1
|
Wang G, Zhong L, Wang M, Zhou J, Liu S, Miao W, Li L, Liu Y, Guo S, Li H, Wang X, Xie L, Xie M, Fu S, Xuan T, Li F, Yang T, Shao L, Shi M, Li X, Li X, Gao L, Zhai S, Ding J, Wang T, Liu D, Ma G, Wu J, Wan D, Guo J, Zhang X, Wu J, Wang Y, Jin A, Ma L, Yang H, He X, Ma X, Liu H, Ma B, Yang N, Hou X, Xu T, Qin CF, Wang H, Xie P, Wang Z. Peripheral nerve injury associated with JEV infection in high endemic regions, 2016-2020: a multicenter retrospective study in China. Emerg Microbes Infect 2024; 13:2337677. [PMID: 38578315 PMCID: PMC11036900 DOI: 10.1080/22221751.2024.2337677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Previously, we reported a cohort of Japanese encephalitis (JE) patients with Guillain-Barré syndrome. However, the evidence linking Japanese encephalitis virus (JEV) infection and peripheral nerve injury (PNI) remains limited, especially the epidemiology, clinical presentation, diagnosis, treatment, and outcome significantly differ from traditional JE. We performed a retrospective and multicenter study of 1626 patients with JE recorded in the surveillance system of the Chinese Center for Disease Control and Prevention, spanning the years 2016-2020. Cases were classified into type 1 and type 2 JE based on whether the JE was combined with PNI or not. A comparative analysis was conducted on demographic characteristics, clinical manifestations, imaging findings, electromyography data, laboratory results, and treatment outcomes. Among 1626 laboratory confirmed JE patients, 230 (14%) were type 2 mainly located along the Yellow River in northwest China. In addition to fever, headache, and disturbance of consciousness, type 2 patients experienced acute flaccid paralysis of the limbs, as well as severe respiratory muscle paralysis. These patients presented a greater mean length of stay in hospital (children, 22 years [range, 1-34]; adults, 25 years [range, 0-183]) and intensive care unit (children, 16 years [range, 1-30]; adults, 17 years [range, 0-102]). The mortality rate was higher in type 2 patients (36/230 [16%]) compared to type 1 (67/1396 [5%]). The clinical classification of the diagnosis of JE may play a crucial role in developing a rational treatment strategy, thereby mitigating the severity of the disease and potentially reducing disability and mortality rates among patients.
Collapse
Affiliation(s)
- Guowei Wang
- The First Clinical Medical School, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Lianmei Zhong
- Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Juan Zhou
- Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Shuting Liu
- Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Wang Miao
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Leilei Li
- West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, The Air Force Medical University, Xi’an, People’s Republic of China
| | - Shougang Guo
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Haining Li
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaoming Wang
- The Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Liuqing Xie
- Meishan People’s Hospital, Meishan, People’s Republic of China
| | - Min Xie
- Chengdu Seventh People’s Hospital, Chengdu, People’s Republic of China
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tingting Xuan
- The First Clinical Medical School, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tingting Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| | - Lufei Shao
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Mingfang Shi
- Department of Pediatrics, Yibin Hospital, Children's Hospital of Chongqing Medical University, Yibin, People’s Republic of China
| | - Xiaocong Li
- The First Clinical Medical School, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Li Gao
- Baoji Central Hospital, Baoji, People’s Republic of China
| | - Shaopeng Zhai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Jia Ding
- The First People’s Hospital of Tianshui, Tianshui, People’s Republic of China
| | - Tianhong Wang
- The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Dayong Liu
- The Affiliated Hospital of Gansu Medical College, Pingliang, People’s Republic of China
| | - Guosheng Ma
- Gansu Provincial People’s Hospital, Lanzhou, People’s Republic of China
| | - Jiang Wu
- The First People’s Hospital of Longnan, Longnan, People’s Republic of China
| | - Dongjun Wan
- The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Junlin Guo
- Qingyang People's Hospital, Qingyang, People’s Republic of China
| | - Xinbo Zhang
- Department of Neurology, Xijing Hospital, The Air Force Medical University, Xi’an, People’s Republic of China
| | - Jinxia Wu
- Department of Pediatrics, Yibin Hospital, Children's Hospital of Chongqing Medical University, Yibin, People’s Republic of China
| | - Yinxu Wang
- The Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Ansong Jin
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Lei Ma
- Emergency Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Huan Yang
- Emergency Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xuexian He
- Cerebrospinal Fluid Laboratory, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Xiaona Ma
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| | - Huijuan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Boya Ma
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ningai Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| | - Xiaolin Hou
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ting Xu
- General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Cheng-feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing, People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, People’s Republic of China
| |
Collapse
|
2
|
Dixon AL, Oliveira ARS, Cohnstaedt LW, Mitzel D, Mire C, Cernicchiaro N. Revisiting the risk of introduction of Japanese encephalitis virus (JEV) into the United States - An updated semi-quantitative risk assessment. One Health 2024; 19:100879. [PMID: 39253386 PMCID: PMC11381889 DOI: 10.1016/j.onehlt.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Japanese encephalitis virus (JEV) is associated with encephalitis in humans and reproductive and neurological illness in pigs. JEV has expanded beyond its native distribution in southeast Asia, with identifications in Europe (2010) and Africa (2016), and most recently, its spread into mainland Australia (2021-2022). The introduction of JEV into the United States (US) is a public health risk, and could also impact animal health and the food supply. To efficiently and cost-effectively manage risk, a better understanding of how and where diseases will be introduced, transmitted, and spread is required. To achieve this objective, we updated our group's previous qualitative risk assessment using an established semi-quantitative risk assessment tool (MINTRISK) to compare the overall rate of introduction and risk, including impacts, of JEV in seven US regions. The rate of introduction from the current region of distribution was considered negligible for the Northeast, Midwest, Rocky Mountain, West, Alaska, and Hawaii regions. The South region was the only region with a pathway that had a non-negligible rate of introduction; infected mosquito eggs and larvae introduced via imported used tires (very low; 95% uncertainty interval (UI) = negligible to high). The overall risk estimate for the South was very high (95% UI = very low to very high). Based on this risk assessment, the South region should be prioritized for surveillance activities to ensure the early detection of JEV. The assumptions used in this risk assessment, due to the lack of information about the global movement of mosquitoes, number of feral pigs in the US, the role of non-ardeid wild birds in transmission, and the magnitude of the basic reproduction ratio of JEV in a novel region, need to be fully considered as these impact the estimated probability of establishment.
Collapse
Affiliation(s)
- Andrea L Dixon
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ana R S Oliveira
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lee W Cohnstaedt
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Dana Mitzel
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Chad Mire
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R. Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N. Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J. López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
4
|
Sun CQ, Fu YQ, Ma X, Shen JR, Hu B, Zhang Q, Wang LK, Hu R, Chen JJ. Trends in temporal and spatial changes of Japanese encephalitis in Chinese mainland, 2004-2019: A population-based surveillance study. Travel Med Infect Dis 2024; 60:102724. [PMID: 38692338 DOI: 10.1016/j.tmaid.2024.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.
Collapse
Affiliation(s)
- Chang-Qing Sun
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China; School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Yun-Qiang Fu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Xuan Ma
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jun-Ru Shen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Bo Hu
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Lian-Ke Wang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Rui Hu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jia-Jun Chen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| |
Collapse
|
5
|
Gossner CM, Dhollander S, Presser LD, Briet O, Bakonyi T, Schaffner F, Figuerola J. Potential for emergence of Japanese encephalitis in the European Union. Zoonoses Public Health 2024; 71:274-280. [PMID: 38110840 DOI: 10.1111/zph.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND AND OBJECTIVE No autochthonous human cases of Japanese encephalitis (JE) have been reported to date in the European Union (EU). In this study, we assess the likelihood of Japanese encephalitis virus (JEV) introduction and transmission within the EU and propose outbreak response measures. RISK ASSESSMENT Given the global geographical distribution of JEV, the probability of virus introduction into the EU is currently very low, with viremic bird migration being the most plausible pathway of introduction. However, this likelihood would significantly increase if the virus were to become established in the Middle East, Caucasus, Central Asia or Africa. Considering the environmental conditions that are expected to be conducive for virus circulation, there is a high likelihood of virus transmission within the EU after its introduction in environmentally suitable areas. The spread of the virus within the EU would likely occur through the movement of wild birds, pigs and mosquitoes. MITIGATION To mitigate or potentially contain the emergence of JE in the EU, early detection of both human and animal cases will be crucial.
Collapse
Affiliation(s)
- Céline M Gossner
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Lance D Presser
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Oliver Briet
- European Centre for Disease Prevention and Control, Solna, Sweden
| | - Tamas Bakonyi
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Jordi Figuerola
- Estación Biológica de Doñana (CSIC), Sevilla, Spain and CIBER Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
6
|
Guo J, Mi Y, Guo Y, Bai Y, Wang M, Wang W, Wang Y. Current Advances in Japanese Encephalitis Virus Drug Development. Viruses 2024; 16:202. [PMID: 38399978 PMCID: PMC10892782 DOI: 10.3390/v16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Japanese encephalitis virus (JEV) belongs to the Flaviviridae family and is a representative mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. Despite the availability of vaccines, JEV remains a major public health threat with the potential to spread globally. According to the World Health Organization (WHO), there are an estimated 69,000 cases of JE each year, and this figure is probably an underestimate. The majority of JE victims are children in endemic areas, and almost half of the surviving patients have motor or cognitive sequelae. Thus, the absence of a clinically approved drug for the treatment of JE defines an urgent medical need. Recently, several promising and potential drug candidates were reported through drug repurposing studies, high-throughput drug library screening, and de novo design. This review focuses on the historical aspects of JEV, the biology of JEV replication, targets for therapeutic strategies, a target product profile, and drug development initiatives.
