(s)
- Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Jin Cao
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yigang Wang
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
2
|
Zhang M, Guo H. Conversation between host and gut microbiota unveils a "silver bullet" therapeutic option for chemotherapy. Cell Host Microbe 2024; 32:1455-1457. [PMID: 39265529 DOI: 10.1016/j.chom.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024]
Abstract
Chemotherapy is associated with the induction of intestinal microbiota dysbiosis and gastrointestinal injuries. In this Cell Host & Microbe issue, Anderson et al. demonstrate that chemotherapy-induced epithelial cell apoptosis drives microbiota imbalance and transcriptional rewiring, which in turn delays intestinal recovery.
Collapse
Affiliation(s)
- Mengdan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
4
|
Ke C, Chen M, Huang Y, Chen Y, Lin C, Huang P. Cardiac toxicity of brentuximab vedotin: a real-word disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5253-5264. [PMID: 38270617 DOI: 10.1007/s00210-024-02955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Brentuximab vedotin (BV) has obtained approval for the therapeutic management of classical Hodgkin lymphoma as well as systemic anaplastic large cell lymphoma. Given the inherent constraints of conventional clinical trials, the correlation between BV and cardiac adverse events (AEs) remains enigmatic. The objective of this investigation is to comprehensively assess cardiac AEs attributed to BV by employing advanced data mining techniques, utilizing the FDA Adverse Event Reporting System (FAERS). The indices for the assessment of disproportionality encompass the reporting odds ratio (ROR), the proportional reporting ratio, the information component, and the empirical Bayesian geometric mean. Employing these sophisticated metrics, we gauged the extent of disproportionate occurrences. The dataset was sourced from the FAERS from the first quarter of 2012 to first quarter of 2023, facilitating a comprehensive analysis of the potential correlation between BV and cardiac AEs. This scrutiny encompassed a comparative analysis of both cardiac and non-cardiac AEs. A total of 495 cases of BV's cardiac AEs were discerned, with the identification of 31 preferred terms (PTs). Among these, 8 PTs emerged as conspicuous signals of cardiac AEs, notably encompassing ventricular hypokinesia (ROR 7.59), tachyarrhythmia (ROR 7.06), sinus tachycardia (ROR 6.18), cardiopulmonary failure (ROR 4.44), pericardial effusion (ROR 4.32), acute coronary syndrome (ROR 4.02), cardiomyopathy (ROR 3.30), and tachycardia (ROR 2.76). The manifestation of severe outcomes demonstrates a discernible correlation with the cardiac AEs (P < 0.001). Our investigation furnishes invaluable insights for healthcare practitioners to proactively mitigate the incidence of BV-associated cardiac AEs.
Collapse
Affiliation(s)
- Chengjie Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Maohua Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, 350400, China
| | - Yaping Huang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350005, China
| | - Yan Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Fuzhou, 350400, China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
5
|
He Y, Liu X, Xu Z, Gao J, Luo Q, He Y, Zhang X, Gao D, Wang D. Nanomedicine alleviates doxorubicin-induced cardiotoxicity and enhances chemotherapy synergistic chemodynamic therapy. J Colloid Interface Sci 2024; 663:1064-1073. [PMID: 38458046 DOI: 10.1016/j.jcis.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Doxorubicin (DOX) is widely used in clinic as a broad-spectrum chemotherapy drug, which can enhance the efficacy of chemodynamic therapy (CDT) by interfering tumor-related metabolize to increase H2O2 content. However, DOX can induce serious cardiomyopathy (DIC) due to its oxidative stress in cardiomyocytes. Eliminating oxidative stress would create a significant opportunity for the clinical application of DOX combined with CDT. To address this issue, we introduced sodium ascorbate (AscNa), the main reason is that AscNa can be catalyzed to produce H2O2 by the abundant Fe3+ in the tumor site, thereby enhancing CDT. While the content of Fe3+ in heart tissue is relatively low, so the oxidation of AscNa had tumor specificity. Meanwhile, due to its inherent reducing properties, AscNa could also eliminate the oxidative stress generated by DOX, preventing cardiotoxicity. Due to the differences between myocardial tissue and tumor microenvironment, a novel nanomedicine was designed. MoS2 was employed as a carrier and CDT catalyst, loaded with DOX and AscNa, coating with homologous tumor cell membrane to construct an acid-responsive nanomedicine MoS2-DOX/AscNa@M (MDA@M). In tumor cells, AscNa enhances the synergistic therapy of DOX and MoS2. In cardiomyocytes, AscNa could effectively reduce the cardiomyopathy induced by DOX. Overall, this study enhanced the clinical potential of chemotherapy synergistic CDT.
Collapse
Affiliation(s)
- Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoying Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Jiajun Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Qingzhi Luo
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
6
|
Yagi R, Goto S, Himeno Y, Katsumata Y, Hashimoto M, MacRae CA, Deo RC. Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms. Nat Commun 2024; 15:2536. [PMID: 38514629 PMCID: PMC10957877 DOI: 10.1038/s41467-024-45733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Anthracyclines can cause cancer therapy-related cardiac dysfunction (CTRCD) that adversely affects prognosis. Despite guideline recommendations, only half of the patients undergo surveillance echocardiograms. An AI model detecting reduced left ventricular ejection fraction from 12-lead electrocardiograms (ECG) (AI-EF model) suggests ECG features reflect left ventricular pathophysiology. We hypothesized that AI could predict CTRCD from baseline ECG, leveraging the AI-EF model's insights, and developed the AI-CTRCD model using transfer learning on the AI-EF model. In 1011 anthracycline-treated patients, 8.7% experienced CTRCD. High AI-CTRCD scores indicated elevated CTRCD risk (hazard ratio (HR), 2.66; 95% CI 1.73-4.10; log-rank p < 0.001). This remained consistent after adjusting for risk factors (adjusted HR, 2.57; 95% CI 1.62-4.10; p < 0.001). AI-CTRCD score enhanced prediction beyond known factors (time-dependent AUC for 2 years: 0.78 with AI-CTRCD score vs. 0.74 without; p = 0.005). In conclusion, the AI model robustly stratified CTRCD risk from baseline ECG.
Collapse
Affiliation(s)
- Ryuichiro Yagi
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Goto
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine & Family Medicine, Department of General and Acute Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yukihiro Himeno
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinori Katsumata
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Calum A MacRae
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rahul C Deo
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Skaggs C, Nick S, Patricelli C, Bond L, Woods K, Woodbury L, Oxford JT, Pu X. Effects of Doxorubicin on Extracellular Matrix Regulation in Primary Cardiac Fibroblasts from Mice. BMC Res Notes 2023; 16:340. [PMID: 37974221 PMCID: PMC10655342 DOI: 10.1186/s13104-023-06621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFβ. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Collapse
Affiliation(s)
- Cameron Skaggs
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Steve Nick
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Conner Patricelli
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kali Woods
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
8
|
Roberts SA, Frishman WH. Cardiotoxicity of breast cancer chemotherapy. Cardiol Rev 2023:00045415-990000000-00148. [PMID: 37665235 DOI: 10.1097/crd.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Breast cancer is one of the leading causes of malignancy affecting women in the United States. Although many effective treatments are available, most come with notable side effects that providers and patients must take into consideration. Various classes of chemotherapeutic agents, including anthracyclines and human epidermal growth factor receptor-2 antagonists, are known to be toxic to myocardial tissue. In this review article, we discuss what is reported in the literature regarding the cardiotoxicity of these agents as well as how to monitor and prevent cardiac injury and dysfunction.
Collapse
Affiliation(s)
- Sacha A Roberts
- From the Department of Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY
| | - William H Frishman
- From the Department of Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY
| |
Collapse
|
9
|
Balaji S, Antony AK, Tonchev H, Scichilone G, Morsy M, Deen H, Mirza I, Ali MM, Mahmoud AM. Racial Disparity in Anthracycline-induced Cardiotoxicity in Breast Cancer Patients. Biomedicines 2023; 11:2286. [PMID: 37626782 PMCID: PMC10452913 DOI: 10.3390/biomedicines11082286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has become the most common cancer in the US and worldwide. While advances in early detection and treatment have resulted in a 40% reduction in breast cancer mortality, this reduction has not been achieved uniformly among racial groups. A large percentage of non-metastatic breast cancer mortality is related to the cardiovascular effects of breast cancer therapies. These effects appear to be more prevalent among patients from historically marginalized racial/ethnic backgrounds, such as African American and Hispanic individuals. Anthracyclines, particularly doxorubicin and daunorubicin, are the first-line treatments for breast cancer patients. However, their use is limited by their dose-dependent and cumulative cardiotoxicity, manifested by cardiomyopathy, ischemic heart disease, arrhythmias, hypertension, thromboembolic disorders, and heart failure. Cardiotoxicity risk factors, such as genetic predisposition and preexisting obesity, diabetes, hypertension, and heart diseases, are more prevalent in racial/ethnic minorities and undoubtedly contribute to the risk. Yet, beyond these risk factors, racial/ethnic minorities also face unique challenges that contribute to disparities in the emerging field of cardio-oncology, including socioeconomic factors, food insecurity, and the inability to access healthcare providers, among others. The current review will address genetic, clinical, and social determinants that potentially contribute to this disparity.
