1
|
Jin J, Mao X, Zhang D. A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry. Ann Med 2024; 56:2329136. [PMID: 38502913 PMCID: PMC10953786 DOI: 10.1080/07853890.2024.2329136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection of the T-cell or Natural killer (NK)-cell type, systemic form (systemic CAEBV or sCAEBV) was defined by the WHO in 2017 as an EBV-related lymphoproliferative disorder and is listed as an EBV-positive T-cell and NK-cell proliferation. The clinical manifestations and prognoses are heterogeneous. This makes systemic CAEBV indistinguishable from other EBV-positive T-cell and NK-cell proliferations. Early diagnosis of systemic CAEBV and early hematopoietic stem cell transplantation can improve patient prognosis. At present, the diagnosis of systemic CAEBV relies mainly on age, clinical manifestations, and cell lineage, incurring missed diagnosis, misdiagnosis, long diagnosis time, and inability to identify high-risk systemic CAEBV early. The diagnostic methods for systemic CAEBV are complicated and lack systematic description. The recent development of diagnostic procedures, including molecular biological and immunological techniques such as flow cytometry, has provided us with the ability to better understand the proliferation of other EBV-positive T cells and NK cells, but there is no definitive review of their value in diagnosing systemic CAEBV. This article summarizes the recent progress in systemic CAEBV differential diagnosis and the prospects of flow cytometry.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Hsieh SJ, Tsai TH, Lin JH, Lin TY, Chang FL, Chiang CW, Li PJ, Zheng JH, Tsai KC, Hung CS, Lee YC. Characterization of anti-EBNA-1 antibodies and exploration of their molecular mimicry potential in an EBV-infected Sjögren's syndrome patient. Biochem Biophys Res Commun 2024; 735:150839. [PMID: 39427375 DOI: 10.1016/j.bbrc.2024.150839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
There is a potential link between autoimmune diseases and Epstein-Barr virus (EBV) infections, with EBV playing a substantial role in the onset of Sjögren's syndrome (SjS). Some EBV proteins could mimic host self-antigens post-infection, leading to molecular mimicry. This similarity may cause the immune system to attack its tissues mistakenly. Among the various proteins associated with EBV, nuclear antigen 1 (EBNA-1) is essential for the latent replication of infected cells and is prevalent in all EBV-related diseases. In the study, single-chain variable fragment (scFv) antibodies targeting EBNA-1 were isolated using phage display technology from a primary SjS patient who also had a chronic active EBV infection. The specific clones were enriched after panning, and the binding activity of selected scFvs targeting EBNA-1 was confirmed. Sequence analysis indicated that the scFvs exhibiting positive signals could be grouped into five clones, all of which used homologous heavy chain V regions derived from germline Vh4-39, and two types of light chain V regions stemming from germline Vλ1-44 and Vλ3-15. These scFvs were found to exhibit a high degree of somatic mutations, likely indicative of antigen selection. Of the scFvs, P1-3 demonstrated the strongest binding affinity to EBNA-1, exhibiting a determined value of 7.3 x 10-8 M, and showed cross-reactivity to the SjS associated La/SSB self-antigen. The experimental results combined with AlphaFold 3 predictions revealed a potential epitope for scFv P1-3 binding to EBNA-1. Additionally, scFv P1-3 could also cross-bind to the modeled structure of La/SSB. We inferred a possible structural correlation between EBNA-1 and La/SSB involving an X2AX6PG epitope motif. This research contributes to our understanding of the structural basis of the interactions between antibodies and EBNA-1, shedding light on the VH and VL gene usage of anti-EBNA-1 antibodies in EBV-infected SjS patients and the potential origins of autoantibodies.
Collapse
Affiliation(s)
- Shang-Ju Hsieh
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tsung-Hsun Tsai
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Fu-Ling Chang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Pei Jhen Li
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia Huei Zheng
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhou J, Zhang J, Zhu D, Ma W, Zhong Q, Shen Q, Su J. The diagnostic value of peripheral blood lymphocyte testing in children with infectious mononucleosis. BMC Pediatr 2024; 24:746. [PMID: 39548405 DOI: 10.1186/s12887-024-05228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVE To investigate the diagnostic value of peripheral blood lymphocyte testing in children with infectious mononucleosis (IM). METHODS A total of 135 children with IM as the IM group and 100 healthy volunteers as the healthy group were included in this retrospective study. Peripheral blood lymphocyte subsets marked as CD3+, CD4+, CD8+, CD16 + CD56+, and CD19 + in the peripheral blood were quantified using flow cytometry. Statistical analysis was performed using the chi-square test, Kruskal-Wallis test, AUROC curve, and Kappa consistency test to assess the diagnostic value of these markers in IM. RESULTS The AUROC curve for CD8 + cells and for CD4+/CD8 + ratios both achieved a value of 1 with the sensitivity and specificity of 100% (P<0.001). The Kappa coefficients were 1 for CD8+, CD4+/CD8 + ratios and the combined EBV analysis, indicating a 100% consistency with the clinical diagnosis. Significant differences were also observed in the CD3+, CD4+, CD16 + CD56+, and CD19 + lymphocyte subsets between the IM group and the healthy group (P<0.05). CONCLUSION The evaluation of CD8 + and CD4+/CD8 + ratios in peripheral blood lymphocytes represents a significant advancement in the diagnosis of IM. Peripheral blood lymphocyte testing offers a reliable, sensitive, and specific diagnostic tool to enhance the clinical management of children with IM.
Collapse
Affiliation(s)
- Jingxin Zhou
- Department of Hematology, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Jia Zhang
- Department of Pediatrics, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Dan Zhu
- Department Of Clinical Laboratory, Suqian Children's Hospital, No. 1, Qinghai Lake Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Wentong Ma
- Intensive Care Unit, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Qing Zhong
- Hematology Laboratory, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China
| | - Qin Shen
- Department of Pediatrics, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China.
| | - Jing Su
- Hematology Laboratory, Suqian First Hospital, No. 120, Suzhi Road, Sucheng District, Suqian City, Jiangsu Province, 223800, China.
- The Suqian Clinical College of Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu Province, 221004, China.
| |
Collapse
|
4
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Gomes Torres ACMB, Mathias C, Baal SCS, Kohler AF, Cunha ML, Blanes L. Advancements in LAMP-Based Diagnostics: Emerging Techniques and Applications in Viral Detection with a Focus on Herpesviruses in Transplant Patient Management. Int J Mol Sci 2024; 25:11506. [PMID: 39519059 PMCID: PMC11546353 DOI: 10.3390/ijms252111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a highly effective molecular diagnostic technique, particularly advantageous for point-of-care (POC) settings. In recent years, LAMP has expanded to include various adaptations such as DARQ-LAMP, QUASR, FLOS-LAMP, displacement probes and molecular beacons. These methods enable multiplex detection of multiple targets in a single reaction, enhancing cost-effectiveness and diagnostic efficiency. Consequently, LAMP has gained significant traction in diagnosing diverse viruses, notably during the COVID-19 pandemic. However, its application for detecting Herpesviridae remains relatively unexplored. This group of viruses is of particular interest due to their latency and potential reactivation, crucial for immunocompromised patients, including organ and hematopoietic stem cell transplant recipients. This review highlights recent advancements in LAMP for virus diagnosis and explores current research trends and future prospects, emphasizing the detection challenges posed by Herpesviridae.
Collapse
Affiliation(s)
| | - Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Mylena Lemes Cunha
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil;
| |
Collapse
|
6
|
Mori S, Kohyama M, Yasumizu Y, Tada A, Tanzawa K, Shishido T, Kishida K, Jin H, Nishide M, Kawada S, Motooka D, Okuzaki D, Naito R, Nakai W, Kanda T, Murata T, Terao C, Ohmura K, Arase N, Kurosaki T, Fujimoto M, Suenaga T, Kumanogoh A, Sakaguchi S, Ogawa Y, Arase H. Neoself-antigens are the primary target for autoreactive T cells in human lupus. Cell 2024; 187:6071-6087.e20. [PMID: 39276775 DOI: 10.1016/j.cell.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Major histocompatibility complex class II (MHC-II) is the most significant genetic risk factor for systemic lupus erythematosus (SLE), but the nature of the self-antigens that trigger autoimmunity remains unclear. Unusual self-antigens, termed neoself-antigens, are presented on MHC-II in the absence of the invariant chain essential for peptide presentation. Here, we demonstrate that neoself-antigens are the primary target for autoreactive T cells clonally expanded in SLE. When neoself-antigen presentation was induced by deleting the invariant chain in adult mice, neoself-reactive T cells were clonally expanded, leading to the development of lupus-like disease. Furthermore, we found that neoself-reactive CD4+ T cells were significantly expanded in SLE patients. A high frequency of Epstein-Barr virus reactivation is a risk factor for SLE. Neoself-reactive lupus T cells were activated by Epstein-Barr-virus-reactivated cells through downregulation of the invariant chain. Together, our findings imply that neoself-antigen presentation by MHC-II plays a crucial role in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Shunsuke Mori
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Masako Kohyama
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshiaki Yasumizu
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Asa Tada
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Kaito Tanzawa
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Shishido
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kazuki Kishida
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hui Jin
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shoji Kawada
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan; Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan; Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ryota Naito
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Wataru Nakai
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Takayuki Murata
- Department of Virology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; Department of Virology, Fujita Health University School of Medicine, Nagoya 470-1192, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 351-0198, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan; The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Rheumatology, Kobe City Medical Center General Hospital, Kobe, Hyogo 650-0047, Japan
| | - Noriko Arase
- Department of Dermatology, Graduate school of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate school of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tadahiro Suenaga
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Center for advanced modalities and DDS, Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisashi Arase
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan; Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Center for advanced modalities and DDS, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Hsu WL, Tao J, Fu S, Yu KJ, Simon J, Chen TC, Chen CJ, Goldstein AM, Yu K, Hildesheim A, Waterboer T, Wang CP, Liu Z. Kinetics of EBV antibody-based NPC risk scores in Taiwan NPC multiplex families. Int J Cancer 2024; 155:1400-1408. [PMID: 38822730 PMCID: PMC11326971 DOI: 10.1002/ijc.35037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Nasopharyngeal carcinoma (NPC) risk prediction models based on Epstein-Barr virus (EBV)-antibody testing have shown potential for screening of NPC; however, the long-term stability is unclear. Here, we investigated the kinetics of two EBV-antibody NPC risk scores within the Taiwan NPC Multiplex Family Study. Among 545 participants with multiple blood samples, we evaluated the stability of a 2-marker enzyme-linked immunosorbent assay score and 13-marker multiplex serology score using the intra-class correlation coefficient (ICC) by fitting a linear mixed model that accounted for the clustering effect of multiple measurements per subject and age. We also estimated the clustering of positive tests using Fleiss's kappa statistic. Over an average 20-year follow-up, the 2-marker score showed high stability over time, whereas the 13-marker score was more variable (p < .05). Case-control status is associated with the kinetics of the antibody response, with higher ICCs among cases. Positive tests were more likely to cluster within the same individual for the 2-marker score than the 13-marker score (p < .05). The 2-marker score had an increase in specificity from ~90% for single measurement to ~96% with repeat testing. The 13-marker score had a specificity of ~73% for a single measurement that increased to ~92% with repeat testing. Among individuals who developed NPC, none experienced score reversion. Our findings suggest that repeated testing could improve the specificity of NPC screening in high-risk NPC multiplex families. Further studies are required to determine the impact on sensitivity, establish optimal screening intervals, and generalize these findings to general population settings in high-risk regions.
