1
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
2
|
Leibold NS, Despa F. Neuroinflammation induced by amyloid-forming pancreatic amylin: Rationale for a mechanistic hypothesis. Biophys Chem 2024; 310:107252. [PMID: 38663120 PMCID: PMC11111340 DOI: 10.1016/j.bpc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/15/2024]
Abstract
Amylin is a systemic neuroendocrine hormone co-expressed and co-secreted with insulin by pancreatic β-cells. In persons with thype-2 diabetes, amylin forms pancreatic amyloid triggering inflammasome and interleukin-1β signaling and inducing β-cell apoptosis. Here, we summarize recent progress in understanding the potential link between amyloid-forming pancreatic amylin and Alzheimer's disease (AD). Clinical data describing amylin pathology in AD alongside mechanistic studies in animals are reviewed. Data from multiple research teams indicate higher amylin concentrations are associated with increased frequency of cognitive impairment and amylin co-aggregates with β-amyloid in AD-type dementia. Evidence from rodent models further suggests cerebrovascular amylin accumulation as a causative factor underlying neurological deficits. Analysis of relevant literature suggests that modulating the amylin-interleukin-1β pathway may provide an approach for counteracting neuroinflammation in AD.
Collapse
Affiliation(s)
- Noah S Leibold
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
3
|
Zheng X, Ni Z, Pei Q, Wang M, Tan J, Bai S, Shi F, Ye S. Probing the Molecular Structure and Dynamics of Membrane-Bound Proteins during Misfolding Processes by Sum-Frequency Generation Vibrational Spectroscopy. Chempluschem 2024; 89:e202300684. [PMID: 38380553 DOI: 10.1002/cplu.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid β, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Deng W, Bao L, Song Z, Zhang L, Yu P, Xu Y, Wang J, Zhao W, Zhang X, Han Y, Li Y, Liu J, Lv Q, Liang X, Li F, Qi F, Deng R, Wang S, Xiong Y, Xiao R, Wang H, Qin C. Infection with SARS-CoV-2 can cause pancreatic impairment. Signal Transduct Target Ther 2024; 9:98. [PMID: 38609366 PMCID: PMC11014980 DOI: 10.1038/s41392-024-01796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (β) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor β. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.
Collapse
Affiliation(s)
- Wei Deng
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Linlin Bao
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Zhiqi Song
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Pin Yu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenjie Zhao
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yunlin Han
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Li
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Jiangning Liu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Qi Lv
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xujian Liang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Fengdi Li
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Feifei Qi
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Siyuan Wang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yibai Xiong
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ruiping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| | - Hongyang Wang
- Chinese Academy of Engineering, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Yangpu District, Shanghai, 200438, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, PR China.
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai, 200441, PR China.
| | - Chuan Qin
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
- Changping National laboratory (CPNL), Beijing, 102206, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission of the People's Republic of China, Beijing, PR China.
| |
Collapse
|
5
|
Baghel D, de Oliveira AP, Satyarthy S, Chase WE, Banerjee S, Ghosh A. Structural characterization of amyloid aggregates with spatially resolved infrared spectroscopy. Methods Enzymol 2024; 697:113-150. [PMID: 38816120 PMCID: PMC11147165 DOI: 10.1016/bs.mie.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The self-assembly of proteins and peptides into ordered structures called amyloid fibrils is a hallmark of numerous diseases, impacting the brain, heart, and other organs. The structure of amyloid aggregates is central to their function and thus has been extensively studied. However, the structural heterogeneities between aggregates as they evolve throughout the aggregation pathway are still not well understood. Conventional biophysical spectroscopic methods are bulk techniques and only report on the average structural parameters. Understanding the structure of individual aggregate species in a heterogeneous ensemble necessitates spatial resolution on the length scale of the aggregates. Recent technological advances have led to augmentation of infrared (IR) spectroscopy with imaging modalities, wherein the photothermal response of the sample upon vibrational excitation is leveraged to provide spatial resolution beyond the diffraction limit. These combined approaches are ideally suited to map out the structural heterogeneity of amyloid ensembles. AFM-IR, which integrates IR spectroscopy with atomic force microscopy enables identification of the structural facets the oligomers and fibrils at individual aggregate level with nanoscale resolution. These capabilities can be extended to chemical mapping in diseased tissue specimens with submicron resolution using optical photothermal microscopy, which combines IR spectroscopy with optical imaging. This book chapter provides the basic premise of these novel techniques and provides the typical methodology for using these approaches for amyloid structure determination. Detailed procedures pertaining to sample preparation and data acquisition and analysis are discussed and the aggregation of the amyloid β peptide is provided as a case study to provide the reader the experimental parameters necessary to use these techniques to complement their research efforts.
Collapse
Affiliation(s)
- Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Ana Pacheco de Oliveira
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Saumya Satyarthy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - William E Chase
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
6
|
Qiao Q, Wei G, Song Z. Structural diversity in the membrane-bound hIAPP dimer correlated with distinct membrane disruption mechanisms. Phys Chem Chem Phys 2024; 26:7090-7102. [PMID: 38345763 DOI: 10.1039/d3cp05887e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Amyloid deposits of the human islet amyloid polypeptide (hIAPP) have been identified in 90% of patients with type II diabetes. Cellular membranes accelerate the hIAPP fibrillation, and the integrity of membranes is also disrupted at the same time, leading to the apoptosis of β cells in pancreas. The molecular mechanism of hIAPP-induced membrane disruption, especially during the initial membrane disruption stage, has not been well understood yet. Herein, we carried out extensive all-atom molecular dynamics simulations investigating the hIAPP dimerization process in the anionic POPG membrane, to provide the detailed molecular mechanisms during the initial hIAPP aggregation stage in the membrane environment. Compared to the hIAPP monomer on the membrane, we observed not only an increase of α-helical structures, but also a substantial increase of β-sheet structures upon spontaneous dimerization. Moreover, the random coiled and α-helical dimer structures insert deep into the membrane interior with a few inter-chain contacts at the C-terminal region, while the β-sheet-rich structures reside on the membrane surface accompanied by strong inter-chain hydrophobic interactions. The coexistence of α and β structures constitutes a diverse structural ensemble of the membrane-bound hIAPP dimer. From α-helical to β-sheet structures, the degree of membrane disruption decreases gradually, and thus the membrane damage induced by random coiled and α-helical structures precedes that induced by β-sheet structures. We speculate that insertion of random coiled and α-helical structures contributes to the initial stage of membrane damage, while β-sheet structures on the membrane surface are more involved in the later stage of fibril-induced membrane disruption.
Collapse
Affiliation(s)
- Qin Qiao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| |
Collapse
|
7
|
Eržen S, Tonin G, Jurišić Eržen D, Klen J. Amylin, Another Important Neuroendocrine Hormone for the Treatment of Diabesity. Int J Mol Sci 2024; 25:1517. [PMID: 38338796 PMCID: PMC10855385 DOI: 10.3390/ijms25031517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is a devastating chronic metabolic disease. Since the majority of type 2 diabetes mellitus patients are overweight or obese, a novel term-diabesity-has emerged. The gut-brain axis plays a critical function in maintaining glucose and energy homeostasis and involves a variety of peptides. Amylin is a neuroendocrine anorexigenic polypeptide hormone, which is co-secreted with insulin from β-cells of the pancreas in response to food consumption. Aside from its effect on glucose homeostasis, amylin inhibits homeostatic and hedonic feeding, induces satiety, and decreases body weight. In this narrative review, we summarized the current evidence and ongoing studies on the mechanism of action, clinical pharmacology, and applications of amylin and its analogs, pramlintide and cagrilintide, in the field of diabetology, endocrinology, and metabolism disorders, such as obesity.