Collapse
Affiliation(s)
- Swetha Balaji
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Antu K. Antony
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Harry Tonchev
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Giorgia Scichilone
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Mohammed Morsy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Hania Deen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Mohamed M. Ali
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.B.); (A.K.A.); (H.T.); (G.S.); (M.M.); (H.D.); (I.M.); (M.M.A.)
- Department of Kinesiology, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Deng Z, Shen D, Yu M, Zhou F, Shan D, Fang Y, Jin W, Qian K, Li S, Wang G, Zhang Y, Ju L, Xiao Y, Wang X. Pectolinarigenin inhibits bladder urothelial carcinoma cell proliferation by regulating DNA damage/autophagy pathways. Cell Death Discov 2023; 9:214. [PMID: 37393350 DOI: 10.1038/s41420-023-01508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
Pectolinarigenin (PEC), an active compound isolated from traditional herbal medicine, has shown potential anti-tumor properties against various types of cancer cells. However, its mechanism of action in bladder cancer (BLCA), which is one of the fatal human carcinomas, remains unexplored. In this study, we first revealed that PEC, as a potential DNA topoisomerase II alpha (TOP2A) poison, can target TOP2A and cause significant DNA damage. PEC induced G2/M phase cell cycle arrest via p53 pathway. Simultaneously, PEC can perform its unique function by inhibiting the late autophagic flux. The blocking of autophagy caused proliferation inhibition of BLCA and further enhanced the DNA damage effect of PEC. In addition, we proved that PEC could intensify the cytotoxic effect of gemcitabine (GEM) on BLCA cells in vivo and in vitro. Summarily, we first systematically revealed that PEC had great potential as a novel TOP2A poison and an inhibitor of late autophagic flux in treating BLCA.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yayun Fang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shenjuan Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Xue Y, Bai H, Peng B, Tieu T, Jiang J, Hao S, Li P, Richardson M, Baell J, Thissen H, Cifuentes A, Li L, Voelcker NH. Porous Silicon Nanocarriers with Stimulus-Cleavable Linkers for Effective Cancer Therapy. Adv Healthc Mater 2022; 11:e2200076. [PMID: 35306736 PMCID: PMC11468814 DOI: 10.1002/adhm.202200076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Porous silicon nanoparticles (pSiNPs) are widely utilized as drug carriers due to their excellent biocompatibility, large surface area, and versatile surface chemistry. However, the dispersion in pore size and biodegradability of pSiNPs arguably have hindered the application of pSiNPs for controlled drug release. Here, a step-changing solution to this problem is described involving the design, synthesis, and application of three different linker-drug conjugates comprising anticancer drug doxorubicin (DOX) and different stimulus-cleavable linkers (SCLs) including the photocleavable linker (ortho-nitrobenzyl), pH-cleavable linker (hydrazone), and enzyme-cleavable linker (β-glucuronide). These SCL-DOX conjugates are covalently attached to the surface of pSiNP via copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC, i.e., click reaction) to afford pSiNP-SCL-DOXs. The mass loading of the covalent conjugation approach for pSiNP-SCL-DOX reaches over 250 µg of DOX per mg of pSiNPs, which is notably twice the mass loading achieved by noncovalent loading. Moreover, the covalent conjugation between SCL-DOX and pSiNPs endows the pSiNPs with excellent stability and highly controlled release behavior. When tested in both in vitro and in vivo tumor models, the pSiNP-SCL-DOXs induces excellent tumor growth inhibition.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
- Drug Delivery, Disposition and DynamicsMonash institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Hua Bai
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
| | - Bo Peng
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
- Drug Delivery, Disposition and DynamicsMonash institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Terence Tieu
- Drug Delivery, Disposition and DynamicsMonash institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Jiamin Jiang
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
| | - Shiping Hao
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
| | - Panpan Li
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
| | - Mark Richardson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Jonathan Baell
- Drug Delivery, Disposition and DynamicsMonash institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Anna Cifuentes
- Drug Delivery, Disposition and DynamicsMonash institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Lin Li
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
| | - Nicolas H. Voelcker
- Frontiers Science Center for Flexible ElectronsXi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072China
- Drug Delivery, Disposition and DynamicsMonash institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVictoria3168Australia
| |
Collapse
|
12
|
Nakayama T, Oshima Y, Shintani Y, Yamamoto J, Yokoi M, Ito T, Wakami K, Kitada S, Goto T, Hashimoto H, Kusumoto S, Sugiura T, Iida S, Seo Y. Ventricular Sigmoid Septum as a Risk Factor for Anthracycline-Induced Cancer Therapeutics-Related Cardiac Dysfunction in Patients With Malignant Lymphoma. Circ Rep 2022; 4:173-182. [PMID: 35434414 PMCID: PMC8977195 DOI: 10.1253/circrep.cr-21-0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Identifying risk factors for cancer therapeutics-related cardiac dysfunction (CTRCD) is essential for the early detection and prompt initiation of medial therapy for CTRCD. No study has investigated whether the sigmoid septum is a risk factor for anthracycline-induced CTRCD. Methods and Results: We enrolled 167 patients with malignant lymphoma who received a CHOP-like regimen from January 2008 to December 2017 and underwent both baseline and follow-up echocardiography. Patients with left ventricular ejection fraction (LVEF) ≤50% were excluded. CTRCD was defined as a ≥10% decline in LVEF and LVEF <50% after chemotherapy. The angle between the anterior wall of the aorta and the ventricular septal surface (ASA) was measured to quantify the sigmoid septum. CTRCD was observed in 36 patients (22%). Mean LVEF and global longitudinal strain (GLS) were lower, left ventricular mass index was higher, and ASA was smaller in patients with CTRCD. In a multivariable Cox proportional hazard analysis, GLS (hazard ratio [HR] per 1% decrease 1.20; 95% confidence interval [CI] 1.07-1.35) and ASA (HR per 1° increase 0.97; 95% CI 0.95-0.99) were identified as independent determinants of CTRCD. An integrated discrimination improvement evaluation confirmed the significant incremental value of ASA for developing CTRCD. Conclusions: Smaller ASA was an independent risk factor and had significant incremental value for CTRCD in patients with malignant lymphoma who received the CHOP-like regimen.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Yoshiko Oshima
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Yasuhiro Shintani
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Junki Yamamoto
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Masashi Yokoi
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Tsuyoshi Ito
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Kazuaki Wakami
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Shuichi Kitada
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Toshihiko Goto
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital Nagoya Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Tomonori Sugiura
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Yoshihiro Seo
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| |
Collapse
|
13
|
Ávila-Ortega A, Carrillo-Cocom LM, Olán-Noverola CE, Nic-Can GI, Vilchis-Nestor AR, Talavera-Pech WA. Increased Toxicity of Doxorubicin Encapsulated into pH-Responsive Poly(β-Amino Ester)-Functionalized MCM-41 Silica Nanoparticles. Curr Drug Deliv 2021; 17:799-805. [PMID: 32723272 DOI: 10.2174/1567201817999200728123915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The encapsulation of anti-cancer drugs in stimulus-sensitive release systems may provide advantages such as enhanced drug toxicity in tumour tissue cells due to increased intracellular drug release. Encapsulation may also improve release in targeted tissue due to the response to a stimulus such as pH, which is lower in the tumour tissue microenvironment. Here, we evaluated the in vitro toxicity of the Drug Doxorubicin (DOX) loaded into a release system based on poly(β-amino ester)- modified MCM-41 silica nanoparticles. METHODS The MCM-41-DOX-PbAE release system was obtained by loading DOX into MCM-41 nanoparticles amino-functionalized with 3-aminopropyltriethoxysilane (APTES) and then coated with a pH-responsive poly(β-amino ester) (PbAE). The physicochemical characteristics of the release system were evaluated through TEM, FTIR and TGA. Cytotoxicity assays were performed on the MCM-41- DOX-PbAE system to determine their effects on the inhibition of human MCF-7 breast cancer cell proliferation after 48 h of exposure through crystal violet assay; the investigated systems included MCF-7 cells with MCM-41, PbAE, and MCM-41-PbAE alone. Additionally, the release of DOX and the change in pH in vitro were determined. RESULTS The physicochemical characteristics of the synthesized MCM-41-PbAE system were confirmed, including the nanoparticle size, spherical morphology, mesoporous ordered structure, and presence of PbAE on the surface of the MCM-41 nanoparticles. Likewise, we demonstrated that the release of DOX from the MCM-41-DOX-PbAE system promoted an important reduction in MCF-7 cell viability (~ 70%) compared to the values obtained with MCM-41, PbAE, and MCM-41-PbAE, as well as a reduction in the viability under treatment with just DOX (~ 50%). CONCLUSION The results suggest that all the components of the release system are biocompatible and that the encapsulation of DOX in MCM-41-PbAE could allow better intracellular release, which would probably increase the availability and toxic effect of DOX.