Collapse
Affiliation(s)
- Wan-Lun Hsu
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Jun Tao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheng Fu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia Simon
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Agencia Costarriciense de Investigaciones Biologicas, San Jose, Costa Rica
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Ding B, Zhang Y, Wu Y, Li Y. Analysis of the epidemiology and clinical characteristics of Epstein-Barr virus infection. J Med Virol 2024; 96:e29960. [PMID: 39380297 DOI: 10.1002/jmv.29960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The Epstein-Barr virus (EBV) is responsible for a spectrum of human diseases and demonstrates a considerable prevalence among various populations. Advances in molecular epidemiological research have enhanced our comprehension of EBV-related pathologies. In this study, our objective was to examine the epidemiological profile and clinical features of EBV infection in Chongqing, China. We enrolled patients suspected of EBV-related diseases who were admitted to the First Affiliated Hospital of Chongqing Medical University between May 2013 and November 2022. Inclusion criteria were based on those who underwent EBV-specific immunofluorescence or plasma EBV-DNA testing. Among 13 584 inpatients, the overall seropositivity rates for EBNA-1-IgG, EBV-VCA-IgM, EBV-EA-IgG, EBV-EA-IgA, EBV-VCA-IgA, and EBV-DNA were 91.89%, 7.22%, 18.00%, 16.19%, 30.78%, and 18.00%, respectively. The seropositivity rate for EBNA-1-IgG steadily increased with age. The seropositivity rate for VCA-IgM, an indicator of acute EBV infection, was highest in patients aged 11-20 years at 26.41%, decreasing to 2%-6% in older patients. Additionally, among 205 outpatients, the EBV-DNA positivity rate was 14.15%. In 3670 individuals from health check-up centers, the seropositivity rates for EBV-EA-IgA and EBV-VCA-IgA were 11.96% and 28.09%, respectively, and the EBV-DNA positivity rate was 11.92%, all of which were lower than those in inpatients. Among the 762 EBV-DNA positive inpatients, adults aged 31-40 years were the least affected, with a seropositivity rate of 12.00%, which increased with age. The most common diseases associated with primary EBV infection were infectious mononucleosis (IM) (35.49%), followed by EBV infection (14.15%) and pneumonia (7.19%). The most common diseases associated with EBV reactivation were pneumonia (16.80%), nasopharyngeal carcinoma (NPC) (11.02%), and autoimmune diseases (7.04%). Patients with hemophagocytic lymphohistiocytosis (HLH) had the highest viral load, significantly higher than those with NPC, pneumonia, and liver cirrhosis. This large-scale retrospective study explores the epidemiological characteristics and disease spectrum of EBV infection across all age groups. The findings contribute to the improvement of diagnostic and management strategies for EBV infection.
Collapse
Affiliation(s)
- Beining Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youyu Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yilin Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Azhdari F, Faghih Z, Haghighat S, Jamalidoust M, Hosseini SY, Hashemi SMA, Sarvari J. Comparison of Epstein-Barr virus copy number in white blood cells of chronic lymphocytic leukemia patients with laboratory prognostic biomarker. BMC Res Notes 2024; 17:281. [PMID: 39354519 PMCID: PMC11446027 DOI: 10.1186/s13104-024-06942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The DNA load of EBV may play a part in CLL pathogenesis and prognosis. The objective of this cross-sectional study was to examine the prognostic value of EBV viral load in CLL patients in comparison with other common laboratory prognostic factors. MATERIALS AND METHODS Whole blood and sera from forty untreated CLL patients were collected. Next, DNA was extracted from total white blood cells (WBC), and TaqMan real-time PCR was performed to determine the EBV-DNA load by amplifying a specific fragment in the BNRF1 gene. In addition, parameters such as complete blood counts (CBC) and lactate dehydrogenase (LDH) were determined using an automated clinical laboratory analyzer. RESULTS Twenty-one patients (52.5%) were positive for EBV by real-time PCR analysis (ranged 20 to 30000 copies/µL). The difference in LDH mean levels between EBV positive and negative patients was marginally significant (P = 0.05). Furthermore, platelet (PLT) count (P = 0.03) and CD5+/CD19+ count (P = 0.04), between EBV positive and negative subgroups, were substantially different. In addition, individuals with a severe form of illness, as defined by an increase in LDH, a decrease in PLT, and an 11q deletion, had considerably higher EBV-DNA copy numbers (the ranges of viral loads were 9966.66 ± 20033 in the severe form vs. 137.13 ± 245.41 in the mild form). CONCLUSION The EBV-DNA load could be used as a prognostic factor in the initial examination of CLL patients to better characterize the disease outcome and prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Herpesvirus 4, Human/genetics
- Male
- Female
- Middle Aged
- Prognosis
- Aged
- Viral Load
- DNA, Viral/blood
- DNA, Viral/genetics
- Leukocytes/virology
- Epstein-Barr Virus Infections/blood
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Infections/genetics
- Cross-Sectional Studies
- Adult
- Aged, 80 and over
- Real-Time Polymerase Chain Reaction
- L-Lactate Dehydrogenase/blood
Collapse
Affiliation(s)
- Farkhondeh Azhdari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-1735, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Haghighat
- Hematology and Medical Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Jamalidoust
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-1735, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-1735, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-1735, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Wang W, Yuan X, Yu L, Pei F. Emapalumab as a therapeutic intervention for Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis: A case series. Medicine (Baltimore) 2024; 103:e39880. [PMID: 39331881 PMCID: PMC11441857 DOI: 10.1097/md.0000000000039880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
RATIONALE Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is characterized by a severe cytokine storm, heightened inflammatory response, and immune-mediated damage to tissues and organs. Standard treatment protocols for hemophagocytic lymphohistiocytosis often fall short in effectively controlling EBV-HLH, leading to a need for novel therapeutic options. Emapalumab, a monoclonal antibody targeting interferon-gamma, has shown promise due to its targeted cytokine modulation capabilities and favorable safety profile. This study aimed to evaluate the efficacy and safety of emapalumab in pediatric patients with EBV-HLH. PATIENT CONCERNS The case series involved 4 pediatric patients diagnosed with EBV-HLH who did not achieve disease control despite receiving comprehensive treatment. DIAGNOSES All 4 pediatric patients were diagnosed with EBV-HLH. INTERVENTIONS Emapalumab was introduced as an adjunctive therapeutic intervention alongside the HLH-94 or L-DEP regimens for these patients. OUTCOMES Among the 4 patients, 1 experienced severe multiorgan dysfunction and opted to discontinue therapy. The remaining 3 patients showed controlled disease progression with significant clinical improvements following emapalumab administration. These improvements included reduced levels of inflammatory markers, normalization of blood counts and liver function, and decreased Epstein-Barr virus viral load. LESSONS The findings suggest that emapalumab may be an effective and safe treatment option for pediatric EBV-HLH. However, further research is necessary to confirm these outcomes, especially in critically ill patients.
Collapse
Affiliation(s)
- Wen Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yuan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Yu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuyu Pei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Dolci MP, Donà C, Mapelli C, Nassisi M, Zicarelli F, Invernizzi A, Lombardi A, Casalino G, Viola F. Acute Retinal Necrosis Caused by Varicella Zoster Virus and Cytomegalovirus Co-Infection. Ocul Immunol Inflamm 2024:1-5. [PMID: 39320487 DOI: 10.1080/09273948.2024.2404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE To report the clinical course of two cases of acute retinal necrosis (ARN) caused by varicella zoster virus (VZV) and cytomegalovirus (CMV) co-infection detected by polymerase chain reaction (PCR) on aqueous tap. METHODS Observational case reports. RESULTS Two patients presented to our services with unilateral panuveitis suggestive of ARN complicated by hemorrhagic vasculitis and started empirical therapy. Aqueous PCR was performed on the same day and showed double positivity for VZV and CMV, which guided treatment. At follow-up, wide-field color fundus imaging and high-resolution optical coherence tomography showed resolution of active retinitis. CONCLUSION Our cases suggest that ARN complicated by hemorrhagic vasculitis may be secondary to CMV and VZV co-infection, both in patients with an unremarkable clinical history and in those with immunodeficiency. In our cases, aqueous PCR testing was of paramount importance to determine the aetiology of ARN and to adjust the antiviral therapy accordingly.
Collapse
Affiliation(s)
- Maria Paola Dolci
- Ophthalmology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Caterina Donà
- Ophthalmology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Mapelli
- Ophthalmology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Nassisi
- Ophthalmology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federico Zicarelli
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Alessandro Invernizzi
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
- Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Save Sight Institute, Sydney, Australia
| | - Alessandra Lombardi
- Microbiology Unit, Department of Biomedical and Clinical Science, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Giuseppe Casalino
- Ophthalmology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Viola
- Ophthalmology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Pourmaleki M, Jones CJ, Mellinghoff SD, Greenstein BD, Kumar P, Foronda M, Navarrete DA, Campos C, Roshal M, Schultz N, Shah SP, Schietinger A, Socci ND, Hollmann TJ, Dogan A, Mellinghoff IK. Multiplexed Spatial Profiling of Hodgkin Reed-Sternberg Cell Neighborhoods in Classic Hodgkin Lymphoma. Clin Cancer Res 2024; 30:3881-3893. [PMID: 38949890 PMCID: PMC11369618 DOI: 10.1158/1078-0432.ccr-24-0942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE Classic Hodgkin lymphoma (cHL) is a B-cell lymphoma that occurs primarily in young adults and, less frequently, in elderly individuals. A hallmark of cHL is the exceptional scarcity (1%-5%) of the malignant Hodgkin Reed-Sternberg (HRS) cells within a network of nonmalignant immune cells. Molecular determinants governing the relationship between HRS cells and their proximal microenvironment remain largely unknown. EXPERIMENTAL DESIGN We performed spatially resolved multiplexed protein imaging and transcriptomic sequencing to characterize HRS cell states, cellular neighborhoods, and gene expression signatures of 23.6 million cells from 36 newly diagnosed Epstein-Barr virus (EBV)-positive and EBV-negative cHL tumors. RESULTS We show that MHC-I expression on HRS cells is associated with immune-inflamed neighborhoods containing CD8+ T cells, MHC-II+ macrophages, and immune checkpoint expression (i.e., PD1 and VISTA). We identified spatial clustering of HRS cells, consistent with the syncytial variant of cHL, and its association with T-cell-excluded neighborhoods in a subset of EBV-negative tumors. Finally, a subset of both EBV-positive and EBV-negative tumors contained regulatory T-cell-high neighborhoods harboring HRS cells with augmented proliferative capacity. CONCLUSIONS Our study links HRS cell properties with distinct immunophenotypes and potential immune escape mechanisms in cHL.