Collapse
Affiliation(s)
- Stjepan Eržen
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Gašper Tonin
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Arts, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Dubravka Jurišić Eržen
- Department of Endocrinology and Diabetology, University Hospital Centre, 51000 Rijeka, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Klen
- Division of Surgery, Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
9
|
Meng L, Li Y, Liu C, Zhang G, Chen J, Xiong M, Pan L, Zhang X, Chen G, Xiong J, Liu C, Xu X, Bu L, Zhang Z, Zhang Z. Islet Amyloid Polypeptide Triggers α-synuclein Pathology in Parkinson's Disease. Prog Neurobiol 2023; 226:102462. [PMID: 37150314 DOI: 10.1016/j.pneurobio.2023.102462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Pathologic aggregation and prion-like propagation of α-synuclein (α-syn) are the hallmarks of Parkinson's disease (PD). Emerging evidence shows that type 2 diabetes mellitus (T2DM) is a risk factor for PD. Interestingly, T2DM is characterized by the amyloid deposition of islet amyloid polypeptide (IAPP) in the pancreas. Although T2DM and PD share pathological similarities, the underlying molecular mechanisms bridging these two diseases remain unknown. Here, we report that IAPP co-deposits with α-syn in the brains of PD patients. IAPP interacts with α-syn and accelerates its aggregation. In addition, the IAPP-seeded α-syn fibrils show enhanced seeding activity and neurotoxicity compared with pure α-syn fibrils in vitro and in vivo. Strikingly, intravenous injection of IAPP fibrils into α-syn A53T transgenic mice or human SNCA transgenic mice accelerated the aggregation of α-syn and PD-like motor deficits. Taken together, these findings support that IAPP acts as a trigger of α-syn pathology in PD, and provide a mechanistic explanation for the increased risk and faster progression of PD in patients with T2DM.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiehui Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Kotiya D, Leibold N, Verma N, Jicha GA, Goldstein LB, Despa F. Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. J Biol Chem 2023; 299:104682. [PMID: 37030503 PMCID: PMC10192925 DOI: 10.1016/j.jbc.2023.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
Islet amyloid polypeptide (amylin) secreted from the pancreas crosses from the blood to the brain parenchyma and forms cerebral mixed amylin-β amyloid (Aβ) plaques in persons with Alzheimer's disease (AD). Cerebral amylin-Aβ plaques are found in both sporadic and early-onset familial AD; however, the role of amylin-Aβ co-aggregation in potential mechanisms underlying this association remains unknown, in part due to lack of assays for detection of these complexes. Here, we report the development of an ELISA to detect amylin-Aβ hetero-oligomers in brain tissue and blood. The amylin-Aβ ELISA relies on a monoclonal anti-Aβ mid-domain antibody (detection) and a polyclonal anti-amylin antibody (capture) designed to recognize an epitope that is distinct from the high affinity amylin-Aβ binding sites. The utility of this assay is supported by the analysis of molecular amylin-Aβ codeposition in postmortem brain tissue obtained from persons with and without AD pathology. By using transgenic AD-model rats, we show that this new assay can detect circulating amylin-Aβ hetero-oligomers in the blood and is sensitive to their dissociation to monomers. This is important because therapeutic strategies to block amylin-Aβ co-aggregation could reduce or delay the development and progression of AD.
Collapse
Affiliation(s)
- Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Noah Leibold
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA; Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Larry B Goldstein
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA; Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
11
|
Pal I, Dey SG. The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. JACS AU 2023; 3:657-681. [PMID: 37006768 PMCID: PMC10052274 DOI: 10.1021/jacsau.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
Beyond the well-explored proposition of protein aggregation or amyloidosis as the central event in amyloidogenic diseases like Alzheimer's Disease (AD), and Type 2 Diabetes Mellitus (T2Dm); there are alternative hypotheses, now becoming increasingly evident, which suggest that the small biomolecules like redox noninnocent metals (Fe, Cu, Zn, etc.) and cofactors (Heme) have a definite influence in the onset and extent of such degenerative maladies. Dyshomeostasis of these components remains as one of the common features in both AD and T2Dm etiology. Recent advances in this course reveal that the metal/cofactor-peptide interactions and covalent binding can alarmingly enhance and modify the toxic reactivities, oxidize vital biomolecules, significantly contribute to the oxidative stress leading to cell apoptosis, and may precede the amyloid fibrils formation by altering their native folds. This perspective highlights this aspect of amyloidogenic pathology which revolves around the impact of the metals and cofactors in the pathogenic courses of AD and T2Dm including the active site environments, altered reactivities, and the probable mechanisms involving some highly reactive intermediates as well. It also discusses some in vitro metal chelation or heme sequestration strategies which might serve as a possible remedy. These findings might open up a new paradigm in our conventional understanding of amyloidogenic diseases. Moreover, the interaction of the active sites with small molecules elucidates potential biochemical reactivities that can inspire designing of drug candidates for such pathologies.
Collapse
Affiliation(s)
- Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Li NZ, Yu CH, Wu JY, Huang SJ, Huang SL, Cheng RP. Diagonal Interactions between Glutamate and Arginine Analogs with Varying Side-Chain Lengths in a β-Hairpin. Molecules 2023; 28:molecules28072888. [PMID: 37049652 PMCID: PMC10096425 DOI: 10.3390/molecules28072888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Cross-strand interactions are important for the stability of β-sheet structures. Accordingly, cross-strand diagonal interactions between glutamate and arginine analogs with varying side-chain lengths were studied in a series of β-hairpin peptides. The peptides were analyzed by homonuclear two-dimensional nuclear magnetic resonance methods. The fraction folded population and folding free energy of the peptides were derived from the chemical shift data. The fraction folded population trends could be rationalized using the strand propensity of the constituting residues, which was not the case for the peptides with lysine analogs, highlighting the difference between the arginine analogs and lysine analogs. Double-mutant cycle analysis was used to derive the diagonal ion-pairing interaction energetics. The most stabilizing diagonal cross-strand interaction was between the shortest residues (i.e., Asp2-Agp9), most likely due to the least side-chain conformational penalty for ion-pair formation. The diagonal interaction energetics in this study involving the arginine analogs appears to be consistent with and extend beyond our understanding of diagonal ion-pairing interactions involving lysine analogs. The results should be useful for designing β-strand-containing molecules to affect biological processes such as amyloid formation and protein-protein interactions.
Collapse
Affiliation(s)
- Nian-Zhi Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Hsu Yu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jhuan-Yu Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shou-Ling Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Richard P Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Tammara V, Das A. Governing dynamics and preferential binding of the AXH domain influence the aggregation pathway of Ataxin-1. Proteins 2023; 91:380-394. [PMID: 36208132 DOI: 10.1002/prot.26436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
The present state of understanding the mechanism of Spinocerebellar Ataxia-1, a fatal neurodegenerative disease linked to the protein Ataxin-1 (ATXN1), is baffled by a set of self-contradictory, and hence, inconclusive observations. This fallacy poses a bottleneck to the effective designing of curable drugs as the field is currently missing the specific druggable site. To understand the fundamentals of pathogenesis, we tried to decipher the intricacies of the extremely complicated landscape by targeting the relevant species that supposedly dictate the structure-function paradigm. The atomic-level description and characterization of the dynamism of the systems reveal the existence of structural polymorphism in all the leading stakeholders of the overall system. The very existence of conformational heterogeneity in every species creates numerous possible combinations of favorable interactions because of the variability in segmental cross-talks and hence claims its role in the choice of routes between functional activity and dysfunctional disease-causing aggregation. Despite this emergent configurational diversity, there is a common mode of operative intermolecular forces that dictates the extent of stability of all the multimeric complexes due to the localized population of a specific type of residue. The present research proposes a dynamic switch mechanism between aggregability and functional activity, based on the logical interpretation of the estimated variables, which is practically dictated by the effective concentration of the interacting species involved in the cell.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Lin PH, Tsai CS, Hsu CC, Lee IR, Shen YX, Fan HF, Chen YW, Tu LH, Liu WM. An environmentally sensitive molecular rotor as a NIR fluorescent probe for the detection of islet amyloid polypeptide. Talanta 2023; 254:124130. [PMID: 36462286 DOI: 10.1016/j.talanta.2022.124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic β-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.