Collapse
Affiliation(s)
- Alejandro Ávila-Ortega
- Facultad de Ingeniería Quimica, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | | | | | - Geovanny I Nic-Can
- CONACYT-Facultad de Ingenieria Quimica, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Alfredo Rafael Vilchis-Nestor
- Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico-Universidad Nacional Autonoma de Mexico, Toluca, Mexico
| | | |
Collapse
|
14
|
Impact of Smoking-Related Chronic Obstruction Pulmonary Disease on Mortality of Invasive Ductal Carcinoma Patients Receiving Standard Treatments: Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers (Basel) 2021; 13:cancers13153654. [PMID: 34359556 PMCID: PMC8345139 DOI: 10.3390/cancers13153654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary This study is the first to estimate the impact of smoking-related chronic obstructive pulmonary disease (COPD) on invasive ductal carcinoma (IDC) patients receiving standard treatments. Smoking-related COPD was not a significant independent risk factor for all-cause mortality in women with stage I–III IDC receiving standard treatments. The frequency of hospitalization for COPD with at least one acute exacerbation within one year before breast surgery was highly associated with high mortality for women with IDC receiving standard treatments. Abstract Purpose: the survival effect of smoking-related chronic obstructive pulmonary disease (COPD) and COPD with acute exacerbation (COPDAE) is unclear for patients with invasive ductal carcinoma (IDC) receiving standard treatments. Methods: we recruited women with clinical stage I–III IDC from the Taiwan Cancer Registry Database who had received standard treatments between 1 January 2009 and 31 December 2018. The time-dependent Cox proportional hazards model was used to analyze all-cause mortality. To reduce the effects of potential confounders when all-cause mortality between Groups 1 and 2 were compared, 1:2 propensity score matching (PSM) was performed. We categorized the patients into two groups based on COPD status to compare overall survival outcomes: Group 1 (current smokers with COPD) and Group 2 (nonsmokers without COPD group). Results: PSM yielded 2319 patients with stage I–III IDC (773 and 1546 in Groups 1 and 2, respectively) eligible for further analysis. In the multivariate time-dependent Cox regression analyses, the adjusted hazard ratio (aHR; 95% confidence interval (CI)) of all-cause mortality for Group 1 compared with Group 2 was 1.04 (0.83–1.22). The aHRs (95% CIs) of all-cause mortality for ≥1 hospitalization for COPDAE within one year before breast surgery was 1.51 (1.18–2.36) compared with no COPDAE. Conclusion: smoking-related COPD was not a significant independent risk factor for all-cause mortality in women with stage I–III IDC receiving standard treatments. Being hospitalized at least once for COPDAE within one year before breast surgery is highly associated with high mortality for women with IDC receiving standard treatments. The severity of smoking-related COPD before treatments for breast cancer might be an important prognostic factor of survival. Thus, the information of the severity of COPD before treatment for breast cancer might be valuable for increasing the survival rate in treatment of breast cancer, especially in the prevention of progress from COPD to COPDAE.
Collapse
|
15
|
Dempsey N, Rosenthal A, Dabas N, Kropotova Y, Lippman M, Bishopric NH. Trastuzumab-induced cardiotoxicity: a review of clinical risk factors, pharmacologic prevention, and cardiotoxicity of other HER2-directed therapies. Breast Cancer Res Treat 2021; 188:21-36. [PMID: 34115243 DOI: 10.1007/s10549-021-06280-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Despite great success as a targeted breast cancer therapy, trastuzumab use may be complicated by heart failure and loss of left ventricular contractile function. This review summarizes the risk factors, imaging, and prevention of cardiotoxicity associated with trastuzumab and other HER2-targeted therapies. FINDINGS Cardiovascular disease risk factors, advanced age, and previous anthracycline treatment predispose to trastuzumab-induced cardiotoxicity (TIC), with anthracycline exposure being the most significant risk factor. Cardiac biomarkers such as troponins and pro-BNP and imaging assessments such as echocardiogram before and during trastuzumab therapy may help in early identification of TIC. Initiation of beta-adrenergic antagonists and angiotensin converting enzyme inhibitors may prevent TIC. Cardiotoxicity rates of other HER2-targeted treatments, such as pertuzumab, T-DM1, lapatinib, neratinib, tucatinib, trastuzumab deruxtecan, and margetuximab, appear to be significantly lower as reported in the pivotal trials which led to their approval. CONCLUSIONS Risk assessment for TIC should include cardiac imaging assessment and should incorporate prior anthracycline use, the strongest risk factor for TIC. Screening and prediction of cardiotoxicity, referral to a cardio-oncology specialist, and initiation of effective prophylactic therapy may all improve prognosis in patients receiving HER2-directed therapy. Beta blockers and ACE inhibitors appear to mitigate risk of TIC. Anthracycline-free regimens have been proven to be efficacious in early HER2-positive breast cancer and should now be considered the standard of care for early HER2-positive breast cancer. Newer HER2-directed therapies appear to have significantly lower cardiotoxicity compared to trastuzumab, but trials are needed in patients who have experienced TIC and patients with pre-existing cardiac dysfunction.
Collapse
Affiliation(s)
- Naomi Dempsey
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA.
| | - Amanda Rosenthal
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA.,Department of Medicine, Kaiser Permanente Los Angeles Medical Center, 4867 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Nitika Dabas
- Divisions of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Yana Kropotova
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Marc Lippman
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA.,Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Washington, DC, 20007, USA
| | - Nanette H Bishopric
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Washington, DC, 20007, USA.,MedStar Heart Research Institute, MedStar Washington Hospital Center, 110 Irving St NW, Washington, DC, 20010, USA
| |
Collapse
|
16
|
Crimmin J, Fulop T, Battisti NML. Biological aspects of aging that influence response to anticancer treatments. Curr Opin Support Palliat Care 2021; 15:29-38. [PMID: 33399393 DOI: 10.1097/spc.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cancer is a disease of older adults, where fitness and frailty are a continuum. This aspect poses unique challenges to the management of cancer in this population. In this article, we review the biological aspects influencing the efficacy and safety of systemic anticancer treatments. RECENT FINDINGS The organ function decline associated with the ageing process affects multiple systems, including liver, kidney, bone marrow, heart, muscles and central nervous system. These can have a significant impact on the pharmacokinetics and pharmacodynamics of systemic anticancer agents. Comorbidities also represent a key aspect to consider in decision-making. Renal disease, liver conditions and cardiovascular risk factors are prevalent in this age group and may impact the risk of adverse outcomes in this setting. SUMMARY The systematic integration of geriatrics principles in the routine management of older adults with cancer is a unique opportunity to address the complexity of this population and is standard of care based on a wide range of benefits. This approach should be multidisciplinary and involve careful discussion with hospital pharmacists.
Collapse
Affiliation(s)
- Jane Crimmin
- Pharmacy, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Tamas Fulop
- Department of Medicine, Division of Geriatrics, Research Center on Aging, University of Sherbrooke, Faculty of Medicine and Health Sciences, Québec, Quebec, Canada
| | - Nicolò Matteo Luca Battisti
- Department of Medicine - Breast Unit, The Royal Marsden NHS Foundation Trust, Breast Cancer Research Division, The Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
17
|
Nakayama T, Oshima Y, Kusumoto S, Yamamoto J, Osaga S, Fujinami H, Kikuchi T, Suzuki T, Totani H, Kinoshita S, Narita T, Ito A, Ri M, Komatsu H, Wakami K, Goto T, Sugiura T, Seo Y, Ohte N, Iida S. Clinical features of anthracycline-induced cardiotoxicity in patients with malignant lymphoma who received a CHOP regimen with or without rituximab: A single-center, retrospective observational study. EJHAEM 2020; 1:498-506. [PMID: 35845008 PMCID: PMC9176145 DOI: 10.1002/jha2.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
We investigated the incidence of cardiotoxicity, its risk factors, and the clinical course of cardiac function in patients with malignant lymphoma (ML) who received a cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) regimen. Among all ML patients who received a CHOP regimen with or without rituximab from January 2008 to December 2017 in Nagoya City University hospital, 229 patients who underwent both baseline and follow-up echocardiography and had baseline left ventricular ejection fraction (LVEF) ≥50% were analyzed, retrospectively. Cardiotoxicity was defined as a ≥10% decline in LVEF and LVEF < 50%; recovery from cardiotoxicity was defined as a ≥5% increase in LVEF and LVEF ≥50%. Re-cardiotoxicity was defined as meeting the criteria of cardiotoxicity again. With a median follow-up of 1132 days, cardiotoxicity, symptomatic heart failure, and cardiovascular death were observed in 48 (21%), 30 (13%), and 5 (2%) patients, respectively. Multivariate analysis demonstrated that history of ischemic heart disease (hazard ratio (HR), 3.15; 95% CI, 1.17-8.47, P = .023) and decreased baseline LVEF (HR per 10% increase, 2.55; 95% CI, 1.49-4.06; P < .001) were independent risk factors for cardiotoxicity. Recovery from cardiotoxicity and re-cardiotoxicity were observed in 21 of 48, and six of 21, respectively. Cardiac condition before chemotherapy seemed to be most relevant for developing cardiotoxicity. Furthermore, Continuous management must be required in patients with cardiotoxicity, even after LVEF recovery.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoshiko Oshima
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shigeru Kusumoto
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Junki Yamamoto
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoshi Osaga
- Clinical Research Management CenterNagoya City University HospitalNagoyaJapan
| | - Haruna Fujinami
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaki Kikuchi
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tomotaka Suzuki
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Haruhito Totani
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shiori Kinoshita
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tomoko Narita
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Asahi Ito
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Masaki Ri
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hirokazu Komatsu
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kazuaki Wakami
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Toshihiko Goto
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tomonori Sugiura
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoshihiro Seo
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Nobuyuki Ohte
- Department of CardiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shinsuke Iida
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
18
|
Chen X, Liu J, Liu J, Wang WJ, Lai WJ, Li SH, Deng YF, Zhou JZ, Yang SQ, Liu Y, Shou WN, Cao DY, Li XH. α-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice. Acta Pharmacol Sin 2020; 41:1416-1426. [PMID: 32973325 DOI: 10.1038/s41401-020-00517-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Immunotherapies for cancers may cause severe and life-threatening cardiotoxicities. The underlying mechanisms are complex and largely elusive. Currently, there are several ongoing clinical trials based on the use of activated invariant natural killer T (iNKT) cells. The potential cardiotoxicity commonly associated with this particular immunotherapy has yet been carefully evaluated. The present study aims to determine the effect of activated iNKT cells on normal and β-adrenergic agonist (isoproterenol, ISO)-stimulated hearts. Mice were treated with iNKT stimulants, α-galactosylceramide (αGC) or its analog OCH, respectively, to determine their effect on ISO-induced cardiac injury. We showed that administration of αGC (activating both T helper type 1 (Th1)- and T helper type 2 (Th2)-liked iNKT cells) significantly accelerated the progressive cardiac injury, leading to enhanced cardiac hypertrophy and cardiac fibrosis with prominent increases in collagen deposition and TGF-β1, IL-6, and alpha smooth muscle actin expression. In contrast to αGC, OCH (mainly activating Th2-liked iNKT cells) significantly attenuated the progression of cardiac injury and cardiac inflammation induced by repeated infusion of ISO. Flow cytometry analysis revealed that αGC promoted inflammatory macrophage infiltration in the heart, while OCH was able to restrain the infiltration. In vitro coculture of αGC- or OCH-pretreated primary peritoneal macrophages with primary cardiac fibroblasts confirmed the profibrotic effect of αGC and the antifibrotic effect of OCH. Our results demonstrate that activating both Th1- and Th2-liked iNKT cells is cardiotoxic, while activating Th2-liked iNKT cells is likely cardiac protective, which has implied key differences among subpopulations of iNKT cells in their response to cardiac pathological stimulation.
