1
|
Ter Horst J, Rimensberger PC, Kneyber MCJ. What every paediatrician needs to know about mechanical ventilation. Eur J Pediatr 2024; 183:5063-5070. [PMID: 39349751 PMCID: PMC11527898 DOI: 10.1007/s00431-024-05793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/01/2024]
Abstract
Invasive mechanical ventilation (MV) is one of the most practiced interventions in the intensive care unit (ICU) and is unmistakably lifesaving for children with acute respiratory failure (ARF). However, if delivered inappropriately (i.e. ignoring the respiratory system mechanics and not targeted to the need of the individual patient at a specific time point in the disease trajectory), the side effects will outweigh the benefits. Decades of experimental and clinical investigations have resulted in a better understanding of three important detrimental effects of MV. These are ventilation-induced lung injury (VILI), patient self-inflicted lung injury (P-SILI), and ventilation-induced diaphragmatic injury (VIDD). VILI, P-SILI, and VIDD have in common that they occur when there is either too much or too little ventilatory assistance.Conclusion: The purpose of this review is to give the paediatrician an overview of the challenges to prevent these detrimental effects and titrate MV to the individual patient needs.
Collapse
Affiliation(s)
- Jeroen Ter Horst
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Huispost CA62, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Peter C Rimensberger
- Division of Neonatology and Paediatric Intensive Care, University of Geneva, Geneva, Switzerland
| | - Martin C J Kneyber
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Huispost CA62, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands.
- Critical Care, Anaesthesiology, Peri-Operative & Emergency Medicine (CAPE), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Muñoz J, Cedeño JA, Castañeda GF, Visedo LC. Personalized ventilation adjustment in ARDS: A systematic review and meta-analysis of image, driving pressure, transpulmonary pressure, and mechanical power. Heart Lung 2024; 68:305-315. [PMID: 39214040 DOI: 10.1016/j.hrtlng.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) necessitates personalized treatment strategies due to its heterogeneity, aiming to mitigate Ventilator-Induced Lung Injury (VILI). Advanced monitoring techniques, including imaging, driving pressure, transpulmonary pressure, and mechanical power, present potential avenues for tailored interventions. OBJECTIVE To review some of the most important techniques for achieving greater personalization of mechanical ventilation in ARDS patients as evaluated in randomized clinical trials, by analyzing their effect on three clinically relevant aspects: mortality, ventilator-free days, and gas exchange. METHODS Following PRISMA guidelines, we conducted a systematic review and meta-analysis of Randomized Clinical Trials (RCTs) involving adult ARDS patients undergoing personalized ventilation adjustments. Outcomes were mortality (primary end-point), ventilator-free days, and oxygenation improvement. RESULTS Among 493 identified studies, 13 RCTs (n = 1255) met inclusion criteria. No personalized ventilation strategy demonstrated superior outcomes compared to traditional protocols. Meta-analysis revealed no significant reduction in mortality with image-guided (RR 0.88, 95 % CI 0.70-1.11), driving pressure-guided (RR 0.61, 95 % CI 0.29-1.30), or transpulmonary pressure-guided (RR 0.85, 95 % CI 0.58-1.24) strategies. Ventilator-free days and oxygenation outcomes showed no significant differences. CONCLUSION Our study does not support the superiority of personalized ventilation techniques over traditional protocols in ARDS patients. Further research is needed to standardize ventilation strategies and determine their impact on mechanical ventilation outcomes.
Collapse
Affiliation(s)
- Javier Muñoz
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain.
| | - Jamil Antonio Cedeño
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain
| | | | - Lourdes Carmen Visedo
- C. S. San Juan de la Cruz, Pozuelo de Alarcón, C/ San Juan de la Cruz s/n, 28223 Madrid, Spain
| |
Collapse
|
3
|
Spinelli E, Perez J, Chiavieri V, Leali M, Mansour N, Madotto F, Rosso L, Panigada M, Grasselli G, Vaira V, Mauri T. Pathophysiological Markers of Acute Respiratory Distress Syndrome Severity Are Correlated With Ventilation-Perfusion Mismatch Measured by Electrical Impedance Tomography. Crit Care Med 2024:00003246-990000000-00397. [PMID: 39445936 DOI: 10.1097/ccm.0000000000006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Pulmonary ventilation/perfusion (V/Q) mismatch measured by electrical impedance tomography (EIT) is associated with the outcome of patients with the acute respiratory distress syndrome (ARDS), but the underlying pathophysiological mechanisms have not been fully elucidated. The present study aimed to verify the correlation between relevant pathophysiological markers of ARDS severity and V/Q mismatch. DESIGN Prospective observational study. SETTING General ICU of a university-affiliated hospital. PATIENTS Deeply sedated intubated adult patients with ARDS under controlled mechanical ventilation. INTERVENTIONS Measures of V/Q mismatch by EIT, respiratory mechanics, gas exchange, lung imaging, and plasma biomarkers. MEASUREMENTS AND MAIN RESULTS Unmatched V/Q units were assessed by EIT as the fraction of ventilated nonperfused plus perfused nonventilated lung units. At the same time, plasma biomarkers with proven prognostic and mechanistic significance for ARDS (carbonic anhydrase 9 [CA9], hypoxia-inducible factor 1 [HIF1], receptor for advanced glycation endproducts [RAGE], angiopoietin 2 [ANG2], gas exchange, respiratory mechanics, and quantitative chest CT scans were measured. Twenty-five intubated ARDS patients were included with median unmatched V/Q units of 37.1% (29.2-49.2%). Unmatched V/Q units were correlated with plasma levels of CA9 (rho = 0.47; p = 0.01), HIF1 (rho = 0.40; p = 0.05), RAGE (rho = 0.46; p = 0.02), and ANG2 (rho = 0.42; p = 0.03). Additionally, unmatched V/Q units correlated with plateau pressure (r = 0.38; p = 0.05) and with the number of quadrants involved on chest radiograph (r = 0.73; p < 0.01). Regional unmatched V/Q units were correlated with the corresponding fraction of poorly aerated lung tissue (r = 0.62; p = 0.01) and of lung tissue weight (rho: 0.51; p = 0.04) measured by CT scan. CONCLUSIONS In ARDS patients, unmatched V/Q units are correlated with pathophysiological markers of lung epithelial and endothelial dysfunction, increased lung stress, and lung edema. Unmatched V/Q units could represent a comprehensive marker of ARDS severity, reflecting the complex organ pathophysiology and reinforcing their prognostic significance.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Joaquin Perez
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Chiavieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Ximenes Braz B, Cavalcante Meneses G, Bezerra da Silva Junior G, Costa Martins AM, de Souza Mourão Feitosa AF, Cavalcante Lima Chagas G, De Francesco Daher E. Risk factors for mortality in coronavirus disease 2019 patients with silent hypoxemia. Rev Clin Esp 2024; 224:485-493. [PMID: 38945525 DOI: 10.1016/j.rceng.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To describe the predictors of mortality in hospitalized patients with severe acute respiratory syndrome (SARS) due to COVID-19 presenting with silent hypoxemia. MATERIAL AND METHODS Retrospective cohort study of hospitalized patients with SARS due to COVID-19 and silent hypoxemia at admission, in Brazil, from January to June 2021. The primary outcome of interest was in-hospital death. Multivariable logistic regression analysis was performed. RESULTS Of 46,102 patients, the mean age was 59 ± 16 years, and 41.6% were female. During hospitalization, 13,149 patients died. Compared to survivors, non-survivors were older (mean age, 66 vs. 56 years; P < 0.001), less frequently female (43.6% vs. 40.9%; P < 0.001), and more likely to have comorbidities (74.3% vs. 56.8%; P < 0.001). Non-survivors had higher needs for invasive mechanical ventilation (42.4% vs. 6.6%; P < 0.001) and intensive care unit admission (56.9% vs. 20%; P < 0.001) compared to survivors. In the multivariable regression analysis, advanced age (OR 1.04; 95%CI 1.037-1.04), presence of comorbidities (OR 1.54; 95%CI 1.47-1.62), cough (OR 0.74; 95%CI 0.71-0.79), respiratory distress (OR 1.32; 95%CI 1.26-1.38), and need for non-invasive respiratory support (OR 0.37; 95%CI 0.35-0.40) remained independently associated with death. CONCLUSIONS Advanced age, presence of comorbidities, and respiratory distress were independent risk factors for mortality, while cough and requirement for non-invasive respiratory support were independent protective factors against mortality in hospitalized patients due to SARS due to COVID-19 with silent hypoxemia at presentation.
Collapse
Affiliation(s)
- Beatriz Ximenes Braz
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Internal Medicine Department, University of Miami, Miami, FL, United States
| | - Gdayllon Cavalcante Meneses
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Geraldo Bezerra da Silva Junior
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil; Post-Graduation Program in Collective Health, Health Sciences Center, University of Fortaleza - UNIFOR, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Gabriel Cavalcante Lima Chagas
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Elizabeth De Francesco Daher
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Goossen RL, van Vliet R, Bos LDJ, Buiteman-Kruizinga LA, Hollman MW, Myatra SN, Neto AS, Spronk PE, van der Woude MCE, van Meenen DMP, Paulus F, Schultz MJ. High PEEP/low FiO 2 ventilation is associated with lower mortality in COVID-19. J Crit Care 2024; 83:154854. [PMID: 38996499 DOI: 10.1016/j.jcrc.2024.154854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
RATIONALE The positive end-expiratory pressure (PEEP) strategy in patients with coronavirus 2019 (COVID-19) acute respiratory distress syndrome (ARDS) remains debated. Most studies originate from the initial waves of the pandemic. Here we aimed to assess the impact of high PEEP/low FiO2 ventilation on outcomes during the second wave in the Netherlands. METHODS Retrospective observational study of invasively ventilated COVID-19 patients during the second wave. Patients were categorized based on whether they received high PEEP or low PEEP ventilation according to the ARDS Network tables. The primary outcome was ICU mortality, and secondary outcomes included hospital and 90-day mortality, duration of ventilation and length of stay, and the occurrence of kidney injury. Propensity matching was performed to correct for factors with a known relationship to ICU mortality. RESULTS This analysis included 790 COVID-ARDS patients. At ICU discharge, 32 (22.5%) out of 142 high PEEP patients and 254 (39.2%) out of 848 low PEEP patients had died (HR 0.66 [0.46-0.96]; P = 0.03). High PEEP was linked to improved secondary outcomes. Matched analysis did not change findings. CONCLUSIONS High PEEP ventilation was associated with improved ICU survival in patients with COVID-ARDS.