Collapse
Affiliation(s)
- Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC
| | - Chang-Shun Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC
| | - Chia-Chien Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yu-Xin Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan, ROC
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan, ROC
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC.
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC.
| |
Collapse
|
15
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
16
|
Maity D. Inhibition of Amyloid Protein Aggregation Using Selected Peptidomimetics. ChemMedChem 2023; 18:e202200499. [PMID: 36317359 DOI: 10.1002/cmdc.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Aberrant protein aggregation leads to the formation of amyloid fibrils. This phenomenon is linked to the development of more than 40 irremediable diseases such as Alzheimer's disease, Parkinson's disease, type 2 diabetes, and cancer. Plenty of research efforts have been given to understanding the underlying mechanism of protein aggregation, associated toxicity, and the development of amyloid inhibitors. Recently, the peptidomimetic approach has emerged as a potential tool to modulate several protein-protein interactions (PPIs). In this review, we discussed selected peptidomimetic-based approaches for the modulation of important amyloid proteins (Islet Amyloid Polypeptide, Amyloid Beta, α-synuclein, mutant p53, and insulin) aggregation. This approach holds a powerful platform for creating an essential stepping stone for the vital development of anti-amyloid therapeutic agents.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Verma N, Velmurugan GV, Winford E, Coburn H, Kotiya D, Leibold N, Radulescu L, Despa S, Chen KC, Van Eldik LJ, Nelson PT, Wilcock DM, Jicha GA, Stowe AM, Goldstein LB, Powel DK, Walton JH, Navedo MF, Nystoriak MA, Murray AJ, Biessels GJ, Troakes C, Zetterberg H, Hardy J, Lashley T, Despa F. Aβ efflux impairment and inflammation linked to cerebrovascular accumulation of amyloid-forming amylin secreted from pancreas. Commun Biol 2023; 6:2. [PMID: 36596993 PMCID: PMC9810597 DOI: 10.1038/s42003-022-04398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Impairment of vascular pathways of cerebral β-amyloid (Aβ) elimination contributes to Alzheimer disease (AD). Vascular damage is commonly associated with diabetes. Here we show in human tissues and AD-model rats that bloodborne islet amyloid polypeptide (amylin) secreted from the pancreas perturbs cerebral Aβ clearance. Blood amylin concentrations are higher in AD than in cognitively unaffected persons. Amyloid-forming amylin accumulates in circulating monocytes and co-deposits with Aβ within the brain microvasculature, possibly involving inflammation. In rats, pancreatic expression of amyloid-forming human amylin indeed induces cerebrovascular inflammation and amylin-Aβ co-deposits. LRP1-mediated Aβ transport across the blood-brain barrier and Aβ clearance through interstitial fluid drainage along vascular walls are impaired, as indicated by Aβ deposition in perivascular spaces. At the molecular level, cerebrovascular amylin deposits alter immune and hypoxia-related brain gene expression. These converging data from humans and laboratory animals suggest that altering bloodborne amylin could potentially reduce cerebrovascular amylin deposits and Aβ pathology.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | | | - Edric Winford
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Han Coburn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Noah Leibold
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Laura Radulescu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Kuey C Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- UKHC Genomics Laboratory, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | | | - David K Powel
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claire Troakes
- Basic and Clinical Neuroscience Department, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li JY, Li W, Feng J. Association between Parkinson's Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging Dis 2022; 13:1591-1605. [PMID: 36465171 PMCID: PMC9662283 DOI: 10.14336/ad.2022.0325] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson's disease (PD) are both age-related diseases of global concern being among the most common chronic metabolic and neurodegenerative diseases, respectively. While both diseases can be genetically inherited, environmental factors play a vital role in their pathogenesis. Moreover, DM and PD have common underlying molecular mechanisms, such as misfolded protein aggregation, mitochondrial dysfunction, oxidative stress, chronic inflammation, and microbial dysbiosis. Recently, epidemiological and experimental studies have reported that DM affects the incidence and progression of PD. Moreover, certain antidiabetic drugs have been proven to decrease the risk of PD and delay its progression. In this review, we elucidate the epidemiological and pathophysiological association between DM and PD and summarize the antidiabetic drugs used in animal models and clinical trials of PD, which may provide reference for the clinical translation of antidiabetic drugs in PD treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhen Wang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Kaidong Zhao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia-Yi Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Wen Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
19
|
Melatonin Inhibits hIAPP Oligomerization by Preventing β-Sheet and Hydrogen Bond Formation of the Amyloidogenic Region Revealed by Replica-Exchange Molecular Dynamics Simulation. Int J Mol Sci 2022; 23:ijms231810264. [PMID: 36142176 PMCID: PMC9499688 DOI: 10.3390/ijms231810264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of type 2 diabetes (T2D) is highly related to the abnormal self-assembly of the human islet amyloid polypeptide (hIAPP) into amyloid aggregates. To inhibit hIAPP aggregation is considered a promising therapeutic strategy for T2D treatment. Melatonin (Mel) was reported to effectively impede the accumulation of hIAPP aggregates and dissolve preformed fibrils. However, the underlying mechanism at the atomic level remains elusive. Here, we performed replica-exchange molecular dynamics (REMD) simulations to investigate the inhibitory effect of Mel on hIAPP oligomerization by using hIAPP20–29 octamer as templates. The conformational ensemble shows that Mel molecules can significantly prevent the β-sheet and backbone hydrogen bond formation of hIAPP20–29 octamer and remodel hIAPP oligomers and transform them into less compact conformations with more disordered contents. The interaction analysis shows that the binding behavior of Mel is dominated by hydrogen bonding with a peptide backbone and strengthened by aromatic stacking and CH–π interactions with peptide sidechains. The strong hIAPP–Mel interaction disrupts the hIAPP20–29 association, which is supposed to inhibit amyloid aggregation and cytotoxicity. We also performed conventional MD simulations to investigate the influence and binding affinity of Mel on the preformed hIAPP1–37 fibrillar octamer. Mel was found to preferentially bind to the amyloidogenic region hIAPP20–29, whereas it has a slight influence on the structural stability of the preformed fibrils. Our findings illustrate a possible pathway by which Mel alleviates diabetes symptoms from the perspective of Mel inhibiting amyloid deposits. This work reveals the inhibitory mechanism of Mel against hIAPP20–29 oligomerization, which provides useful clues for the development of efficient anti-amyloid agents.
Collapse
|
20
|
Siemer AB. What makes functional amyloids work? Crit Rev Biochem Mol Biol 2022; 57:399-411. [PMID: 35997712 PMCID: PMC9588633 DOI: 10.1080/10409238.2022.2113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Although first described in the context of disease, cross-β (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-β fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-β fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-β fibrils that show how function is usually achieved by leveraging many of these properties.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Chernyshev VS, Chuprov‐Netochin RN, Tsydenzhapova E, Svirshchevskaya EV, Poltavtseva RA, Merdalimova A, Yashchenok A, Keshelava A, Sorokin K, Keshelava V, Sukhikh GT, Gorin D, Leonov S, Skliar M. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J Extracell Vesicles 2022; 11:e12256. [PMID: 35942823 PMCID: PMC9451526 DOI: 10.1002/jev2.12256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations. We further demonstrate the method's versatility by applying it to isolate EVs from different biofluids (plasma, urine, and cell culture growth medium). The DF workflow is simple, fast, and inexpensive. Only standard laboratory equipment is required for its implementation, making DF suitable for low-resource and point-of-use locations. The method may be used for EV isolation from small biological samples in diagnostic and treatment guidance applications. It can also be scaled up to harvest therapeutic EVs from large volumes of cell culture medium.