Collapse
|
19
|
Synergetic therapy of glioma mediated by a dual delivery system loading α-mangostin and doxorubicin through cell cycle arrest and apoptotic pathways. Cell Death Dis 2020; 11:928. [PMID: 33116114 PMCID: PMC7595144 DOI: 10.1038/s41419-020-03133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
Two of the biggest hurdles in the deployment of chemotherapeutics against glioma is a poor drug concentration at the tumor site and serious side effects to normal tissues. Nanocarriers delivering different drugs are considered to be one of the most promising alternatives. In this study, a dual delivery system (methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL)) loaded with α-mangostin (α-m) and doxorubicin (Dox) was decorated and constructed by self-assembly to determine its ability to treat glioma. Molecular dynamics simulations showed that MPEG-PCL could provide ideal interaction positions for both α-m and Dox, indicating that the two drugs could be loaded into MPEG-PCL. Based on the in vitro results, MPEG-PCL loaded with α-m and Dox (α-m-Dox/M) with a size of 25.68 nm and a potential of -1.51 mV was demonstrated to significantly inhibit the growth and promote apoptosis in Gl261, C6 and U87 cells, and the effects of the combination were better than each compound alone. The mechanisms involved in the suppression of glioma cell growth were blockage of the cell cycle in S phase by inhibition of CDK2/cyclin E1 and promotion of apoptosis through the Bcl-2/Bax pathway. The synergetic effects of α-m-Dox/M effectively inhibited tumor growth and prolonged survival time without toxicity in mouse glioma models by inducing glioma apoptosis, inhibiting glioma proliferation and limiting tumor angiogenesis. In conclusion, a codelivery system was synthesized to deliver α-m and Dox to the glioma, thereby suppressing the development of glioma by the mechanisms of cell cycle arrest and cellular apoptosis, which demonstrated the potential of this system to improve the chemotherapy response of glioma.
Collapse
|
20
|
Feng S, Mao Y, Wang X, Zhou M, Lu H, Zhao Q, Wang S. Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy. J Colloid Interface Sci 2019; 559:51-64. [PMID: 31610305 DOI: 10.1016/j.jcis.2019.09.120] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/19/2022]
Abstract
Aiming at the inefficiency and toxicity in traditional antitumor therapy, a novel multifunctional nanoplatform was constructed based on hollow mesoporous carbon (HMC) to achieve triple stimuli response and dual model antitumor therapy via chemo-photothermal synergistic effect. HMC was used as an ideal nanovehicle with a high drug loading efficiency as well as a near-infrared (NIR) photothermal conversion agent for photothermal therapy. Acid-dissoluble, luminescent ZnO quantum dots (QDs) were used as the proper sealing agents for the mesopores of HMC, conjugated to HMC via disulfide linkage to prevent drug (doxorubicin, abbreviated as Dox) premature release from Dox/HMC-SS-ZnO. After cellular endocytosis, the Dox was released in a pH, GSH and NIR laser triple stimuli-responsive manner to realize accurate drug delivery. Moreover, the local hyperthermia effect induced by NIR irradiation could promote the drug release, enhance cell sensitivity to chemotherapeutic agents, and also directly kill cancer cells. As expected, Dox/HMC-SS-ZnO exhibited a high drug loading capacity of 43%, well response to triple stimuli and excellent photothermal conversion efficiency η of 29.7%. The therapeutic efficacy in 4T1 cells and multicellular tumor spheroids (MCTSs) demonstrated that Dox/HMC-SS-ZnO + NIR had satisfactory chemo-photothermal synergistic effect with a combination index (CI) of 0.532. The cell apoptosis rate of the combined treatment group was more than 95%. The biodistribution and pharmacodynamics studies showed its biosecurity to normal tissues and synergistic inhibition effect to tumor cells. These distinguished results indicated that the Dox/HMC-SS-ZnO nanoplatform is potential to realize efficient triple stimuli-responsive drug delivery and dual model chemo-photothermal synergistic antitumor therapy.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiudan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Meiting Zhou
- Department of Inorganic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
21
|
Yun UJ, Lee JH, Shim J, Yoon K, Goh SH, Yi EH, Ye SK, Lee JS, Lee H, Park J, Lee IH, Kim YN. Anti-cancer effect of doxorubicin is mediated by downregulation of HMG-Co A reductase via inhibition of EGFR/Src pathway. J Transl Med 2019; 99:1157-1172. [PMID: 30700846 DOI: 10.1038/s41374-019-0193-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Doxorubicin is a widely used DNA damage-inducing anti-cancer drug. However, its use is limited by its dose-dependent side effects, such as cardiac toxicity. Cholesterol-lowering statin drugs increase the efficacy of some anti-cancer drugs. Cholesterol is important for cell growth and a critical component of lipid rafts, which are plasma membrane microdomains important for cell signaling. 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMG-CR) is a critical enzyme in cholesterol synthesis. Here, we show that doxorubicin downregulated HMG-CR protein levels and thus reduced levels of cholesterol and lipid rafts. Cholesterol addition attenuated doxorubicin-induced cell death, and cholesterol depletion enhanced it. Reduction of HMG-CR activity by simvastatin, a statin that acts as an HMG-CR inhibitor, or by siRNA-mediated HMG-CR knockdown enhanced doxorubicin cytotoxicity. Doxorubicin-induced HMG-CR downregulation was associated with inactivation of the EGFR-Src pathway. Furthermore, a high-cholesterol-diet attenuated the anti-cancer activity of doxorubicin in a tumor xenograft mouse model. In a multivulva model of Caenorhabditis elegans expressing an active-EGFR mutant, doxorubicin decreased hyperplasia more efficiently in the absence than in the presence of cholesterol. These data indicate that EGFR/Src/HMG-CR is a new pathway mediating doxorubicin-induced cell death and that cholesterol control could be combined with doxorubicin treatment to enhance efficacy and thus reduce side effects.
Collapse
Affiliation(s)
- Un-Jung Yun
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Ji-Hye Lee
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Jaegal Shim
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Sung-Ho Goh
- Therapeutic Target Discovery Branch, Division of Precision Medicine, National Cancer Center, Goyang, Korea
| | - Eun Hee Yi
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular medicine, College of Medicine, Inha University, Incheon, Korea
| | - Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| | - Yong-Nyun Kim
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea.
| |
Collapse
|
22
|
Maleszewski JJ, Bois MC, Bois JP, Young PM, Stulak JM, Klarich KW. Neoplasia and the Heart. J Am Coll Cardiol 2018; 72:202-227. [DOI: 10.1016/j.jacc.2018.05.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
|
23
|
Dings RPM, Miller MC, Griffin RJ, Mayo KH. Galectins as Molecular Targets for Therapeutic Intervention. Int J Mol Sci 2018; 19:ijms19030905. [PMID: 29562695 PMCID: PMC5877766 DOI: 10.3390/ijms19030905] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are a family of small, highly conserved, molecular effectors that mediate various biological processes, including chemotaxis and angiogenesis, and that function by interacting with various cell surface glycoconjugates, usually targeting β-galactoside epitopes. Because of their significant involvement in various biological functions and pathologies, galectins have become a focus of therapeutic discovery for clinical intervention against cancer, among other pathological disorders. In this review, we focus on understanding galectin structure-function relationships, their mechanisms of action on the molecular level, and targeting them for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Yang C, Wu T, Qin Y, Qi Y, Sun Y, Kong M, Jiang X, Qin X, Shen Y, Zhang Z. A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery. Int J Nanomedicine 2018; 13:1281-1293. [PMID: 29563787 PMCID: PMC5846746 DOI: 10.2147/ijn.s154361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Doxorubicin (DOX) is an effective chemotherapeutic agent but severe side effects limit its clinical application. Nanoformulations can reduce the toxicity while still have various limitations, such as complexity, low drug loading capability and excipient related concerns. Methods An amphiphilic conjugate, doxorubicin-dichloroacetate, was synthesized and the corresponding nanoparticles were prepared. The in vitro cytotoxicity and intracellular uptake, in vivo imaging, antitumor effects and systemic toxicities of nanoparticles were carried out to evaluate the therapeutic efficiency of tumor. Results Doxorubicin-dichloroacetate conjugate can self-assemble into nanoparticles with small amount of DSPE-PEG2000, leading to high drug loading (71.8%, w/w) and diminished excipient associated concerns. The nanoparticles exhibited invisible systemic toxicity and high maximum tolerated dose of 75 mg DOX equiv./kg, which was 15-fold higher than that of free DOX. It also showed good tumor targeting capability and enhanced antitumor efficacy in murine melanoma model. Conclusion This work provides a promising strategy to simplify the drug preparation process, increase drug loading content, reduce systemic toxicity as well as enhance antitumor efficiency.