Collapse
Affiliation(s)
- Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Yan Guo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China; (J.G.); (Y.M.); (Y.B.)
| |
Collapse
|
7
|
Li W, Feng Y, Zhong H, Jiang M, Zhang J, Lin S, Chen N, He S, Zhang K, Fu S, Wang H, Liang G. Incongruence between confirmed and suspected clinical cases of Japanese encephalitis virus infection. Front Cell Infect Microbiol 2024; 14:1302314. [PMID: 38343888 PMCID: PMC10853334 DOI: 10.3389/fcimb.2024.1302314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Background Japanese encephalitis (JE) is a notifiable infectious disease in China. Information on every case of JE is reported to the superior health administration department. However, reported cases include both laboratory-confirmed and clinically diagnosed cases. This study aimed to differentiate between clinical and laboratory-confirmed cases of Japanese encephalitis virus (JEV) infection, and improve the accuracy of reported JE cases by analyzing the acute-phase serum and cerebrospinal fluid of all reported JE cases in the Sichuan province from 2012 to 2022. Methods All acute-phase serum and/or cerebrospinal fluid samples of the reported JE cases were screened for IgM(ImmunoglobulinM)to JEV using the enzyme-linked immunosorbent assay (ELISA), and the detection of the viral genes of JEV and 9 other pathogens including enterovirus (EV), using reverse transcription PCR was attempted. Epidemiological analyses of JE and non-JE cases based on sex, age, onset time, and geographical distribution were also performed. Results From 2012 to 2022, 1558 JE cases were reported in the Sichuan province. The results of serological (JEV-specific IgM) and genetic testing for JEV showed that 81% (1262/1558) of the reported cases were confirmed as JEV infection cases (laboratory-confirmed cases). Among the 296 cases of non-JEV infection, 6 viruses were detected in the cerebrospinal fluid in 62 cases, including EV and the Epstein-Barr virus (EBV), constituting 21% (62/296) of all non-JE cases. Among the 62 non-JEV infection cases with confirmed pathogens, infections with EV and EBV included 17 cases each, herpes simplex virus (HSV-1/2) included 14 cases, varicella- zoster virus included 6 cases, mumps virus included 2 cases, and human herpes viruses-6 included 1 case. Additionally, there were five cases involving mixed infections (two cases of EV/EBV, one case of HSV-1/HSV-2, one case of EBV/HSV-1, and one case of EV/herpes viruses-6). The remaining 234 cases were classified as unknown viral encephalitis cases. Our analysis indicated that those aged 0-15 y were the majority of the patients among the 1558 reported JE cases. However, the incidence of laboratory-confirmed JE cases in the >40 y age group has increased in recent years. The temporal distribution of laboratory-confirmed cases of JE revealed that the majority of cases occurred from May to September each year, with the highest incidence in August. Conclusion The results of this study indicate that there is a certain discrepancy between clinically diagnosed and laboratory-confirmed cases of JE. Each reported case should be based on laboratory detection results, which is of great importance in improving the accuracy of case diagnosis and reducing misreporting. Our results are not only important for addressing JE endemic to the Sichuan province, but also provide a valuable reference for the laboratory detection of various notifiable infectious diseases in China and other regions outside China.
Collapse
Affiliation(s)
- Wei Li
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yuliang Feng
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Hongrong Zhong
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Mingfeng Jiang
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Jiake Zhang
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Shihua Lin
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Na Chen
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Shusen He
- Institute of Microbiological Detection and Analyses, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Kai Zhang
- Institute of Immunization Programme, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Shihong Fu
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guodong Liang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Jeffries CL, Tantely LM, Kadriaj P, Blagrove MSC, Lytra I, Orsborne J, Al-Amin HM, Mohammed AR, Alam MS, Girod R, Afrane YA, Bino S, Robert V, Boyer S, Baylis M, Velo E, Hughes GL, Walker T. Mitochondrial and microbial diversity of the invasive mosquito vector species Culex tritaeniorhynchus across its extensive inter-continental geographic range. Wellcome Open Res 2024; 9:18. [PMID: 38800519 PMCID: PMC11128058 DOI: 10.12688/wellcomeopenres.20761.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Background Culex (Cx.) tritaeniorhynchus is an invasive mosquito species with an extensive and expanding inter-continental distribution, currently reported across Asia, Africa, the Middle East, Europe and now Australia. It is an important vector of medical and veterinary pathogens which cause significant morbidity and mortality in human and animal populations. Across regions endemic for Japanese encephalitis virus (JEV), Cx. tritaeniorhynchus is considered the major vector and has also been shown to contribute to the transmission of several other zoonotic arboviruses including Rift Valley fever virus (RVFV) and West Nile virus (WNV). Methods In this study, we used laboratory vector competence experiments to determine if Cx. tritaeniorhynchus from a Southern European population were competent JEV vectors. We also obtained samples from multiple geographically dispersed Cx. tritaeniorhynchus populations from countries within Europe, Africa, Eurasia and Asia to perform phylogenetic analysis to measure the level of mitochondrial divergence using the cytochrome oxidase subunit 1 ( CO1) gene. We also undertook bacterial 16S rRNA gene amplicon sequencing to determine microbial diversity and used multi-locus sequence typing (MLST) to determine any evidence for the presence of strains of the naturally occurring endosymbiotic bacterium Wolbachia. Results Cx. tritaeniorhynchus from a Greek population were shown be be competent vectors of JEV with high levels of virus present in saliva. We found a signficant level of mitochondrial genetic diversity using the mosquito CO1 gene between geographically dispersed populations. Furthermore, we report diverse microbiomes identified by 16S rRNA gene amplicon sequencing within and between geographical populations. Evidence for the detection of the endosymbiotic bacteria Wolbachia was confirmed using Wolbachia-specific PCR and MLST. Conclusions This study enhances our understanding of the diversity of Cx. tritaeniorhynchus and the associated microbiome across its inter-continental range and highlights the need for greater surveillance of this invasive vector species in Europe.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luciano M Tantely
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Perparim Kadriaj
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
| | - Ioanna Lytra
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - James Orsborne
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hasan Mohammad Al-Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Romain Girod
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Silvia Bino
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Vincent Robert
- MIVEGEC, CNRS, Institute of Research for Development (IRD), University of Montpellier, Montpellier, France
| | - Sebastien Boyer
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Matthew Baylis
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
| | - Enkelejda Velo
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, University of Liverpool, Liverpool, England, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, University of Warwick, Coventry, England, UK
| |
Collapse
|
9
|
Zhang W, Yin Q, Wang H, Liang G. The reemerging and outbreak of genotypes 4 and 5 of Japanese encephalitis virus. Front Cell Infect Microbiol 2023; 13:1292693. [PMID: 38076463 PMCID: PMC10698470 DOI: 10.3389/fcimb.2023.1292693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
The Japanese encephalitis virus (JEV) is classified into five distinct genotypes, with genotypes 1 and 3 historically showing higher activity. These genotypes are the primary agents of viral encephalitis in the Asian continent. Genotypes 4 and 5 have remained silent in low-latitude tropical regions since their discovery. From 2009, the hidden genotype 5 suddenly emerged simultaneously in mosquitoes from the Tibetan region of China and those from South Korea in East Asia. The detection of genotype 5 of JEV in these mosquitoes was associated with cases of viral encephalitis in the local population. Similarly, in 2022, the long-silent genotype 4 of JEV emerged in Australia, resulting in a local outbreak of viral encephalitis that primarily affected adults and caused fatalities. The emergence and outbreaks of genotypes 4 and 5 of JEV present new challenges for the prevention and control of Japanese encephalitis (JE). This study not only analyzes the recent emergence of these new genotypes but also discusses their implications in the development of JE vaccines and laboratory tests for newly emerging JEV infections.
Collapse
Affiliation(s)
| | | | - Huanyu Wang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guodong Liang
- Department of Arbovirus, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Tiwari P, Ali SA, Puri B, Kumar A, Datusalia AK. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154976. [PMID: 37573808 DOI: 10.1016/j.phymed.2023.154976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tinospora cordifolia Miers. (TC) (Giloya/Guduchi) is a native Indian herb, reported for its wide array of medicinal activities including immunomodulatory activity. However, the exact pharmacological mechanism of TC as an immunomodulatory agent remains unclear. Central to this, to the best of our knowledge, no study has explored the immunoadjuvant potential of TC in response to the Japanese encephalitis (JE) vaccines. PURPOSE The study aims to explore the immunoadjuvant potential of TC ethanolic extract in response to the JE vaccine and illustrates its potential mechanism of immunomodulation using an integrated approach of network pharmacology and in-vivo experimental study. STUDY DESIGN AND METHODS Initially, the extract was prepared and the components of TC were identified through high-resolution liquid chromatography mass spectrometry (HR-LC/MS). The compounds were then screened for network pharmacology analysis. Next, the drug and disease targets were identified and the network was constructed using Cytoscape 3.7.2 to obtain different signalling pathways of TC in JEV. We then evaluated the immunoadjuvant potential of TC ethanolic extract in mice immunized with inactivated JE vaccine (SA-14-14-2 strain). BALB/c mice were supplemented with TC extract (30 and 100 mg/kg, i.g.), daily for 56 days, marked with immunization on 28th day of the study, by JE vaccine. Blood was collected for flow cytometry and haematological analysis (total and differential cell counts). The surface expression of immune-cell markers (CD3+, CD4+, CD19+, CD11c+, CD40+) were evaluated on day 0 (pre-immunization), day 14 and 28 post-immunization. Additionally, inflammatory cytokines (IFN-γ+/IL-17A+) were evaluated post-14 and 28 days of immunization. RESULTS The HR-LC/MS analysis identified the presence of glycosides, terpenoids, steroids and alkaloids in the TC extract. Through network analysis, 09 components and 166 targets were obtained, including pathways that involve toll-like receptor signalling, pattern-recognition receptor signalling, cytokine receptor and cytokine mediated signalling, etc. The in-vivo results showed that preconditioning with TC ethanolic extract significantly elevated the haematological variables (leucocyte count) as well as the surface expression of CD markers (B and T cell subsets) on day 0 (pre-immunization), day 14 and 28 post-immunization. Furthermore, preconditioning of TC demonstrated a dose-dependant augmentation of immune cells (CD3+, CD4+, CD19+, CD11c+) and inflammatory cytokines (IFN-γ+/IL-17A+) on day 14 and 28 post-immunization when compared to vaccine alone group. CONCLUSION Results showed that preconditioning with TC extract before immunization might play a potential role in enhancing the cell-mediated as well as humoral immunity. Altogether, the combinatorial approach of network pharmacology and in-vivo animal experimentation demonstrated the immunoadjuvant potential of TC in response to JEV vaccine.