Collapse
Affiliation(s)
- Vasiliy S. Chernyshev
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Roman N. Chuprov‐Netochin
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Ekaterina Tsydenzhapova
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | | | - Rimma A. Poltavtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | | | - Alexey Yashchenok
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | | | | | - Varlam Keshelava
- Institute for Biological Instrumentation RASPushchinoRussian Federation
| | - Gennadiy T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | - Dmitry Gorin
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | - Sergey Leonov
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Mikhail Skliar
- Department of Chemical EngineeringUniversity of UtahSalt Lake CityUTUSA
- The Nano Institute of UtahUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
22
|
Maity D, Oh Y, Gremer L, Hoyer W, Magzoub M, Hamilton AD. Cucurbit[7]uril Inhibits Islet Amyloid Polypeptide Aggregation by Targeting N Terminus Hot Segments and Attenuates Cytotoxicity. Chemistry 2022; 28:e202200456. [DOI: 10.1002/chem.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Debabrata Maity
- Department of Chemistry New York University New York NY 10003 USA
- Present Address: Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
| | - Yujeong Oh
- Biology Program New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Lothar Gremer
- Institut für Physikalische Biologie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich 52425 Jülich Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich 52425 Jülich Germany
| | - Mazin Magzoub
- Biology Program New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | | |
Collapse
|
23
|
In silico studies of the human IAPP in the presence of osmolytes. J Mol Model 2022; 28:188. [PMID: 35697975 DOI: 10.1007/s00894-022-05180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
The human islet amyloid polypeptide or amylin is secreted along with insulin by pancreatic islets. Under the drastic environmental conditions, amylin can aggregate to form amyloid fibrils. This amyloid plaque of hIAPP in the pancreatic cells is the cause of type II diabetes. Early stages of amylin aggregates are more cytotoxic than the matured fibrils. Here, we have used the all-atom molecular dynamic simulation to see the effect of water, TMAO, urea and urea/TMAO having ratio 2:1 of different concentrations on the amylin protein. Our study suggest that the amylin protein forms β-sheets in its monomeric form and may cause the aggregation of protein through the residue 13-17 and the C-terminal region. α-Helical content of protein increases with an increase in TMAO concentration by decreasing the SASA value of protein, increase in intramolecular hydrogen bonds and on making the short-range hydrophobic interactions. Electrostatic potential surfaces show that hydrophobic groups are buried and normalised configurational entropy of backbone, and side-chain atoms is lesser in the presence of TMAO, whereas opposite behaviour is obtained in the case of urea. Counteraction effect of TMAO using Kast model towards urea is also observed in ternary solution of urea/TMAO.
Collapse
|
24
|
Linking hIAPP misfolding and aggregation with type 2 diabetes mellitus: a structural perspective. Biosci Rep 2022; 42:231205. [PMID: 35475576 PMCID: PMC9118370 DOI: 10.1042/bsr20211297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
There are over 40 identified human disorders that involve certain proteins folding incorrectly, accumulating in the body causing damage to cells and organs and causing disease. Type 2 Diabetes Mellitus (T2DM) is one of these protein misfolding disorders (PMDs) and involves human islet amyloid polypeptide (hIAPP) misfolding and accumulating in parts of the body, primarily in the pancreas, causing damage to islet cells and affecting glucose regulation. In this review, we have summarised our current understanding of what causes hIAPP to misfold, what conformations are found in different parts of the body with a particular focus on what is known about the structure of hIAPP and how this links to T2DM. Understanding the molecular basis behind these misfolding events is essential for understanding the role of hIAPP to develop better therapeutics since type 2 diabetes currently affects over 4.9 million people in the United Kingdom alone and is predicted to increase as our population ages.
Collapse
|
25
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
26
|
Khemtemourian L, Fatafta H, Davion B, Lecomte S, Castano S, Strodel B. Structural Dissection of the First Events Following Membrane Binding of the Islet Amyloid Polypeptide. Front Mol Biosci 2022; 9:849979. [PMID: 35372496 PMCID: PMC8965455 DOI: 10.3389/fmolb.2022.849979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) is the main constituent of the amyloid fibrils found in the pancreas of type 2 diabetes patients. The aggregation of IAPP is known to cause cell death, where the cell membrane plays a dual role: being a catalyst of IAPP aggregation and being the target of IAPP toxicity. Using ATR-FTIR spectroscopy, transmission electron microscopy, and molecular dynamics simulations we investigate the very first molecular steps following IAPP binding to a lipid membrane. In particular, we assess the combined effects of the charge state of amino-acid residue 18 and the IAPP-membrane interactions on the structures of monomeric and aggregated IAPP. Distinct IAPP-membrane interaction modes for the various IAPP variants are revealed. Membrane binding causes IAPP to fold into an amphipathic α-helix, which in the case of H18K-, and H18R-IAPP readily moves beyond the headgroup region. For all IAPP variants but H18E-IAPP, the membrane-bound helix is an intermediate on the way to amyloid aggregation, while H18E-IAPP remains in a stable helical conformation. The fibrillar aggregates of wild-type IAPP and H18K-IAPP are dominated by an antiparallel β-sheet conformation, while H18R- and H18A-IAPP exhibit both antiparallel and parallel β-sheets as well as amorphous aggregates. Our results emphasize the decisive role of residue 18 for the structure and membrane interaction of IAPP. This residue is thus a good therapeutic target for destabilizing membrane-bound IAPP fibrils to inhibit their toxic actions.
Collapse
Affiliation(s)
- Lucie Khemtemourian
- Université de Bordeaux, CNRS, Bordeaux IMP, CBMN, Pessac, France
- *Correspondence: Lucie Khemtemourian, ; Birgit Strodel,
| | - Hebah Fatafta
- Institute of Biological Information Processing, Structural Biochemistry, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Jülich, Germany
| | - Benoit Davion
- Université de Bordeaux, CNRS, Bordeaux IMP, CBMN, Pessac, France
| | - Sophie Lecomte
- Université de Bordeaux, CNRS, Bordeaux IMP, CBMN, Pessac, France
| | - Sabine Castano
- Université de Bordeaux, CNRS, Bordeaux IMP, CBMN, Pessac, France
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Lucie Khemtemourian, ; Birgit Strodel,
| |
Collapse
|
27
|
Zhao L, Wang S, Hu Q, Jia H, Xin Y, Luo L, Meng F. Conformation-reconstructed multivalent antibody mimic for amplified mitigation of human islet amyloid polypeptide amyloidogenesis. NANOSCALE 2022; 14:2802-2815. [PMID: 35133388 DOI: 10.1039/d1nr08090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (IAPP) into β-sheet-enriched amyloid fibrils is linked to type 2 diabetes. Antibodies are potent inhibitors of IAPP amyloidogenesis, but their preparation is usually complicated and expensive. Here we have created a multivalent antibody mimic SPEPS@Au through conformational engineering of the complementary-determining regions (CDRs) of antibodies on gold nanoparticles (AuNPs). By immobilizing both terminals of an IAPP-recognizing CDR loop (PEP) on the surface of AuNPs, the active conformation of PEP can simply recur on the gold-based antibody mimic, significantly enhancing the binding affinity between PEP and IAPP. SPEPS@Au mitigated amyloidogenesis of IAPP at low sub-stoichiometric concentrations, even after IAPP started aggregating, and dramatically reduced the amyloidogenesis-induced toxicity and ROS production both in vitro and in vivo. The conformation-reconstructed multivalent antibody mimic not only renders a facile strategy to approach potent amyloidogenesis inhibitors, but also provides new perspectives to exploit NP-based substitutes for antibodies in various applications.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
28
|
He M, Hao J, Feng C, Yang Y, Shao Z, Wang L, Mao W. Anti-diabetic activity of a sulfated galactoarabinan with unique structural characteristics from Cladophora oligoclada (Chlorophyta). Carbohydr Polym 2022; 278:118933. [PMID: 34973751 DOI: 10.1016/j.carbpol.2021.118933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
The polysaccharide from green alga Cladophora oligoclada, OHSS2, was a sulfated galactoarabinan which was constituted by a backbone of (1 → 4)-β-l-arabinopyranose units with partial sulfate at C-3 of (1 → 4)-β-l-arabinopyranose units. The side chains containing (1 → 4)-β-l-arabinopyranose, (1 → 4)-β-d-galactopyranose and/or (1 → 4,6)-β-d-galactopyranose units were in C-2/C-3 of (1 → 4)-β-l-arabinopyranose units. OHSS2 had strong anti-diabetic activity in vitro assessed by inhibition of human islet amyloid polypeptide (hIAPP) aggregation. The mechanism analysis of anti-diabetic activity showed that OHSS2 diminished the production of intracellular reactive oxygen species and alleviated hIAPP aggregation-induced oxidative stress in NIT-1 cells. OHSS2 stabilized mitochondrial membrane potential, and enhanced the mitochondrial complex I, II or III activity and ATP level. Thus, OHSS2 effectively protected mitochondria from hIAPP aggregation-induced damage. Furthermore, OHSS2 was co-localized with mitochondria and could have a direct influence on mitochondrial function. These results revealed that OHSS2 had potential as a novel anti-diabetic agent.