Collapse
Affiliation(s)
- Robin L Goossen
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| | - Relin van Vliet
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Laura A Buiteman-Kruizinga
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Intensive Care, Reinier de Graaf Hospital, Delft, the Netherlands
| | - Markus W Hollman
- Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sheila N Myatra
- Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Critical Care, University of Melbourne, Melbourne, Australia; Department of Critical Care Medicine, Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Peter E Spronk
- Department of Intensive Care, Gelre Hospitals, Apeldoorn, the Netherlands
| | | | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Anesthesiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Faculty of Health, ACHIEVE, center of applied research, University of Applied Research, Amsterdam, the Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Anesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anesthesia & Critical Care Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Gabela-Zuniga B, Shukla VC, Bobba C, Higuita-Castro N, Powell HM, Englert JA, Ghadiali SN. A micro-scale humanized ventilator-on-a-chip to examine the injurious effects of mechanical ventilation. LAB ON A CHIP 2024; 24:4390-4402. [PMID: 39161999 PMCID: PMC11407794 DOI: 10.1039/d4lc00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Patients with compromised respiratory function frequently require mechanical ventilation to survive. Unfortunately, non-uniform ventilation of injured lungs generates complex mechanical forces that lead to ventilator induced lung injury (VILI). Although investigators have developed lung-on-a-chip systems to simulate normal respiration, modeling the complex mechanics of VILI as well as the subsequent recovery phase is a challenge. Here we present a novel humanized in vitro ventilator-on-a-chip (VOC) model of the lung microenvironment that simulates the different types of injurious forces generated in the lung during mechanical ventilation. We used transepithelial/endothelial electrical impedance measurements to investigate how individual and simultaneous application of mechanical forces alters real-time changes in barrier integrity during and after injury. We find that compressive stress (i.e. barotrauma) does not significantly alter barrier integrity while over-distention (20% cyclic radial strain, volutrauma) results in decreased barrier integrity that quickly recovers upon removal of mechanical stress. Conversely, surface tension forces generated during airway reopening (atelectrauma), result in a rapid loss of barrier integrity with a delayed recovery relative to volutrauma. Simultaneous application of cyclic stretching (volutrauma) and airway reopening (atelectrauma), indicates that the surface tension forces associated with reopening fluid-occluded lung regions are the primary driver of barrier disruption. Thus, our novel VOC system can monitor the effects of different types of injurious forces on barrier disruption and recovery in real-time and can be used to interogate the biomechanical mechanisms of VILI.
Collapse
Affiliation(s)
- Basia Gabela-Zuniga
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Vasudha C Shukla
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Heather M Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Joshua A Englert
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
7
|
Battaglini D, Lassola S, Schultz MJ, Rocco PR. Innovations in protective mechanical ventilation for acute respiratory distress syndrome management. Expert Rev Med Devices 2024; 21:789-792. [PMID: 39160769 DOI: 10.1080/17434440.2024.2393773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Sergio Lassola
- Anesthesia and Intensive Care 1, Santa Chiara Hospital, APSS, Trento, Italy
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Boesing C, Rocco PRM, Luecke T, Krebs J. Positive end-expiratory pressure management in patients with severe ARDS: implications of prone positioning and extracorporeal membrane oxygenation. Crit Care 2024; 28:277. [PMID: 39187853 PMCID: PMC11348554 DOI: 10.1186/s13054-024-05059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
The optimal strategy for positive end-expiratory pressure (PEEP) titration in the management of severe acute respiratory distress syndrome (ARDS) patients remains unclear. Current guidelines emphasize the importance of a careful risk-benefit assessment for PEEP titration in terms of cardiopulmonary function in these patients. Over the last few decades, the primary goal of PEEP usage has shifted from merely improving oxygenation to emphasizing lung protection, with a growing focus on the individual pattern of lung injury, lung and chest wall mechanics, and the hemodynamic consequences of PEEP. In moderate-to-severe ARDS patients, prone positioning (PP) is recommended as part of a lung protective ventilation strategy to reduce mortality. However, the physiologic changes in respiratory mechanics and hemodynamics during PP may require careful re-assessment of the ventilation strategy, including PEEP. For the most severe ARDS patients with refractory gas exchange impairment, where lung protective ventilation is not possible, veno-venous extracorporeal membrane oxygenation (V-V ECMO) facilitates gas exchange and allows for a "lung rest" strategy using "ultraprotective" ventilation. Consequently, the importance of lung recruitment to improve oxygenation and homogenize ventilation with adequate PEEP may differ in severe ARDS patients treated with V-V ECMO compared to those managed conservatively. This review discusses PEEP management in severe ARDS patients and the implications of management with PP or V-V ECMO with respect to respiratory mechanics and hemodynamic function.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
9
|
Lagier D, Zeng C, Kaczka DW, Zhu M, Grogg K, Gerard SE, Reinhardt JM, Ribeiro GCM, Rashid A, Winkler T, Vidal Melo MF. Mechanical ventilation guided by driving pressure optimizes local pulmonary biomechanics in an ovine model. Sci Transl Med 2024; 16:eado1097. [PMID: 39141699 DOI: 10.1126/scitranslmed.ado1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.
Collapse
Affiliation(s)
- David Lagier
- Experimental Interventional Imaging Laboratory (LIIE), European Center for Research in Medical Imaging (CERIMED), Aix Marseille University, Marseille 13005, France
- Department of Anesthesia and Critical Care, University Hospital La Timone, APHM, Marseille 13005, France
| | - Congli Zeng
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - David W Kaczka
- Departments of Anesthesia and Radiology, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Min Zhu
- Guizhou University South Campus, Guiyang City 550025, China
| | - Kira Grogg
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Gabriel C Motta Ribeiro
- Biomedical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-594, Brazil
| | - Azman Rashid
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tilo Winkler
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marcos F Vidal Melo
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
10
|
Sarkar S, Yalla B, Khanna P, Baishya M. Is EIT-guided positive end-expiratory pressure titration for optimizing PEEP in ARDS the white elephant in the room? A systematic review with meta-analysis and trial sequential analysis. J Clin Monit Comput 2024; 38:873-883. [PMID: 38619718 DOI: 10.1007/s10877-024-01158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Electrical Impedance Tomography (EIT) is a novel real-time lung imaging technology for personalized ventilation adjustments, indicating promising results in animals and humans. The present study aimed to assess its clinical utility for improved ventilation and oxygenation compared to traditional protocols. Comprehensive electronic database screening was done until 30th November, 2023. Randomized controlled trials, controlled clinical trials, comparative cohort studies, and assessments of EIT-guided PEEP titration and conventional methods in adult ARDS patients regarding outcome, ventilatory parameters, and P/F ratio were included. Our search retrieved five controlled cohort studies and two RCTs with 515 patients and overall reduced risk of mortality [RR = 0.68; 95% CI: 0.49 to 0.95; I2 = 0%], better dynamic compliance [MD = 3.46; 95% CI: 1.59 to 5.34; I2 = 0%] with no significant difference in PaO2/FiO2 ratio [MD = 6.5; 95%CI -13.86 to 26.76; I2 = 74%]. The required information size except PaO2/FiO2 was achieved for a power of 95% based on the 50% reduction in risk of mortality, 10% improved compliance as the cumulative Z-score of the said outcomes crossed the alpha spending boundary and did not dip below the inner wedge of futility. EIT-guided individualized PEEP titration is a novel modality; further well-designed studies are needed to substantiate its utility.
Collapse
Affiliation(s)
- Soumya Sarkar
- Department of Anaesthesiology, AIIMS, Kalyani, India
| | - Bharat Yalla
- Department of Anaesthesia, Pain Medicine & Critical Care, AIIMS, Ansari Nagar, New Delhi, 110029, India
| | - Puneet Khanna
- Department of Anaesthesia, Pain Medicine & Critical Care, AIIMS, Ansari Nagar, New Delhi, 110029, India.
| | - Madhurjya Baishya
- Department of Anaesthesia, Pain Medicine & Critical Care, AIIMS, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
11
|
Cardim D, Giardina A, Ciliberti P, Battaglini D, Berardino A, Uccelli A, Czosnyka M, Roccatagliata L, Matta B, Patroniti N, Rocco PRM, Robba C. Short-term mild hyperventilation on intracranial pressure, cerebral autoregulation, and oxygenation in acute brain injury patients: a prospective observational study. J Clin Monit Comput 2024; 38:753-762. [PMID: 38310592 PMCID: PMC11297838 DOI: 10.1007/s10877-023-01121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
Current guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. Single center, observational study including patients with acute brain injury (ABI) admitted to the intensive care unit undergoing multimodal neuromonitoring and requiring titration of PaCO2 values to mild hypocapnia as tier 2 for the management of intracranial hypertension. Twenty-five patients were included in this study (40% female), median age 64.7 years (Interquartile Range, IQR = 45.9-73.2). Median Glasgow Coma Scale was 6 (IQR = 3-11). After mild hyperventilation, PaCO2 values decreased (from 42 (39-44) to 34 (32-34) mmHg, p < 0.0001), ICP and PRx significantly decreased (from 25.4 (24.1-26.4) to 17.5 (16-21.2) mmHg, p < 0.0001, and from 0.32 (0.1-0.52) to 0.12 (-0.03-0.23), p < 0.0001). rSO2 was statistically but not clinically significantly reduced (from 60% (56-64) to 59% (54-61), p < 0.0001), but the arterial component of rSO2 (ΔO2Hbi, changes in concentration of oxygenated hemoglobin of the total rSO2) decreased from 3.83 (3-6.2) μM.cm to 1.6 (0.5-3.1) μM.cm, p = 0.0001. Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.