Collapse
Affiliation(s)
- Maryam Pourmaleki
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell School of Medicine, New York, New York.
| | - Caitlin J. Jones
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Sabrina D. Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Brian D. Greenstein
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Priyadarshini Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Miguel Foronda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Daniel A. Navarrete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Carl Campos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Andrea Schietinger
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
- Immunology and Microbial Pathogenesis Program, Weill Cornell School of Medicine, New York, New York.
| | - Nicholas D. Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Travis J. Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ingo K. Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Pharmacology, Weill Cornell School of Medicine, New York, New York.
| |
Collapse
|
14
|
Furlano PL, Böhmig GA, Puchhammer-Stöckl E, Vietzen H. Mechanistic Understanding of EBV+Lymphoproliferative Disease Development After Transplantation. Transplantation 2024; 108:1867-1881. [PMID: 39166902 DOI: 10.1097/tp.0000000000004919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Posttransplant lymphoproliferative disorders (PTLDs) are among the most common malignant complications after transplantation, leading to a drastic reduction in patient survival rates. The majority of PTLDs are tightly linked to Epstein-Barr virus (EBV+PTLDs) and are the result of an uncontrolled proliferation of EBV-infected cells. However, although EBV infections are a common finding in transplant recipients, most patients with high EBV loads will never develop EBV+PTLD. Natural killer cells and EBV-specific CD8+ T lymphocytes are critical for controlling EBV-infected cells, and the impairment of these cytotoxic immune responses facilitates the unfettered proliferation of EBV-infected cells. Recent years have seen a considerable increase in available literature aiming to describe novel risk factors associated with the development of EBV+PTLD, which may critically relate to the strength of EBV-specific natural killer cell and EBV-CD8+ T lymphocyte responses. The accumulation of risk factors and the increased risk of developing EBV+PTLD go hand in hand. On the one hand, most of these risk factors, such as the level of immunosuppression or the EBV donor and recipient serologic mismatch, and distinct genetic risk factors are host related and affect cytotoxic EBV-specific immune responses. On the other hand, there is growing evidence that distinct EBV variants may have an increased malignant potential and are thus more likely to induce EBV+PTLD. Here, we aim to review, from a mechanistic point of view, the risk factors for EBV+PTLD in the host and the infecting EBV variants that may explain why only a minority of transplant recipients develop EBV+PTLD.
Collapse
Affiliation(s)
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Brantley KD, Tamimi RM. The association between infectious agents and breast cancer: a review of the epidemiologic evidence. Breast Cancer Res Treat 2024; 207:235-252. [PMID: 38971906 DOI: 10.1007/s10549-024-07388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Several viruses have been casually linked to human cancers, including cervical, nasopharyngeal, liver, sarcoma, and Merkel cell carcinomas. However, the etiologic contribution of viral infections to breast cancer, the number one incident cancer among women worldwide, is not well established. Among studies exploring associations of viruses with breast cancer, potential linkages have been identified between breast cancer and five viruses: beta retrovirus, (i.e., mouse mammary tumor virus), human papillomavirus, Epstein Barr virus. bovine leukemia virus, and human cytomegalovirus. METHODS In this review, we provide a comprehensive evaluation of epidemiological ecologic, case-control, case-only, and cohort studies investigating these associations. We discuss results from several existing reviews and meta-analyses, evaluate epidemiological studies published in the past five years, and assess the relationship between these viruses and breast tumor clinicopathological factors. RESULTS The strongest epidemiological evidence for a viral role in breast cancer exists for MMTV and HPV, though limitations include lack of prospective studies for MMTV and potential detection bias in HPV studies. Viral detection challenges have limited studies of EBV and HCMV. Fewer studies have evaluated BLV, and though it has been associated with higher risk of breast cancer, sample sizes are quite small. CONCLUSION: While epidemiologic evidence exists for an association between these five viruses and breast cancer, various methodological issues and lack of prospective studies preclude robust conclusions. Future research should prioritize establishing a temporal relationship between infection and disease, minimizing misclassification of detection assays, and further exploring the influence of co-infections.
Collapse
Affiliation(s)
- Kristen D Brantley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MS, USA.
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, USA
| |
Collapse
|
16
|
Portet Sulla V, Kadi A, Mouna L, Fenaux H, Cechura H, Rafek R, Di Ciccone JL, Warnakulasuriya F, Vauloup-Fellous C. Investigation of atypical serological profiles for Epstein-Barr virus (EBV). J Virol Methods 2024; 329:115002. [PMID: 39067186 DOI: 10.1016/j.jviromet.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Commercial immunoassays that detect IgG and IgM directed toward VCA and IgG EBNA are used in combination to assess EBV immune status. However, this strategy does not always confirm/exclude recent/past EBV infection or absence of immunity. OBJECTIVES The aim of our study was to perform complementary investigations on samples with atypical EBV serological profiles, in order to identify the clinical situation they correspond to. STUDY DESIGN EBV serology was performed using EBV VCA IgM/IgG and EBNA IgG LXL® DiaSorin assay. Complementary investigations included ELISA IgM VCA, immunoblots, CMV IgM/IgG and CMV IgG avidity, and EBV PCR. RESULTS In our study, 12810 EBV serological results were analyzed, and 3580 atypical profiles were detected (28 %). Among these latter, isolated VCA IgG represented 42.9 %, the three positive markers accounted for 29.1 %, isolated EBNA IgG represented 18.5 %, isolated VCA IgM accounted for 6.4 % and positive VCA IgM & positive EBNA IgG represented 3.1 %. VCA IgG detected alone were specific in 100 % cases and EBNA IgG detected alone were specific in 91.7 % cases. VCA IgM detected alone were false positive or due to a cross reaction with CMV in 52.8 % cases. The pattern positive VCA IgM and positive EBNA IgG correspond to a false positive in VCA IgM, EBNA IgG or both in 83.4 % cases. Positive EBV VCA IgM/IgG and EBNA IgG were unreliable to detect active EBV infection in 66.7 % cases. DISCUSSION Atypical EBV serological profiles may correspond to several clinical situations and complementary investigations allow to determine the immune status in more than 98.5 % cases.
Collapse
Affiliation(s)
- Vincent Portet Sulla
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France; Paris Saclay University, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France.
| | - Amina Kadi
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Lina Mouna
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Honorine Fenaux
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Hugo Cechura
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Rana Rafek
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Julia Lubrano Di Ciccone
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Fairly Warnakulasuriya
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France
| | - Christelle Vauloup-Fellous
- Division of Virology, WHO Rubella National Reference Laboratory, Dept of Biology Genetics, Paul Brousse Hospital, Paris Saclay University Hospital, APHP, Villejuif, France; Paris Saclay University, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Mukhopadhyay SS, Swan KF, Pridjian G, Kolls JK, Zhuang Y, Yin Q, Lasky JA, Flemington E, Morris CA, Lin Z, Morris GF. Gammaherpesvirus Infection Stimulates Lung Tumor-Promoting Inflammation. Pathogens 2024; 13:747. [PMID: 39338937 PMCID: PMC11434807 DOI: 10.3390/pathogens13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Lung tumor-promoting environmental exposures and γherpesvirus infections are associated with Type 17 inflammation. To test the effect of γherpesvirus infection in promoting lung tumorigenesis, we infected mutant K-Ras-expressing (K-RasLA1) mice with the murine γherpesvirus MHV68 via oropharyngeal aspiration. After 7 weeks, the infected mice displayed a more than 2-fold increase in lung tumors relative to their K-RasLA1 uninfected littermates. Assessment of cytokines in the lung revealed that expression of Type 17 cytokines (Il-6, Cxcl1, Csf3) peaked at day 7 post-infection. These observations correlated with the post-infection appearance of known immune mediators of tumor promotion via IL-17A in the lungs of tumor-bearing mice. Surprisingly, Cd84, an immune cell marker mRNA, did not increase in MHV68-infected wild-type mice lacking lung tumors. Csf3 and Cxcl1 protein levels increased more in the lungs of infected K-RasLA1 mice relative to infected wild-type littermates. Flow cytometric and transcriptomic analyses indicated that the infected K-RasLA1 mice had increased Ly6Gdim/Ly6Chi immune cells in the lung relative to levels seen in uninfected control K-RasLA1 mice. Selective methylation of adenosines (m6A modification) in immune-cell-enriched mRNAs appeared to correlate with inflammatory infiltrates in the lung. These observations implicate γherpesvirus infection in lung tumor promotion and selective accumulation of immune cells in the lung that appears to be associated with m6A modification of mRNAs in those cells.
Collapse
Affiliation(s)
- Sudurika S. Mukhopadhyay
- Departments of Microbiology & Immunology and Pathology & Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Jay K. Kolls
- Departments of Medicine & Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Yan Zhuang
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Qinyan Yin
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Joseph A. Lasky
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Erik Flemington
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Cindy A. Morris
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Zhen Lin
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Gilbert F. Morris
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| |
Collapse
|
18
|
Corallo S, Lasagna A, Filippi B, Alaimo D, Tortorella A, Serra F, Vanoli A, Pedrazzoli P. Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review. Pathogens 2024; 13:728. [PMID: 39338919 PMCID: PMC11435077 DOI: 10.3390/pathogens13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is a complex disease with various etiologies. While Helicobacter pylori infection is still one of the leading risk factors for GC, increasing evidence suggests a link between GC and other infective agents such as Epstein Bar Virus (EBV). EBV-associated gastric cancer (EBVaGC) is now recognized as a distinct subgroup of GC, and the complex interactions between the virus and gastric mucosa may influence its development. A recent integrative analysis of the genome and proteome of GC tissues by The Cancer Genome Atlas project has identified EBVaGC as a specific subtype characterized by PIK3CA and ARID1A mutations, extensive DNA hyper-methylation, and activation of immune signaling pathways. These molecular characteristics are markers of the unique molecular profile of this subset of GC and are potential targets for therapy. This review aims to provide an overview of the current knowledge on EBVaGC. It will focus on the epidemiology, clinic-pathological features, and genetic characteristics of EBVaGC. Additionally, it will discuss recent data indicating the potential use of EBV infection as a predictive biomarker of response to chemotherapy and immune checkpoint inhibitors. The review also delves into potential therapeutic approaches for EBVaGC, including targeted therapies and adoptive immunotherapy, highlighting the promising potential of EBV as a therapeutic target.