Collapse
Affiliation(s)
- Meijia He
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Changning Feng
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lei Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
29
|
Disaggregation of Islet Amyloid Polypeptide Fibrils as a Potential Anti-Fibrillation Mechanism of Tetrapeptide TNGQ. Int J Mol Sci 2022; 23:ijms23041972. [PMID: 35216095 PMCID: PMC8876742 DOI: 10.3390/ijms23041972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) fibrillation has been commonly associated with the exacerbation of type 2 diabetes prognosis. Consequently, inhibition of IAPP fibrillation to minimize β-cell cytotoxicity is an important approach towards β-cell preservation and type 2 diabetes management. In this study, we identified three tetrapeptides, TNGQ, MANT, and YMSV, that inhibited IAPP fibrillation. Using thioflavin T (ThT) fluorescence assay, circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and molecular docking, we evaluated the potential anti-fibrillation mechanism of the tetrapeptides. ThT fluorescence kinetics and microscopy as well as transmission electron microscopy showed that TNGQ was the most effective inhibitor based on the absence of normal IAPP fibrillar morphology. CD spectroscopy showed that TNGQ maintained the α-helical conformation of monomeric IAPP, while DLS confirmed the presence of varying fibrillation species. Molecular docking showed that TNGQ and MANT interact with monomeric IAPP mainly by hydrogen bonding and electrostatic interaction, with TNGQ binding at IAPP surface compared to YMSV, which had the highest docking score, but interact mainly through hydrophobic interaction in IAPP core. The highly polar TNGQ was the most active and appeared to inhibit IAPP fibrillation by disaggregation of preformed IAPP fibrils. These findings indicate the potential of TNGQ in the development of peptide-based anti-fibrillation and antidiabetic nutraceuticals.
Collapse
|
30
|
Zhang G, Meng L, Wang Z, Peng Q, Chen G, Xiong J, Zhang Z. Islet amyloid polypeptide cross-seeds tau and drives the neurofibrillary pathology in Alzheimer’s disease. Mol Neurodegener 2022; 17:12. [PMID: 35093145 PMCID: PMC8800231 DOI: 10.1186/s13024-022-00518-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Background The pathologic accumulation and aggregation of tau is a hallmark of tauopathies including Alzheimer’s disease (AD). However, the molecular mechanisms mediating tau aggregation in AD remain elusive. The incidence of AD is increased in patients with type 2 diabetes (T2DM), which is characterized by the amyloid deposition of islet amyloid polypeptide (IAPP) in the pancreas. However, the molecular mechanisms bridging AD and T2DM remain unknown. Methods We first examined the presence of IAPP in the neurofibrillary tangles of AD patients. Then we tested the effect of IAPP on tau aggregation. The biochemical and biological characteristics of the IAPP-tau fibrils were tested in vitro. The seeding activity and neurotoxicity of the IAPP-tau fibrils were confirmed in cultured neurons. Lastly, the effect of IAPP on tau pathology and cognitive impairments was determined by injecting the IAPP-tau fibrils and IAPP fibrils into the hippocampus of tau P301S mice. Results We found that IAPP interacts with tau and accelerates the formation of a more toxic strain, which shows distinct morphology with enhanced seeding activity and neurotoxicity in vitro. Intrahippocampal injection of the IAPP-tau strain into the tau P301S transgenic mice substantially promoted the spreading of tau pathology and induced more severe synapse loss and cognitive deficits, when compared with tau fibrils. Furthermore, intracerebral injection of synthetic IAPP fibrils initiated tauopathy in the brain of tau P301S transgenic mice. Conclusions These observations indicate that IAPP acts as a crucial mediator of tau pathology in AD, and provide a mechanistic explanation for the higher risk of AD in individuals with T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-022-00518-y.
Collapse
|
31
|
Abioye RO, Okagu OD, Udenigwe CC. Inhibition of Islet Amyloid Polypeptide Fibrillation by Structurally Diverse Phenolic Compounds and Fibril Disaggregation Potential of Rutin and Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:392-402. [PMID: 34964624 DOI: 10.1021/acs.jafc.1c06918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The influence of 12 food-derived phenolic compounds on islet amyloid polypeptide (IAPP) fibrillation was investigated. Results from thioflavin T assay demonstrated that gallic acid, caffeic acid, and rutin and its aglycone, quercetin, inhibited IAPP fibrillation at 1:0.5, 1:1, and 1:2 IAPP-phenolic molar ratios. Circular dichroism and dynamic light scattering at the 1:1 IAPP-phenolic ratio confirmed the inhibition of fibril formation. Rutin and quercetin increased the lag time by 90 and 6%, and the relative α-helix content by 63 and 48%, respectively. Gallic acid decreased the elongation rate by 30%, whereas caffeic acid decreased the maximum fluorescence intensity by 65%. Furthermore, fluorescence microscopy and transmission electron microscopy (TEM) showed IAPP fibril morphologies indicative of fibrillation reduction by the compounds. Molecular docking and TEM showed that rutin and quercetin disaggregated preformed IAPP fibrils potentially through fibrillar-monomeric equilibrium shifts. These findings demonstrate important structural features of phenolic compounds for disaggregating IAPP fibrils or inhibiting their formation.
Collapse
Affiliation(s)
- Raliat O Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ogadimma D Okagu
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Chibuike C Udenigwe
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
32
|
The role of intra and inter-molecular disulfide bonds in modulating amyloidogenesis: A review. Arch Biochem Biophys 2021; 716:109113. [PMID: 34958750 DOI: 10.1016/j.abb.2021.109113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022]
Abstract
All proteins have the inherent ability to undergo transformation from their native structure to a β sheet rich fibrillar structure, called amyloid when subjected to specific conditions. Proteins with a high propensity to form amyloid fibrils have been implicated in a variety of disorders like Alzheimer's disease, Parkinson's disease, Type II diabetes, Amyotrophic Lateral Sclerosis (ALS) and prion diseases. Among the various critical factors that modulate the process of amyloid formation, disulfide bonds have been identified as one of the key determinants of amyloid propensity in proteins. Studies have shown that intra-molecular disulfide bonds impart stability to the native structure of a protein and decrease the tendency for amyloid aggregation, whereas intermolecular disulfide bonds aid in the process of aggregation. In this review, we will analyze the varying effects of both intra as well as inter-molecular disulfide bonds on the amyloid aggregation propensities of a few proteins associated with amyloid disorders.