Collapse
Affiliation(s)
- Danilo Cardim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Giardina
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
| | - Pietro Ciliberti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
| | - Denise Battaglini
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Berardino
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DINOGMI, University of Genova, Genova, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DISSAL, University of Genova, Genova, Italy
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Nicolo Patroniti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
12
|
Wang CJ, Wang IT, Chen CH, Tang YH, Lin HW, Lin CY, Wu CL. Recruitment-Potential-Oriented Mechanical Ventilation Protocol and Narrative Review for Patients with Acute Respiratory Distress Syndrome. J Pers Med 2024; 14:779. [PMID: 39201971 PMCID: PMC11355260 DOI: 10.3390/jpm14080779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Even though much progress has been made to improve clinical outcomes, acute respiratory distress syndrome (ARDS) remains a significant cause of acute respiratory failure. Protective mechanical ventilation is the backbone of supportive care for these patients; however, there are still many unresolved issues in its setting. The primary goal of mechanical ventilation is to improve oxygenation and ventilation. The use of positive pressure, especially positive end-expiratory pressure (PEEP), is mandatory in this approach. However, PEEP is a double-edged sword. How to safely set positive end-inspiratory pressure has long been elusive to clinicians. We hereby propose a pressure-volume curve measurement-based method to assess whether injured lungs are recruitable in order to set an appropriate PEEP. For the most severe form of ARDS, extracorporeal membrane oxygenation (ECMO) is considered as the salvage therapy. However, the high level of medical resources required and associated complications make its use in patients with severe ARDS controversial. Our proposed protocol also attempts to propose how to improve patient outcomes by balancing the possible overuse of resources with minimizing patient harm due to dangerous ventilator settings. A recruitment-potential-oriented evaluation-based protocol can effectively stabilize hypoxemic conditions quickly and screen out truly serious patients.
Collapse
Affiliation(s)
- Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - I-Ting Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung 950408, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Tamsui 251020, Taiwan
| | - Hsin-Wei Lin
- Department of Chest Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - Chien-Liang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
| |
Collapse
|
13
|
Murgolo F, Grieco DL, Spadaro S, Bartolomeo N, di Mussi R, Pisani L, Fiorentino M, Crovace AM, Lacitignola L, Staffieri F, Grasso S. Recruitment-to-inflation ratio reflects the impact of peep on dynamic lung strain in a highly recruitable model of ARDS. Ann Intensive Care 2024; 14:106. [PMID: 38963617 PMCID: PMC11224186 DOI: 10.1186/s13613-024-01343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.
Collapse
Affiliation(s)
- Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy.
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), Sezione di Anestesiologia e Rianimazione, Ospedale Policlinico, Università Degli Studi "Aldo Moro", Piazza Giulio Cesare 11, Bari, Italy.
| | - Domenico L Grieco
- Department of Anesthesia, Intensive Care and Emergency, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Savino Spadaro
- Department of Translational Medicine, Section of Anesthesiology and Intensive Care Medicine, University of Ferrara, Ferrara, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Rossella di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Pisani
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Bari, Italy
| | | | - Luca Lacitignola
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Rosà T, Bongiovanni F, Michi T, Mastropietro C, Menga LS, DE Pascale G, Antonelli M, Grieco DL. Recruitment-to-inflation ratio for bedside PEEP selection in acute respiratory distress syndrome. Minerva Anestesiol 2024; 90:694-706. [PMID: 39021144 DOI: 10.23736/s0375-9393.24.17982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In acute respiratory distress syndrome, the role of positive end-expiratory pressure (PEEP) to prevent ventilator-induced lung injury is controversial. Randomized trials comparing higher versus lower PEEP strategies failed to demonstrate a clinical benefit. This may depend on the inter-individually variable potential for lung recruitment (i.e. recruitability), which would warrant PEEP individualization to balance alveolar recruitment and the unavoidable baby lung overinflation produced by high pressure. Many techniques have been used to assess recruitability, including lung imaging, multiple pressure-volume curves and lung volume measurement. The Recruitment-to-Inflation ratio (R/I) has been recently proposed to bedside assess recruitability without additional equipment. R/I assessment is a simplified technique based on the multiple pressure-volume curve concept: it is measured by monitoring respiratory mechanics and exhaled tidal volume during a 10-cmH2O one-breath derecruitment maneuver after a short high-PEEP test. R/I scales recruited volume to respiratory system compliance, and normalizes recruitment to a proxy of actual lung size. With modest R/I (<0.3-0.4), setting low PEEP (5-8 cmH2O) may be advisable; with R/I>0.6-0.7, high PEEP (≥15 cmH2O) can be considered, provided that airway and/or transpulmonary plateau pressure do not exceed safety limits. In case of intermediate R/I (≈0.5), a more granular assessment of recruitability may be needed. This could be accomplished with advanced monitoring tools, like sequential lung volume measurement with granular R/I assessment or electrical impedance tomography monitoring during a decremental PEEP trial. In this review, we discuss R/I rationale, applications and limits, providing insights on its clinical use for PEEP selection in moderate-to-severe acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Claudia Mastropietro
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Gennaro DE Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
15
|
Altuğ E, Toksul İH, Çakir A, Şener K, Korkut S, Kapci M, Güven R. Evaluation of the Prognosis of Patients With Acute Respiratory Distress Syndrome at the Emergency Department Based on the Lung Ultrasound Score. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1235-1243. [PMID: 38482881 DOI: 10.1002/jum.16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES Acute respiratory distress syndrome (ARDS) is a respiratory disease characterized by a high rate of mortality. Determining the prognosis of this disease is therefore important. Lung ultrasonography has found increased use, especially in the recent years. This study aimed to score patients diagnosed with ARDS at the emergency department using point-of-care ultrasound (POCUS)-Lung and to investigate the prognosis of patients with ARDS using a scoring system. METHODS This study was designed as a single-center prospective study. The study was performed in patients admitted to the emergency department and were diagnosed with ARDS pursuant to the Berlin criteria for ARDS and who met the inclusion criteria. The patients underwent lung ultrasonography at the emergency department and were scored (A line: 0; B1 line: 1; B2 line: 2; and C line: 3 points) accordingly. RESULTS The study included 100 patients with ARDS. The mortality rate was 52% in the patients in the study. The lung ultrasonography score in the mortality group (25.48 ± 3.64) was higher than that in the survivors (8.46 ± 3.61). For a cut-off value of 17.5 for the lung ultrasonography score, the sensitivity and specificity with regard to mortality indicators were 92.8% and 90.9%, respectively (the area under the curve: 0.901; 95% confidence interval: 0.945-0.985: P < .001). CONCLUSION The findings suggested that scoring based on POCUS-Lung at the time of initial presentation at the emergency department in patients diagnosed with ARDS according to the Berlin criteria could help determine the prognosis. As POCUS-Lung proved to be an important imaging method in investigating the affected alveolar capacity, we recommend its possible use as a prognostic indicator.
Collapse
Affiliation(s)
- Ertuğrul Altuğ
- Department of Emergency Medicine, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - İbrahim Halil Toksul
- Department of Emergency Medicine, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Adem Çakir
- Department of Emergency Medicine, Ministry of Health of Turkey Canakkale Mehmet Akif Ersoy State Hospital, Canakkale, Turkey
| | - Kemal Şener
- Department of Emergency Medicine, Mersin City Hospital, Mersin, Turkey
| | - Semih Korkut
- Department of Emergency Medicine, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Mücahit Kapci
- Department of Emergency Medicine, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Ramazan Güven
- Department of Emergency Medicine, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
Iotti GA, Belliato M. Alveolar (de)recruitability and (in)stability. Minerva Anestesiol 2024; 90:603-606. [PMID: 39021135 DOI: 10.23736/s0375-9393.24.18297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Giorgio A Iotti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy -
| | - Mirko Belliato
- Unit of Cardiothoracic Anesthesia and Intensive Care, Cardiothoracovascular Department, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|
17
|
Murali M, Ni M, Karbing DS, Rees SE, Komorowski M, Marshall D, Ramnarayan P, Patel BV. Clinical practice, decision-making, and use of clinical decision support systems in invasive mechanical ventilation: a narrative review. Br J Anaesth 2024; 133:164-177. [PMID: 38637268 PMCID: PMC11213991 DOI: 10.1016/j.bja.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Invasive mechanical ventilation is a key supportive therapy for patients on intensive care. There is increasing emphasis on personalised ventilation strategies. Clinical decision support systems (CDSS) have been developed to support this. We conducted a narrative review to assess evidence that could inform device implementation. A search was conducted in MEDLINE (Ovid) and EMBASE. Twenty-nine studies met the inclusion criteria. Role allocation is well described, with interprofessional collaboration dependent on culture, nurse:patient ratio, the use of protocols, and perception of responsibility. There were no descriptions of process measures, quality metrics, or clinical workflow. Nurse-led weaning is well-described, with factors grouped by patient, nurse, and system. Physician-led weaning is heterogenous, guided by subjective and objective information, and 'gestalt'. No studies explored decision-making with CDSS. Several explored facilitators and barriers to implementation, grouped by clinician (facilitators: confidence using CDSS, retaining decision-making ownership; barriers: undermining clinician's role, ambiguity moving off protocol), intervention (facilitators: user-friendly interface, ease of workflow integration, minimal training requirement; barriers: increased documentation time), and organisation (facilitators: system-level mandate; barriers: poor communication, inconsistent training, lack of technical support). One study described factors that support CDSS implementation. There are gaps in our understanding of ventilation practice. A coordinated approach grounded in implementation science is required to support CDSS implementation. Future research should describe factors that guide clinical decision-making throughout mechanical ventilation, with and without CDSS, map clinical workflow, and devise implementation toolkits. Novel research design analogous to a learning organisation, that considers the commercial aspects of device design, is required.