Collapse
Affiliation(s)
| | | | | | - Yan Qi
- Tongji School of Pharmacy
| | - Yu Sun
- Tongji School of Pharmacy
| | | | | | | | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College
| | - Zhiping Zhang
- Tongji School of Pharmacy.,National Engineering Research Center for Nanomedicine.,Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Jenkins SV, Nima ZA, Vang KB, Kannarpady G, Nedosekin DA, Zharov VP, Griffin RJ, Biris AS, Dings RPM. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis Oncol 2017; 1:27. [PMID: 29872709 PMCID: PMC5871908 DOI: 10.1038/s41698-017-0030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022] Open
Abstract
An ongoing need for new cancer therapeutics exists, especially ones that specifically home and target triple-negative breast cancer. Because triple-negative breast cancer express low or are devoid of estrogen, progesterone, or Her2/Neu receptors, another target must be used for advanced drug delivery strategies. Here, we engineered a nanodrug delivery system consisting of silver-coated gold nanorods (AuNR/Ag) targeting epithelial cell adhesion/activating molecule (EpCAM) and loaded with doxorubicin. This nanodrug system, AuNR/Ag/Dox-EpCAM, was found to specifically target EpCAM-expressing tumors compared to low EpCAM-expressing tumors. Namely, the nanodrug had an effective dose (ED50) of 3 μM in inhibiting 4T1 cell viability and an ED50 of 110 μM for MDA-MD-231 cells. Flow cytometry data indicated that 4T1 cells, on average, express two orders of magnitude more EpCAM than MDA-MD-231 cells, which correlates with our ED50 findings. Moreover, due to the silver coating, the AuNR/Ag can be detected simultaneously by surface-enhanced Raman spectroscopy and photoacoustic microscopy. Analysis by these imaging detection techniques as well as by inductively coupled plasma mass spectrometry showed that the targeted nanodrug system was taken up by EpCAM-expressing cells and tumors at significantly higher rates than untargeted nanoparticles (p < 0.05). Thus, this approach establishes a plasmonically active nanodrug theranostic for triple-negative breast cancer and, potentially, a delivery platform with improved multimodal imaging capability for other clinically relevant chemotherapeutics with dose-limiting toxicities, such as platinum-based or taxane-based therapies. Silver-coated gold nanorods deliver drugs to a difficult-to-treat breast cancer by targeting an over-expressed antigen on its surface. Ruud Dings and colleagues at the University of Arkansas in the USA loaded the chemotherapeutic drug doxorubicin onto silver-coated gold nanorods that were conjugated with an antibody that specifically targets an over-expressed antigen on many types of ‘triple-negative breast cancers’ (TNBCs). Unlike other breast cancers, TNBCs lack certain receptors, making them difficult to target with cancer therapies. The team found that one of the two TNBC cell lines studied over-expressed the epithelial antigen EpCAM 100 times more than the other. Their drug-loaded silver-coated gold nanorods specifically targeted the EpCAM over-expressing cells over the low-expressing ones. The nanorods’ coatings also allowed them to be easily detected by two different imaging techniques: surfaced-enhanced Raman spectroscopy and photoacoustic microscopy.
Collapse
Affiliation(s)
- Samir V Jenkins
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Zeid A Nima
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Kieng B Vang
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Ganesh Kannarpady
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Dmitry A Nedosekin
- 3The Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Vladimir P Zharov
- 3The Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Robert J Griffin
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Alexandru S Biris
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Ruud P M Dings
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
26
|
Polonchuk L, Chabria M, Badi L, Hoflack JC, Figtree G, Davies MJ, Gentile C. Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 2017; 7:7005. [PMID: 28765558 PMCID: PMC5539326 DOI: 10.1038/s41598-017-06385-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional in vitro cell systems are a promising alternative to animals to study cardiac biology and disease. We have generated three-dimensional in vitro models of the human heart ("cardiac spheroids", CSs) by co-culturing human primary or iPSC-derived cardiomyocytes, endothelial cells and fibroblasts at ratios approximating those present in vivo. The cellular organisation, extracellular matrix and microvascular network mimic human heart tissue. These spheroids have been employed to investigate the dose-limiting cardiotoxicity of the common anti-cancer drug doxorubicin. Viability/cytotoxicity assays indicate dose-dependent cytotoxic effects, which are inhibited by the nitric oxide synthase (NOS) inhibitor L-NIO, and genetic inhibition of endothelial NOS, implicating peroxynitrous acid as a key damaging agent. These data indicate that CSs mimic important features of human heart morphology, biochemistry and pharmacology in vitro, offering a promising alternative to animals and standard cell cultures with regard to mechanistic insights and prediction of toxic effects in human heart tissue.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Mamta Chabria
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Laura Badi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Gemma Figtree
- Sydney Medical School, University of Sydney, Sydney, 2000, Australia
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Carmine Gentile
- Sydney Medical School, University of Sydney, Sydney, 2000, Australia.
- Heart Research Institute, Newtown, 2041, Australia.
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
27
|
Xin K, Li M, Lu D, Meng X, Deng J, Kong D, Ding D, Wang Z, Zhao Y. Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:80-91. [PMID: 27957858 DOI: 10.1021/acsami.6b09425] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Catechol-Fe3+ coordinated micelles show the potential for achieving on-demand drug delivery and magnetic resonance imaging in a single nanoplatform. Herein, we developed bioinspired coordination-cross-linked amphiphilic polymeric micelles loaded with a model anticancer agent, doxorubicin (Dox). The nanoscale micelles could tolerate substantial dilution to a condition below the critical micelle concentration (9.4 ± 0.3 μg/mL) without sacrificing the nanocarrier integrity due to the catechol-Fe3+ coordinated core cross-linking. Under acidic conditions (pH 5.0), the release rate of Dox was significantly faster compared to that at pH 7.4 as a consequence of coordination collapse and particle de-cross-linking. The cell viability study in 4T1 cells showed no toxicity regarding placebo cross-linked micelles. The micelles with improved stability showed a dramatically increased Dox accumulation in tumors and hence the enhanced suppression of tumor growth in a 4T1 tumor-bearing mouse model. The presence of Fe3+ endowed the micelles T1-weighted MRI capability both in vitro and in vivo without the incorporation of traditional toxic paramagnetic contrast agents. The current work presented a simple "three birds with one stone" approach to engineer the robust theranostic nanomedicine platform.
Collapse
Affiliation(s)
- Keting Xin
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Man Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Di Lu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Xuan Meng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Jun Deng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| |
Collapse
|
28
|
Rui M, Xin Y, Li R, Ge Y, Feng C, Xu X. Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Mol Pharm 2016; 14:107-123. [DOI: 10.1021/acs.molpharmaceut.6b00732] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuanrong Xin
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ran Li
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yanru Ge
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
29
|
Darbandi S, Darbandi M, Mokarram P, Sadeghi MR, Owji AA, Khorram Khorshid HR, Zhao B, Heidari M. CME Article:The Acupuncture-Affected Gene Expressions and Epigenetic Modifications in Oxidative Stress–Associated Diseases. Med Acupunct 2016. [DOI: 10.1089/acu.2015.1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Akbar Owji
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Baxiao Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
30
|
Aniss HA, Said AEM, El Sayed IH, Adly C. Amelioration of adriamycin-induced cardiotoxicity by Salsola kali aqueous extract is mediated by lowering oxidative stress. Redox Rep 2014; 19:170-8. [PMID: 24666516 DOI: 10.1179/1351000214y.0000000088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES To assess the cardioprotective effect of the Salsola kali aqueous extract against adriamycin (ADR)-induced cardiotoxicity in male Swiss albino mice. METHODS The aqueous extract of S. kali was phytochemically screened by traditional methods for different classes and further evaluated for antioxidant activity in vitro. In vivo, cardioprotective evaluation of the extract was designed to have four groups of mice: (1) control group (distilled water, orally; normal saline, intraperitoneally (i.p.)); (2) ADR group (15 mg/kg, i.p.); (3) aqueous S. kali extract (200 mg/kg, orally); and (4) ADR + S. kali group. ADR (5 mg/kg) was injected three times over 2 weeks while S. kali was orally administered daily for 3 weeks (1 week before and 2 weeks during ADR treatment). Cardioprotective properties were assessed using biochemical and histopathological approaches. RESULTS ADR caused a significant increase in serum enzymes (lactate dehydrogenase, creatine phosphokinase, aspartate aminotransferase, and alanine aminotransferase). Myocardial levels of malondialdehyde, nitric oxide, and reduced glutathione, as well as the activities of superoxide dismutase and catalase increased while the activities of glutathione peroxidase and glutathione S-transferase declined. Histopathological examination of heart sections revealed that ADR caused myofibrils loss, necrosis and cytoplasmic vacuolization. DISCUSSION Pretreatment with S. kali aqueous extract normalized serum and antioxidant enzymes minimized lipid peroxidation and cardiac damage. These results have suggested that the extract has antioxidant activity, indicating that the mechanism of cardioprotection during ADR treatment is mediated by lowering oxidative stress.