Collapse
|
33
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
34
|
Perera CJ, Falasca M, Chari ST, Greenfield JR, Xu Z, Pirola RC, Wilson JS, Apte MV. Role of Pancreatic Stellate Cell-Derived Exosomes in Pancreatic Cancer-Related Diabetes: A Novel Hypothesis. Cancers (Basel) 2021; 13:cancers13205224. [PMID: 34680372 PMCID: PMC8534084 DOI: 10.3390/cancers13205224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating condition characterised by vague symptomatology and delayed diagnosis. About 30% of PDAC patients report a history of new onset diabetes, usually diagnosed within 3 years prior to the diagnosis of cancer. Thus, new onset diabetes, which is also known as pancreatic cancer-related diabetes (PCRD), could be a harbinger of PDAC. Diabetes is driven by progressive β cell loss/dysfunction and insulin resistance, two key features that are also found in PCRD. Experimental studies suggest that PDAC cell-derived exosomes carry factors that are detrimental to β cell function and insulin sensitivity. However, the role of stromal cells, particularly pancreatic stellate cells (PSCs), in the pathogenesis of PCRD is not known. PSCs are present around the earliest neoplastic lesions and around islets. Given that PSCs interact closely with cancer cells to drive cancer progression, it is possible that exosomal cargo from both cancer cells and PSCs plays a role in modulating β cell function and peripheral insulin resistance. Identification of such mediators may help elucidate the mechanisms of PCRD and aid early detection of PDAC. This paper discusses the concept of a novel role of PSCs in the pathogenesis of PCRD.
Collapse
Affiliation(s)
- Chamini J. Perera
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth 6102, Australia;
| | - Suresh T. Chari
- M.D Anderson Cancer Centre, Department of Gastroenterology, Hepatology and Nutrition, University of Texas, Houston, TX 75083, USA;
| | - Jerry R. Greenfield
- St Vincent Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia;
- Healthy Ageing, Garvan Institute of Medical Research, Darlinghurst 2830, Australia
- Department of Diabetes and Endocrinology, St Vincent’s Hospital, Darlinghurst 3065, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; (C.J.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Ingham Institute for Applied Medical Research, Sydney 2170, Australia
- Correspondence: ; Tel.: +61-2-87389029
| |
Collapse
|
35
|
Choi B, Kim NH, Jin GY, Kim YS, Kim YH, Eom K. Sequence-dependent aggregation-prone conformations of islet amyloid polypeptide. Phys Chem Chem Phys 2021; 23:22532-22542. [PMID: 34590645 DOI: 10.1039/d1cp01061a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amyloid proteins, which aggregate to form highly ordered structures, play a crucial role in various disease pathologies. Despite many previous studies on amyloid fibrils, which are an end product of protein aggregation, the structural characteristics of amyloid proteins in the early stage of aggregation and their related aggregation mechanism still remain elusive. The role of the amino acid sequence in the aggregation-prone structures of amyloid proteins at such a stage is not understood. Here, we have studied the sequence-dependent structural characteristics of islet amyloid polypeptide based on atomistic simulations and spectroscopic experiments. We show that the amino acid sequence determines non-bonded interactions that play a leading role in the formation of aggregation-prone conformations. Specifically, a single point mutation critically changes the population of aggregation-prone conformations, resulting in a change of the aggregation mechanism. Our simulation results were supported by experimental results suggesting that mutation affects the kinetics of aggregation and the structural characteristics of amyloid aggregates. Our study provides an insight into the role of sequence-dependent aggregation-prone conformations in the underlying mechanisms of amyloid aggregation.
Collapse
Affiliation(s)
- Bumjoon Choi
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Geun Young Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. .,Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
36
|
Cao Q, Boyer DR, Sawaya MR, Abskharon R, Saelices L, Nguyen BA, Lu J, Murray KA, Kandeel F, Eisenberg DS. Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores. Nat Struct Mol Biol 2021; 28:724-730. [PMID: 34518699 PMCID: PMC10396428 DOI: 10.1038/s41594-021-00646-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Amyloidosis of human islet amyloid polypeptide (hIAPP) is a pathological hallmark of type II diabetes (T2D), an epidemic afflicting nearly 10% of the world's population. To visualize disease-relevant hIAPP fibrils, we extracted amyloid fibrils from islet cells of a T2D donor and amplified their quantity by seeding synthetic hIAPP. Cryo-EM studies revealed four fibril polymorphic atomic structures. Their resemblance to four unseeded hIAPP fibrils varies from nearly identical (TW3) to non-existent (TW2). The diverse repertoire of hIAPP polymorphs appears to arise from three distinct protofilament cores entwined in different combinations. The structural distinctiveness of TW1, TW2 and TW4 suggests they may be faithful replications of the pathogenic seeds. If so, the structures determined here provide the most direct view yet of hIAPP amyloid fibrils formed during T2D.
Collapse
Affiliation(s)
- Qin Cao
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Lorena Saelices
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.,Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Binh A Nguyen
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.,Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Kevin A Murray
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Gowda V, Biler M, Filippov A, Mantonico MV, Ornithopoulou E, Linares M, Antzutkin ON, Lendel C. Structural characterisation of amyloid-like fibrils formed by an amyloidogenic peptide segment of β-lactoglobulin. RSC Adv 2021; 11:27868-27879. [PMID: 35480736 PMCID: PMC9037834 DOI: 10.1039/d1ra03575d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure–function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11–20 of the protein β-lactoglobulin (β-LG11–20), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of 13C and 15N resonances in the solid-state NMR spectra for the β-LG11–20 fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the β-LG11–20 fibrils were probed using NMR experiments of the peptide with 13C- and 15N-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel β-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel β-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible. A 10-residue peptide segment of β-lactoglobulin (β-LG11–20) forms amyloid-like fibrils as revealed by AFM, NMR, and MD simulations.![]()
Collapse
Affiliation(s)
- Vasantha Gowda
- Dept. of Chemistry, KTH Royal Institute of Technology Stockholm Sweden
| | - Michal Biler
- Dept. of Theoretical Chemistry, KTH Royal Institute of Technology Stockholm Sweden
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology Sweden.,Dept. Medical and Biological Physics, Kazan State Medical University 420012 Kazan Russia
| | | | | | - Mathieu Linares
- Dept. of Theoretical Chemistry, KTH Royal Institute of Technology Stockholm Sweden.,Laboratory of Organic Electronics and Group of Scientific Visualization, ITN, Linköping University 60174 Norrköping Sweden.,Swedish e-Science Research Centre (SeRC), Linköping University 60174 Norrköping Sweden
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Luleå University of Technology Sweden.,Dept. of Physics, University of Warwick Coventry UK
| | - Christofer Lendel
- Dept. of Chemistry, KTH Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
38
|
Wu L, Velander P, Brown AM, Wang Y, Liu D, Bevan DR, Zhang S, Xu B. Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:1322-1337. [PMID: 34423269 PMCID: PMC8369672 DOI: 10.1021/acsptsci.1c00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with a large number of human protein-misfolding diseases, yet FDA-approved drugs are currently not available. Amylin amyloid and plaque depositions in the pancreas are hallmark features of type 2 diabetes. Moreover, these amyloid deposits are implicated in the pathogenesis of diabetic complications such as neurodegeneration. We recently discovered that catechols and redox-related quinones/anthraquinones represent a broad class of protein aggregation inhibitors. Further screening of a targeted library of natural compounds in complementary medicine that were enriched with catechol-containing compounds identified rosmarinic acid (RA) as a potent inhibitor of amylin aggregation (estimated inhibitory concentration IC50 = 200-300 nM). Structure-function relationship analysis of RA showed the additive effects of the two catechol-containing components of the RA molecule. We further showed that RA does not reverse fibrillation back to monomeric amylin but rather lead to nontoxic, remodeled protein aggregates. RA has significant ex vivo efficacy in reducing human amylin oligomer levels in HIP rat sera as well as in sera from diabetic patients. In vivo efficacy studies of RA treatment with the diabetic HIP rat model demonstrated significant reduction in amyloid islet deposition and strong mitigation of diabetic pathology. Our work provides new in vitro molecular mechanisms and in vivo efficacy insights for a model nutraceutical agent against type 2 diabetes and other aging-related protein-misfolding diseases.