Collapse
Affiliation(s)
- Mayur Murali
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Melody Ni
- NIHR London In Vitro Diagnostics Cooperative, London, UK
| | - Dan S Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Stephen E Rees
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Dominic Marshall
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Padmanabhan Ramnarayan
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK; Imperial Centre for Paediatrics and Child Health, London, UK
| | - Brijesh V Patel
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anaesthesia & Critical Care, Royal Brompton Hospital, London, UK
| |
Collapse
|
18
|
Arriagada R, Bachmann MC, San Martin C, Rauseo M, Battaglini D. Electrical impedance tomography: Usefulness for respiratory physiotherapy in critical illnesses. Med Intensiva 2024; 48:403-410. [PMID: 38538496 DOI: 10.1016/j.medine.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/26/2024] [Indexed: 07/05/2024]
Abstract
Respiratory physiotherapy, including the management of invasive mechanical ventilation (MV) and noninvasive mechanical ventilation (NIV), is a key supportive intervention for critically ill patients. MV has potential for inducing ventilator-induced lung injury (VILI) as well as long-term complications related to prolonged bed rest, such as post-intensive care syndrome and intensive care unit acquired weakness. Physical and respiratory therapy, developed by the critical care team, in a timely manner, has been shown to prevent these complications. In this pathway, real-time bedside monitoring of changes in pulmonary aeration and alveolar gas distribution associated with postural positioning, respiratory physiotherapy techniques and changes in MV strategies can be crucial in guiding these procedures, providing safe therapy and prevention of potential harm to the patient. Along this path, electrical impedance tomography (EIT) has emerged as a new key non-invasive bedside strategy free of radiation, to allow visualization of lung recruitment. This review article presents the main and potential applications of EIT in relation to physiotherapy techniques in the ICU setting.
Collapse
Affiliation(s)
- Ricardo Arriagada
- Unidad de Paciente Crítico Adulto, Hospital Las Higueras de Talcahuano, Chile; Escuela de Kinesiología Universidad San Sebastián, Sede Tres Pascualas, Concepción, Chile; Unidad de Paciente Crìtico, Clìnica Biobìo, Hualpén, Chile
| | - María Consuelo Bachmann
- Unidad de Paciente Crítico Adulto, Hospital Clínico Pontificia Universidad Católica de Chile, Escuela de Kinesiología, Universidad de Los Andes, Santiago, Chile
| | - Constanza San Martin
- Unidad de Paciente Crítico Adulto, Hospital Las Higueras de Talcahuano, Chile; Escuela de Kinesiología Universidad San Sebastián, Sede Tres Pascualas, Concepción, Chile
| | - Michela Rauseo
- Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
19
|
Ogura K, Nakayama R, Bunya N, Katayama S, Yama N, Goto Y, Sawamoto K, Uemura S, Narimatsu E. Correlation between normally aerated lung and respiratory system compliance at clinical high positive end-expiratory pressure in patients with COVID-19. Sci Rep 2024; 14:14477. [PMID: 38914620 PMCID: PMC11196724 DOI: 10.1038/s41598-024-64622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Normally aerated lung tissue on computed tomography (CT) is correlated with static respiratory system compliance (Crs) at zero end-expiratory pressure. In clinical practice, however, patients with acute respiratory failure are often managed using elevated PEEP levels. No study has validated the relationship between lung volume and tissue and Crs at the applied positive end-expiratory pressure (PEEP). Therefore, this study aimed to demonstrate the relationship between lung volume and tissue on CT and Crs during the application of PEEP for the clinical management of patients with acute respiratory distress syndrome due to COVID-19. Additionally, as a secondary outcome, the study aimed to evaluate the relationship between CT characteristics and Crs, considering recruitability using the recruitment-to-inflation ratio (R/I ratio). We analyzed the CT and respiratory mechanics data of 30 patients with COVID-19 who were mechanically ventilated. The CT images were acquired during mechanical ventilation at PEEP level of 15 cmH2O and were quantitatively analyzed using Synapse Vincent system version 6.4 (Fujifilm Corporation, Tokyo, Japan). Recruitability was stratified into two groups, high and low recruitability, based on the median R/I ratio of our study population. Thirty patients were included in the analysis with the median R/I ratio of 0.71. A significant correlation was observed between Crs at the applied PEEP (median 15 [interquartile range (IQR) 12.2, 15.8]) and the normally aerated lung volume (r = 0.70 [95% CI 0.46-0.85], P < 0.001) and tissue (r = 0.70 [95% CI 0.46-0.85], P < 0.001). Multivariable linear regression revealed that recruitability (Coefficient = - 390.9 [95% CI - 725.0 to - 56.8], P = 0.024) and Crs (Coefficient = 48.9 [95% CI 32.6-65.2], P < 0.001) were significantly associated with normally aerated lung volume (R-squared: 0.58). In this study, Crs at the applied PEEP was significantly correlated with normally aerated lung volume and tissue on CT. Moreover, recruitability indicated by the R/I ratio and Crs were significantly associated with the normally aerated lung volume. This research underscores the significance of Crs at the applied PEEP as a bedside-measurable parameter and sheds new light on the link between recruitability and normally aerated lung.
Collapse
Affiliation(s)
- Keishi Ogura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ryuichi Nakayama
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Naofumi Bunya
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
| | - Naoya Yama
- Department of Diagnostic Radiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuya Goto
- Department of Intensive Care Medicine, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Keigo Sawamoto
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shuji Uemura
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eichi Narimatsu
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
20
|
Fratti I, Pozzi T, Hahn G, Fioccola A, Nicolardi RV, Busana M, Collino F, Moerer O, Camporota L, Gattinoni L. Electrical Impedance Tomography: A Monitoring Tool for Ventilation-induced Lung Injury. Am J Respir Crit Care Med 2024; 209:1510-1513. [PMID: 38701379 DOI: 10.1164/rccm.202311-2121le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Isabella Fratti
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Tommaso Pozzi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Guenter Hahn
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Antonio Fioccola
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- Section of Anaesthesiology, Intensive Care and Pain Medicine, Department of Health Sciences, University of Florence, Florence, Italy
| | - Rosmery V Nicolardi
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Busana
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Francesca Collino
- Department of Anesthesia, Intensive Care and Emergency, City of Health and Science Hospital, Turin, Italy; and
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St. Thomas' NHS Foundation Trust, Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Spinelli E, Mauri T. Alveolar Collapse as a Threat to Mechanically Ventilated Lungs. Am J Respir Crit Care Med 2024; 209:1418-1420. [PMID: 38546274 PMCID: PMC11208958 DOI: 10.1164/rccm.202402-0326ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency IRCCS Foundation "Ca' Granda", "Maggiore Policlinico" Hospital Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency IRCCS Foundation "Ca' Granda", "Maggiore Policlinico" Hospital Milan, Italy
- Department of Pathophysiology and Transplantation University of Milan Milan, Italy
| |
Collapse
|
22
|
Cammarota G, Vaschetto R, Vetrugno L, Maggiore SM. Monitoring lung recruitment. Curr Opin Crit Care 2024; 30:268-274. [PMID: 38690956 DOI: 10.1097/mcc.0000000000001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW This review explores lung recruitment monitoring, covering techniques, challenges, and future perspectives. RECENT FINDINGS Various methodologies, including respiratory system mechanics evaluation, arterial bold gases (ABGs) analysis, lung imaging, and esophageal pressure (Pes) measurement are employed to assess lung recruitment. In support to ABGs analysis, the assessment of respiratory mechanics with hysteresis and recruitment-to-inflation ratio has the potential to evaluate lung recruitment and enhance mechanical ventilation setting. Lung imaging tools, such as computed tomography scanning, lung ultrasound, and electrical impedance tomography (EIT) confirm their utility in following lung recruitment with the advantage of radiation-free and repeatable application at the bedside for sonography and EIT. Pes enables the assessment of dorsal lung tendency to collapse through end-expiratory transpulmonary pressure. Despite their value, these methodologies may require an elevated expertise in their application and data interpretation. However, the information obtained by these methods may be conveyed to build machine learning and artificial intelligence algorithms aimed at improving the clinical decision-making process. SUMMARY Monitoring lung recruitment is a crucial component of managing patients with severe lung conditions, within the framework of a personalized ventilatory strategy. Although challenges persist, emerging technologies offer promise for a personalized approach to care in the future.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
23
|
Schwartz EA, Chow B, Bronshteyn YS, Young CC. Ventilator Stress Index: An Intensive Care Unit Tool That Anesthesiologists Should Know. J Cardiothorac Vasc Anesth 2024:S1053-0770(24)00348-3. [PMID: 38918098 DOI: 10.1053/j.jvca.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Affiliation(s)
- Evan A Schwartz
- Division of Pulmonary, Allergy, and Critical Care, Duke University Medical Center, Durham, NC; Department of Internal Medicine, Duke University Medical Center, Durham, NC.
| | - Bryan Chow
- Department of Internal Medicine, Duke University Medical Center, Durham, NC; Division of Adult Cardiothoracic Anesthesiology, Duke University Medical Center, Durham, NC; Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Yuriy S Bronshteyn
- Department of Internal Medicine, Duke University Medical Center, Durham, NC; Department of Anesthesiology, Duke University Medical Center, Durham, NC; Duke University School of Medicine, Durham, NC; Durham VA Health Care System, Durham, NC
| | - Christopher C Young
- Department of Internal Medicine, Duke University Medical Center, Durham, NC; Department of Anesthesiology, Duke University Medical Center, Durham, NC; Division of Adult Critical Care Anesthesia, Duke University Medical Center, Durham, NC
| |
Collapse
|
24
|
Wang Z, Zhou Y, Zhu M, Wang F, Zhou Y, Yu H, Luo F. Prone positioning does not improve outcomes of intubated patients with pneumocystis pneumonia and moderate-severe acute respiratory distress syndrome: a single-center, retrospective, observational, cohort study. Eur J Med Res 2024; 29:267. [PMID: 38698478 PMCID: PMC11067229 DOI: 10.1186/s40001-024-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Pneumocystis pneumonia is an uncommon precipitant of acute respiratory distress syndrome and is associated with high mortality. Prone positioning ventilation has been proven to reduce mortality in patients with moderate-severe acute respiratory distress syndrome. We investigated the effect of prone positioning on oxygenation and mortality in intubated patients with pneumocystis pneumonia comorbid with moderate-severe acute respiratory distress syndrome. METHODS In this single-center, retrospective, observational, cohort study, eligible patients were enrolled at West China Hospital of Sichuan University from January 1, 2017, to December 31, 2021. Data on demographics, clinical features, ventilation parameters, arterial blood gas, and outcomes were collected. Patients were assigned to the prone cohort or supine cohort according to whether they received prone positioning ventilation. The main outcome was 28-day mortality. FINDINGS A total of 79 patients were included in the study. Sixty-three patients were enrolled in the prone cohort, and 16 patients were enrolled in the supine cohort. The 28-day mortality was 61.9% in the prone cohort and 68.8% in the supine cohort (P = 0.26), and 90-day mortality was 66.7% in the prone cohort and 68.8% in the supine cohort (P = 0.55). Patients in the supine cohort had fewer invasive mechanical ventilation days and more ventilator-free days. The incidence of complications was higher in the prone cohort than in the supine cohort. CONCLUSIONS In patients with pneumocystis pneumonia and moderate-severe acute respiratory distress syndrome, prone positioning did not decrease 28-day or 90-day mortality. Trial registration ClinicalTrials.gov number, ChiCTR2200063889. Registered on 20 September 2022, https://www.chictr.org.cn/showproj.html?proj=174886 .