Collapse
Affiliation(s)
- Priyanka Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Bhupendra Puri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India.
| |
Collapse
|
11
|
Van den Eynde C, Sohier C, Matthijs S, De Regge N. Belgian Anopheles plumbeus Mosquitoes Are Competent for Japanese Encephalitis Virus and Readily Feed on Pigs, Suggesting a High Vectorial Capacity. Microorganisms 2023; 11:1386. [PMID: 37374888 DOI: 10.3390/microorganisms11061386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Anopheles plumbeus, a day-active mosquito known to feed aggressively on humans, was reported as a nuisance species near an abandoned pigsty in Belgium. Since Japanese encephalitis virus (JEV) is an emerging zoonotic flavivirus which uses pigs as amplification hosts, we investigated (1) whether An. plumbeus would feed on pigs and (2) its vector competence for JEV, to investigate whether this species could be a potential vector. Three- to seven-day-old F0-generation adult mosquitoes, emerged from field-collected larvae, were fed on a JEV genotype 3 Nakayama strain spiked blood meal. Blood-fed mosquitoes were subsequently incubated for 14 days at two temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient. Our results show that An. plumbeus is a competent vector for JEV at the 25 °C condition and this with an infection rate of 34.1%, a dissemination rate of 67.7% and a transmission rate of 14.3%. The vector competence showed to be influenced by temperature, with a significantly lower dissemination rate (16.7%) and no transmission when implementing the temperature gradient. Moreover, we demonstrated that An. plumbeus readily feeds on pigs when the opportunity occurs. Therefore, our results suggest that Belgian An. plumbeus mosquitoes may play an important role in the transmission of JEV upon an introduction into our region if temperatures increase with climate change.
Collapse
Affiliation(s)
- Claudia Van den Eynde
- Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Charlotte Sohier
- Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Severine Matthijs
- Viral Re-Emerging Enzootic and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Nick De Regge
- Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| |
Collapse
|
12
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
13
|
Relevant Day/Night Temperatures Simulating Belgian Summer Conditions Reduce Japanese Encephalitis Virus Dissemination and Transmission in Belgian Field-Collected Culex pipiens Mosquitoes. Viruses 2023; 15:v15030764. [PMID: 36992473 PMCID: PMC10053291 DOI: 10.3390/v15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic mosquito-borne Flavivirus, can be considered an emerging infectious disease. Therefore, vector competence studies with indigenous mosquitoes from regions where JEV is not yet endemic are of great importance. In our study, we compared the vector competence of Culex pipiens mosquitoes emerged from Belgian field-caught larvae under two different temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient representing typical summer temperatures in Belgium. Three- to seven-day-old F0-generation mosquitoes were fed on a JEV genotype 3 Nakayama strain spiked blood-meal and incubated for 14 days at the two aforementioned temperature conditions. Similar infection rates of 36.8% and 35.2% were found in both conditions. The observed dissemination rate in the gradient condition was, however, significantly lower compared to the constant temperature condition (8% versus 53.6%, respectively). JEV was detected by RT-qPCR in the saliva of 13.3% of dissemination positive mosquitoes in the 25 °C condition, and this transmission was confirmed by virus isolation in 1 out of 2 RT-qPCR positive samples. No JEV transmission to saliva was detected in the gradient condition. These results suggest that JEV transmission by Culex pipiens mosquitoes upon an accidental introduction in our region is unlikely under current climatic conditions. This could change in the future when temperatures increase due to climate change.
Collapse
|
14
|
Tong Y, Jiang H, Xu N, Wang Z, Xiong Y, Yin J, Huang J, Chen Y, Jiang Q, Zhou Y. Global Distribution of Culex tritaeniorhynchus and Impact Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4701. [PMID: 36981610 PMCID: PMC10048298 DOI: 10.3390/ijerph20064701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Culex tritaeniorhynchus is the primary vector of Japanese encephalitis (JE) and has a wide global distribution. However, the current and future geographic distribution maps of Cx. tritaeniorhynchus in global are still incomplete. Our study aims to predict the potential distribution of Cx. tritaeniorhynchus in current and future conditions to provide a guideline for the formation and implementation of vector control strategies all over the world. We collected and screened the information on the occurrence of Cx. tritaeniorhynchus by searching the literature and online databases and used ten algorithms to investigate its global distribution and impact factors. Cx. tritaeniorhynchus had been detected in 41 countries from 5 continents. The final ensemble model (TSS = 0.864 and AUC = 0.982) indicated that human footprint was the most important factor for the occurrence of Cx. tritaeniorhynchus. The tropics and subtropics, including southeastern Asia, Central Africa, southeastern North America and eastern South America, showed high habitat suitability for Cx. tritaeniorhynchus. Cx. tritaeniorhynchus is predicted to have a wider distribution in all the continents, especially in Western Europe and South America in the future under two extreme emission scenarios (SSP5-8.5 and SSP1-2.6). Targeted strategies for the control and prevention of Cx. tritaeniorhynchus should be further strengthened.
Collapse
Affiliation(s)
- Yixin Tong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Honglin Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ning Xu
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Zhengzhong Wang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ying Xiong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Jiangfan Yin
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Junhui Huang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON K1G 5Z3, Canada
| | - Qingwu Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yibiao Zhou
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| |
Collapse
|
15
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
16
|
Sewgobind S, Johnson N, Mansfield KL. JMM Profile: Japanese encephalitis virus: an emerging threat. J Med Microbiol 2022; 71. [PMID: 36748429 DOI: 10.1099/jmm.0.001620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis (JE) is an infection that occurs predominantly in Asia and the Pacific Islands. It is transmitted by mosquito bites, with the main vector being Culex tritaeniorhynchus, and is maintained in enzootic cycles involving pigs, wild birds and mosquitoes. JE is caused by infection with Japanese encephalitis virus (JEV), a zoonotic pathogen that also causes disease in mammals such as pigs and horses. In humans, most symptoms are mild or flu-like but can progress to encephalitis. Pigs are considered amplification hosts, and sows may have gestational complications. Horses may exhibit neurological signs. Detection of the virus can be confirmed by serological or molecular laboratory tests. Vaccination offers protection against JEV infection in humans, pigs and horses. Whilst there is no effective treatment of JE, human cases may require hospitalization for supportive therapy, which may include administration of fluids, oxygen and medication to treat symptoms.
Collapse
Affiliation(s)
- Sanam Sewgobind
- Vector-borne diseases workgroup, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Nicholas Johnson
- Vector-borne diseases workgroup, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Karen Louise Mansfield
- Vector-borne diseases workgroup, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
17
|
Isolation and Genetic Characterization of Japanese Encephalitis Virus Two Decades after Its Elimination in Singapore. Viruses 2022; 14:v14122662. [PMID: 36560666 PMCID: PMC9786948 DOI: 10.3390/v14122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) is an important arbovirus in Asia that can cause serious neurological disease. JEV is transmitted by mosquitoes in an enzootic cycle involving porcine and avian reservoirs, in which humans are accidental, dead-end hosts. JEV is currently not endemic in Singapore, after pig farming was abolished in 1992; the last known human case was reported in 2005. However, due to its location along the East-Asian Australasian Flyway (EAAF), Singapore is vulnerable to JEV re-introduction from the endemic regions. Serological and genetic evidence in the last decade suggests JEV's presence in the local fauna. In the present study, we report the genetic characterization and the first isolation of JEV from 3214 mosquito pools consisting of 41,843 Culex mosquitoes, which were trapped from April 2014 to May 2021. The findings demonstrated the presence of genotype I of JEV (n = 10), in contrast to the previous reports of the presence of genotype II of JEV in Singapore. The genetic analyses also suggested that JEV has entered Singapore on several occasions and has potentially established an enzootic cycle in the local fauna. These observations have important implications in the risk assessment and the control of Japanese encephalitis in non-endemic countries, such as Singapore, that are at risk for JEV transmission.
Collapse
|
18
|
Abstract
In nature, viral coinfection is as widespread as viral infection alone. Viral coinfections often cause altered viral pathogenicity, disrupted host defense, and mixed-up clinical symptoms, all of which result in more difficult diagnosis and treatment of a disease. There are three major virus-virus interactions in coinfection cases: viral interference, viral synergy, and viral noninterference. We analyzed virus-virus interactions in both aspects of viruses and hosts and elucidated their possible mechanisms. Finally, we summarized the protocol of viral coinfection studies and key points in the process of virus separation and purification.
Collapse
|
19
|
Kuno G. Contrasting the Practices of Virus Isolation and Characterization between the Early Period in History and Modern Times: The Case of Japanese Encephalitis Virus. Viruses 2022; 14:2640. [PMID: 36560644 PMCID: PMC9781737 DOI: 10.3390/v14122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis is a serious disease transmitted by mosquitoes. With its recent spread beyond the traditional territory of endemicity in Asia, the magnitude of global threat has increased sharply. While much of the current research are largely focused on changing epidemiology, molecular genetics of virus, and vaccination, little attention has been paid to the early history of virus isolation and phenotypic characterization of this virus. In this review, using this piece of history as an example, I review the transition of the concept and practice of virus isolation and characterization from the early period of history to modern times. The spectacular development of molecular techniques in modern times has brought many changes in practices as well as enormous amount of new knowledge. However, many aspects of virus characterization, in particular, transmission mechanism and host relationship, remain unsolved. As molecular techniques are not perfect in all respects, beneficial accommodation of molecular and biologic data is critically important in many branches of research. Accordingly, I emphasize exercising caution in applying only these modern techniques, point out unrecognized communication problems, and stress that JE research history is a rich source of interesting works still valuable even today and waiting to be discovered.