Collapse
Affiliation(s)
- Salvatore Corallo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Beatrice Filippi
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Domiziana Alaimo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Tortorella
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Serra
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Anatomic Pathology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
19
|
Mai Q, He B, Deng S, Zeng Q, Xu Y, Wang C, Pang Y, Zhang S, Li J, Zeng J, Huang L, Fu Y, Li C, Li T, Xu X, Zhang L. Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder. Exp Hematol Oncol 2024; 13:85. [PMID: 39160631 PMCID: PMC11334566 DOI: 10.1186/s40164-024-00553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (TCM) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical Universit, Guangzhou, 510515, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yanwen Xu
- Department of Obstetrics, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, 511402, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China
| | - Yunyi Pang
- Department of Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Zhang
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | | | - Liqin Huang
- Shenzhen Blood Center, Shenzhen, 518035, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, 510095, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China.
| | - Xiaojun Xu
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Hao YP. Evaluating the role of interleukin-2 and interleukin-12 in pediatric patients with concurrent Mycoplasma pneumoniae and Epstein-Barr virus infections. World J Clin Cases 2024; 12:5346-5353. [PMID: 39156096 PMCID: PMC11238690 DOI: 10.12998/wjcc.v12.i23.5346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) frequently causes respiratory infections in children, whereas Epstein-Barr virus (EBV) typically presents subclinical manifestations in immunocompetent pediatric populations. The incidence of MP and EBV co-infections is often overlooked clinically, with the contributory role of EBV in pulmonary infections alongside MP remaining unclear. AIM To evaluate the serum concentrations of interleukin-2 (IL-2) and interleukin-12 (IL-12) in pediatric patients with MP pneumonia co-infected with EBV and assess their prognostic implications. METHODS We retrospectively analyzed clinical data from patients diagnosed with MP and EBV co-infection, isolated MP infection, and a control group of healthy children, spanning from January 1, 2018 to December 31, 2021. Serum IL-2 and IL-12 levels were quantified using enzyme-linked immunosorbent assay. Logistic regression was employed to identify factors influencing poor prognosis, while receiver operating characteristic (ROC) curves evaluated the prognostic utility of serum IL-2 and IL-12 levels in co-infected patients. RESULTS The co-infection group exhibited elevated serum IL-2 and C-reactive protein (CRP) levels compared to both the MP-only and control groups, with a reverse trend observed for IL-12 (P < 0.05). In the poor prognosis cohort, elevated CRP and IL-2 levels, alongside prolonged fever duration, contrasted with reduced IL-12 levels (P < 0.05). Logistic regression identified elevated IL-2 as an independent risk factor and high IL-12 as a protective factor for adverse outcomes (P < 0.05). ROC analysis indicated that the area under the curves for IL-2, IL-12, and their combination in predicting poor prognosis were 0.815, 0.895, and 0.915, respectively. CONCLUSION Elevated serum IL-2 and diminished IL-12 levels in pediatric patients with MP and EBV co-infection correlate with poorer prognosis, with combined IL-2 and IL-12 levels offering enhanced predictive accuracy.
Collapse
Affiliation(s)
- Yan-Ping Hao
- Department of Pediatrics, Maternal and Child Health Hospital, Shaoxing 312400, Zhejiang Province, China
| |
Collapse
|
21
|
Mannonen L, Jokela P, Kragh Thomsen M, Yerly S, Cilla G, Jarem D, Canchola JA, Hopkins M. Performance of the cobas EBV and cobas BKV assays: multi-site comparison of standardized quantitation. J Clin Microbiol 2024; 62:e0026724. [PMID: 39046255 PMCID: PMC11323559 DOI: 10.1128/jcm.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Guidelines recommend monitoring of Epstein-Barr virus (EBV) and BK virus (BKV) in solid organ and hematopoietic stem cell transplant patients. The majority of quantitative DNA testing for EBV and BKV employs unstandardized individual laboratory-developed testing solutions (LDTs), with implications for accuracy, reproducibility, and comparability between laboratories. The performance of the cobas EBV and cobas BKV assays was assessed across five laboratories, using the World Health Organization International Standards (WHO IS) for EBV and BKV, and the National Institute of Standards and Technology Quantitative Standard for BKV, and results were compared with the LDTs in use at the time. Methods were also compared using locally sourced clinical specimens. Variation was high when laboratories reported EBV or BKV DNA values using LDTs, where quantitative values were observed to differ by up to 1.5 log10 unit/mL between sites. Conversely, results from the cobas EBV and cobas BKV assays were accurate and reproducible across sites and on different testing days. Adjustment of LDTs using the international standards led to closer alignment between the assays; however, day-to-day reproducibility of LDTs remained high. In addition, BKV continued to show bias, indicating challenges with the commutability of the BKV International Standard. The cobas EBV and cobas BKV assays are automated, aligned to the WHO IS, and have the potential to reduce the variability in viral load testing introduced by differences in LDTs. Standardization of reporting values may eventually allow different centers to compare data to allow clinical decision thresholds to be established supporting improvements in patient management.IMPORTANCEThe application of center-specific cut-offs for clinical decisions and the variability of LDTs often hinder interpretation; thus, the findings reported here support the need for standardization in the field of post-transplant monitoring of EBV and BKV to improve patient management. Alongside the choice of assay, it is also important to consider which standard to use when deciding upon a testing methodology. This is a call to action for standardization, as treatment for EBV and BKV is driven by viral load test results, and the more accurate and comparable the test results are across institutions, the more informed and better the treatment decisions can be.
Collapse
Affiliation(s)
- Laura Mannonen
- Department of Clinical Microbiology, HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pia Jokela
- Department of Clinical Microbiology, HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Sabine Yerly
- Laboratory of Virology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Gustavo Cilla
- Department of Microbiology, Donostia University Hospital and Biodonostia Health Research Institute, San Sebastián, Spain
| | - Daniel Jarem
- Clinical Development and Medical Affairs, Roche Molecular Systems, Inc., Pleasanton, California, USA
| | - Jesse A. Canchola
- CDMA Biometrics, Biostatistics Group, Roche Molecular Systems, Inc., Pleasanton, California, USA
| | - Mark Hopkins
- Department of Virology, Barts Health NHS Trust, London, United Kingdom
- Department of Infection and Immunity, Liverpool University Hospitals NHS Trust, Liverpool, United Kingdom
| |
Collapse
|
22
|
Mouat IC, Zhu L, Aslan A, McColl BW, Allan SM, Smith CJ, Buckwalter MS, McCulloch L. Evidence of aberrant anti-epstein-barr virus antibody response, though no viral reactivation, in people with post-stroke fatigue. J Inflamm (Lond) 2024; 21:30. [PMID: 39135051 PMCID: PMC11321160 DOI: 10.1186/s12950-024-00402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Fatigue is a common complication of stroke that has a significant impact on quality of life. The biological mechanisms that underly post-stroke fatigue are currently unclear, however, reactivation of latent viruses and their impact on systemic immune function have been increasingly reported in other conditions where fatigue is a predominant symptom. Epstein-Barr virus (EBV) in particular has been associated with fatigue, including in long-COVID and myalgic encephalomyelitis/chronic fatigue syndrome, but has not yet been explored within the context of stroke. AIMS We performed an exploratory analysis to determine if there is evidence of a relationship between EBV reactivation and post-stroke fatigue. METHODS In a chronic ischemic stroke cohort (> 5 months post-stroke), we assayed circulating EBV by qPCR and measured the titres of anti-EBV antibodies by ELISA in patients with high fatigue (FACIT-F < 40) and low fatigue (FACIT-F > 41). Statistical analysis between two-groups were performed by t-test when normally distributed according to the Shapiro-Wilk test, by Mann-Whitney test when the data was not normally distributed, and by Fisher's exact test for categorical data. RESULTS We observed a similar incidence of viral reactivation between people with low versus high levels of post-stroke fatigue (5 of 22 participants (24%) versus 6 of 22 participants (27%)). Although the amount of circulating EBV was similar, we observed an altered circulating anti-EBV antibody profile in participants with high fatigue, with reduced IgM against the Viral Capsid Antigen (2.244 ± 0.926 vs. 3.334 ± 2.68; P = 0.031). Total IgM levels were not different between groups indicating this effect was specific to anti-EBV antibodies (3.23 × 105 ± 4.44 × 104 high fatigue versus 4.60 × 105 ± 9.28 × 104 low fatigue; P = 0.288). CONCLUSIONS These data indicate that EBV is not more prone to reactivation during chronic stroke recovery in those with post-stroke fatigue. However, the dysregulated antibody response to EBV may be suggestive of viral reactivation at an earlier stage after stroke.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, Institute for Regeneration and Repair South, University of Edinburgh, Edinburgh, UK
| | - Li Zhu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - Alperen Aslan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Division of Neuroscience, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and Repair South, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Motta A, Musella G, Dai Prà T, Ballini A, Dioguardi M, Bizzoca ME, Lo Muzio L, Cantore S. The literature discusses oral manifestations caused by sexually transmitted viruses: a narrative review. Minerva Dent Oral Sci 2024; 73:238-247. [PMID: 38869836 DOI: 10.23736/s2724-6329.24.04996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
This review provides practical recommendations for dental practitioners in dealing with oral lesions associated with sexually transmitted diseases (STDs), offering clinically relevant insights to increase the awareness of these diseases in the mainstream of everyday practice. STDs are acquired through unprotected vaginal, anal or oral sex and are caused by more than 30 different types of bacteria, viruses and protozoa. Saliva, precum, semen, vaginal secretions and menstrual blood could be likely vehicles of infections and defensive barriers to infection by pathogenic microbes could be represented via intact mucosal membrane, the diluent function of saliva, and the antimicrobial action of salivary enzymes that collectively contribute to oral health and protection. STD, can directly and indirectly affect mucous membranes, manifesting with characteristic diagnostic signs and lesions. Given their potential oral manifestations, dental professionals need a comprehensive understanding of STD. The findings of this review lay a foundation for comprehending several STDs, emphasizing the importance of physicians as well dental practitioners being open to discussing sexuality issues with patients and providing appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Motta
- Unit of Oral Surgery for Special Needs and Dentistry, Borgo Valsugana, Trento, Italy
| | - Gennaro Musella
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Tommaso Dai Prà
- Unit of Oral Surgery for Special Needs and Dentistry, Borgo Valsugana, Trento, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria E Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy -
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Cantore
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
24
|
Tomomasa D, Tanita K, Hiruma Y, Hoshino A, Kudo K, Azumi S, Shiota M, Yamaoka M, Eguchi K, Ishimura M, Tanaka Y, Iwatsuki K, Okuno K, Hama A, Sakamoto KI, Taga T, Goto K, Ota H, Ichiki A, Kanda K, Miyamura T, Endo S, Ohnishi H, Sasahara Y, Arai A, Fornier B, Imadome KI, Morio T, Latour S, Kanegane H. Highly sensitive detection of Epstein-Barr virus-infected cells by EBER flow FISH. Int J Hematol 2024; 120:241-251. [PMID: 38700651 DOI: 10.1007/s12185-024-03786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 07/29/2024]
Abstract
When Epstein-Barr virus (EBV) infection is suspected, identification of infected cells is important to understand the pathogenesis, determinine the treatment strategy, and predict the prognosis. We used the PrimeFlow™ RNA Assay Kit with a probe to detect EBV-encoded small RNAs (EBERs) and multiple surface markers, to identify EBV-infected cells by flow cytometry. We analyzed a total of 24 patients [11 with chronic active EBV disease (CAEBV), 3 with hydroa vacciniforme lymphoproliferative disorder, 2 with X-linked lymphoproliferative disease type 1 (XLP1), 2 with EBV-associated hemophagocytic lymphohistiocytosis, and 6 with posttransplant lymphoproliferative disorder (PTLD)]. We compared infected cells using conventional quantitative PCR methods and confirmed that infected cell types were identical in most patients. Patients with CAEBV had widespread infection in T and NK cells, but a small amount of B cells were also infected, and infection in patients with XLP1 and PTLD was not limited to B cells. EBV-associated diseases are believed to be complex pathologies caused by EBV infecting a variety of cells other than B cells. We also demonstrated that infected cells were positive for HLA-DR in patients with CAEBV. EBER flow FISH can identify EBV-infected cells with high sensitivity and is useful for elucidating the pathogenesis.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, UMR 1163, INSERM, Imagine Institute, Paris, France
| | - Yuriko Hiruma
- Faculty of Medicine, Tokyo Medical and Dental University (TMUD), Tokyo, Japan
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, UMR 1163, INSERM, Imagine Institute, Paris, France.