Collapse
|
31
|
Li F, Wu JH, Wang QH, Shu YL, Wan CW, Chan CO, Kam-Wah Mok D, Chan SW. Gui-ling-gao, a traditional Chinese functional food, prevents oxidative stress-induced apoptosis in H9c2 cardiomyocytes. Food Funct 2014; 4:745-53. [PMID: 23467630 DOI: 10.1039/c3fo30182f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Functional foods have become an increasingly popular alternative to prevent diseases and maintain body health status. Gui-ling-gao (GLG, also known as turtle jelly) is a well-known traditional functional food popular in Southern China and Hong Kong. This study aimed to investigate the antioxidative and anti-apoptotic effects of GLG, a traditional Chinese functional food, on preventing oxidative stress-induced injury in H9c2 cardiomyocytes. In this study, the antioxidative capacities of GLG were measured by using both a cell-free assay [2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl assay] and biological methods [2,2'-azobis(2-amidinopropane)-induced haemolysis assay and H(2)O(2)-induced cell damage on H9c2 cardiomyocytes]. Additionally, the total phenolic content was measured using the Folin-Ciocalteu method. Furthermore, the anti-apoptotic effect of GLG was evaluated by nuclear staining and a DNA fragmentation assay. GLG was found to have good antioxidant activities and high total phenolic content. In H(2)O(2)-induced cell damage on H9c2 cells, GLG was demonstrated to ameliorate the apoptotic effects, such as nuclear condensations, increased intracellular caspase-3 activity and inter-nucleosomal DNA cleavage, induced by H(2)O(2). The present study demonstrated for the first time that GLG possesses anti-apoptotic potential in vitro and this effect may be mediated, in part, by its antioxidative function. Additionally, the antioxidative capacities of GLG were proved both chemically and biologically. This study provides scientific evidence to prove the anecdotal health-beneficial claim that the consumption of GLG could help the body to handle endogenous toxicants such as free radicals.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, Hudson MM, Kremer LC, Landy DC, Miller TL, Oeffinger KC, Rosenthal DN, Sable CA, Sallan SE, Singh GK, Steinberger J, Cochran TR, Wilkinson JD. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 2013; 128:1927-95. [PMID: 24081971 DOI: 10.1161/cir.0b013e3182a88099] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Sabatino SA, Thompson TD, Smith JL, Rowland JH, Forsythe LP, Pollack L, Hawkins NA. Receipt of cancer treatment summaries and follow-up instructions among adult cancer survivors: results from a national survey. J Cancer Surviv 2013; 7:32-43. [PMID: 23179495 PMCID: PMC5850952 DOI: 10.1007/s11764-012-0242-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/31/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study is to examine reporting of treatment summaries and follow-up instructions among cancer survivors. METHODS Using the 2010 National Health Interview Survey, we created logistic regression models among cancer survivors not in treatment (n = 1,345) to determine characteristics associated with reporting treatment summaries and written follow-up instructions, adjusting for sociodemographic, access, and cancer-related factors. Findings are presented for all survivors and those recently diagnosed (≤4 years). We also examined unadjusted associations between written instructions and subsequent surveillance and screening. RESULTS Among those recently diagnosed, 38 % reported receiving treatment summaries and 58 % reported written instructions. Among all survivors, approximately one third reported summaries and 44 % reported written instructions. After adjustment, lower reporting of summaries was associated with cancer site, race, and number of treatment modalities among those recently diagnosed, and white vs. black or Hispanic race/ethnicity, breast vs. colorectal cancer, >10 vs. ≤5 years since diagnosis, no clinical trials participation, and better than fair health among all survivors. For instructions, lower reporting was associated with no trials participation and lower income among those recently diagnosed, and increasing age, white vs. black race, lower income, >10 vs. ≤5 years since diagnosis, 1 vs. ≥2 treatment modalities, no trials participation, and at least good vs. fair/poor health among all survivors. Written instructions were associated with reporting provider recommendations for breast and cervical cancer surveillance, and recent screening mammograms. CONCLUSION Many recently diagnosed cancer survivors did not report receiving treatment summaries and written follow-up instructions. Opportunities exist to examine associations between use of these documents and recommended care and outcomes, and to facilitate their adoption. IMPLICATIONS FOR CANCER SURVIVORS Cancer survivors who have completed therapy should ask their providers for treatment summaries and written follow-up instructions, and discuss with them how their cancer and therapy impact their future health care.
Collapse
Affiliation(s)
- Susan A Sabatino
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Doxorubicin-Induced Cardiac Toxicity Is Mediated by Lowering of Peroxisome Proliferator-Activated Receptor δ Expression in Rats. PPAR Res 2013; 2013:456042. [PMID: 23533379 PMCID: PMC3603302 DOI: 10.1155/2013/456042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 12/22/2022] Open
Abstract
The present study investigates the changes of peroxisome proliferator-activated receptors δ (PPARδ) expression and troponin phosphorylation in heart of rats which were treated with doxorubicin (DOX). Wistar rats which were treated with DOX according to a previous method. The protein levels of PPARδ and troponin phosphorylation were measured using Western blot. The PPARδ expression in heart was markedly reduced in DOX-treated rats showing a marked decrease in cardiac dP/dT and cardiac output. Also, cardiac troponin phosphorylation was lowered in DOX-treated rats. Meanwhile, combined treatment with the agonist of PPARδ (GW0742) reversed the decrease of cardiac dP/dT and cardiac output in DOX-treated rats. Then, primary cultured cardiomyocytes from neonatal rats were used to measure the changes of calcium concentration in cells. In addition to both decrease of PPARδ expression and troponin phosphorylation in neonatal cardiomyocytes by DOX, a marked decrease of calcium concentration was also observed. Our results suggest the mediation of cardiac PPARδ in DOX-induced cardiotoxicity in rats. Thus, activation of PPARδ may restore the expression of p-TnI and the cardiac performance in DOX-induced cardio toxicity in rats.
Collapse
|
35
|
Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol 2013; 1:244-57. [PMID: 24024158 PMCID: PMC3757692 DOI: 10.1016/j.redox.2013.01.014] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 01/21/2013] [Accepted: 01/26/2013] [Indexed: 12/31/2022] Open
Abstract
This article provides a succinct but limited overview of the protective and deleterious effects of reactive oxygen and nitrogen species in a clinical context. Reactive oxygen species include superoxide, hydrogen peroxide, single oxygen and lipid peroxides. Reactive nitrogen species include species derived from nitric oxide. This review gives a brief overview of the reaction chemistry of these species, the role of various enzymes involved in the generation and detoxification of these species in disease mechanisms and drug toxicity and the protective role of dietary antioxidants. I hope that the graphical review will be helpful for teaching both the first year medical and graduate students in the U.S. and abroad the fundamentals of reactive oxygen and nitrogen species in redox biology and clinical medicine.
Collapse
Key Words
- 4-HNE, hydroxynonenol
- 8-OHdG, 8-hydroxy-2-deoxyguanosine
- ATP, adenosine triphosphate
- BH4, tetrahydrobiopterin
- CAT, catalase
- CGD, chronic granulomatous disease
- CKD, chronic kidney disease
- CO2, carbon dioxide
- CO3–, carbonate radical
- Cu2+, cupric ion
- DOX, doxorubicin
- EDRF, endothelial-derived relaxing factor
- GPx, glutathione peroxidase
- GSH, glutathione
- GSSG, oxidized glutathione disulfide
- GTP, guanosine triphosphate
- H2O2, hydrogen peroxide
- HOCl, hypochlorous acid
- IC, intersystem crossing
- Keap1, Kelch-like ECH-associated protein 1
- LDL, low-density lipoprotein
- LOOH, lipid hydroperoxide
- LOO•, lipid peroxy radical
- MC540, merocyanine 540
- MPO, myeloperoxidase
- MnSOD, manganese superoxide dismutase
- NOS, •NO synthase
- NOX, NADPH oxidase
- O2•–, superoxide
- ONOOCO2−, nitrosoperoxycarbonate
- ONOOH, peroxynitrous acid
- ONOO−, peroxynitrite
- OS, oxidative stress
- PDT, photodynamic therapy
- Peroxynitrite
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Reactive oxygen species
- Reperfusion injury
- SOD, superoxide dismutase
- Superoxide
- XD, xanthine dehydrogenase
- XO, xanthine oxidase
- cGMP, cyclic GMP
- eNOS, endothelial nitric oxide synthase or NOS-3
- iNOS, inducible nitric oxide synthase or NOS-2
- nNOS, neuronal nitric oxide synthase or NOS-1
- sGC, soluble guanylyl cyclase
- •NO, nitric oxide
- •OH, hydroxyl radical
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
36
|
Doroshow JH. Dexrazoxane for the prevention of cardiac toxicity and treatment of extravasation injury from the anthracycline antibiotics. Curr Pharm Biotechnol 2013; 13:1949-56. [PMID: 22352729 DOI: 10.2174/138920112802273245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/05/2011] [Accepted: 05/04/2011] [Indexed: 12/11/2022]
Abstract
The cumulative cardiac toxicity of the anthracycline antibiotics and their propensity to produce severe tissue injury following extravasation from a peripheral vein during intravenous administration remain significant problems in clinical oncologic practice. Understanding of the free radical metabolism of these drugs and their interactions with iron proteins led to the development of dexrazoxane, an analogue of EDTA with intrinsic antineoplastic activity as well as strong iron binding properties, as both a prospective cardioprotective therapy for patients receiving anthracyclines and as an effective treatment for anthracycline extravasations. In this review, the molecular mechanisms by which the anthracyclines generate reactive oxygen species and interact with intracellular iron are examined to understand the cardioprotective mechanism of action of dexrazoxane and its ability to protect the subcutaneous tissues from anthracycline-induced tissue necrosis.