Collapse
Affiliation(s)
- Zhen Wang
- Department of Respiratory Care, Sichuan University West China Hospital, Chengdu, Sichuan, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
| | - Yuyan Zhou
- Department of Respiratory Care, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Min Zhu
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Faping Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yubei Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - He Yu
- Department of Respiratory Care, Sichuan University West China Hospital, Chengdu, Sichuan, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- State Key Laboratory of Respiratory Health and Multimorbidity, West China hospital, Sichuan University, Chengdu, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China, 610041.
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Estenssoro E, González I, Plotnikow GA. Post-pandemic acute respiratory distress syndrome: A New Global Definition with extension to lower-resource regions. Med Intensiva 2024; 48:272-281. [PMID: 38644108 DOI: 10.1016/j.medine.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 04/23/2024]
Abstract
Acute respiratory distress syndrome (ARDS), first described in 1967, is characterized by acute respiratory failure causing profound hypoxemia, decreased pulmonary compliance, and bilateral CXR infiltrates. After several descriptions, the Berlin definition was adopted in 2012, which established three categories of severity according to hypoxemia (mild, moderate and severe), specified temporal aspects for diagnosis, and incorporated the use of non-invasive ventilation. The COVID-19 pandemic led to changes in ARDS management, focusing on continuous monitoring of oxygenation and on utilization of high-flow oxygen therapy and lung ultrasound. In 2021, a New Global Definition based on the Berlin definition of ARDS was proposed, which included a category for non-intubated patients, considered the use of SpO2, and established no particular requirement for oxygenation support in regions with limited resources. Although debates persist, the continuous evolution seeks to adapt to clinical and epidemiological needs, and to the search of personalized treatments.
Collapse
Affiliation(s)
- Elisa Estenssoro
- Escuela de Gobierno en Salud, Ministerio de Salud, Buenos Aires, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| | - Iván González
- Servicio de Rehabilitación, Área de Kinesiología Crítica, Hospital Británico de Buenos Aires, CABA, Argentina
| | - Gustavo A Plotnikow
- Servicio de Rehabilitación, Área de Kinesiología Crítica, Hospital Británico de Buenos Aires, CABA, Argentina; Facultad de Medicina y Ciencias de la Salud, Universidad Abierta Interamericana, Argentina
| |
Collapse
|
26
|
Florio G, Zanella A, Slobod D, Guzzardella A, Protti I, Carlesso E, Canakoglu A, Fumagalli J, Scaravilli V, Colombo SM, Caccioppola A, Brioni M, Pesenti AM, Grasselli G. Impact of Positive End-Expiratory Pressure and FiO 2 on Lung Mechanics and Intrapulmonary Shunt in Mechanically Ventilated Patients with ARDS Due to COVID-19 Pneumonia. J Intensive Care Med 2024; 39:420-428. [PMID: 37926984 DOI: 10.1177/08850666231210485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Purpose: This study aimed to investigate the effects of inspired oxygen fraction (FiO2) and positive end-expiratory pressure (PEEP) on gas exchange in mechanically ventilated patients with COVID-19. Methods: Two FiO2 (100%, 40%) were tested at 3 decreasing levels of PEEP (15, 10, and 5 cmH2O). At each FiO2 and PEEP, gas exchange, respiratory mechanics, hemodynamics, and the distribution of ventilation and perfusion were assessed with electrical impedance tomography. The impact of FiO2 on the intrapulmonary shunt (delta shunt) was analyzed as the difference between the calculated shunt at FiO2 100% (shunt) and venous admixture at FiO2 40% (venous admixture). Results: Fourteen patients were studied. Decreasing PEEP from 15 to 10 cmH2O did not change shunt (24 [21-28] vs 27 [24-29]%) or venous admixture (18 [15-26] vs 23 [18-34]%) while partial pressure of arterial oxygen (FiO2 100%) was higher at PEEP 15 (262 [198-338] vs 256 [147-315] mmHg; P < .05). Instead when PEEP was decreased from 10 to 5 cmH2O, shunt increased to 36 [30-39]% (P < .05) and venous admixture increased to 33 [30-43]% (P < .05) and partial pressure of arterial oxygen (100%) decreased to 109 [76-177] mmHg (P < .05). At PEEP 15, administration of 100% FiO2 resulted in a shunt greater than venous admixture at 40% FiO2, ((24 [21-28] vs 18 [15-26]%, P = .005), delta shunt 5.5% (2.3-8.8)). Compared to PEEP 10, PEEP of 5 and 15 cmH2O resulted in decreased global and pixel-level compliance. Cardiac output at FiO2 100% resulted higher at PEEP 5 (5.4 [4.4-6.5]) compared to PEEP 10 (4.8 [4.1-5.5], P < .05) and PEEP 15 cmH2O (4.7 [4.5-5.4], P < .05). Conclusion: In this study, PEEP of 15 cmH2O, despite resulting in the highest oxygenation, was associated with overdistension. PEEP of 5 cmH2O was associated with increased shunt and alveolar collapse. Administration of 100% FiO2 was associated with an increase in intrapulmonary shunt in the setting of high PEEP. Trial registration: NCT05132933.
Collapse
Affiliation(s)
- Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Douglas Slobod
- Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada
| | - Amedeo Guzzardella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ilaria Protti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Carlesso
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Arif Canakoglu
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jacopo Fumagalli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittorio Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sebastiano M Colombo
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Caccioppola
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Brioni
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio M Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
27
|
Santini A, Protti A, Pennati F, Dalla Corte F, Martinetti N, Pugliese L, Picardo G, Chiurazzi C, Ferrari M, Costantini E, Aliverti A, Cecconi M. Effect of decreasing PEEP on hyperinflation and collapse in COVID-19: A computed tomography study. Acta Anaesthesiol Scand 2024; 68:626-634. [PMID: 38425207 DOI: 10.1111/aas.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND High positive end-expiratory pressure (PEEP>10 cmH2O) is commonly used in mechanically ventilated hypoxemic patients with COVID-19. However, some epidemiological and physiological studies indirectly suggest that using a lower PEEP may primarily and beneficially decrease lung hyperinflation in this population. Herein we directly quantified the effect of decreasing PEEP from 15 to 10 cmH2O on lung hyperinflation and collapse in mechanically ventilated patients with COVID-19. METHODS Twenty mechanically ventilated patients with COVID-19 underwent a lung computed tomography (CT) at PEEP of 15 and 10 cmH2O. The effect of decreasing PEEP on lung hyperinflation and collapse was directly quantified as the change in the over-aerated (density below -900 HU) and non-aerated (density above -100 HU) lung volumes. The net response to decreasing PEEP was computed as the sum of the change in those two compartments and expressed as the change in the "pathologic" lung volume. If the pathologic lung volume decreased (i.e., hyperinflation decreased more than collapse increased) when PEEP was decreased, the net response was considered positive; otherwise, it was considered negative. RESULTS On average, the ratio of arterial tension to inspiratory fraction of oxygen (PaO2:FiO2) in the overall study population was 137 (119-162) mmHg. In 11 (55%) patients, the net response to decreasing PEEP was positive. Their over-aerated lung volume decreased by 159 (98-186) mL, while the non-aerated lung volume increased by only 58 (31-91) mL. In nine (45%) patients, the net response was negative. Their over-aerated lung volume decreased by 46 (18-72) mL, but their non-aerated lung volume increased by 107 (44-121) mL. CONCLUSION In 20 patients with COVID-19 the net response to decreasing PEEP, as assessed with lung CT, was variable. In approximately half of them it was positive (and possibly beneficial), with a decrease in hyperinflation larger than the increase in collapse.
Collapse
Affiliation(s)
- Alessandro Santini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Francesca Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nicolò Martinetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Pugliese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Picardo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Chiurazzi
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michele Ferrari
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elena Costantini
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
28
|
Gattinoni L, Collino F, Camporota L. Assessing lung recruitability: does it help with PEEP settings? Intensive Care Med 2024; 50:749-751. [PMID: 38536421 PMCID: PMC11078853 DOI: 10.1007/s00134-024-07351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Robert Koch Straße 40, 37075, Göttingen, Germany.
| | | | - Luigi Camporota
- Department of Adult Critical Care, Centre for Human and Applied Physiological Sciences, Guy's and St. Thomas' NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
29
|
Songsangvorn N, Xu Y, Lu C, Rotstein O, Brochard L, Slutsky AS, Burns KEA, Zhang H. Electrical impedance tomography-guided positive end-expiratory pressure titration in ARDS: a systematic review and meta-analysis. Intensive Care Med 2024; 50:617-631. [PMID: 38512400 PMCID: PMC11078723 DOI: 10.1007/s00134-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.