Collapse
Affiliation(s)
- Ling Wu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
| | - Paul Velander
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Anne M. Brown
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yao Wang
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Dongmin Liu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shijun Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Bin Xu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
- Affiliated
Program Faculty, Duke Comprehensive Stroke
Center, Durham, North Carolina 27710, United States
| |
Collapse
|
39
|
Abstract
Ion beam irradiation of solid surfaces may result in the self-organized formation of well-defined topographic nanopatterns. Depending on the irradiation conditions and the material properties, isotropic or anisotropic patterns of differently shaped features may be obtained. Most intriguingly, the periodicities of these patterns can be adjusted in the range between less than twenty and several hundred nanometers, which covers the dimensions of many cellular and extracellular features. However, even though ion beam nanopatterning has been studied for several decades and is nowadays widely employed in the fabrication of functional surfaces, it has found its way into the biomaterials field only recently. This review provides a brief overview of the basics of ion beam nanopatterning, emphasizes aspects of particular relevance for biomaterials applications, and summarizes a number of recent studies that investigated the effects of such nanopatterned surfaces on the adsorption of biomolecules and the response of adhering cells. Finally, promising future directions and potential translational challenges are identified.
Collapse
|
40
|
Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels. Int J Biol Macromol 2021; 184:79-91. [PMID: 34097969 DOI: 10.1016/j.ijbiomac.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Herein, we report the use of β-lactoglobulin (β-LG) combined with bovine serum albumin (BSA) for the preparation of amyloid-based hydrogels with aim of delivering riboflavin. The incorporation of BSA enhanced β-LG fibrillogenesis and protected β-LG fibrils from losing fibrillar structure due to the pH shift. The mechanical properties of hydrogels were observed to be positively correlated with the number of amyloid fibrils. While the addition of BSA induced amyloid fibril formation, its presence between the fibril chains interfered with the entanglement of fibril chains, thus adversely affecting the hydrogels' mechanical properties. Hydrogels' surface microstructure became more compact as the number of amyloid fibrils rose and the presence of BSA could improve hydrogels' surface homogeneity. In vitro riboflavin (RF) release rate was found to be correlated with the number of fibrils and BSA-RF binding affinity. However, when the digestive enzymes were present, the influence of BSA-RF affinity was alleviated due to enzymes' destructive and/or degradative effects on BSA and/or hydrogels, thus the release rate relied on the number of fibrils, which could be adjusted by the amount of BSA. Results indicate that the additional component, BSA, plays an important role in modulating the properties and functions of β-LG fibril-based hydrogels.
Collapse
|
41
|
Despa F, Goldstein LB. Amylin Dyshomeostasis Hypothesis: Small Vessel-Type Ischemic Stroke in the Setting of Type-2 Diabetes. Stroke 2021; 52:e244-e249. [PMID: 33947210 PMCID: PMC8154741 DOI: 10.1161/strokeaha.121.034363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent histological analyses of human brains show that small vessel-type injuries in the setting of type-2 diabetes colocalize with deposits of amylin, an amyloid-forming hormone secreted by the pancreas. Amylin inclusions are also identified in circulating red blood cells in people with type-2 diabetes and stroke or cardiovascular disease. In laboratory models of type-2 diabetes, accumulation of aggregated amylin in blood and the cerebral microvasculature induces brain microhemorrhages and reduces cerebral blood flow leading to white matter ischemia and neurological deficits. At the cellular level, aggregated amylin causes cell membrane lipid peroxidation injury, downregulation of tight junction proteins, and activation of proinflammatory signaling pathways which, in turn, induces macrophage activation and macrophage infiltration in vascular areas positive for amylin deposition. We review each step of this cascade based on experimental and clinical evidence and propose the hypothesis that systemic amylin dyshomeostasis may underlie the disparity between glycemic control and stroke risk and may be a therapeutic target to reduce the risk of small vessel ischemic stroke in patients with type-2 diabetes.
Collapse
Affiliation(s)
- Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA,Department of Neurology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
42
|
Van Hulle F, De Groot K, Stangé G, Suenens K, De Mesmaeker I, De Paep DL, Ling Z, Hilbrands R, Gillard P, Keymeulen B, Kroon E, Westermark GT, Jacobs-Tulleneers-Thevissen D, Pipeleers D. Formation of amyloid in encapsulated human pancreatic and human stem cell-generated beta cell implants. Am J Transplant 2021; 21:2090-2099. [PMID: 33206461 DOI: 10.1111/ajt.16398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
Detection of amyloid in intraportal islet implants of type 1 diabetes patients has been proposed as cause in their functional decline. The present study uses cultured adult human islets devoid of amyloid to examine conditions of its formation. After intraportal injection in patients, amyloid deposits <15 µm diameter were identified in 5%-12% of beta cell containing aggregates, 3-76 months posttransplant. Such deposits also formed in glucose-controlling islet implants in the kidney of diabetic mice but not in failing implants. Alginate-encapsulated islets formed amyloid during culture when functional, and in all intraperitoneal implants that corrected diabetes in mice, exhibiting larger sizes than in functioning nonencapsulated implants. After intraperitoneal injection in a patient, retrieved single capsules presented amyloid near living beta cells, whereas no amyloid occurred in clustered capsules with dead cells. Amyloid was also demonstrated in functional human stem cell-generated beta cell implants in subcutaneous devices of mice. Deposits up to 35 µm diameter were localized in beta cell-enriched regions and related to an elevated IAPP over insulin ratio in the newly generated beta cells. Amyloid in device-encapsulated human stem cell-generated beta cell implants marks the formation of a functional beta cell mass but also an imbalance between its activated state and its microenvironment.