Collapse
Affiliation(s)
- James H Doroshow
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm 2012; 432:42-9. [DOI: 10.1016/j.ijpharm.2012.04.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
|
38
|
Gupta P, Srivastava SK. Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models. BMC Med 2012; 10:80. [PMID: 22824293 PMCID: PMC3412708 DOI: 10.1186/1741-7015-10-80] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HER2 is an oncogene, expression of which leads to poor prognosis in 30% of breast cancer patients. Although trastuzumab is apparently an effective therapy against HER2-positive tumors, its systemic toxicity and resistance in the majority of patients restricts its applicability. In this study we evaluated the effects of phenethyl isothiocyanate (PEITC) in HER2-positive breast cancer cells. METHODS MDA-MB-231 and MCF-7 breast cancer cells stably transfected with HER2 (high HER2 (HH)) were used in this study. The effect of PEITC was evaluated using cytotoxicity and apoptosis assay in these syngeneic cells. Western blotting was used to delineate HER2 signaling. SCID/NOD mice were implanted with MDA-MB-231 (HH) xenografts. RESULTS Our results show that treatment of MDA-MB-231 and MCF-7 cells with varying concentrations of PEITC for 24 h extensively reduced the survival of the cells with a 50% inhibitory concentration (IC50) of 8 μM in MDA-MB-231 and 14 μM in MCF-7 cells. PEITC treatment substantially decreased the expression of HER2, epidermal growth factor receptor (EGFR) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr-705. The expression of BCL-2-associated × (BAX) and BIM proteins were increased, whereas the levels of B cell lymphoma-extra large (BCL-XL) and X-linked inhibitor of apoptosis protein (XIAP) were significantly decreased in both the cell lines in response to PEITC treatment. Substantial cleavage of caspase 3 and poly-ADP ribose polymerase (PARP) were associated with PEITC-mediated apoptosis in MDA-MB-231 and MCF-7 cells. Notably, transient silencing of HER2 decreased and overexpressing HER2 increased the effects of PEITC. Furthermore, reactive oxygen species (ROS) generation, mitochondrial depolarization and apoptosis by PEITC treatment were much higher in breast cancer cells expressing higher levels of HER2 (HH) as compared to parent cell lines. The IC50 of PEITC following 24 h of treatment was reduced remarkably to 5 μM in MDA-MB-231 (HH) and 4 μM in MCF-7 (HH) cells, stably overexpressing HER2. Oral administration of 12 μM PEITC significantly suppressed the growth of breast tumor xenografts in SCID/NOD mice. In agreement with our in vitro results, tumors from PEITC-treated mice demonstrated reduced HER2, EGFR and STAT3 expression and increased apoptosis as revealed by cleavage of caspase 3 and PARP. In addition our results show that PEITC can enhance the efficacy of doxorubicin. CONCLUSIONS Our results show a unique specificity of PEITC in inducing apoptosis in HER2-expressing tumor cells in vitro and in vivo and enhancing the effects of doxorubicin. This unique specificity of PEITC offers promise to a subset of breast cancer patients overexpressing HER2.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | |
Collapse
|
39
|
Zhao X, Zhang J, Tong N, Liao X, Wang E, Li Z, Luo Y, Zuo H. Berberine attenuates doxorubicin-induced cardiotoxicity in mice. J Int Med Res 2012; 39:1720-7. [PMID: 22117972 DOI: 10.1177/147323001103900514] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study investigated the effects of berberine, a natural alkaloid, on doxorubicin-induced cardiotoxicity in mice. Mice were injected intraperitoneally with saline 10 ml/kg (n = 10), doxorubicin 2.5 mg/kg (n = 10), 60 mg/kg berberine 1 h before doxorubicin 2.5 mg/kg (n = 10), or 60 mg/kg berberine alone (n = 10) every other day for 14 days. Body weight, general condition and mortality were recorded over the 14-day study period. Electro cardiography was performed before the start of treatment and after 14 days and plasma lactate dehydrogenase (LDH) activity was measured after 14 days. At the end of the study period the heart was excised and examined histologically. An increase in mortality, an initial decrease in body weight, increased LDH activity, prolongation of QRS duration and increased myocardial injury were seen in the doxorubicin-treated group compared with the saline control group. These changes were significantly attenuated by pretreatment with berberine. The study suggests that berberine may have a potential protective role against doxorubicin-induced cardiotoxicity in mice.
Collapse
Affiliation(s)
- X Zhao
- School of Pharmaceutical Sciences, Southwest University, BeiBei District, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Choi EH, Lee N, Kim HJ, Kim MK, Chi SG, Kwon DY, Chun HS. Schisandra fructus extract ameliorates doxorubicin-induce cytotoxicity in cardiomyocytes: altered gene expression for detoxification enzymes. GENES AND NUTRITION 2011; 2:337-45. [PMID: 18850228 DOI: 10.1007/s12263-007-0073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of Schisandra fructus extract (SFE) on doxorubicin (Dox)-induced cardiotoxicity was investigated in H9c2 cardiomyocytes. Dox, which is an antineoplastic drug known to induce cardiomyopathy possibly through production of reactive oxygen species, induced significant cytotoxicity, intracellular reactive oxygen species (ROS), and lipid peroxidation. SFE treatment significantly increased cell survival up to 25%, inhibited intracellular ROS production in a time- and dose-dependent manner, and inhibited lipid peroxidation induced by Dox. In addition, SFE treatment induced expression of cellular glutathione S-transferases (GSTs), which function in the detoxification of xenobiotics, and endogenous toxicants including lipid peoxides. Analyses of 31,100 genes using Affymetrix cDNA microarrays showed that SFE treatment up-regulated expression of genes involved in glutathione metabolism and detoxification [GST theta 1, mu 1, and alpha type 2, heme oxygenase 1 (HO-1), and microsomal epoxide hydrolase (mEH)] and energy metabolism [carnitine palmitoyltransferase-1 (CPT-1), transaldolase, and transketolase]. These data indicated that SFE might increase the resistance to cardiac cell injury by Dox, at least partly, together with altering gene expression, especially induction of phase II detoxification enzymes.
Collapse
Affiliation(s)
- Eun Hye Choi
- Food Safety Research Center, Korea Food Research Institute, 516, Backhyun, Bundang-gu, Sungnam, Kyonggi-do, 463-746, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Spirulina is free-floating filamentous microalgae growing in alkaline water bodies. With its high nutritional value, Spirulina has been consumed as food for centuries in Central Africa. It is now widely used as nutraceutical food supplement worldwide. Recently, great attention and extensive studies have been devoted to evaluate its therapeutic benefits on an array of diseased conditions including hypercholesterolemia, hyperglycerolemia, cardiovascular diseases, inflammatory diseases, cancer, and viral infections. The cardiovascular benefits of Spirulina are primarily resulted from its hypolipidemic, antioxidant, and antiinflammatory activities. Data from preclinical studies with various animal models consistently demonstrate the hypolipidemic activity of Spirulina. Although differences in study design, sample size, and patient conditions resulting in minor inconsistency in response to Spirulina supplementation, the findings from human clinical trials are largely consistent with the hypolipidemic effects of Spirulina observed in the preclinical studies. However, most of the human clinical trials are suffered with limited sample size and some with poor experimental design. The antioxidant and/or antiinflammatory activities of Spirulina were demonstrated in a large number of preclinical studies. However, a limited number of clinical trials have been carried out so far to confirm such activities in human. Currently, our understanding on the underlying mechanisms for Spirulina's activities, especially the hypolipidemic effect, is limited. Spirulina is generally considered safe for human consumption supported by its long history of use as food source and its favorable safety profile in animal studies. However, rare cases of side-effects in human have been reported. Quality control in the growth and process of Spirulina to avoid contamination is mandatory to guarantee the safety of Spirulina products.