Collapse
Affiliation(s)
- Nickjaree Songsangvorn
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Yonghao Xu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Cong Lu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen E A Burns
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
MacLoughlin R, Mac Giolla Eain M. Performance Characterisation of the Airvo2 TM Nebuliser Adapter in Combination with the Aerogen Solo TM Vibrating Mesh Nebuliser for in Line Aerosol Therapy during High Flow Nasal Oxygen Therapy. Pharmaceutics 2024; 16:565. [PMID: 38675226 PMCID: PMC11053618 DOI: 10.3390/pharmaceutics16040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
High flow oxygen (HFO) therapy is a well-established treatment in respiratory disease. Concurrent aerosol delivery can greatly expediate their recovery. The aim of this work was to complete a comprehensive characterisation of one such HFO therapy system, the Airvo2TM, used in combination with the Aerogen SoloTM vibrating mesh nebuliser. Representative adult, infant, and paediatric head models were connected to a breathing simulator via a collection filter placed at the level of the trachea. A tracheostomy interface and nasal cannulas were used to deliver the aerosol. Cannula size and gas flow rate were varied across the full operating range recommended by the manufacturer. The tracheal and emitted doses were quantified via UV-spectrophotometry. The aerosol droplet diameter at the exit of the nares and tracheal interface was measured via cascade impaction. High gas flow rates resulted in low emitted and tracheal doses (%). Nasal cannula size had no significant effect on the tracheal dose (%) available in infant and paediatric models. Higher gas flow rates resulted in smaller aerosol droplets at the exit of the nares and tracheostomy interface. Gas flow rate was found to be the primary parameter affecting aerosol delivery. Thus, gas flow rates should be kept low and where possible, delivered using larger nasal cannulas to maximise aerosol delivery.
Collapse
Affiliation(s)
- Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
31
|
Roeder F, Röpke T, Steinmetz LK, Kolb M, Maus UA, Smith BJ, Knudsen L. Exploring alveolar recruitability using positive end-expiratory pressure in mice overexpressing TGF-β1: a structure-function analysis. Sci Rep 2024; 14:8080. [PMID: 38582767 PMCID: PMC10998853 DOI: 10.1038/s41598-024-58213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-β1 (AdTGF-β1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-β1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-β1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-β1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-β1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.
Collapse
Affiliation(s)
- Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tina Röpke
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany.
| |
Collapse
|
32
|
Boesing C, Krebs J, Conrad AM, Otto M, Beck G, Thiel M, Rocco PRM, Luecke T, Schaefer L. Effects of prone positioning on lung mechanical power components in patients with acute respiratory distress syndrome: a physiologic study. Crit Care 2024; 28:82. [PMID: 38491457 PMCID: PMC10941550 DOI: 10.1186/s13054-024-04867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Prone positioning (PP) homogenizes ventilation distribution and may limit ventilator-induced lung injury (VILI) in patients with moderate to severe acute respiratory distress syndrome (ARDS). The static and dynamic components of ventilation that may cause VILI have been aggregated in mechanical power, considered a unifying driver of VILI. PP may affect mechanical power components differently due to changes in respiratory mechanics; however, the effects of PP on lung mechanical power components are unclear. This study aimed to compare the following parameters during supine positioning (SP) and PP: lung total elastic power and its components (elastic static power and elastic dynamic power) and these variables normalized to end-expiratory lung volume (EELV). METHODS This prospective physiologic study included 55 patients with moderate to severe ARDS. Lung total elastic power and its static and dynamic components were compared during SP and PP using an esophageal pressure-guided ventilation strategy. In SP, the esophageal pressure-guided ventilation strategy was further compared with an oxygenation-guided ventilation strategy defined as baseline SP. The primary endpoint was the effect of PP on lung total elastic power non-normalized and normalized to EELV. Secondary endpoints were the effects of PP and ventilation strategies on lung elastic static and dynamic power components non-normalized and normalized to EELV, respiratory mechanics, gas exchange, and hemodynamic parameters. RESULTS Lung total elastic power (median [interquartile range]) was lower during PP compared with SP (6.7 [4.9-10.6] versus 11.0 [6.6-14.8] J/min; P < 0.001) non-normalized and normalized to EELV (3.2 [2.1-5.0] versus 5.3 [3.3-7.5] J/min/L; P < 0.001). Comparing PP with SP, transpulmonary pressures and EELV did not significantly differ despite lower positive end-expiratory pressure and plateau airway pressure, thereby reducing non-normalized and normalized lung elastic static power in PP. PP improved gas exchange, cardiac output, and increased oxygen delivery compared with SP. CONCLUSIONS In patients with moderate to severe ARDS, PP reduced lung total elastic and elastic static power compared with SP regardless of EELV normalization because comparable transpulmonary pressures and EELV were achieved at lower airway pressures. This resulted in improved gas exchange, hemodynamics, and oxygen delivery. TRIAL REGISTRATION German Clinical Trials Register (DRKS00017449). Registered June 27, 2019. https://drks.de/search/en/trial/DRKS00017449.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Alice Marguerite Conrad
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Otto
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Grietje Beck
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Laura Schaefer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
33
|
Gabela-Zuniga B, Shukla VC, Bobba C, Higuita-Castro N, Powell HM, Englert JA, Ghadiali SN. A Micro-scale Humanized Ventilator-on-a-Chip to Examine the Injurious Effects of Mechanical Ventilation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582200. [PMID: 38464068 PMCID: PMC10925162 DOI: 10.1101/2024.02.26.582200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Patients with compromised respiratory function frequently require mechanical ventilation to survive. Unfortunately, non-uniform ventilation of injured lungs generates complex mechanical forces that lead to ventilator induced lung injury (VILI). Although investigators have developed lung-on-a-chip systems to simulate normal respiration, modeling the complex mechanics of VILI as well as the subsequent recovery phase is a challenge. Here we present a novel humanized in vitro ventilator-on-a-chip (VOC) model of the lung microenvironment that simulates the different types of injurious forces generated in the lung during mechanical ventilation. We used transepithelial/endothelial electrical resistance (TEER) measurements to investigate how individual and simultaneous application of the different mechanical forces alters real-time changes in barrier integrity during and after injury. We find that compressive stress (i.e. barotrauma) does not significantly alter barrier integrity while over-distention (20% cyclic radial strain, volutrauma) results in decreased barrier integrity that quickly recovers upon removal of mechanical stress. Conversely, surface tension forces generated during airway reopening (atelectrauma), result in a rapid loss of barrier integrity with a delayed recovery relative to volutrauma. Simultaneous application of cyclic stretching (volutrauma) and airway reopening (atelectrauma), indicate that the surface tension forces associated with reopening fluid-occluded lung regions is the primary driver of barrier disruption. Thus, our novel VOC system can monitor the effects of different types of injurious forces on barrier disruption and recovery in real-time and can be used to identify the biomechanical mechanisms of VILI.
Collapse
|
34
|
Deniel G, Dhelft F, Lancelot S, Orkisz M, Roux E, Mouton W, Benzerdjeb N, Richard JC, Bitker L. Pulmonary inflammation decreases with ultra-protective ventilation in experimental ARDS under VV-ECMO: a positron emission tomography study. Front Med (Lausanne) 2024; 11:1338602. [PMID: 38444415 PMCID: PMC10912585 DOI: 10.3389/fmed.2024.1338602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Background Experimentally, ultra-protective ventilation (UPV, tidal volumes [VT] < 4 mL.kg-1) strategies in conjunction with veno-venous extracorporeal membrane oxygenation (VV-ECMO) are associated with lesser ventilator-induced lung injuries (VILI) during acute respiratory distress syndrome (ARDS). However, whether these strategies reduce lung inflammation more effectively than protective ventilation (PV) remains unclear. We aimed to demonstrate that a UPV strategy decreases acute lung inflammation in comparison with PV in an experimental swine model of ARDS. Methods ARDS was induced by tracheal instillation of chlorhydric acid in sedated and paralyzed animals under mechanical ventilation. Animals were randomized to receive either UPV (VT 1 mL.kg-1, positive end-expiration pressure [PEEP] set to obtain plateau pressure between 20 and 25 cmH2O and respiratory rate [RR] at 5 min-1 under VV-ECMO) or PV (VT 6 mL.kg-1, PEEP set to obtain plateau pressure between 28 and 30 cmH2O and RR at 25 min-1) during 4 h. After 4 h, a positron emission tomography with [11C](R)-PK11195 (ligand to TSPO-bearing macrophages) injection was realized, coupled with quantitative computerized tomography (CT). Pharmacokinetic multicompartment models were used to quantify regional [11C](R)-PK11195 lung uptake. [11C](R)-PK11195 lung uptake and CT-derived respiratory variables were studied regionally across eight lung regions distributed along the antero-posterior axis. Results Five pigs were randomized to each study group. Arterial O2 partial pressure to inspired O2 fraction were not significantly different between study groups after experimental ARDS induction (75 [68-80] mmHg in a PV group vs. 87 [69-133] mmHg in a UPV group, p = 0.20). Compared to PV animals, UPV animals exhibited a significant decrease in the regional non-aerated compartment in the posterior lung levels, in mechanical power, and in regional dynamic strain and no statistical difference in tidal hyperinflation after 4 h. UPV animals had a significantly lower [11C](R)-PK11195 uptake, compared to PV animals (non-displaceable binding potential 0.35 [IQR, 0.20-0.59] in UPV animals and 1.01 [IQR, 0.75-1.59] in PV animals, p = 0.01). Regional [11C](R)-PK11195 uptake was independently associated with the interaction of regional tidal hyperinflation and regional lung compliance. Conclusion In an experimental model of ARDS, 4 h of UPV strategy significantly decreased lung inflammation, in relation to the control of VT-derived determinants of VILI.