- Deparment of Child Health and Development, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shohei Azumi
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Mitsutaka Shiota
- Department of Pediatrics, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Masayoshi Yamaoka
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Tanaka
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Okuno
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Ken-Ichi Sakamoto
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Kimitoshi Goto
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haruka Ota
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Akihiro Ichiki
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kaori Kanda
- Department of Pediatrics, Gifu Municipal Hospital, Gifu, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Saori Endo
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ayako Arai
- Department of Hematology and Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Benjamin Fornier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, UMR 1163, INSERM, Imagine Institute, Paris, France
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP.Centre - Université Paris Cité, Paris, France
| | - Ken-Ichi Imadome
- Department for Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, UMR 1163, INSERM, Imagine Institute, Paris, France
| | - Hirokazu Kanegane
- Deparment of Child Health and Development, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
25
|
Marjańska A, Pogorzała M, Dziedzic M, Czyżewski K, Richert-Przygońska M, Dębski R, Bogiel T, Styczyński J. Impact of prophylaxis with rituximab on EBV-related complications after allogeneic hematopoietic cell transplantation in children. Front Immunol 2024; 15:1427637. [PMID: 39055711 PMCID: PMC11269116 DOI: 10.3389/fimmu.2024.1427637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Children undergoing allo-HCT are at high risk of EBV-related complications. The objective of the study was to analyze the impact of prophylactic post-transplant rituximab on EBV infection and EBV-PTLD in children after allo-HCT, to determine the risk factors for the development of EBV infection and EBV-PTLD and to determine their outcomes. Additionally, the impact of EBV-driven complications on transplant outcomes was analyzed. Methods Single center retrospective analysis of EBV-related complications in pediatric population undergoing allo-HCT, based on strategy of prophylaxis with rituximab. Overall 276 consecutive children, including 122 on prophylaxis, were analyzed for EBV-driven complications and transplant outcomes. Results Prophylaxis with rituximab resulted in significant reduction of EBV infection (from 35.1% to 20.5%; HR=2.7; p<0.0001), and EBV-PTLD (from 13.0% to 3.3%; HR=0.23; p=0.0045). A trend for improved survival was also observed (HR=0.66; p=0.068), while non-relapse mortality was comparable in both cohorts. The peak value of viral load was a risk factor in the development of EBV-PTLD: 10-fold higher peak viral load in comparison to the baseline 104 copies/mL, caused a 3-fold (HR=3.36; p<0.001) increase in the risk of EBV-PTLD. Rituximab treatment was effective as a preemptive therapy in 91.1%, and in 70.9% in EBV-PTLD. Patients who developed PTLD had dismal 5-year overall survival (29% vs 60%; p<0.001), and an increased risk of relapse (72% vs 35%; p=0.024). Conclusions Rituximab for prophylaxis of EBV infection and EBV-PTLD was highly effective in pediatric population. Treatment of EBV-PTLD was successful in 70%, however the occurrence of EBV-PTLD was associated with an increased risk of relapse of primary malignant disease.
Collapse
Affiliation(s)
- Agata Marjańska
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Monika Pogorzała
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Magdalena Dziedzic
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Krzysztof Czyżewski
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Monika Richert-Przygońska
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Robert Dębski
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| | - Tomasz Bogiel
- Department of Microbiology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University Torun, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
26
|
Isola S, Gammeri L, Furci F, Gangemi S, Pioggia G, Allegra A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int J Mol Sci 2024; 25:7284. [PMID: 39000393 PMCID: PMC11241675 DOI: 10.3390/ijms25137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Vitamin C is a water-soluble vitamin introduced through the diet with anti-inflammatory, immunoregulatory, and antioxidant activities. Today, this vitamin is integrated into the treatment of many inflammatory pathologies. However, there is increasing evidence of possible use in treating autoimmune and neoplastic diseases. We reviewed the literature to delve deeper into the rationale for using vitamin C in treating this type of pathology. There is much evidence in the literature regarding the beneficial effects of vitamin C supplementation for treating autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) and neoplasms, particularly hematological neoplastic diseases. Vitamin C integration regulates the cytokines microenvironment, modulates immune response to autoantigens and cancer cells, and regulates oxidative stress. Moreover, integration therapy has an enhanced effect on chemotherapies, ionizing radiation, and target therapy used in treating hematological neoplasm. In the future, integrative therapy will have an increasingly important role in preventing pathologies and as an adjuvant to standard treatments.
Collapse
Affiliation(s)
- Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Luca Gammeri
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
27
|
Luo S, Yan P, Wang X, Ren X, Sun K, Guo L, Lv J, Su X, Zhao K, Chen J, Wang R. Talaromyces marneffei: A challenging diagnosis in a kidney transplant patient. Clin Case Rep 2024; 12:e9028. [PMID: 38911919 PMCID: PMC11192592 DOI: 10.1002/ccr3.9028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 06/25/2024] Open
Abstract
Key Clinical Message In addition to post-transplant lymphoproliferative disorders, it is necessary to be alert to the drug-resistant bacteria or fungal infection, especially Talaromyces marneffei, in kidney transplant patients who have failed antibiotic treatment and whose PET-CT indicates high metabolic mass in the transplanted kidney with a large number of other organs and lymph nodes. Abstract Talaromyces marneffei (TM) is a rare pathogenic fungus that primarily affects individuals with compromised immune systems. Post-transplant lymphoproliferative disorders (PTLD) are serious complications that can occur after solid organ and cell transplantation. Both TM infection and PTLD can invade the monocyte-macrophage system and often manifest as extranodal masses. This case report describes a kidney transplant patient who presented with symptoms of frequent, urgent, and painful urination over 6 months. Pulmonary CT scans revealed multiple nodules, and PET-CT demonstrated enlarged lymph nodes in the lungs and the transplanted kidney. The clinical manifestations closely mimicked those of PTLD. The confirmation of TM was achieved through pathogen metagenomic next-generation sequencing and renal biopsy. Unfortunately, despite receiving treatment with antifungal agents, anti-infective therapy, the patient's condition did not respond favorably, ultimately resulting in their unfortunate demise due to COVID-19.
Collapse
Affiliation(s)
- Sulin Luo
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiangChina
- National Key Clinical Department of Kidney DiseasesChina
- Institute of NephrologyZhejiang UniversityHangzhouChina
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouChina
| | - Pengpeng Yan
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiangChina
- National Key Clinical Department of Kidney DiseasesChina
- Institute of NephrologyZhejiang UniversityHangzhouChina
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouChina
| | - Xingxia Wang
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of Nephrology903rd Hospital of PLAHangzhouChina
| | - Xue Ren
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of Nephrology, Huzhou Central HospitalZhejiang ProvinceHuzhouChina
| | - Ke Sun
- Department of Pathology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Luying Guo
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiangChina
- National Key Clinical Department of Kidney DiseasesChina
- Institute of NephrologyZhejiang UniversityHangzhouChina
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouChina
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiangChina
- National Key Clinical Department of Kidney DiseasesChina
- Institute of NephrologyZhejiang UniversityHangzhouChina
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouChina
| | - Xinhui Su
- Department of Nuclear Medicine, PET Centre, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Kui Zhao
- Department of Nuclear Medicine, PET Centre, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiangChina
- National Key Clinical Department of Kidney DiseasesChina
- Institute of NephrologyZhejiang UniversityHangzhouChina
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouChina
| | - Rending Wang
- Kidney Disease Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiangChina
- National Key Clinical Department of Kidney DiseasesChina
- Institute of NephrologyZhejiang UniversityHangzhouChina
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouChina
| |
Collapse
|
28
|
Edwards KR, Malhi H, Schmidt K, Davis AR, Homad LJ, Warner NL, Chhan CB, Scharffenberger SC, Gaffney K, Hinkley T, Potchen NB, Wang JY, Price J, McElrath MJ, Olson J, King NP, Lund JM, Moodie Z, Erasmus JH, McGuire AT. A gH/gL-encoding replicon vaccine elicits neutralizing antibodies that protect humanized mice against EBV challenge. NPJ Vaccines 2024; 9:120. [PMID: 38926438 PMCID: PMC11208421 DOI: 10.1038/s41541-024-00907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Epstein-Barr virus (EBV) is associated with several malignancies, neurodegenerative disorders and is the causative agent of infectious mononucleosis. A vaccine that prevents EBV-driven morbidity and mortality remains an unmet need. EBV is orally transmitted, infecting both B cells and epithelial cells. Several virally encoded proteins are involved in entry. The gH/gL glycoprotein complex is essential for infectivity irrespective of cell type, while gp42 is essential for infection of B cells. gp350 promotes viral attachment by binding to CD21 or CD35 and is the most abundant glycoprotein on the virion. gH/gL, gp42 and gp350, are known targets of neutralizing antibodies and therefore relevant immunogens for vaccine development. Here, we developed and optimized the delivery of several alphavirus-derived replicon RNA (repRNA) vaccine candidates encoding gH/gL, gH/gL/gp42 or gp350 delivered by a cationic nanocarrier termed LION™. The lead candidate, encoding full-length gH/gL, elicited high titers of neutralizing antibodies that persisted for at least 8 months and a vaccine-specific CD8+ T cell response. Transfer of vaccine-elicited IgG protected humanized mice from EBV-driven tumor formation and death following high-dose viral challenge. These data demonstrate that LION/repRNA-gH/gL is an ideal candidate vaccine for preventing EBV infection and/or related malignancies in humans.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amelia R Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Crystal B Chhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Samuel C Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Nicole B Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jing Yang Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - James Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Polz A, Morshed K, Drop B, Polz-Dacewicz M. Serum NF-κB in Epstein-Barr Virus-Related Oropharyngeal Carcinoma Diagnostic Usability. Cancers (Basel) 2024; 16:2328. [PMID: 39001390 PMCID: PMC11240430 DOI: 10.3390/cancers16132328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Early diagnosis and effective therapy are the fundamental challenge for modern oncology. Hence, many researchers focus on the search for new or improved biomarkers. Due to the great importance of nuclear factor kappa B (NF-κB) in physiological and pathological processes, we focused on assessing its usefulness as a biomarker in OPSCC. The purpose of the research presented here was to evaluate the prevalence and the level of NF-κB in the serum of OPSCC patients (ELISA). Serum NF-κB levels were also assessed depending on the degree of histological differentiation of the tumor and TN classification. Additionally, we considered the existence of a correlation between the concentration of NF-κB and EBV antibody titers, viral load and selected MMPs-MMP3 and MMP9. Taken together, the obtained results demonstrated that NF-κB level was significantly higher among patients with EBV-related OPSCC than among those without EBV. In addition, the level of NF-κB was significantly higher in more advanced clinical stages. Moreover, a positive correlation was found between the concentration of NF-κB and the level of selected EBV antibodies, viral load and both tested MMPs. The diagnostic accuracy of NF-κB was confirmed by ROC analysis.