Collapse
Affiliation(s)
- Goro Kuno
- Centers for Disease Control and Prevention, Formerly Division of Vector-Borne Infectious Diseases, Fort Collins, CO 80521, USA
| |
Collapse
|
20
|
Sikazwe C, Neave MJ, Michie A, Mileto P, Wang J, Cooper N, Levy A, Imrie A, Baird RW, Currie BJ, Speers D, Mackenzie JS, Smith DW, Williams DT. Molecular detection and characterisation of the first Japanese encephalitis virus belonging to genotype IV acquired in Australia. PLoS Negl Trop Dis 2022; 16:e0010754. [PMID: 36409739 PMCID: PMC9721490 DOI: 10.1371/journal.pntd.0010754] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A fatal case of Japanese encephalitis (JE) occurred in a resident of the Tiwi Islands, in the Northern Territory of Australia in February 2021, preceding the large JE outbreak in south-eastern Australia in 2022. This study reports the detection, whole genome sequencing and analysis of the virus responsible (designated JEV/Australia/NT_Tiwi Islands/2021). METHODS Reverse transcription quantitative PCR (RT-qPCR) testing was performed on post-mortem brain specimens using a range of JE virus (JEV)-specific assays. Virus isolation from brain specimens was attempted by inoculation of mosquito and mammalian cells or embryonated chicken eggs. Whole genome sequencing was undertaken using a combination of Illumina next generation sequencing methodologies, including a tiling amplicon approach. Phylogenetic and selection analyses were performed using alignments of the Tiwi Islands JEV genome and envelope (E) protein gene sequences and publicly available JEV sequences. RESULTS Virus isolation was unsuccessful and JEV RNA was detected only by RT-qPCR assays capable of detecting all JEV genotypes. Phylogenetic analysis revealed that the Tiwi Islands strain is a divergent member of genotype IV (GIV) and is closely related to the 2022 Australian outbreak virus (99.8% nucleotide identity). The Australian strains share highest levels of nucleotide identity with Indonesian viruses from 2017 and 2019 (96.7-96.8%). The most recent common ancestor of this Australian-Indonesian clade was estimated to have emerged in 2007 (95% HPD range: 1998-2014). Positive selection was detected using two methods (MEME and FEL) at several sites in the E and non-structural protein genes, including a single site in the E protein (S194N) unique to the Australian GIV strains. CONCLUSION This case represents the first detection of GIV JEV acquired in Australia, and only the second confirmed fatal human infection with a GIV JEV strain. The close phylogenetic relationship between the Tiwi Islands strain and recent Indonesian viruses is indicative of the origin of this novel GIV lineage, which we estimate has circulated in the region for several years prior to the Tiwi Islands case.
Collapse
Affiliation(s)
- Chisha Sikazwe
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Matthew J. Neave
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Alice Michie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Patrick Mileto
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Jianning Wang
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Natalie Cooper
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Avram Levy
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Allison Imrie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Robert W. Baird
- Pathology and Infectious Diseases Departments, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Pathology and Infectious Diseases Departments, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - David Speers
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- * E-mail: (DWS); (DTW)
| | - David T. Williams
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
- * E-mail: (DWS); (DTW)
| |
Collapse
|
21
|
Japanese Encephalitis Virus: The Emergence of Genotype IV in Australia and Its Potential Endemicity. Viruses 2022; 14:v14112480. [PMID: 36366578 PMCID: PMC9698845 DOI: 10.3390/v14112480] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
A fatal case of Japanese encephalitis (JE) occurred in northern Australia in early 2021. Sequence studies showed that the virus belonged to genotype IV (GIV), a genotype previously believed to be restricted to the Indonesian archipelago. This was the first locally acquired case of Japanese encephalitis virus (JEV) GIV to occur outside Indonesia, and the second confirmed fatal human case caused by a GIV virus. A closely related GIV JEV strain subsequently caused a widespread outbreak in eastern Australia in 2022 that was first detected by fetal death and abnormalities in commercial piggeries. Forty-two human cases also occurred with seven fatalities. This has been the first major outbreak of JEV in mainland Australia, and geographically the largest virgin soil outbreak recorded for JEV. This outbreak provides an opportunity to discuss and document the factors involved in the virus' spread and its ecology in a novel ecological milieu in which other flaviviruses, including members of the JE serological complex, also occur. The probable vertebrate hosts and mosquito vectors are discussed with respect to virus spread and its possible endemicity in Australia, and the need to develop a One Health approach to develop improved surveillance methods to rapidly detect future outbreak activity across a large geographical area containing a sparse human population. Understanding the spread of JEV in a novel ecological environment is relevant to the possible threat that JEV may pose in the future to other receptive geographic areas, such as the west coast of the United States, southern Europe or Africa.
Collapse
|
22
|
Bharucha T, Ayhan N, Pastorino B, Rattanavong S, Vongsouvath M, Mayxay M, Changthongthip A, Sengvilaipaseuth O, Phonemixay O, Pommier JD, Gorman C, Zitzmann N, Newton PN, de Lamballerie X, Dubot-Pérès A. Immunoglobulin M seroneutralization for improved confirmation of Japanese encephalitis virus infection in a flavivirus-endemic area. Trans R Soc Trop Med Hyg 2022; 116:1032-1042. [PMID: 35593182 PMCID: PMC9623734 DOI: 10.1093/trstmh/trac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The mainstay of diagnostic confirmation of acute Japanese encephalitis (JE) involves detection of anti-JE virus (JEV) immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA). Limitations in the specificity of this test are increasingly apparent with the introduction of JEV vaccinations and the endemicity of other cross-reactive flaviviruses. Virus neutralization testing (VNT) is considered the gold standard, but it is challenging to implement and interpret. We performed a pilot study to assess IgG depletion prior to VNT for detection of anti-JEV IgM neutralizing antibodies (IgM-VNT) as compared with standard VNT. METHODS We evaluated IgM-VNT in paired sera from anti-JEV IgM ELISA-positive patients (JE n=35) and negative controls of healthy flavivirus-naïve (n=10) as well as confirmed dengue (n=12) and Zika virus (n=4) patient sera. IgM-VNT was subsequently performed on single sera from additional JE patients (n=76). RESULTS Anti-JEV IgG was detectable in admission serum of 58% of JE patients. The positive, negative and overall percentage agreement of IgM-VNT as compared with standard VNT was 100%. A total of 12/14 (86%) patient samples were unclassified by VNT and, with sufficient sample available for IgG depletion and IgG ELISA confirming depletion, were classified by IgM-VNT. IgM-VNT enabled JE case classification in 72/76 (95%) patients for whom only a single sample was available. CONCLUSIONS The novel approach has been readily adapted for high-throughput testing of single patient samples and it holds promise for incorporation into algorithms for use in reference centres.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Nazli Ayhan
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Boris Pastorino
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anisone Changthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Onanong Sengvilaipaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Ooyanong Phonemixay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Jean-David Pommier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Intensive Care Department, University Hospital of Guadeloupe, France
| | | | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Unité des Virus Émergents, Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Pham D, Howard-Jones AR, Hueston L, Jeoffreys N, Doggett S, Rockett R, Eden JS, Sintchenko V, Chen SCA, O’Sullivan MV, Maddocks S, Dwyer DE, Kok J. Emergence of Japanese encephalitis in Australia: a diagnostic perspective. Pathology 2022; 54:669-677. [DOI: 10.1016/j.pathol.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
24
|
Two hidden taxa in the Japanese encephalitis vector mosquito, Culex tritaeniorhynchus, and the potential for long-distance migration from overseas to Japan. PLoS Negl Trop Dis 2022; 16:e0010543. [PMID: 35771889 PMCID: PMC9278767 DOI: 10.1371/journal.pntd.0010543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/13/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022] Open
Abstract
The Culex vishnui subgroups, particularly Culex tritaeniorhynchus, are considered the primary vectors of the Japanese encephalitis virus (JEV) in Asia. Recent molecular phylogenetic analyses of JEV isolates from Asian countries have shown that JEVs with diverse genetic variants are present in Asia. Furthermore, some JEV strains have been found to have crossed the East China Sea and been introduced into Japan. In this study, the possibility of overseas migration of the JE vector mosquito, Cx. tritaeniorhynchus was examined from the genetic, physical, and meteorological perspectives. Molecular phylogenetic analysis was performed based on both whole coding sequences and on the barcoding region of the mitochondrial cytochrome c oxidase subunit I (COI) gene of Cx. vishnui subgroups collected from Asian countries. Culex tritaeniorhymchus was classified into two genetically independent taxa by COI sequences: the Japanese type (Ct-J), which inhabits Japan except for the Amami Islands of southern Japan, and the continental type (Ct-C), which inhabits the Asian region except for Japan. It was confirmed that approximately 10% of Cx. tritaeniorhynchus trapped during the summer in western Kyushu were Ct-C, and that they could fly for up to 38 h continuously. The meteorological analysis also confirmed that the atmospheric flow occurring over the continent coincided with the date of Ct-C capture. This is the first report showing the existence of two taxa in Cx. tritaeniorhynchus. Their physical and physiological characteristics suggest the possibility of long-distance migration from overseas regions to Japan across the East China Sea. Future efforts are expected to provide evidence to support the occurrence of long-distance migration of Cx. tritaeniorhynchus with JEV.