Collapse
Affiliation(s)
- Freya Van Hulle
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Internal Medicine, University Hospital Brussels - UZB, Brussels, Belgium
| | - Kaat De Groot
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Internal Medicine, University Hospital Brussels - UZB, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium
| | - Krista Suenens
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium
| | - Ines De Mesmaeker
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium
| | - Diedert L De Paep
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Department Surgery, University Hospital Brussels - UZB, Brussels, Belgium.,Beta Cell Bank, University Hospital Brussels - UZB, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Beta Cell Bank, University Hospital Brussels - UZB, Brussels, Belgium.,Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Diabetes Clinic, University Hospital Brussels - UZB, Brussels, Belgium
| | - Pieter Gillard
- Department Endocrinology, University Hospital Leuven - KUL, Leuven, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.,Diabetes Clinic, University Hospital Brussels - UZB, Brussels, Belgium
| | - Evert Kroon
- Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.,ViaCyte, Inc, San Diego, California, USA
| | | | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Department Surgery, University Hospital Brussels - UZB, Brussels, Belgium.,Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Free University Brussels - VUB, Brussels, Belgium.,Consortium, Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| |
Collapse
|
43
|
Hanke M, Yang Y, Ji Y, Grundmeier G, Keller A. Nanoscale Surface Topography Modulates hIAPP Aggregation Pathways at Solid-Liquid Interfaces. Int J Mol Sci 2021; 22:ijms22105142. [PMID: 34067963 PMCID: PMC8152259 DOI: 10.3390/ijms22105142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
The effects that solid–liquid interfaces exert on the aggregation of proteins and peptides are of high relevance for various fields of basic and applied research, ranging from molecular biology and biomedicine to nanotechnology. While the influence of surface chemistry has received a lot of attention in this context, the role of surface topography has mostly been neglected so far. In this work, therefore, we investigate the aggregation of the type 2 diabetes-associated peptide hormone hIAPP in contact with flat and nanopatterned silicon oxide surfaces. The nanopatterned surfaces are produced by ion beam irradiation, resulting in well-defined anisotropic ripple patterns with heights and periodicities of about 1.5 and 30 nm, respectively. Using time-lapse atomic force microscopy, the morphology of the hIAPP aggregates is characterized quantitatively. Aggregation results in both amorphous aggregates and amyloid fibrils, with the presence of the nanopatterns leading to retarded fibrillization and stronger amorphous aggregation. This is attributed to structural differences in the amorphous aggregates formed at the nanopatterned surface, which result in a lower propensity for nucleating amyloid fibrillization. Our results demonstrate that nanoscale surface topography may modulate peptide and protein aggregation pathways in complex and intricate ways.
Collapse
|
44
|
Potential of peptides and phytochemicals in attenuating different phases of islet amyloid polypeptide fibrillation for type 2 diabetes management. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Hsu JY, Rao Sathyan A, Hsu KC, Chen LC, Yen CC, Tseng HJ, Wu KC, Liu HK, Huang WJ. Synthesis of Yakuchinone B-Inspired Inhibitors against Islet Amyloid Polypeptide Aggregation. JOURNAL OF NATURAL PRODUCTS 2021; 84:1096-1103. [PMID: 33600175 DOI: 10.1021/acs.jnatprod.0c01162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction and insulin resistance. Islet amyloid polypeptide (IAPP) aggregation is found to induce islet β-cell death in T2DM patients. Recently, we demonstrated that yakuchinone B derivative 1 exhibited inhibitory activity against IAPP aggregation. Thus, in this study, a series of synthesized yakuchinone B-inspired compounds were tested for their anti-IAPP aggregation activity. Four of these compounds, 4e-h, showed greater activity than the lead compound 1, in the sub-μM range (IC50 = 0.7-0.8 μM). The molecular docking analysis revealed crucial hydrogen bonds between the compounds and residues S19 and N22 and important hydrophobic interactions with residue I26. Notably, compounds 4g and 4h significantly protected β-cells against IAPP-induced toxicity with EC50 values of 0.1 and 0.2 μM, respectively. In contrast, the protective activities of compounds 4e and 4f were weak. Overall, these results suggest that the compounds exhibiting IAPP aggregation-inhibiting activity have the potential to treat T2DM.
Collapse
Affiliation(s)
- Jui-Yi Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Ashish Rao Sathyan
- Ph D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Chung Yen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, Taipei Medical University, Taipei 110, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Hui-Kang Liu
- Ph D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110, Taiwan
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
46
|
Christensen M, Berglund NA, Schiøtt B. The Effect of Cholesterol on Membrane-Bound Islet Amyloid Polypeptide. Front Mol Biosci 2021; 8:657946. [PMID: 33968989 PMCID: PMC8100463 DOI: 10.3389/fmolb.2021.657946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/26/2021] [Indexed: 11/15/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass in patients with type-II diabetes. The molecular composition of the cell-membrane is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present at high concentrations in the pancreatic beta-cells, and in-vitro experiments have indicated that it affects the amyloid formation of IAPP either by direct interactions or by changing the properties of the membrane. In this study we apply atomistic, unbiased molecular dynamics simulations at a microsecond timescale to investigate the effect of cholesterol on membrane bound IAPP. Simulations were performed with various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the membrane. We found that cholesterol decreased the insertion depth of IAPP compared to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol. The aggregation propensity has previously been proposed to correlate with the insertion depth of IAPP, which we found to decrease with the increased ordering of the lipids induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our results suggest that the effect of cholesterol is indirect.
Collapse
Affiliation(s)
- Mikkel Christensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
48
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
49
|
Farrugia F, Aquilina A, Vassallo J, Pace NP. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E716. [PMID: 33467592 PMCID: PMC7830729 DOI: 10.3390/ijerph18020716] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance and eventual pancreatic β-cell dysfunction, resulting in persistent high blood glucose levels. Endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) are currently under scrutiny as they are implicated in the development of metabolic diseases, including T2DM. BPA is a pervasive EDC, being the main constituent of polycarbonate plastics. It can enter the human body by ingestion, through the skin, and cross from mother to offspring via the placenta or breast milk. BPA is a xenoestrogen that alters various aspects of beta cell metabolism via the modulation of oestrogen receptor signalling. In vivo and in vitro models reveal that varying concentrations of BPA disrupt glucose homeostasis and pancreatic β-cell function by altering gene expression and mitochondrial morphology. BPA also plays a role in the development of insulin resistance and has been linked to long-term adverse metabolic effects following foetal and perinatal exposure. Several epidemiological studies reveal a significant association between BPA and the development of insulin resistance and impaired glucose homeostasis, although conflicting findings driven by multiple confounding factors have been reported. In this review, the main findings of epidemiological and functional studies are summarised and compared, and their respective strengths and limitations are discussed. Further research is essential for understanding the exact mechanism of BPA action in various tissues and the extent of its effects on humans at environmentally relevant doses.
Collapse
Affiliation(s)
- Francesca Farrugia
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Alexia Aquilina
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Josanne Vassallo
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| | - Nikolai Paul Pace
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| |
Collapse
|
50
|
Delogu GL, Era B, Floris S, Medda R, Sogos V, Pintus F, Gatto G, Kumar A, Westermark GT, Fais A. A new biological prospective for the 2-phenylbenzofurans as inhibitors of α-glucosidase and of the islet amyloid polypeptide formation. Int J Biol Macromol 2020; 169:428-435. [PMID: 33347933 DOI: 10.1016/j.ijbiomac.2020.12.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
In this study, we have investigated a series of hydroxylated 2-phenylbenzofurans compounds for their inhibitory activity against α-amylase and α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes seem to have an important role as antidiabetic drugs. Diabetes mellitus is a wide-spread metabolic disease characterized by elevated levels of blood glucose. The most common is type 2 diabetes, which can lead to severe complications. Since the aggregates of islet amyloid polypeptide (IAPP) are common in diabetic patients, the effect of compounds to inhibit amyloid fibril formation was also determined. All the compounds assayed showed to be more active against α-glucosidase. Compound 16 showed the lowest IC50 value of the series, and it is found to be 167 times more active than acarbose, the reference compound. The enzymatic activity assays showed that compound 16 acts as a mixed-type inhibitor of α-glucosidase. Furthermore, compound 16 displayed effective inhibition of IAPP aggregation and it manifested no significant cytotoxicity. To predict the binding of compound 16 to IAPP and α-glucosidase protein complexes, molecular docking studies were performed. Altogether, our results support that the 2-phenylbenzofuran derivatives could represent a promising candidate for developing molecules able to modulate multiple targets involved in diabetes mellitus disorder.
Collapse
Affiliation(s)
- Giovanna Lucia Delogu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, Cagliari 09123, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, Cagliari 09123, Italy
| | | | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy.
| |
Collapse
|