Collapse
Affiliation(s)
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, Casemiro Pulaski Radom University, 26-600 Radom, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Edwards KR, Schmidt K, Homad LJ, Kher GM, Xu G, Rodrigues KA, Ben-Akiva E, Abbott J, Prlic M, Newell EW, De Rosa SC, Irvine DJ, Pancera M, McGuire AT. Vaccination with nanoparticles displaying gH/gL from Epstein-Barr virus elicits limited cross-protection against rhesus lymphocryptovirus. Cell Rep Med 2024; 5:101587. [PMID: 38781964 PMCID: PMC11228584 DOI: 10.1016/j.xcrm.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Collapse
Affiliation(s)
- Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karina Schmidt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gargi M Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Guoyue Xu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joe Abbott
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Meng Y, Li R, Ding J, Xiang B, Wang Q, Wang M, Tang K. Clinical characteristics and literature review of chronic active Epstein-Barr virus-associated enteritis. Clin Case Rep 2024; 12:e8919. [PMID: 38845803 PMCID: PMC11154792 DOI: 10.1002/ccr3.8919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
Chronic active Epstein-Barr virus (EBV) infection-associated enteritis (CAEAE) in nonimmunodeficient individuals is rare. To report a case of CAEAE, relevant articles were searched through databases. The clinical manifestations, endoscopic findings, strategies of treatment, prognoses, and follow-up results of CAEAE patients were analyzed. Including this report, seven citations in the literature provide descriptions of 27 cases of CAEAE. There were 21 males and six females, with a mean age of 40 years. The main clinical manifestations were fever (25/27), abdominal pain (14/27), diarrhea (16/27), hematochezia or bloody stools (13/27), and decreased hemoglobin and red blood cell counts in routine blood tests (14/27). Elevations in inflammatory markers, white blood cell (WBC) counts, and C-reactive protein (CRP) were common. Coagulation was often abnormal. Histopathology confirmed EBV-encoded small nuclear RNA (EBER) in the affected tissue via in situ hybridization. The average serum EBV DNA load was 6.3 × 10^5 copies/mL. All patients had varying degrees of intestinal ulcers endoscopically, and the ulcers and pathology were uncharacterized and misdiagnosed mostly as inflammatory bowel disease (IBD). The course of the disease was progressive and later complicated by intestinal bleeding, intestinal perforation, septic shock, and a high rate of emergency surgery. However, the conditions of the patients often did not improve after surgery, and some patients soon died due to reperforation or massive hematochezia. Hormone and antiviral treatment had no obvious effect. There was a significant difference in surgical and nonsurgical survival (p < 0.05). The proportion of patients who died within 6 months was as high as 63.6% (7/11). CAEAE belongs to a group of rare, difficult conditions, has an insidious clinical course, has a high case fatality rate, and may later develop into EBV-positive lymphoproliferative disorder (EBV-LPD), which in turn leads to carcinogenesis. Clinicians should raise awareness that in patients with multiple ulcers in the intestine of unknown etiology, attention should be paid to EBV serology, and histology to make the diagnosis as early as possible.
Collapse
Affiliation(s)
- Yajie Meng
- Department of GastroenterologyThe People's Hospital of NanchuanChongqingChina
| | - Rendong Li
- The People's Hospital of NanchuanChongqingChina
| | - JieWen Ding
- Department of GastroenterologyThe People's Hospital of NanchuanChongqingChina
| | - Bo Xiang
- Department of GastroenterologyThe People's Hospital of NanchuanChongqingChina
| | - Qin Wang
- Department of GastroenterologyThe People's Hospital of NanchuanChongqingChina
| | - Min Wang
- Department of GastroenterologyThe People's Hospital of NanchuanChongqingChina
| | - KeJiang Tang
- Department of GastroenterologyThe People's Hospital of NanchuanChongqingChina
| |
Collapse
|
32
|
Yao Z, Liang M, Zhu S. Infectious factors in myocarditis: a comprehensive review of common and rare pathogens. Egypt Heart J 2024; 76:64. [PMID: 38789885 PMCID: PMC11126555 DOI: 10.1186/s43044-024-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Myocarditis is a significant health threat today, with infectious agents being the most common cause. Accurate diagnosis of the etiology of infectious myocarditis is crucial for effective treatment. MAIN BODY Infectious myocarditis can be caused by viruses, prokaryotes, parasites, and fungi. Viral infections are typically the primary cause. However, some rare opportunistic pathogens can also damage heart muscle cells in patients with immunodeficiencies, neoplasms and those who have undergone heart surgery. CONCLUSIONS This article reviews research on common and rare pathogens of infectious myocarditis, emphasizing the complexity of its etiology, with the aim of helping clinicians make an accurate diagnosis of infectious myocarditis.
Collapse
Affiliation(s)
- Zongjie Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qindao, China.
| | - Mingjun Liang
- Department of Intensive Care Medicine, Shanghai Six People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Zhu
- Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Hsu CL, Chang YS, Li HP. Molecular Diagnosis of Nasopharyngeal Carcinoma: Past and Future. Biomed J 2024:100748. [PMID: 38796105 DOI: 10.1016/j.bj.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originated from the nasopharynx epithelial cells and has been linked with Epstein-Barr virus (EBV) infection, dietary habits, environmental and genetic factors. It is a common malignancy in Southeast Asia, especially with gender preference among men. Due to its non-specific symptoms, NPC is often diagnosed at a late stage. Thus, the molecular diagnosis of NPC plays a crucial role in early detection, treatment selection, disease monitoring, and prognosis prediction. This review aims to provide a summary of the current state and the latest emerging molecular diagnostic techniques for NPC, including EBV-related biomarkers, gene mutations, liquid biopsy, and DNA methylation. Challenges and potential future directions of NPC molecular diagnosis will be discussed.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Hsin-Pai Li
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan.
| |
Collapse
|
34
|
Park JK, Lee EB, Winthrop KL. What rheumatologists need to know about mRNA vaccines: current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:687-695. [PMID: 38413167 DOI: 10.1136/ard-2024-225492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Messenger RNA (mRNA) vaccines as a novel vaccine platform offer new tools to effectively combat both emerging and existing pathogens which were previously not possible. The 'plug and play' feature of mRNA vaccines enables swift design and production of vaccines targeting complex antigens and rapid incorporation of new vaccine constituents as needed. This feature makes them likely to be adopted for widespread clinical use in the future.Currently approved mRNA vaccines include only those against SARS-CoV-2 virus. These vaccines demonstrate robust immunogenicity and offer substantial protection against severe disease. Numerous mRNA vaccines against viral pathogens are in the early to late phase of development. Several mRNA vaccines for influenza are tested in clinical trials, with some already in phase 3 studies. Other vaccines in the early and late phases of development include those targeting Cytomegalovirus, varicella zoster virus, respiratory syncytial virus and Epstein-Barr virus. Many of these vaccines will likely be indicated for immunosuppressed populations including those with autoimmune inflammatory rheumatic diseases (AIIRD). This review focuses on the mechanism, safety and efficacy of mRNA in general and summarises the status of mRNA vaccines in development for common infectious diseases of particular interest for patients with AIIRD.
Collapse
Affiliation(s)
- Jin Kyun Park
- Rheumatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
35
|
Li F, Guo L, Li Q, Xu H, Fu Y, Huang L, Feng G, Liu G, Chen X, Xie Z. Changes in the epidemiology and clinical characteristics of viral gastroenteritis among hospitalized children in the Mainland of China: a retrospective study from 2016 to 2020. BMC Pediatr 2024; 24:303. [PMID: 38704530 PMCID: PMC11069194 DOI: 10.1186/s12887-024-04776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Acute gastroenteritis (AGE) causes significant morbidity in children worldwide; however, the disease burden of children hospitalized with viral gastroenteritis in China has been rarely described. Through this study, we analyzed the data of hospitalized children with viral gastroenteritis to explore the changes in the epidemiology and clinical characteristics of viral gastroenteritis in the mainland of China. METHODS Data were extracted from Futang Children's Medical Development Research Center (FRCPD), between 2016 and 2020, across 27 hospitals in 7 regions. The demographics, geographic distribution, pathogenic examination results, complications, hospital admission date, length of hospital stays, hospitalization charges and outcomes were collected and analyzed. RESULTS Viral etiological agents included rotavirus (RV), adenovirus (ADV), norovirus (NV) and coxsackievirus (CV) that were detected in 25,274 (89.6%), 1,047 (3.7%), 441 (1.5%) and 83 (0.3%) cases. There was a higher prevalence of RV and NV infection among children younger than 3 years of age. RV and NV had the highest detection rates in winter, while ADV in summer. Children with viral gastroenteritis were often accompanied by other diseases, such as myocardial diseases (10.98-31.04%), upper respiratory tract diseases (1.20-20.15%), and seizures (2.41-14.51%). Among those cases, the co-infection rate with other pathogens was 6.28%, with Mycoplasma pneumoniae (M. pneumoniae), Epstein-Barr virus (EBV), and influenza virus (FLU) being the most common pathogens. The median length of stay was 5 days, and the median cost of hospitalization corresponded to587 US dollars. CONCLUSIONS This finding suggests that viral gastroenteritis, especially those caused by RV, is a prevalent illness among younger children. Co-infections and the presence of other diseases are common. The seasonality and regional variation of viral etiological agents highlight the need for targeted prevention and control measures. Although viral gastroenteritis rarely leads to death, it also results in a significant economic burden on healthcare systems.
Collapse
Affiliation(s)
- Fei Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lingyun Guo
- Department of Infectious Disease, National Center for Children's Health, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hui Xu
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yiliang Fu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Luci Huang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guoshuang Feng
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Gang Liu
- Department of Infectious Disease, National Center for Children's Health, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
36
|
Vittayawacharin P, Kongtim P, Chu Y, June CH, Bollard CM, Ciurea SO. Adoptive cellular therapy after hematopoietic stem cell transplantation. Am J Hematol 2024; 99:910-921. [PMID: 38269484 DOI: 10.1002/ajh.27204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Effective cellular therapy using CD19 chimeric antigen receptor T-cells for the treatment of advanced B-cell malignancies raises the question of whether the administration of adoptive cellular therapy (ACT) posttransplant could reduce relapse and improve survival. Moreover, several early phase clinical studies have shown the potential beneficial effects of administration of tumor-associated antigen-specific T-cells and natural killer cells posttransplant for high-risk patients, aiming to decrease relapse and possibly improve survival. In this article, we present an in-depth review of ACT after transplantation, which has the potential to significantly improve the efficacy of this procedure and revolutionize this field.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital and The George Washington University, Washington, DC, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
37
|
Amjad W, Hamaad Rahman S, Schiano TD, Jafri SM. Epidemiology and Management of Infections in Liver Transplant Recipients. Surg Infect (Larchmt) 2024; 25:272-290. [PMID: 38700753 DOI: 10.1089/sur.2023.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Background: Improvements in liver transplant (LT) outcomes are attributed to advances in surgical techniques, use of potent immunosuppressants, and rigorous pre-LT testing. Despite these improvements, post-LT infections remain the most common complication in this population. Bacteria constitute the most common infectious agents, while fungal and viral infections are also frequently encountered. Multi-drug-resistant bacterial infections develop because of polymicrobial overuse and prolonged hospital stays. Immediate post-LT infections are commonly caused by viruses. Conclusions: Appropriate vaccination, screening of both donor and recipients before LT and antiviral prophylaxis in high-risk individuals are recommended. Antimicrobial drug resistance is common in high-risk LT and associated with poor outcomes; epidemiology and management of these cases is discussed. Additionally, we also discuss the effect of coronavirus disease 2019 (COVID-19) infection and monkeypox in the LT population.