Collapse
|
25
|
Abstract
Japanese Encephalitis Virus (JEV)/West Nile Virus (WNV)-induced encephalitis, although observed in selective cases, is associated with fatal consequences ranging from decline in cognitive abilities among recovered patients to coma/death. Loss of neuronal cells following viral infection-induced neuronal death imposes significant challenge to the central nervous system (CNS) homeostasis eventually resulting in loss of CNS tissue integrity and poor disease outcome in patients. In our present study, we aim to evaluate the role played by miRNA in modulating neuronal death upon neurotropic flaviviral infections. Infection of neuronal cell line resulted in upregulation of miR-451a abundance. Upon its upregulation, miR-451a has been demonstrated to target 3′-UTR of 14-3-3ζ transcript culminating into downregulation of 14-3-3ζ at the protein level. In response to 14-3-3ζ protein depletion in the cytosol upon flavivirus infection, increased phosphorylation of JNK protein has been shown to take place thus paving way for the cell to undergo apoptosis. Reversal of virus-induced miR-451a-upregulation helped abrogate neuronal apoptosis which is accompanied by a restoration of 14-3-3ζ protein and phosphorylated-JNK abundance to its normal level. Our findings hence provide a possible therapeutic target for preventing JEV/WNV-induced neuronal apoptosis thus improving disease outcome in flaviviral infection-associated encephalitis. IMPORTANCE Neuronal infection by JEV/WNV culminates into neuronal cell death thus contributing to signs and symptoms exhibited by patients that suffer from and that have recovered from JEV/WNV-induced encephalitis. In the present study we have evaluated the role of miRNA in promoting flavivirus-induced neuronal apoptosis. miR-451a has been demonstrated to promote neuronal cell death by targeting 14-3-3ζ protein function. The function of miR-451a in modulating neuronal physiology toward self-destruction has been shown to be independent of its effect upon the virus infection life cycle. The 14-3-3ζ transcript upon being targeted by miR-451a promotes JNK phosphorylation hence culminating into neuronal death by activation of apoptotic machinery. Inhibition of miR-451a upon neuronal infection by JEV/WNV helped reduce apoptotic machinery activation hence providing us with possible future therapeutic strategy in ameliorating flavivirus-induced neurological manifestations and overall disease burden in terms of morbidity.
Collapse
|
26
|
Zhang F, Chase-Topping M, Guo CG, Woolhouse MEJ. Predictors of human-infective RNA virus discovery in the United States, China, and Africa, an ecological study. eLife 2022; 11:e72123. [PMID: 35666108 PMCID: PMC9278958 DOI: 10.7554/elife.72123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background The variation in the pathogen type as well as the spatial heterogeneity of predictors make the generality of any associations with pathogen discovery debatable. Our previous work confirmed that the association of a group of predictors differed across different types of RNA viruses, yet there have been no previous comparisons of the specific predictors for RNA virus discovery in different regions. The aim of the current study was to close the gap by investigating whether predictors of discovery rates within three regions-the United States, China, and Africa-differ from one another and from those at the global level. Methods Based on a comprehensive list of human-infective RNA viruses, we collated published data on first discovery of each species in each region. We used a Poisson boosted regression tree (BRT) model to examine the relationship between virus discovery and 33 predictors representing climate, socio-economics, land use, and biodiversity across each region separately. The discovery probability in three regions in 2010-2019 was mapped using the fitted models and historical predictors. Results The numbers of human-infective virus species discovered in the United States, China, and Africa up to 2019 were 95, 80, and 107 respectively, with China lagging behind the other two regions. In each region, discoveries were clustered in hotspots. BRT modelling suggested that in all three regions RNA virus discovery was better predicted by land use and socio-economic variables than climatic variables and biodiversity, although the relative importance of these predictors varied by region. Map of virus discovery probability in 2010-2019 indicated several new hotspots outside historical high-risk areas. Most new virus species since 2010 in each region (6/6 in the United States, 19/19 in China, 12/19 in Africa) were discovered in high-risk areas as predicted by our model. Conclusions The drivers of spatiotemporal variation in virus discovery rates vary in different regions of the world. Within regions virus discovery is driven mainly by land-use and socio-economic variables; climate and biodiversity variables are consistently less important predictors than at a global scale. Potential new discovery hotspots in 2010-2019 are identified. Results from the study could guide active surveillance for new human-infective viruses in local high-risk areas. Funding FFZ is funded by the Darwin Trust of Edinburgh (https://darwintrust.bio.ed.ac.uk/). MEJW has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 874735 (VEO) (https://www.veo-europe.eu/).
Collapse
Affiliation(s)
- Feifei Zhang
- Usher Institute, University of EdinburghEdinburghUnited Kingdom
| | - Margo Chase-Topping
- Usher Institute, University of EdinburghEdinburghUnited Kingdom
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburghUnited Kingdom
| | - Chuan-Guo Guo
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong KongHong KongChina
| | | |
Collapse
|
27
|
Kobayashi D, Kuwata R, Kimura T, Faizah AN, Azerigyik FA, Higa Y, Hayashi T, Sawabe K, Isawa H. Detection of Japanese Encephalitis Virus RNA in Host-Questing Ticks in Japan, 2019-2020. Am J Trop Med Hyg 2022; 106:tpmd210700. [PMID: 35405649 PMCID: PMC9209924 DOI: 10.4269/ajtmh.21-0700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 11/07/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne virus, causes severe clinical symptoms in humans in the Asian-Pacific region, where it circulates in a primary transmission cycle among Culex tritaeniorhynchus mosquitoes, domestic swine (Sus scrofa domesticus), and wading birds. We report here an anomalous result that mosquito-borne JEV was detected in unfed host-questing ticks collected from the field in Japan. JEV genomic RNA was detected in four pools of Haemaphysalis flava nymphs collected in November and December 2019, and March 2020, when Cx. tritaeniorhynchus adults were not presumed to be active. Moreover, JEV antigenomic RNA was detected in some JEV-positive tick samples, suggesting virus replication in ticks. However, taken together with no infectious virus isolated, the possibility that the antigenomic RNA was derived from the undigested bloodmeal source in ticks cannot be ruled out. Thus, the role of the ticks as a natural reservoir for JEV remains to be confirmed.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Toshiya Kimura
- Meat Inspection Center of Ehime Prefecture, Ehime, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
28
|
Wright J. Journal of Comparative Pathology Education Trust Fund (2021) Awards. J Comp Pathol 2022; 192:61-62. [DOI: 10.1016/j.jcpa.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Bharucha T, Zitzmann N, Newton P, Dubot-Pérès A, Turtle L. Flavivirus cross-reactivity would explain the apparent findings of Japanese encephalitis virus infection in Nigeria. J Immunoassay Immunochem 2022; 43:463-465. [PMID: 35249461 DOI: 10.1080/15321819.2022.2039184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Mahosot Hospital, Lao PDR
| | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Mahosot Hospital, Lao PDR.,Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Mahosot Hospital, Lao PDR.,Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK.,Des Virus Émergents - (UVE), Aix-Marseille Université - IRD_190 - Inserm_1207, Marseille, France
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
30
|
Kwak BO, Hong YJ, Kim DH. Changes in age-specific seroprevalence of Japanese encephalitis virus and impact of Japanese encephalitis vaccine in Korea. Clin Exp Pediatr 2022; 65:108-114. [PMID: 34592804 PMCID: PMC8898622 DOI: 10.3345/cep.2020.01984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/23/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022] Open
Abstract
The Japanese encephalitis (JE) virus is the leading cause of vaccine-preventable encephalitis in Asia. Since the introduction of a universal JE vaccination program and urbanization of Korea, the incidence of JE has dramatically decreased in Korea. However, recent JE cases have occurred, predominantly among unvaccinated adults and with a shift in age distribution. Here we aimed to review the changes in age-specific JE seroprevalence over time and discuss the implications of JE vaccination programs in Korea. Following the last epidemic in 1982-1983, mandatory vaccination for all children aged 3-15 years was conducted annually until 1994. However, JE has reemerged, predominantly affecting unvaccinated adults aged 40 years or older and demonstrating a shift in age distribution toward older populations. The age-specific seroprevalence of the JE virus in Korea has changed noticeably over time. Seropositivity in children and adolescents increased from 10%-59% in the 1970s to 90%-92% in the 1980s after the implementation of the JE vaccination program and increased further to 98% in 2012. No age-specific difference in the seroprevalence of JE was found, and appropriate levels of immunity to JE were maintained for all age groups. Continuous surveillance of the seroprevalence of JE is essential to establish a proper immunization policy in Korea.
Collapse
Affiliation(s)
- Byung Ok Kwak
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Young Jin Hong
- Department of Pediatrics, Inha University School of Medicine, Incheon, Korea
| | - Dong Hyun Kim
- Department of Pediatrics, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
31
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
32
|
Li X, Li J, Wu G, Wang M, Jing Z. Detection of Japanese Encephalitis by Metagenomic Next-Generation Sequencing of Cerebrospinal Fluid: A Case Report and Literature Review. Front Cell Neurosci 2022; 16:856512. [PMID: 35250491 PMCID: PMC8892252 DOI: 10.3389/fncel.2022.856512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
Japanese encephalitis (JE) is an acute viral central nervous system disease, although less than 1% of patients infected with Japanese encephalitis virus (JEV) result in JE, which has an extremely poor prognosis. The Routine detection methods for JEV are time-consuming or limited by hospital conditions, therefore, need the quicker and sensitive techniques to detect JEV. Here, we reported a 14-year-old female who was admitted to our hospital with a severe fever, progressively headache and unconsciousness. Based on the clinical presentation, Preliminary diagnosis on admission indicated central nervous system infection of suspected viral meningoencephalitis or autoimmune encephalitis. The patient's symptoms were unrelieved after being treated with empiric antiviral therapy. Magnetic resonance imaging (MRI) showed that the lesions were located in the bilateral thalamus, head of caudate nucleus, and right lenticular nucleus, so we had to consider the possibility of Flaviviruses infection. We sent the cerebrospinal fluid (CSF) for metagenomic next-generation sequencing (mNGS) immediately, subsequent result suggested the infection caused by JEV. Two days later the results of the serum agglutination test confirmed that virus immunoglobulin M antibody positive. After a week treatment with intravenous immunoglobulin (IVIG), meanwhile, the lumbar puncture was used to check the pressure and various indicators of the CSF again to evaluate the treatment effect, An decrease in the number of WBC indicates, protein and unique RNA reads that the previous experimental treatment was effective, accompany by temperature and consciousness of the patient was normalized. Two weeks after admission, the patient was transferred to the rehabilitation hospital, MR showed the lesions had disappeared completely after 2 months of follow-up. We believed that mNGS may be an effective method for rapid identification of JE.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guode Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Manxia Wang
| | - Zhang Jing
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
33
|
Xu C, Zhang W, Pan Y, Wang G, Yin Q, Fu S, Li F, He Y, Xu S, Wang Z, Liang G, Nie K, Wang H. A Bibliometric Analysis of Global Research on Japanese Encephalitis From 1934 to 2020. Front Cell Infect Microbiol 2022; 12:833701. [PMID: 35155284 PMCID: PMC8829047 DOI: 10.3389/fcimb.2022.833701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Japanese encephalitis (JE) is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV). The disease is mainly an epidemic in Asia and has been studied for nearly 90 years. To evaluate the research trends of JE, 3,023 English publications between 1934 and 2020 were retrieved and analyzed from the Web of Science database using indicators for publication, country or territory, citation, journal, author and affiliation, keyword co-occurrence cluster, and strongest citation bursts detection. The results of the bibliometric analysis and the visualization tools show that the number of annual publications on JE has been increasing. JE has been continuously studied in the USA and also many Asian countries, such as Japan, China, India, and South Korea; however, only a few publications have high citations. The main research groups of JE in the last 5 years were in China, Japan, and the UK. The keyword co-occurrence analysis and the strongest citation bursts detection revealed that most studies focused on the pathogenic mechanism of JEV, control of outbreaks, and immunization with JE vaccine. The research maps on JE obtained by our analysis are expected to help researchers effectively explore the disease.