Collapse
Affiliation(s)
- Guillaume Deniel
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
| | - François Dhelft
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, Université LYON 1, Lyon, France
| | - Sophie Lancelot
- Université de Lyon, Université LYON 1, Lyon, France
- CERMEP – Imagerie du Vivant, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Maciej Orkisz
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
| | - Emmanuel Roux
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
| | - William Mouton
- Laboratoire Commun de Recherche Hospices Civils de Lyon/bioMérieux, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Nazim Benzerdjeb
- Université de Lyon, Université LYON 1, Lyon, France
- Centre d’Anatomie et Cytologie Pathologique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
- Université de Lyon, Université LYON 1, Lyon, France
| | - Laurent Bitker
- Service de Médecine Intensive-Réanimation, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR, Villeurbanne, France
- Université de Lyon, Université LYON 1, Lyon, France
| |
Collapse
|
35
|
Gattinoni L, Collino F, Camporota L. Ventilator induced lung injury: a case for a larger umbrella? Intensive Care Med 2024; 50:275-278. [PMID: 38172299 PMCID: PMC10907410 DOI: 10.1007/s00134-023-07296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Robert Koch Straße 40, 37075, Göttingen, Germany.
| | - Francesca Collino
- Department of Anesthesia, Intensive Care and Emergency, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Piemonte, Turin, Italy
| | - Luigi Camporota
- Department of Adult Critical Care, Centre for Human and Applied Physiological Sciences, Guy's and St. Thomas' NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
36
|
Pozzi T, Fratti I, Tomarchio E, Bruno G, Catozzi G, Monte A, Chiumello D, Coppola S. Early time-course of respiratory mechanics, mechanical power and gas exchange in ARDS patients. J Crit Care 2024; 79:154444. [PMID: 37862955 DOI: 10.1016/j.jcrc.2023.154444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/04/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE To describe the clinical course of ARDS during the first three days of mechanical ventilation, to compare ventilatory setting, respiratory mechanics and gas exchange variables collected during the first three days of mechanical ventilation between patients who survived and died during intensive care unit (ICU) stay and to investigate the variables associated with mortality at ICU admission and throughout the first three days of mechanical ventilation. MATERIALS AND METHODS Prospective observational study. Mechanically ventilated ARDS patients were studied at ICU admission and for the following three days. Univariate logistic regression models were performed for PaO2/FiO2 ratio, driving pressure and alveolar dead space fraction and for mechanical power and mechanical power ratio. RESULTS Mechanical power ratio was higher in non survivors at ICU admission and over time; PaO2/FiO2 ratio was higher in survivors with a similar behavior over time in the two groups while alveolar dead space fraction was similar at ICU admission and over time between groups. Mechanical power ratio was the only physiological variable which remained consistently associated with ICU mortality throughout the study. CONCLUSIONS The alteration in oxygenation, dead space, and mechanical power ratio should be assessed not at intensive care admission, but during the first days of mechanical ventilation to better predict outcome.
Collapse
Affiliation(s)
- Tommaso Pozzi
- Department of Health Sciences, University of Milan, Italy
| | | | | | - Giovanni Bruno
- Department of Health Sciences, University of Milan, Italy
| | - Giulia Catozzi
- Department of Health Sciences, University of Milan, Italy
| | | | - Davide Chiumello
- Department of Health Sciences, University of Milan, Italy; Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, Italy; Coordinated Research Center on Respiratory Failure, University of Milan, Italy.
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, Italy
| |
Collapse
|
37
|
Joseph A, Petit M, Vieillard-Baron A. Hemodynamic effects of positive end-expiratory pressure. Curr Opin Crit Care 2024; 30:10-19. [PMID: 38085886 DOI: 10.1097/mcc.0000000000001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Positive end-expiratory pressure (PEEP) is required in the Berlin definition of acute respiratory distress syndrome and is a cornerstone of its treatment. Application of PEEP increases airway pressure and modifies pleural and transpulmonary pressures according to respiratory mechanics, resulting in blood volume alteration into the pulmonary circulation. This can in turn affect right ventricular preload, afterload and function. At the opposite, PEEP may improve left ventricular function, providing no deleterious effect occurs on the right ventricle. RECENT FINDINGS This review examines the impact of PEEP on cardiac function with regards to heart-lung interactions, and describes its consequences on organs perfusion and function, including the kidney, gut, liver and the brain. PEEP in itself is not beneficious nor detrimental on end-organ hemodynamics, but its hemodynamic effects vary according to both respiratory mechanics and association with other hemodynamic variables such as central venous or mean arterial pressure. There are parallels in the means of preventing deleterious impact of PEEP on the lungs, heart, kidney, liver and central nervous system. SUMMARY The quest for optimal PEEP settings has been a prominent goal in ARDS research for the last decades. Intensive care physician must maintain a high degree of vigilance towards hemodynamic effects of PEEP on cardiac function and end-organs circulation.
Collapse
Affiliation(s)
- Adrien Joseph
- Medical Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt
| | - Matthieu Petit
- Medical Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt
- Inserm, CESP, Paris-Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, Villejuif, France
| | - Antoine Vieillard-Baron
- Medical Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt
- Inserm, CESP, Paris-Saclay University, Université de Versailles Saint-Quentin-en-Yvelines, Villejuif, France
| |
Collapse
|
38
|
Battaglini D, Delpiano L, Masuello D, Leme Silva P, Rocco PRM, Matta B, Pelosi P, Robba C. Effects of positive end-expiratory pressure on brain oxygenation, systemic oxygen cascade and metabolism in acute brain injured patients: a pilot physiological cross-sectional study. J Clin Monit Comput 2024; 38:165-175. [PMID: 37453007 DOI: 10.1007/s10877-023-01042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
Patients with acute brain injury (ABI) often require the application of positive end-expiratory pressure (PEEP) to optimize mechanical ventilation and systemic oxygenation. However, the effect of PEEP on cerebral function and metabolism is unclear. The primary aim of this study was to evaluate the effects of PEEP augmentation test (from 5 to 15 cmH2O) on brain oxygenation, systemic oxygen cascade and metabolism in ABI patients. Secondary aims include to determine whether changes in regional cerebral oxygenation are reflected by changes in oxygenation cascade and metabolism, and to assess the correlation between brain oxygenation and mechanical ventilation settings. Single center, pilot cross-sectional observational study in an Academic Hospital. Inclusion criteria were: adult (> 18 y/o) patients with ABI and stable intracranial pressure, available gas exchange and indirect calorimetry (IC) monitoring. Cerebral oxygenation was monitored with near-infrared spectroscopy (NIRS) and different derived parameters were collected: variation (Δ) in oxy (O2)-hemoglobin (Hb) (ΔO2Hbi), deoxy-Hb(ΔHHbi), total-Hb(ΔcHbi), and total regional oxygenation (ΔrSO2). Oxygen cascade and metabolism were monitored with arterial/venous blood gas analysis [arterial partial pressure of oxygen (PaO2), arterial saturation of oxygen (SaO2), oxygen delivery (DO2), and lactate], and IC [energy expenditure (REE), respiratory quotient (RQ), oxygen consumption (VO2), and carbon dioxide production (VCO2)]. Data were measured at PEEP 5 cmH2O and 15 cmH2O and expressed as delta (Δ) values. Ten patients with ABI [median age 70 (IQR 62-75) years, 6 (60%) were male, median Glasgow Coma Scale at ICU admission 5.5 (IQR 3-8)] were included. PEEP augmentation from 5 to 15 cmH2O did not affect cerebral oxygenation, systemic oxygen cascade parameters, and metabolism. The arterial component of cerebral oxygenation was significantly correlated with DO2 (ΔO2HBi, rho = 0.717, p = 0.037). ΔrSO2 (rho = 0.727, p = 0.032), ΔcHbi (rho = 0.797, p = 0.013), and ΔHHBi (rho = 0.816, p = 0.009) were significantly correlated with SaO2, but not ΔO2Hbi. ΔrSO2 was significantly correlated with VCO2 (rho = 0.681, p = 0.049). No correlation between brain oxygenation and ventilatory parameters was found. PEEP augmentation test did not affect cerebral and systemic oxygenation or metabolism. Changes in cerebral oxygenation significantly correlated with DO2, SaO2, and VCO2. Cerebral oxygen monitoring could be considered for individualization of mechanical ventilation setting in ABI patients without high or instable intracranial pressure.
Collapse
Affiliation(s)
| | - Lara Delpiano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Denise Masuello
- Hospital Donaciòn Francisco Santojanni, Buenos Aires, Argentina
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| |
Collapse
|
39
|
Thornton LT, Kummer RL, Marini JJ. The place of positive end expiratory pressure in ventilator-induced lung injury generation. Curr Opin Crit Care 2024; 30:4-9. [PMID: 38085885 DOI: 10.1097/mcc.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Describe the rationale for concern and accumulating pathophysiologic evidence regarding the adverse effects of high-level positive end expiratory pressure (PEEP) on excessive mechanical stress and ventilator-induced lung injury (VILI). RECENT FINDINGS Although the inclusion of PEEP in numerical estimates of mechanical power may be theoretically debated, its potential to increase stress, strain, and mean airway pressure are not. Recent laboratory data in a variety of animal models demonstrate that higher levels of PEEP coupled with additional fluids needed to offset its impediment of hemodynamic function are associated with increased VILI. Moreover, counteracting end-tidal hyperinflation by external chest wall pressure may paradoxically improve respiratory mechanics, indicating that lower PEEP helps protect the small 'baby lung' of advanced acute respiratory distress syndrome (ARDS). SUMMARY The potentially adverse effects of PEEP on VILI can be considered in three broad categories. First, the contribution of PEEP to total mechanical energy expressed through mechanical power, raised mean airway pressure, and end-tidal hyperinflation; second, the hemodynamic consequences of altered cardiac loading, heightened pulmonary vascular stress and total lung water; and third, the ventilatory consequences of compromised carbon dioxide eliminating efficiency. Minimizing ventilation demands, optimized body positioning and care to avoid unnecessary PEEP are central to lung protection in all stages of ARDS.