Collapse
Affiliation(s)
- Waseem Amjad
- Gastroenterology and Hepatology, University of Maryland, Baltimore, Maryland, USA
| | | | - Thomas D Schiano
- Recanati-Miller Transplantation Institute, Division of Liver Diseases, Mount Sinai Medical Center, New York, New York, USA
| | - Syed-Mohammed Jafri
- Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
38
|
Xu Y, Li M, Lin M, Lv Y, Cui D, Wang Y, Xie J. A Multiplex Fluorescence of Loop Primer Upon Self-Dequenching Loop-Mediated Isothermal Amplification Assay for the Detection of Epstein-Barr Virus and Human Parvovirus B19 in Clinical Transplant Samples. Viral Immunol 2024; 37:177-185. [PMID: 38625025 DOI: 10.1089/vim.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Viral infections are major causes of mortality in solid-organ and hematopoietic stem cell transplant recipients. Epstein-Barr virus (EBV) and Parvovirus B19 (B19V) are among the common viral infections after transplantation and were recommended for increased screening in relevant guidelines. Therefore, the development of rapid, specific, and cost-effective diagnostic methods for EBV and B19V is of paramount importance. We applied Fluorescence of Loop Primer Upon Self-Dequenching Loop-mediated Isothermal Amplification (FLOS-LAMP) for the first time to develop a novel multiplex assay for the detection of EBV and B19V; the fluorophore attached to the probe are self-quenched in unbound state. After binding to the dumbbell-shaped DNA target, the fluorophore is dequenched, resulting in fluorescence development. The novel multiplex FLOS-LAMP assay was optimized by testing various ratios of primer sets. This novel assay, with great specificity, did not cross-react with the common virus. For the detection of EBV and B19V, the limits of detection could reach 969 and 798 copies/μL, respectively, and the assay could be completed within 25 min. Applying this novel assay to detect 200 clinical transplant individuals indicated that the novel assay had high specificity and good sensitivity. We developed multiplex FLOS-LAMP assay for the detection of EBV and B19V, which has the potential to become an important tool for clinical transplant patient screening.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miaomiao Li
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengjiao Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongjun Wang
- Key Laboratory of Blood Safety Research of Zhejiang Province, Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Coupland L, Woodward K, Dervisevic S, Hale R, Brolly S. Analytical and Clinical Performance of the NeuMoDx™ Platform for Cytomegalovirus and Epstein-Barr Virus Viral Load Testing. Viruses 2024; 16:671. [PMID: 38793553 PMCID: PMC11125657 DOI: 10.3390/v16050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
DNA assays for viral load (VL) monitoring are key tools in the management of immunocompromised patients with cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection. In this study, the analytical and clinical performances of the NeuMoDx™ CMV and EBV Quant Assays were compared with artus CMV and EBV QS-RGQ Kits in a primary hospital testing laboratory. Patient plasma samples previously tested using artus kits were randomly selected for testing by NeuMoDx assays. The NeuMoDx CMV Quant Assay and artus CMV QS-RGQ Kit limits of detection (LoDs) are 20.0 IU/mL and 69.7 IU/mL, respectively; 33/75 (44.0%) samples had CMV DNA levels above the LoD of both assays. The Pearson correlation coefficient was 0.9503; 20 samples (60.6%) had lower NeuMoDx CMV quantification values versus the artus kit. The LoD of the NeuMoDx EBV Quant Assay and artus EBV QS-RGQ Kit are 200 IU/mL and 22.29 IU/mL, respectively; 16/75 (21.3%) samples had EBV DNA levels above the LoD of both assays. The Pearson correlation coefficient was 0.8990. EBV quantification values with the NeuMoDx assay were higher versus the artus kit in 15 samples (93.8%). In conclusion, NeuMoDx CMV and EBV Quant Assays are sensitive and accurate tools for CMV and EBV DNA VL quantification.
Collapse
Affiliation(s)
- Lindsay Coupland
- Microbiology Department, Eastern Pathology Alliance, Norfolk and Norwich University Hospital NHS Foundation Trust, NRP Innovation Centre, Norwich Research Park, Colney, Norwich NR4 7GJ, UK; (K.W.); (S.D.); (R.H.); (S.B.)
| | | | | | | | | |
Collapse
|
40
|
Wu H, Zhou HY, Zheng H, Wu A. Towards Understanding and Identification of Human Viral Co-Infections. Viruses 2024; 16:673. [PMID: 38793555 PMCID: PMC11126107 DOI: 10.3390/v16050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Viral co-infections, in which a host is infected with multiple viruses simultaneously, are common in the human population. Human viral co-infections can lead to complex interactions between the viruses and the host immune system, affecting the clinical outcome and posing challenges for treatment. Understanding the types, mechanisms, impacts, and identification methods of human viral co-infections is crucial for the prevention and control of viral diseases. In this review, we first introduce the significance of studying human viral co-infections and summarize the current research progress and gaps in this field. We then classify human viral co-infections into four types based on the pathogenic properties and species of the viruses involved. Next, we discuss the molecular mechanisms of viral co-infections, focusing on virus-virus interactions, host immune responses, and clinical manifestations. We also summarize the experimental and computational methods for the identification of viral co-infections, emphasizing the latest advances in high-throughput sequencing and bioinformatics approaches. Finally, we highlight the challenges and future directions in human viral co-infection research, aiming to provide new insights and strategies for the prevention, control, diagnosis, and treatment of viral diseases. This review provides a comprehensive overview of the current knowledge and future perspectives on human viral co-infections and underscores the need for interdisciplinary collaboration to address this complex and important topic.
Collapse
Affiliation(s)
- Hui Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China;
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China;
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| |
Collapse
|
41
|
Chavoshpour-Mamaghani S, Shoja Z, Jalilvand S. The Prevalence of Epstein-Barr Virus in Normal, Premalignant, and Malignant Uterine Cervical Samples in Iran. Intervirology 2024; 67:64-71. [PMID: 38621370 PMCID: PMC11251647 DOI: 10.1159/000538734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION It is suggested that Epstein-Barr virus (EBV) may play an important role in cervical cancer development. Most studies found a higher rate of EBV in cervical cancer samples in comparison to premalignant and normal groups. In this regard, this study aimed to investigate the prevalence of EBV in cervical samples. METHODS In total, 364 samples from 179 healthy subjects, 124 women with premalignant lesions, and 61 patients with cervical cancer were investigated using nested-PCR. RESULTS The mean age ± SE was 54.1 ± 13.4 in women with cervical cancer, 36.1 ± 9.4 among women with premalignant lesions, and 36.6 ± 11.5 in healthy individuals. In total, 290 out of 364 samples were human papillomavirus (HPV) positive and the following HPV genotypes were detected among them: HPV 16/18 was found in 43.1%, 23.9%, and 65.5% of normal, premalignant, and malignant samples, respectively, and other high-risk types were detected in 56.9% of normal, 76.1% of premalignant, and 34.5% of malignant samples. The prevalence of EBV was found to be 9.8%, 2.4%, and 2.8% in cervical cancer, premalignant lesions, and normal specimens, respectively, and the difference was statistically significant (p = 0.028). The overall frequency of coinfection between EBV and HPV was shown to be 3.6%. The coinfection was more prevalent among HPV 16/18-infected samples than other high-risk HPVs (6.6 vs. 2.9%) although the difference was not reached a statistically significant difference (p = 0.23). CONCLUSION Our findings indicated that EBV could play an important role as a cofactor in the progression of cervical cancer. However, future studies with larger sample sizes and the expression analysis of EBV transcripts or proteins are mandatory.
Collapse
Affiliation(s)
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Najib A, Arndt C, Henry A. Frosted branch angiitis associated with Epstein-Barr virus infection. J Fr Ophtalmol 2024; 47:104034. [PMID: 38378392 DOI: 10.1016/j.jfo.2023.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/09/2023] [Indexed: 02/22/2024]
Affiliation(s)
- A Najib
- Service d'ophtalmologie, CHU de Charles-Nicolle, 1, rue de Germont, 76031 Rouen cedex, France.
| | - C Arndt
- Service d'ophtalmologie, hôpital Robert-Debré, centre hospitalier universitaire de Reims, rue du Général Koenig, 51100 Reims, France
| | - A Henry
- Service d'ophtalmologie, hôpital Robert-Debré, centre hospitalier universitaire de Reims, rue du Général Koenig, 51100 Reims, France
| |
Collapse
|
43
|
Trunfio M, Sacchi A, Vai D, Pittaluga F, Croce M, Cavallo R, Imperiale D, Bonora S, Di Perri G, Letendre SL, Calcagno A. Intrathecal production of anti-Epstein-Barr virus viral capsid antigen IgG is associated with neurocognition and tau proteins in people with HIV. AIDS 2024; 38:477-486. [PMID: 37939156 DOI: 10.1097/qad.0000000000003775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
OBJECTIVE HIV and Epstein-Barr virus (EBV) co-infection has been linked to increased immune activation and larger HIV reservoir. We assessed whether anti-EBV humoral responses are associated with increased cerebrospinal fluid (CSF) inflammation and with neurocognitive impairment (NCI) in people with HIV (PWH). DESIGN Cross-sectional analysis in 123 EBV-seropositive PWH either on antiretroviral therapy ( n = 70) or not. METHODS Serum and CSF anti-EBV viral capsid antigen immunoglobulin G (anti-EVI) and CSF EBV DNA were measured by commercial immunoassay and RT-PCR. Seventy-eight participants without neurological confounding factors underwent neurocognitive assessment (Global Deficit Score, GDS). CSF total tau and 181-phosphorylated-tau (ptau) were measured by immunoassays together with biomarkers of blood-brain barrier (BBB) integrity, immune activation, astrocytosis, and intrathecal synthesis. Logistic and linear regressions and moderation analysis were used to investigate the relationships between CSF anti-EVI, GDS, and biomarkers. RESULTS Twenty-one (17.1%) and 22 participants (17.9%) had detectable CSF anti-EVI (10.5-416.0 U/ml) and CSF EBV DNA (25-971 copies/ml). After adjusting for BBB integrity, age, and clinical factors, the presence of CSF anti-EVI was only associated with serum levels of anti-EVI, and not with CSF EBV DNA. CSF anti-EVI, tau and ptau showed reciprocal interactions affecting their associations with GDS. After adjusting for demographics and clinical parameters, higher CSF anti-EVI levels were associated with worse GDS (aβ 0.45, P < 0.001), and CSF levels of tau and ptau had a moderation effect on the strength of this association (models' P < 0.001). CONCLUSION Humoral immune responses against EBV within the central nervous system may contribute to NCI in PWH through mechanisms that involve neuronal injury.