Collapse
Affiliation(s)
- Chongxiao Xu
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Zhang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuefeng Pan
- Saint John’s Preparatory School, Collegeville, MN, United States
| | - Guowei Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qikai Yin
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shihong Fu
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Li
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying He
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Songtao Xu
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenhai Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Engineering Research Center for Diagnosis and Treatment of Ningxia Nervous System Diseases, Yinchuan, China
| | - Guodong Liang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Nie
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Huanyu Wang, ; Kai Nie,
| | - Huanyu Wang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- Chinese Center for Disease Control and Prevention Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Huanyu Wang, ; Kai Nie,
| |
Collapse
|
34
|
Caldwell M, Boruah AP, Thakur KT. Acute neurologic emerging flaviviruses. Ther Adv Infect Dis 2022; 9:20499361221102664. [PMID: 35719177 PMCID: PMC9198421 DOI: 10.1177/20499361221102664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic has shed light on the challenges we face as a global society in preventing and containing emerging and re-emerging pathogens. Multiple intersecting factors, including environmental changes, host immunological factors, and pathogen dynamics, are intimately connected to the emergence and re-emergence of communicable diseases. There is a large and expanding list of communicable diseases that can cause neurological damage, either through direct or indirect routes. Novel pathogens of neurotropic potential have been identified through advanced diagnostic techniques, including metagenomic next-generation sequencing, but there are also known pathogens which have expanded their geographic distribution to infect non-immune individuals. Factors including population growth, climate change, the increase in animal and human interface, and an increase in international travel and trade are contributing to the expansion of emerging and re-emerging pathogens. Challenges exist around antimicrobial misuse giving rise to antimicrobial-resistant infectious neurotropic organisms and increased susceptibility to infection related to the expanded use of immunomodulatory treatments. In this article, we will review key concepts around emerging and re-emerging pathogens and discuss factors associated with neurotropism and neuroinvasion. We highlight several neurotropic pathogens of interest, including West Nile virus (WNV), Zika Virus, Japanese Encephalitis Virus (JEV), and Tick-Borne Encephalitis Virus (TBEV). We emphasize neuroinfectious diseases which impact the central nervous system (CNS) and focus on flaviviruses, a group of vector-borne pathogens that have expanded globally in recent years and have proven capable of widespread outbreak.
Collapse
Affiliation(s)
- Marissa Caldwell
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Abhilasha P. Boruah
- Department of Neurology, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital (CUIMC/NYP), New York, NY, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kiran T. Thakur
- Division of Critical Care and Hospitalist Neurology, Department of Neurology, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital (CUIMC/NYP), 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
| |
Collapse
|
35
|
Chiou SS, Chen JM, Chen YY, Chia MY, Fan YC. The feasibility of field collected pig oronasal secretions as specimens for the virologic surveillance of Japanese encephalitis virus. PLoS Negl Trop Dis 2021; 15:e0009977. [PMID: 34860839 PMCID: PMC8673640 DOI: 10.1371/journal.pntd.0009977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/15/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Virologic surveillance of Japanese encephalitis virus (JEV) relies on collecting pig blood specimens and adult mosquitoes in the past. Viral RNAs extracted from pig blood specimens suffer from low detecting positivity by reverse transcription PCR (RT-PCR). The oronasal transmission of the virus has been demonstrated in experimentally infected pigs. This observation suggested oronasal specimens could be useful source in the virus surveillance. However, the role of this unusual route of transmission remains unproven in the operational pig farm. In this study, we explore the feasibility of using pig oronasal secretions collected by chewing ropes to improve the positivity of detection in commercial pig farms. The multiplex genotype-specific RT-PCR was used in this study to determine and compare the positivity of detecting JEV viral RNAs in pig’s oronasal secretions and blood specimens, and the primary mosquito vector. Oronasal specimens had the overall positive rate of 6.0% (95% CI 1.3%–16.6%) (3/50) to 10.0% (95% CI 2.1%–26.5%) (3/30) for JEV during transmission period despite the negative results of all blood-derived specimens (n = 2442). Interestingly, pig oronasal secretions and female Culex tritaeniorhynchus mosquito samples collected from the same pig farm showed similar viral RNA positive rates, 10.0% (95% CI 2.1%–26.5%) (3/30) and 8.9% (95% CI 2.5%–21.2%) (4/45), respectively (p> 0.05). Pig oronasal secretion-based surveillance revealed the seasonality of viral activity and identified closely related genotype I virus derived from the mosquito isolates. This finding indicates oronasal secretion-based RT-PCR assay can be a non-invasive, alternative method of implementing JEV surveillance in the epidemic area prior to the circulation of virus-positive mosquitoes. Mosquito-borne Japanese encephalitis virus (JEV) has either endemic or seasonal patterns of transmission in Asia and Australia. Most hosts infected by the virus remains asymptomatic but can result in severe encephalitis in humans and horses, and abortion or stillbirth in pregnant sows. Isolation of virus in adult mosquitoes or pig seroconversion has been used as an early indicator of upcoming JE outbreak in humans. Genotype identification of the virus is important since current human and domestic animal vaccines are all genotype III (GIII) specific. GIII vaccine elicited immunity has reduced cross-protections to genotypes other than GIII. Our virologic surveillance using pig’s oronasal secretion detected higher prevalence and earlier genotype I virus activity than using pig’s blood and mosquitoes, respectively. This proposed surveillance tool might be more effective that will allow the public health agency to properly implement the preventive measures, such as implementing mosquito control, encouraging booster vaccination, and encouraging the use of mosquito repellent, to reduce the impact of upcoming outbreak. Collection of pig’s oronasal secretion is non-invasive to pigs and less technically demanding to operators. Thus we propose the use of pig’s oronasal secretions as the novel source of specimens for virologic surveillance to replace the traditional pig blood or adult mosquito specimens to monitor and control JE outbreak/epidemic in the future.
Collapse
Affiliation(s)
- Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chin Fan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Mulvey P, Duong V, Boyer S, Burgess G, Williams DT, Dussart P, Horwood PF. The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens 2021; 10:1534. [PMID: 34959489 PMCID: PMC8704921 DOI: 10.3390/pathogens10121534] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus mainly spread by Culex mosquitoes that currently has a geographic distribution across most of Southeast Asia and the Western Pacific. Infection with JEV can cause Japanese encephalitis (JE), a severe disease with a high mortality rate, which also results in ongoing sequalae in many survivors. The natural reservoir of JEV is ardeid wading birds, such as egrets and herons, but pigs commonly play an important role as an amplifying host during outbreaks in human populations. Other domestic animals and wildlife have been detected as hosts for JEV, but their role in the ecology and epidemiology of JEV is uncertain. Safe and effective JEV vaccines are available, but unfortunately, their use remains low in most endemic countries where they are most needed. Increased surveillance and diagnosis of JE is required as climate change and social disruption are likely to facilitate further geographical expansion of Culex vectors and JE risk areas.
Collapse
Affiliation(s)
- Peter Mulvey
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia;
| | - Veasna Duong
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Sebastien Boyer
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Graham Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| | - David T. Williams
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong 3220, Australia;
| | - Philippe Dussart
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Paul F. Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia;
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| |
Collapse
|
37
|
Udeze AO, Odebisi-Omokanye MB. Sero-evidence of silent Japanese Encephalitis Virus infection among inhabitants of Ilorin, North-central Nigeria: a call for active surveillance. J Immunoassay Immunochem 2021; 43:250-258. [PMID: 34809529 DOI: 10.1080/15321819.2021.1993897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infection by Japanese Encephalitis Virus (JEV) causes viral encephalitis in humans. It is endemic in Asia and western Pacific regions with no reported case in Nigeria so far. This study aimed at detecting evidence of circulation and pattern of exposure of individuals in Ilorin, Nigeria to JEV. A total of 139 febrile patients attending outpatient departments of Sobi specialist hospital, Civil service hospital and University of Ilorin health center participated in the study. About 5 ml of venous blood was collected from each participant and the plasma tested for the presence of anti-JEV IgG antibody using Enzyme Linked Immunosorbent Assay (ELISA) technique. Anti-JEV IgG antibody was detected in 32% (45/139) of the participants. Males were more exposed (37%) than female participants (27.3%). Similarly, participants with travel history outside of the country were more exposed (44.4%) than those without travel history (29.5%). Further analysis on the basis of age, marital and working status showed no statistical association between these variables and anti-JEV positivity (p˃0.05). This study has provided serological evidence of the circulation of JEV among Ilorin inhabitants and therefore calls for active surveillance for the infection in order to forestall any future major outbreak.