Collapse
Affiliation(s)
- Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | | |
Collapse
|
42
|
Srivastava RM, Singh S, Dubey SK, Misra K, Khar A. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 2010; 11:331-41. [PMID: 20828642 DOI: 10.1016/j.intimp.2010.08.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/22/2010] [Indexed: 12/13/2022]
Abstract
Inflammation is a disease of vigorous uncontrolled activated immune responses. Overwhelming reports have suggested that the modulation of immune responses by curcumin plays a dominant role in the treatment of inflammation and metabolic diseases. Observations from both in-vitro and in-vivo studies have provided strong evidence towards the therapeutic potential of curcumin. These studies have also identified a plethora of biological targets and intricate mechanisms of action that characterize curcumin as a potent 'drug' for numerous ailments. During inflammation the functional influence of lymphocytes and the related cross-talk can be modulated by curcumin to achieve the desired immune status against diseases. This review describes the regulation of immune responses by curcumin and effectiveness of curcumin in treatment of diseases of diverse nature.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Department of Otolaryngology, Hillman Cancer Centre, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
43
|
Choi EH, Park JH, Kim MK, Chun HS. Alleviation of doxorubicin-induced toxicities by anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract in rats and mice. Biofactors 2010; 36:319-27. [PMID: 20623509 DOI: 10.1002/biof.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The objective of this study was to investigate the effects of anthocyanin-rich bilberry extract (BE) with highly antioxidative potential against doxorubicin (Dox)-induced toxicity in rat and mouse models. Sprague-Dawley rats treated with Dox (15 mg/kg intraperitoneally) showed marked body weight loss, increased abdominal ascites and serum glutamate oxaloacetate transaminase (GOT) level, serum and cardiac lipid peroxidation, myocardial histopathological damage, and depletion of cardiac glutathione (GSH). Dietary supplementation with 1% BE significantly reduced serum lipid peroxidation and increased cardiac creatine phosphokinase activity and total GSH level compared with the levels in the Dox control rats (P < 0.05). Serum GOT and cardiac lipid peroxide levels did not change significantly after BE treatment. Morphologic examination revealed that Dox-induced myocardial damage was also significantly suppressed in rats fed with the 1% BE diet. Oral administration of 500 mg/kg of BE for 10 days to mice treated with Dox (10 mg/kg) partially restored the Dox-induced changes by increasing red blood cell and bone marrow cell counts, and hemoglobin level. Although the protective effects of BE were insufficient to completely counteract the toxic effects of Dox, these results suggest that BE supplementation provides moderate protection against Dox-induced cardiac and hematopoietic damage.
Collapse
Affiliation(s)
- Eun Hye Choi
- Food Safety Research Center, Korea Food Research Institute, Bundang-gu, Sungnam-si, Kyonggi-do, South Korea
| | | | | | | |
Collapse
|
44
|
Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, Nagy AA, Mosli HA, Mohamadin AM, Ashour OM. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol 2010; 48:1178-84. [DOI: 10.1016/j.fct.2010.02.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 02/07/2023]
|
45
|
Monsuez JJ, Charniot JC, Vignat N, Artigou JY. Cardiac side-effects of cancer chemotherapy. Int J Cardiol 2010; 144:3-15. [PMID: 20399520 DOI: 10.1016/j.ijcard.2010.03.003] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/27/2010] [Accepted: 03/06/2010] [Indexed: 12/21/2022]
Abstract
The spectrum of cardiac side-effects of cancer chemotherapy has expanded with the development of combination, adjuvant and targeted chemotherapies. Their administration in multiple regimens has increased greatly, including in older patients and in patients with cardiovascular and/or coronary artery disease (CAD). Cardiac toxicity of anthracyclines involves oxidative stress and apoptosis. Early detection combines 2D-echocardiography and/or radionuclide angiography and recent methods such as tissue Doppler imaging, strain rate echocardiography and sampling of serial troponin and/or NT-proBNP levels. Dexrazoxane has proven effective in the prevention of dose-related toxicity in children and adults. High doses of the alkylating drugs cyclophosphamide and ifosfamide may result in a reversible heart failure and in life-threatening arrhythmias. Myocardial ischemia induced by the antimetabolites 5-fluorouracil and capecitabine impacts prognosis of patients with prior CAD. Severe arrhythmias may complicate administration of microtubule inhibitors. Targeted therapies with the antibody-based tyrosine kinases (TK) inhibitors trastuzumab and, to a lesser extent, alemtuzumab induce heart failure or asymptomatic LV dysfunction in 1-4% and 10%, respectively. Cetuximab and rituximab induce hypotension, whereas bevacizumab may promote severe hypertension and venous thromboembolism. Small molecule TK inhibitors may also elicit LV dysfunction, in only few patients treated with imatinib mesylate, but in a substantially higher proportion of those receiving the multitargeted TK inhibitor sunitinib or the recently approved drugs erlotinib, lapatinib and dasatinib. Management of patients at increased cardiovascular risk associated with advancing age, previous CAD or targeted therapies may be optimized by referral to a cardiologist in a cross-specialty teamwork.
Collapse
Affiliation(s)
- Jean-Jacques Monsuez
- AP-HP, Hôpital René Muret, Cardiologie, Policlinique médicale, Université Paris-13, Faculté de Médecine de Bobigny, 93270 Sevran, France.
| | | | | | | |
Collapse
|
46
|
Maita R, Strauss M, Anselmi G. Skeletal Muscle for Endomyocardial Biopsy: Comparable Stress Response in Doxorubicin Cardio-myopathy. J Toxicol Pathol 2009; 22:273-9. [PMID: 22272002 PMCID: PMC3234599 DOI: 10.1293/tox.22.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022] Open
Abstract
In the present study, we compared the cell damage response in skeletal and
cardiac muscle tissue when exposed to doxorubicin. This was carried out by means
of a less invasive informative substitute to endomyocardiac biopsy based on
Hsp70 immunodetection and a subcellular analysis of the nucleolus. Male Sprague
Dawley rats (62 g body weight) were randomly distributed into 3 group, the
control and doxorubicin I and doxorubicin II groups, in which 15 and 25 mg/kg
body weight of doxorubicin (0.1 ml, i.v.) was administered, respectively. After
15, 30, 45 and 60 minutes, portions of the left and right ventricle wall and
interventricle wall, together with skeletal muscle from the posterior and
anterior member, were prepared for Hsp70 immunodetection by Western blot
analysis and ultrastructural study using the thin cut technique. Differential
cell response between the control and treated groups was observed in Hsp70
immunodetection and at the subcellular level. In the control group, the Hsp70
recognition levels and typical normal nucleolar morphology were similar, while
the treated groups showed variable-dependent Hsp70 recognition and segregation
of nucleolar components, forming ring-like figures of a variable-independent
nature. Comparison of cardiac and skeletal muscle tissue cell response to
doxorubicin toxic aggression revealed parallelism in terms of Hsp70 accumulation
in certain regions of both tissues (15 mg/kg body weight of doxorubicin), which
suggests that replacing endomyocardiac biopsy analysis with skeletal muscle
analysis may be a safe option.
Collapse
Affiliation(s)
- Rosa Maita
- Sección de Biología Celular, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
47
|
Glutamine regulation of doxorubicin accumulation in hearts versus tumors in experimental rats. Cancer Chemother Pharmacol 2009; 66:315-23. [DOI: 10.1007/s00280-009-1165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 10/17/2009] [Indexed: 11/25/2022]
|
48
|
Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MPV, Panyam J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 2009; 141:137-44. [PMID: 19751777 DOI: 10.1016/j.jconrel.2009.09.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/04/2009] [Indexed: 12/11/2022]
Abstract
Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors.
Collapse
Affiliation(s)
- Ayman Khdair
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Castells E, Roca J, Miralles A, Manito N, Ortiz D, Gonzalez J, Granados J, Benito M, Rabasa M, S'Braga F, Toscano J, Toral D, López A, Fontanillas C. Recovery of Ventricular Function With a Left Ventricular Axial Pump in a Patient With End-Stage Toxic Cardiomyopathy Not a Candidate for Heart Transplantation: First Experience in Spain. Transplant Proc 2009; 41:2237-9. [DOI: 10.1016/j.transproceed.2009.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Wongcharoen W, Phrommintikul A. The protective role of curcumin in cardiovascular diseases. Int J Cardiol 2009; 133:145-51. [PMID: 19233493 DOI: 10.1016/j.ijcard.2009.01.073] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/26/2008] [Accepted: 01/26/2009] [Indexed: 02/08/2023]
Abstract
Curcumin (diferuloylmethane) is a polyphenol responsible for the yellow color of the curry spice turmeric. It has been used in a variety of diseases in traditional medicine. Modern scientific research has demonstrated its anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-thrombotic, and cardiovascular protective effects. In this review, we focused mainly on the effects of curcumin on the cardiovascular system. The antioxidant effects of curcumin have been shown to attenuate adriamycin-induced cardiotoxicity and may prevent diabetic cardiovascular complications. The anti-thrombotic, anti-proliferative, and anti-inflammatory effects of curcumin and the effect of curcumin in decreasing the serum cholesterol level may protect against the pathological changes occurring with atherosclerosis. The p300-HAT inhibitory effects of curcumin have been demonstrated to ameliorate the development of cardiac hypertrophy and heart failure in animal models. The inflammatory effects of curcumin may have the possibility of preventing atrial arrhythmias and the possible effect of curcumin for correcting the Ca(2+) homeostasis may play a role in the prevention of some ventricular arrhythmias. The preclinical studies from animal to clinical data in human are discussed.
Collapse
Affiliation(s)
- Wanwarang Wongcharoen
- Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|