Collapse
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California, UCSD, La Jolla, CA, USA
| | - Alessandra Sacchi
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino
| | - Daniela Vai
- Neurology unit, Maria Vittoria Hospital, Turin, Italy
| | - Fabrizia Pittaluga
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino
| | - Michele Croce
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino
| | | | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Scott Lee Letendre
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California, UCSD, La Jolla, CA, USA
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Wistinghausen B, Toner K, Barkauskas DA, Jerkins LP, Kinoshita H, Chansky P, Pezzella G, Saguilig L, Hayashi RJ, Abhyankar H, Scull B, Karri V, Tanna J, Hanley P, Hermiston ML, Allen CE, Bollard CM. Durable immunity to EBV after rituximab and third-party LMP-specific T cells: a Children's Oncology Group study. Blood Adv 2024; 8:1116-1127. [PMID: 38163318 PMCID: PMC10909726 DOI: 10.1182/bloodadvances.2023010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Posttransplant lymphoproliferative disease (PTLD) in pediatric solid organ transplant (SOT) recipients is characterized by uncontrolled proliferation of Epstein-Barr virus-infected (EBV+) B cells due to decreased immune function. This study evaluated the feasibility, safety, clinical and immunobiological outcomes in pediatric SOT recipients with PTLD treated with rituximab and third-party latent membrane protein-specific T cells (LMP-TCs). Newly diagnosed (ND) patients without complete response to rituximab and all patients with relapsed/refractory (R/R) disease received LMP-TCs. Suitable LMP-TC products were available for all eligible subjects. Thirteen of 15 patients who received LMP-TCs were treated within the prescribed 14-day time frame. LMP-TC therapy was generally well tolerated. Notable adverse events included 3 episodes of rejection in cardiac transplant recipients during LMP-TC therapy attributed to subtherapeutic immunosuppression and 1 episode of grade 3 cytokine release syndrome. Clinical outcomes were associated with disease severity. Overall response rate (ORR) after LMP-TC cycle 1 was 70% (7/10) for the ND cohort and 20% (1/5) for the R/R cohort. For all cohorts combined, the best ORR for LMP-TC cycles 1 and 2 was 53% and the 2-year overall survival was 70.7%. vβT-cell receptor sequencing showed persistence of adoptively transferred third-party LMP-TCs for up to 8 months in the ND cohort. This study establishes the feasibility of administering novel T-cell therapies in a cooperative group clinical trial and demonstrates the potential for positive outcomes without chemotherapy for ND patients with PTLD. This trial was registered at www.clinicaltrials.gov as #NCT02900976 and at the Children's Oncology Group as ANHL1522.
Collapse
Affiliation(s)
- Birte Wistinghausen
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Keri Toner
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Lauren P Jerkins
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hannah Kinoshita
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Pamela Chansky
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Gloria Pezzella
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Lauren Saguilig
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Robert J. Hayashi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Harshal Abhyankar
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Brooks Scull
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | | | - Jay Tanna
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Patrick Hanley
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Michelle L. Hermiston
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Carl E. Allen
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Catherine M. Bollard
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
45
|
Thomas SJ, Ouellette CP. Viral meningoencephalitis in pediatric solid organ or hematopoietic cell transplant recipients: a diagnostic and therapeutic approach. Front Pediatr 2024; 12:1259088. [PMID: 38410764 PMCID: PMC10895047 DOI: 10.3389/fped.2024.1259088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Neurologic complications, both infectious and non-infectious, are frequent among hematopoietic cell transplant (HCT) and solid organ transplant (SOT) recipients. Up to 46% of HCT and 50% of SOT recipients experience a neurological complication, including cerebrovascular accidents, drug toxicities, as well as infections. Defects in innate, adaptive, and humoral immune function among transplant recipients predispose to opportunistic infections, including central nervous system (CNS) disease. CNS infections remain uncommon overall amongst HCT and SOT recipients, compromising approximately 1% of total cases among adult patients. Given the relatively lower number of pediatric transplant recipients, the incidence of CNS disease amongst in this population remains unknown. Although infections comprise a small percentage of the neurological complications that occur post-transplant, the associated morbidity and mortality in an immunosuppressed state makes it imperative to promptly evaluate and aggressively treat a pediatric transplant patient with suspicion for viral meningoencephalitis. This manuscript guides the reader through a broad infectious and non-infectious diagnostic differential in a transplant recipient presenting with altered mentation and fever and thereafter, elaborates on diagnostics and management of viral meningoencephalitis. Hypothetical SOT and HCT patient cases have also been constructed to illustrate the diagnostic and management process in select viral etiologies. Given the unique risk for various opportunistic viral infections resulting in CNS disease among transplant recipients, the manuscript will provide a contemporary review of the epidemiology, risk factors, diagnosis, and management of viral meningoencephalitis in these patients.
Collapse
Affiliation(s)
- Sanya J. Thomas
- Host Defense Program, Section of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Infectious Diseases, Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States
| | - Christopher P. Ouellette
- Host Defense Program, Section of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Infectious Diseases, Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
46
|
Zhang H, Liang R, Zhu Y, Hu L, Xia H, Li J, Ye Y. Metagenomic next-generation sequencing of plasma cell-free DNA improves the early diagnosis of suspected infections. BMC Infect Dis 2024; 24:187. [PMID: 38347444 PMCID: PMC10863141 DOI: 10.1186/s12879-024-09043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) could improve the diagnosed efficiency of pathogens in bloodstream infections or sepsis. Little is known about the clinical impact of mNGS test when used for the early diagnosis of suspected infections. Herein, our main objective was to assess the clinical efficacy of utilizing blood samples to perform mNGS for early diagnosis of suspected infections, as well as to evaluate its potential in guiding antimicrobial therapy decisions. METHODS In this study, 212 adult hospitalized patients who underwent blood mNGS test in the early stage of suspected infections were enrolled. Diagnostic efficacy of mNGS test and blood culture was compared, and the clinical impact of mNGS on clinical care was analyzed. RESULTS In our study, the total detection rate of blood mNGS was significantly higher than that of culture method (74.4% vs. 12.1%, P < 0.001) in the paired mNGS test and blood culture. Blood stream infection (107, 67.3%) comprised the largest component of all the diseases in our patients, and the detection rate of single blood sample subgroup was similar with that of multiple type of samples subgroup. Among the 187 patients complained with fever, there was no difference in the diagnostic efficacy of mNGS when blood specimens or additional other specimens were used in cases presenting only with fever. While, when patients had other symptoms except fever, the performance of mNGS was superior in cases with specimens of suspected infected sites and blood collected at the same time. Guided by mNGS results, therapeutic regimens for 70.3% cases (149/212) were changed, and the average hospitalized days were significantly shortened in cases with the earlier sampling time of admission. CONCLUSION In this study, we emphasized the importance of blood mNGS in early infectious patients with mild and non-specific symptoms. Blood mNGS can be used as a supplement to conventional laboratory examination, and should be performed as soon as possible to guide clinicians to perform appropriate anti-infection treatment timely and effectively. Additionally, combining the contemporaneous samples from suspected infection sites could improve disease diagnosis and prognoses. Further research needs to be better validated in large-scale clinical trials to optimize diagnostic protocol, and the cost-utility analysis should be performed.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruobing Liang
- Department of Scientific Affaires, Hugobiotech Co., Ltd, Beijing, China
| | - Yunzhu Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han Xia
- Department of Scientific Affaires, Hugobiotech Co., Ltd, Beijing, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China.
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China.
| | - Ying Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Indari O, Ghosh S, Bal AS, James A, Garg M, Mishra A, Karmodiya K, Jha HC. Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents. Pathog Dis 2024; 82:ftae002. [PMID: 38281067 PMCID: PMC10901609 DOI: 10.1093/femspd/ftae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.
Collapse
Affiliation(s)
- Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Subhrojyoti Ghosh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Adhiraj Singh Bal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Ajay James
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Mehek Garg
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Krishanpal Karmodiya
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411008, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| |
Collapse
|
48
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
49
|
Kiś J, Góralczyk M, Sikora D, Stępień E, Drop B, Polz-Dacewicz M. Can the Epstein-Barr Virus Play a Role in the Development of Prostate Cancer? Cancers (Basel) 2024; 16:328. [PMID: 38254816 PMCID: PMC10814141 DOI: 10.3390/cancers16020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) is the fourth most frequently diagnosed cancer worldwide, accounting for 7.3% of all cancers. PCa mortality is the fifth most common cause of cancer death. Despite well-known factors influencing the development of PCa, such as age, race/ethnicity and family history, many researchers have raised the possibility of persistent infections with oncogenic viruses. Therefore, we aimed to assess the frequency of Epstein-Barr virus (EBV) DNA in tissue collected from PCa patients. Next, the frequency and the level of Epstein-Barr virus capsid antigen (EBVCA) and Epstein-Barr nuclear antigen 1 (EBNA1) antibodies in both IgA and IgG classes were measured. The antibody titer was also analyzed depending on the risk group, Gleason score (GS) and tumor, node, metastasis (TNM) classification. Serum samples were analyzed using the Microblot-Array EBV IgM, IgA and IgG test kits. The study group consisted of 115 patients diagnosed and histopathologically confirmed with PCa. In 49% of patients included in the study, EBV DNA was detected in the tumor tissue. The studies showed both higher seroprevalence and higher antibody titers in patients with EBV-positive PCa compared to patients with EBV-negative PCa. We also observed a dependence of antibody titer on pathological features, such as GS, risk group and T stage.
Collapse
Affiliation(s)
- Jacek Kiś
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland;
| | - Magdalena Góralczyk
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| | - Dominika Sikora
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| | - Ewa Stępień
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (D.S.); (E.S.); (M.P.-D.)
| |
Collapse
|
50
|
Sun Y, Tang D, Li N, Wang Y, Yang M, Shen C. Development of a Rapid Epstein-Barr Virus Detection System Based on Recombinase Polymerase Amplification and a Lateral Flow Assay. Viruses 2024; 16:106. [PMID: 38257806 PMCID: PMC10818573 DOI: 10.3390/v16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The quality of cellular products used in biological research can directly impact the ability to obtain accurate results. Epstein-Barr virus (EBV) is a latent virus that spreads extensively worldwide, and cell lines used in experiments may carry EBV and pose an infection risk. The presence of EBV in a single cell line can contaminate other cell lines used in the same laboratory, affecting experimental results. We developed three EBV detection systems: (1) a polymerase chain reaction (PCR)-based detection system, (2) a recombinase polymerase amplification (RPA)-based detection system, and (3) a combined RPA-lateral flow assay (LFA) detection system. The minimum EBV detection limits were 1 × 103 copy numbers for the RPA-based and RPA-LFA systems and 1 × 104 copy numbers for the PCR-based system. Both the PCR and RPA detection systems were applied to 192 cell lines, and the results were consistent with those obtained by the EBV assay methods specified in the pharmaceutical industry standards of the People's Republic of China. A total of 10 EBV-positive cell lines were identified. The combined RPA-LFA system is simple to operate, allowing for rapid result visualization. This system can be implemented in laboratories and cell banks as part of a daily quality control strategy to ensure cell quality and experimental safety and may represent a potential new technique for the rapid detection of EBV in clinical samples.
Collapse
Affiliation(s)
- Yidan Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Danni Tang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Nan Li
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Yudong Wang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Meimei Yang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| |
Collapse
|