Collapse
|
38
|
Liu H, Zhang J, Niu Y, Liang G. The 5' and 3' Untranslated Regions of the Japanese Encephalitis Virus (JEV): Molecular Genetics and Higher Order Structures. Front Microbiol 2021; 12:730045. [PMID: 34777278 PMCID: PMC8581615 DOI: 10.3389/fmicb.2021.730045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
The untranslated region (UTRs) of viral genome are important for viral replication and immune modulation. Japanese encephalitis virus (JEV) is the most significant cause of epidemic encephalitis worldwide. However, little is known regarding the characterization of the JEV UTRs. Here, systematic analyses of the UTRs of JEVs isolated from a variety of hosts worldwide spanning about 80 years were made. All the important cis-acting elements and structures were compared with other mosquito-borne Flaviviruses [West Nile virus (WNV), Yellow fever virus (YFV), Zika virus (ZIKV), Dengue virus (DENV)] and annotated in detail in the UTRs of different JEV genotypes. Our findings identified the JEV-specific structure and the sequence motif with unique JEV feature. (i) The 3’ dbsHP was identified as a small hairpin located in the DB region in the 3′ UTR of JEV, with the structure highly conserved among the JEV genotypes. (ii) The spacer sequence UARs of JEV consist of four discrete spacer sequences, whereas the UARs of other mosquito-borne Flaviviruses are continuous sequences. In addition, repetitive elements have been discovered in the UTRs of mosquito-borne Flaviviruses. The lengths, locations, and numbers of the repetitive elements of JEV also differed from other Flaviviruses (WNV, YFV, ZIKV, DENV). A 300 nt-length region located at the beginning of the 3′ UTR exhibited significant genotypic specificity. This study lays the basis for future research on the relationships between the JEV specific structures and elements in the UTRs, and their important biological function.
Collapse
Affiliation(s)
- Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.,Zibo Key Laboratory of Precise Gene Detection, Zibo, China
| | - Jun Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuzhen Niu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
39
|
Adetunji SA, Smolensky D, Mitzel DN, Owens JL, Chitko-McKown CG, Cernicchiaro N, Noronha LE. In Vitro Infection Dynamics of Japanese Encephalitis Virus in Established Porcine Cell Lines. Pathogens 2021; 10:pathogens10111468. [PMID: 34832623 PMCID: PMC8618157 DOI: 10.3390/pathogens10111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne pathogen that regularly causes severe neurological disease in humans in Southeast Asia and the Western Pacific region. Pigs are one of the main amplifying hosts of JEV and play a central role in the virus transmission cycle. The objective of this study was to identify in vitro cell systems to investigate early effects of JEV infection including viral replication and host cell death. Here, we demonstrate the susceptibility of several porcine cell lines to the attenuated genotype III JEV strain SA14-14-2. Monolayers of porcine nasal turbinate (PT-K75), kidney (SK-RST), testis (ST), and monocyte-derived macrophage (CΔ2+) cells were infected with SA14-14-2 for up to five days at a multiplicity of infection (MOI) of 0.1. The hamster kidney cell line BHK-21, previously shown to be susceptible to SA14-14-2, was used as a positive control. Culture supernatants and cells were collected between 0 and 120 h post infection (hpi), and monolayers were observed for cytopathic effect (CPE) using brightfield microscopy. The number of infectious virus particles was quantified by plaque assay and cell viability was determined using trypan blue staining. An indirect immunofluorescence assay was used to detect the presence of JEV NS1 antigens in cells infected at 1 MOI. All four porcine cell lines demonstrated susceptibility to SA14-14-2 and produced infectious virus by 12 hpi. Virus titers peaked at 48 hpi in CΔ2+, BHK-21, and SK-RST cells, at 72 hpi in PT-K75, and at 120 hpi in ST cells. CPE was visible in infected CΔ2+ and BHK-21 cells, but not the other three cell lines. The proportion of viable cells, as measured by trypan blue exclusion, declined after 24 hpi in BHK-21 and 48 hpi in CΔ2+ cells, but did not substantially decline in SK-RST, PT-K75 or ST cells. At 48 hpi, JEV NS1 was detected in all infected cell lines by fluorescence microscopy. These findings demonstrate several porcine cell lines which have the potential to serve as useful research tools for investigating JEV infection dynamics and host cell mechanisms in a natural amplifying host species, such as pigs, in vitro.
Collapse
Affiliation(s)
- Shakirat A. Adetunji
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.A.A.); (N.C.)
| | - Dmitriy Smolensky
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Dana N. Mitzel
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.N.M.); (J.L.O.)
| | - Jeana L. Owens
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.N.M.); (J.L.O.)
| | - Carol G. Chitko-McKown
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933, USA;
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.A.A.); (N.C.)
| | - Leela E. Noronha
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.N.M.); (J.L.O.)
- Correspondence:
| |
Collapse
|
40
|
Immunological Analysis of Nodavirus Capsid Displaying the Domain III of Japanese Encephalitis Virus Envelope Protein. Pharmaceutics 2021; 13:pharmaceutics13111826. [PMID: 34834244 PMCID: PMC8618745 DOI: 10.3390/pharmaceutics13111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the pathogen that causes Japanese encephalitis (JE) in humans and horses. Lethality of the virus was reported to be between 20–30%, of which, 30–50% of the JE survivors develop neurological and psychiatric sequelae. Attributed to the low effectiveness of current therapeutic approaches against JEV, vaccination remains the only effective approach to prevent the viral infection. Currently, live-attenuated and chimeric-live vaccines are widely used worldwide but these vaccines pose a risk of virulence restoration. Therefore, continuing development of JE vaccines with higher safety profiles and better protective efficacies is urgently needed. In this study, the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (CP) fused with the domain III of JEV envelope protein (JEV-DIII) was produced in Escherichia coli. The fusion protein (MrNV-CPJEV-DIII) assembled into virus-like particles (VLPs) with a diameter of approximately 18 nm. The BALB/c mice injected with the VLPs alone or in the presence of alum successfully elicited the production of anti-JEV-DIII antibody, with titers significantly higher than that in mice immunized with IMOJEV, a commercially available vaccine. Immunophenotyping showed that the MrNV-CPJEV-DIII supplemented with alum triggered proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer (NK) cells. Additionally, cytokine profiles of the immunized mice revealed activities of cytotoxic T-lymphocytes, macrophages, and NK cells, indicating the activation of adaptive cellular and innate immune responses mediated by MrNV-CPJEV-DIII VLPs. Induction of innate, humoral, and cellular immune responses by the MrNV-CPJEV-DIII VLPs suggest that the chimeric protein is a promising JEV vaccine candidate.
Collapse
|
41
|
Park SL, Huang YJS, Lyons AC, Ayers VB, Hettenbach SM, McVey DS, Noronha LE, Burton KR, Hsu WW, Higgs S, Vanlandingham DL. Mosquito Saliva Modulates Japanese Encephalitis Virus Infection in Domestic Pigs. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.724016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is the leading cause of pediatric viral encephalitis in Asia. Japanese encephalitis virus is transmitted by Culex species mosquitoes that also vector several zoonotic flaviviruses. Despite the knowledge that mosquito saliva contains molecules that may alter flavivirus pathogenesis, whether or not the deposition of viruses by infected mosquitoes has an impact on the kinetics and severity of JEV infection has not been thoroughly examined, especially in mammalian species involved in the enzootic transmission. Most JEV pathogenesis models were established using needle inoculation. Mouse models for West Nile (WNV) and dengue (DENV) viruses have shown that mosquito saliva can potentiate flavivirus infections and exacerbate disease symptoms. In this study, we determined the impact of mosquito salivary components on the pathogenesis of JEV in pigs, a species directly involved in its transmission cycle as an amplifying host. Interestingly, co-injection of JEV and salivary gland extract (SGE) collected from Culex quinquefasciatus produced milder febrile illness and shortened duration of nasal shedding but had no demonstrable impact on viremia and neuroinvasion. Our findings highlight that mosquito salivary components can differentially modulate the outcomes of flavivirus infections in amplifying hosts and in mouse models.
Collapse
|
42
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
43
|
Vannice KS, Hills SL, Schwartz LM, Barrett AD, Heffelfinger J, Hombach J, Letson GW, Solomon T, Marfin AA. The future of Japanese encephalitis vaccination: expert recommendations for achieving and maintaining optimal JE control. NPJ Vaccines 2021; 6:82. [PMID: 34131150 PMCID: PMC8206071 DOI: 10.1038/s41541-021-00338-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
Vaccines against Japanese encephalitis (JE) have been available for decades. Currently, most JE-endemic countries have vaccination programs for their at-risk populations. Even so, JE remains the leading recognized cause of viral encephalitis in Asia. In 2018, the U.S. Centers for Disease Control and Prevention and PATH co-convened a group of independent experts to review JE prevention and control successes, identify remaining scientific and operational issues that need to be addressed, discuss opportunities to further strengthen JE vaccination programs, and identify strategies and solutions to ensure sustainability of JE control during the next decade. This paper summarizes the key discussion points and recommendations to sustain and expand JE control.
Collapse
Affiliation(s)
| | - Susan L Hills
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Alan D Barrett
- Sealy Institute for Vaccine Sciences, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Joachim Hombach
- Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Tom Solomon
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, and Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
44
|
Lord JS. Changes in Rice and Livestock Production and the Potential Emergence of Japanese Encephalitis in Africa. Pathogens 2021; 10:pathogens10030294. [PMID: 33806470 PMCID: PMC8000791 DOI: 10.3390/pathogens10030294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
The known distribution of Japanese encephalitis (JE) is limited to Asia and Australasia. However, autochthonous transmission of Japanese encephalitis virus was reported in Africa for the first time in 2016. Reasons for the current geographic restriction of JE and the circumstances that may permit emergence in non-endemic areas are not well known. Here, I assess potential changes in vector breeding habitat and livestock production in Africa that are conducive to JEV transmission, using open-source data available from the Food and Agriculture Organization between 1961 and 2019. For 16 of 57 countries in Africa, there was evidence of existing, or an increase in, conditions potentially suitable for JE emergence. This comprised the area used for rice production and the predicted proportion of blood meals on pigs. Angola, where autochthonous transmission was reported, was one of these 16 countries. Studies to better quantify the role of alternative hosts, including domestic birds in transmission in endemic regions, would help to determine the potential for emergence elsewhere. In Africa, surveillance programs for arboviruses should not rule out the possibility of Japanese encephalitis virus (JEV) circulation in areas with high pig or bird density coincident with Culicine breeding habitats.
Collapse
Affiliation(s)
- Jennifer S Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
45
|
Hameed M, Wahaab A, Nawaz M, Khan S, Nazir J, Liu K, Wei J, Ma Z. Potential Role of Birds in Japanese Encephalitis Virus Zoonotic Transmission and Genotype Shift. Viruses 2021; 13:357. [PMID: 33668224 PMCID: PMC7996159 DOI: 10.3390/v13030357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Japanese encephalitis (JE) is a vaccine-preventable disease caused by the Japanese encephalitis virus (JEV), which is primarily prevalent in Asia. JEV is a Flavivirus, classified into a single serotype with five genetically distinct genotypes (I, II, III, IV, and V). JEV genotype III (GIII) had been the most dominant strain and caused numerous outbreaks in the JEV endemic countries until 1990. However, recent data shows the emergence of JEV genotype I (GI) as a dominant genotype and it is gradually displacing GIII. The exact mechanism of this genotype displacement is still unclear. The virus can replicate in mosquito vectors and vertebrate hosts to maintain its zoonotic life cycle; pigs and aquatic wading birds act as an amplifying/reservoir hosts, and the humans and equines are dead-end hosts. The important role of pigs as an amplifying host for the JEV is well known. However, the influence of other domestic animals, especially birds, that live in high abundance and close proximity to the human is not well studied. Here, we strive to briefly highlight the role of birds in the JEV zoonotic transmission, discovery of birds as a natural reservoirs and amplifying host for JEV, species of birds susceptible to the JEV infection, and the proposed effect of JEV on the poultry industry in the future, a perspective that has been neglected for a long time. We also discuss the recent in vitro and in vivo studies that show that the newly emerged GI viruses replicated more efficiently in bird-derived cells and ducklings/chicks than GIII, and an important role of birds in the JEV genotype shift from GIII to GI.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| | - Jawad Nazir
- Vaccinologist/Head Virology, Tréidlia Biovet Pty Ltd. Units, Seven Hills, NSW 2147, Australia;
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.N.); (S.K.); (K.L.)
| |
Collapse
|
46
|
Rapid and simultaneous detection of Japanese encephalitis virus by real-time nucleic acid sequence-based amplification. Microb Pathog 2021; 150:104724. [PMID: 33400988 DOI: 10.1016/j.micpath.2020.104724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
Japaneses encephalitis (JE) is most common zoonoses caused by Japanese encephalitis virus (JEV) with a high mortality and disability rate. To take timely preventive and control measures, early and rapid detection of JE RNA is necessary. But due to characteristic brief and low viraemia, JE RNA detection remains challenging. In this study, a real-time nucleic acid sequence-based amplification (RT-NASBA) was developed for rapid and simultaneous detection of JEV. Four pairs of primer were designed using a multiple genome alignment of all JEV strains from GenBank. NASBA assay established and optimal reaction conditions were confirmed by using primers and probe on ns1 gene of JEV. The specificity and sensitivity of the assay were compared with RT-PCR by using serial RNA and virus cultivation dilutions. The results showed that JEV RT-NASBA assay was established, and robust signals could be observed in 10 min with high specificity. The limit of dectetion of RT-NASBA was 6 copies per reaction. The assay was thus 100 to 1, 000 times more sensitive than RT-PCR. The cross-reaction was performed with other porcine pathogens, and negative amplification results indicated the high specificity of this method. The novel JEV RT-NASBA assay could be used as an efficient molecular biology tool to diagnose JEV, which would facilitate the surveillance of reproductive failure disease in swine and would be beneficial for public health security.
Collapse
|
47
|
Faizah AN, Kobayashi D, Amoa-Bosompem M, Higa Y, Tsuda Y, Itokawa K, Miura K, Hirayama K, Sawabe K, Isawa H. Evaluating the competence of the primary vector, Culex tritaeniorhynchus, and the invasive mosquito species, Aedes japonicus japonicus, in transmitting three Japanese encephalitis virus genotypes. PLoS Negl Trop Dis 2020; 14:e0008986. [PMID: 33370301 PMCID: PMC7793266 DOI: 10.1371/journal.pntd.0008986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
Japanese encephalitis virus (JEV) is maintained in an enzootic cycle between swine, water birds, and mosquitoes. JEV has circulated indigenously in Asia, with Culex tritaeniorhynchus as the primary vector. In some areas where the primary vector is scarce or absent, sporadic cases of Japanese encephalitis have been reported, with Aedes japonicus japonicus presumed to have the potential as a secondary vector. As one of the world's most invasive culicid species, Ae. j. japonicus carries a considerable health risk for spreading diseases to wider areas, including Europe and North America. Thus, evaluation of its competency as a JEV vector, particularly in a native population, will be essential in preventing potential disease spread. In this study, the two mosquito species' vector competence in transmitting three JEV genotypes (I, III, and V) was assessed, with Cx. tritaeniorhynchus serving as a point of reference. The mosquitoes were virus-fed and the infection rate (IR), dissemination rate (DR), and transmission rate (TR) evaluated individually by either RT-qPCR or focus forming assay. Results showed striking differences between the two species, with IR of 95% (261/274) and 9% (16/177) in Cx. tritaeniorhynchus and Ae. j. japonicus, respectively. Both mosquitoes were susceptible to all three JEV genotypes with significant differences in IR and mean viral titer. Results confirm the primary vector's competence, but the fact that JEV was able to establish in Ae. j. japonicus is of public health significance, and with 2%-16% transmission rate it has the potential to successfully transmit JEV to the next host. This may explain the human cases and infrequent detection in primary vector-free areas. Importantly, Ae. j. japonicus could be a relevant vector spreading the disease into new areas, indicating the need for security measures in areas where the mosquito is distributed or where it may be introduced.
Collapse
Affiliation(s)
- Astri Nur Faizah
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kozue Miura
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
48
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
49
|
Yap G, Mailepessov D, Lim XF, Chan S, How CB, Humaidi M, Yeo G, Chong CS, Lam-Phua SG, Lee R, Okumura C, Vythilingam I, Ng LC. Detection of Japanese Encephalitis Virus in Culex Mosquitoes in Singapore. Am J Trop Med Hyg 2020; 103:1234-1240. [PMID: 32700679 PMCID: PMC7470584 DOI: 10.4269/ajtmh.19-0377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mosquito-borne flaviviruses are emerging pathogens of an increasing global public health concern because of their rapid increase in geographical range and the impact of climate change. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are of concern because of the risk of reemergence and introduction by migratory birds. In Singapore, human WNV infection has never been reported and human JEV infection is rare. Four sentinel vector surveillance sites were established in Singapore to understand the potential risk posed by these viruses. Surveillance was carried out from August 2011 to December 2012 at Pulau Ubin, from March 2011 to March 2013 at an Avian Sanctuary (AS), from December 2010 from October 2012 at Murai Farmway, and from December 2010 to December 2013 at a nature reserve. The present study revealed active JEV transmission in Singapore through the detection of JEV genotype II in Culex tritaeniorhynchus collected from an Avian Sanctuary. Culex flavivirus (CxFV), similar to the Quang Binh virus isolated from Cx. tritaeniorhynchus in Vietnam and CxFV-LSFlaviV-A20-09 virus isolated in China, was also detected in Culex spp. (vishnui subgroup). No WNV was detected. This study demonstrates the important role that surveillance plays in public health and strongly suggests the circulation of JEV among wildlife in Singapore, despite the absence of reported human cases. A One Health approach involving surveillance, the collaboration between public health and wildlife managers, and control of mosquito populations remains the key measures in risk mitigation of JEV transmission in the enzootic cycle between birds and mosquitoes.
Collapse
Affiliation(s)
- Grace Yap
- Environmental Health Institute, National Environment Agency, Singapore
| | - Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, Singapore
| | - Xiao Fang Lim
- Environmental Health Institute, National Environment Agency, Singapore
| | | | | | - Mahathir Humaidi
- Environmental Health Institute, National Environment Agency, Singapore
| | - Gladys Yeo
- Environmental Health Institute, National Environment Agency, Singapore
| | - Chee Seng Chong
- Environmental Health Institute, National Environment Agency, Singapore
| | - Sai Gek Lam-Phua
- Environmental Health Institute, National Environment Agency, Singapore
| | - Ruth Lee
- Environmental Health Institute, National Environment Agency, Singapore
| | | | - Indra Vythilingam
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala-Lumpur, Malaysia
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
| |
Collapse
|
50
|
Diagne MM, Dieng I, Granjon L, Lucaccioni H, Sow A, Ndiaye O, Faye M, Bâ K, Bâ Y, Diallo M, Faye O, Duplantier JM, Diallo M, Handschumacher P, Faye O, Sall AA. Seoul Orthohantavirus in Wild Black Rats, Senegal, 2012-2013. Emerg Infect Dis 2020; 26:2460-2464. [PMID: 32946728 PMCID: PMC7510722 DOI: 10.3201/eid2610.201306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hantaviruses cause hemorrhagic fever in humans worldwide. However, few hantavirus surveillance campaigns occur in Africa. We detected Seoul orthohantavirus in black rats in Senegal, although we did not find serologic evidence of this disease in humans. These findings highlight the need for increased surveillance of hantaviruses in this region.
Collapse
|