Collapse
Affiliation(s)
- Lauren T Thornton
- University of Minnesota, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Minneapolis, St. Paul, Minnesota, USA
| | | | | |
Collapse
|
40
|
Boesing C, Schaefer L, Graf PT, Pelosi P, Rocco PRM, Luecke T, Krebs J. Effects of different positive end-expiratory pressure titration strategies on mechanical power during ultraprotective ventilation in ARDS patients treated with veno-venous extracorporeal membrane oxygenation: A prospective interventional study. J Crit Care 2024; 79:154406. [PMID: 37690365 DOI: 10.1016/j.jcrc.2023.154406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE Ultraprotective ventilation in acute respiratory distress syndrome (ARDS) patients with veno-venous extracorporeal membrane oxygenation (VV ECMO) reduces mechanical power (MP) through changes in positive end-expiratory pressure (PEEP); however, the optimal approach to titrate PEEP is unknown. This study assesses the effects of three PEEP titration strategies on MP, hemodynamic parameters, and oxygen delivery in twenty ARDS patients with VV ECMO. MATERIAL AND METHODS PEEP was titrated according to: (A) a PEEP of 10 cmH2O representing the lowest recommendation by the Extracorporeal Life Support Organization (PEEPELSO), (B) the highest static compliance of the respiratory system (PEEPCstat,RS), and (C) a target end-expiratory transpulmonary pressure of 0 cmH2O (PEEPPtpexp). RESULTS PEEPELSO was lower compared to PEEPCstat,RS and PEEPPtpexp (10.0 ± 0.0 vs. 16.2 ± 4.7 cmH2O and 17.3 ± 4.0 cmH2O, p < 0.001 each, respectively). PEEPELSO reduced MP compared to PEEPCstat,RS and PEEPPtpexp (5.3 ± 1.3 vs. 6.8 ± 2.0 and 6.9 ± 2.3 J/min, p < 0.001 each, respectively). PEEPELSO resulted in less lung stress compared to PEEPCstat,RS (p = 0.011) and PEEPPtpexp (p < 0.001) and increased cardiac output and oxygen delivery (p < 0.001 each). CONCLUSIONS An empirical PEEP of 10 cmH2O minimized MP, provided favorable hemodynamics, and increased oxygen delivery in ARDS patients treated with VV ECMO. TRIAL REGISTRATION German Clinical Trials Register (DRKS00013967). Registered 02/09/2018https://drks.de/search/en/trial/DRKS00013967.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Laura Schaefer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Peter T Graf
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesiology and Critical Care - San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, Brazil.
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| |
Collapse
|
41
|
Lan L, Ni Y, Zhou Y, Fu L, Wu W, Li P, Yu H, Liang G, Luo F. PEEP-Induced Lung Recruitment Maneuver Combined with Prone Position for ARDS: A Single-Center, Prospective, Randomized Clinical Trial. J Clin Med 2024; 13:853. [PMID: 38337547 PMCID: PMC10856548 DOI: 10.3390/jcm13030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Prone position (PP) and the positive end-expiratory pressure (PEEP)-induced lung recruitment maneuver (LRM) are both efficient in improving oxygenation and prognosis in patients with ARDS. The synergistic effect of PP combined with PEEP-induced LRM in patients with ARDS remains unclear. We aim to explore the effects of PP combined with PEEP-induced LRM on prognosis in patients with moderate to severe ARDS and the predicting role of lung recruitablity. Methods: Patients with moderate to severe ARDS were consecutively enrolled. The patients were prospectively assigned to either the intervention (PP with PEEP-induced LRM) or control groups (PP). The clinical outcomes, respiratory mechanics, and electric impedance tomography (EIT) monitoring results for the two groups were compared. Lung recruitablity (recruitment-to-inflation ratio: R/I) was measured during the PEEP-induced LRM procedure and was used for predicting the response to LRM. Results: Fifty-eight patients were included in the final analysis, among which 28 patients (48.2%) received PEEP-induced LRM combined with PP. PEEP-induced LRM enhanced the effect of PP by a significant improvement in oxygenation (∆PaO2/FiO2 75.8 mmHg vs. 4.75 mmHg, p < 0.001) and the compliance of respiratory system (∆Crs, 2 mL/cmH2O vs. -1 mL/cmH2O, p = 0.02) among ARDS patients. Based on the EIT measurement, PP combined with PEEP-induced LRM increased the ventilation distribution mainly in the dorsal region (5.0% vs. 2.0%, p = 0.015). The R/I ratio was measured in 28 subjects. The higher R/I ratio was related to greater oxygenation improvement after LRM (Pearson's r = 0.4; p = 0.034). Conclusions: In patients with moderate to severe ARDS, PEEP-induced LRM combined with PP can improve oxygenation and dorsal ventilation distribution. R/I can be useful to predict responses to LRM.
Collapse
Affiliation(s)
- Lan Lan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yuenan Ni
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yubei Zhou
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linxi Fu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wentao Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - He Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
| | - Guopeng Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610064, China; (L.L.); (Y.N.); (Y.Z.); (L.F.); (W.W.); (P.L.); (H.Y.); (G.L.)
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
42
|
Mojoli F, Pozzi M, Arisi E. Setting positive end-expiratory pressure: using the pressure-volume curve. Curr Opin Crit Care 2024; 30:35-42. [PMID: 38085871 DOI: 10.1097/mcc.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To discuss the role of pressure-volume curve (PV curve) in exploring elastic properties of the respiratory system and setting mechanical ventilator to reduce ventilator-induced lung injury. RECENT FINDINGS Nowadays, quasi-static PV curves and loops can be easily obtained and analyzed at the bedside without disconnection of the patient from the ventilator. It is shown that this tool can provide useful information to optimize ventilator setting. For example, PV curves can assess for patient's individual potential for lung recruitability and also evaluate the risk for lung injury of the ongoing mechanical ventilation setting. SUMMARY In conclusion, PV curve is an easily available bedside tool: its correct interpretation can be extremely valuable to enlighten potential for lung recruitability and select a high or low positive end-expiratory pressure (PEEP) strategy. Furthermore, recent studies have shown that PV curve can play a significant role in PEEP and driving pressure fine tuning: clinical studies are needed to prove whether this technique will improve outcome.
Collapse
Affiliation(s)
- Francesco Mojoli
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Marco Pozzi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Eric Arisi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
43
|
Piquilloud L. Peep setting: let us come back to physiology. Curr Opin Crit Care 2024; 30:1-3. [PMID: 38164972 DOI: 10.1097/mcc.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
44
|
Somhorst P, Mousa A, Jonkman AH. Setting positive end-expiratory pressure: the use of esophageal pressure measurements. Curr Opin Crit Care 2024; 30:28-34. [PMID: 38062927 PMCID: PMC10763716 DOI: 10.1097/mcc.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To summarize the key concepts, physiological rationale and clinical evidence for titrating positive end-expiratory pressure (PEEP) using transpulmonary pressure ( PL ) derived from esophageal manometry, and describe considerations to facilitate bedside implementation. RECENT FINDINGS The goal of an esophageal pressure-based PEEP setting is to have sufficient PL at end-expiration to keep (part of) the lung open at the end of expiration. Although randomized studies (EPVent-1 and EPVent-2) have not yet proven a clinical benefit of this approach, a recent posthoc analysis of EPVent-2 revealed a potential benefit in patients with lower APACHE II score and when PEEP setting resulted in end-expiratory PL values close to 0 ± 2 cmH 2 O instead of higher or more negative values. Technological advances have made esophageal pressure monitoring easier to implement at the bedside, but challenges regarding obtaining reliable measurements should be acknowledged. SUMMARY Esophageal pressure monitoring has the potential to individualize the PEEP settings. Future studies are needed to evaluate the clinical benefit of such approach.
Collapse
Affiliation(s)
- Peter Somhorst
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amne Mousa
- Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Annemijn H. Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Wildi K, Colombo SM, McGuire D, Ainola C, Heinsar S, Sato N, Sato K, Liu K, Bouquet M, Wilson E, Passmore M, Hyslop K, Livingstone S, Di Feliciantonio M, Strugnell W, Palmieri C, Suen J, Li Bassi G, Fraser J. An appraisal of lung computer tomography in very early anti-inflammatory treatment of two different ovine ARDS phenotypes. Sci Rep 2024; 14:2162. [PMID: 38272980 PMCID: PMC10810785 DOI: 10.1038/s41598-024-52698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia.
- The University of Queensland, Brisbane, Australia.
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniel McGuire
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- The Prince Charles Hospital, Chermside, QLD, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
| | - Mahé Bouquet
- The University of Queensland, Brisbane, Australia
| | - Emily Wilson
- The University of Queensland, Brisbane, Australia
| | - Margaret Passmore
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Marianna Di Feliciantonio
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wendy Strugnell
- The University of Queensland, Brisbane, Australia
- The Prince Charles Hospital, Chermside, QLD, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia.
- The University of Queensland, Brisbane, Australia.
- St Andrews War Memorial Hospital, Intensive Care Unit, Spring Hill, QLD, Australia.
- The Wesley Hospital, Intensive Care Unit, Auchenflower, QLD, Australia.
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD, 4032, Australia
- The University of Queensland, Brisbane, Australia
- St Andrews War Memorial Hospital, Intensive Care Unit, Spring Hill, QLD, Australia
| |
Collapse
|
46
|
Pavlovsky B, Desprez C, Richard JC, Fage N, Lesimple A, Chean D, Courtais A, Mauri T, Mercat A, Beloncle F. Bedside personalized methods based on electrical impedance tomography or respiratory mechanics to set PEEP in ARDS and recruitment-to-inflation ratio: a physiologic study. Ann Intensive Care 2024; 14:1. [PMID: 38180544 PMCID: PMC10769993 DOI: 10.1186/s13613-023-01228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Various Positive End-Expiratory Pressure (PEEP) titration strategies have been proposed to optimize ventilation in patients with acute respiratory distress syndrome (ARDS). We aimed to compare PEEP titration strategies based on electrical impedance tomography (EIT) to methods derived from respiratory system mechanics with or without esophageal pressure measurements, in terms of PEEP levels and association with recruitability. METHODS Nineteen patients with ARDS were enrolled. Recruitability was assessed by the estimated Recruitment-to-Inflation ratio (R/Iest) between PEEP 15 and 5 cmH2O. Then, a decremental PEEP trial from PEEP 20 to 5 cmH2O was performed. PEEP levels determined by the following strategies were studied: (1) plateau pressure 28-30 cmH2O (Express), (2) minimal positive expiratory transpulmonary pressure (Positive PLe), (3) center of ventilation closest to 0.5 (CoV) and (4) intersection of the EIT-based overdistension and lung collapse curves (Crossing Point). In addition, the PEEP levels determined by the Crossing Point strategy were assessed using different PEEP ranges during the decremental PEEP trial. RESULTS Express and CoV strategies led to higher PEEP levels than the Positive PLe and Crossing Point ones (17 [14-17], 20 [17-20], 8 [5-11], 10 [8-11] respectively, p < 0.001). For each strategy, there was no significant association between the optimal PEEP level and R/Iest (Crossing Point: r2 = 0.073, p = 0.263; CoV: r2 < 0.001, p = 0.941; Express: r2 < 0.001, p = 0.920; Positive PLe: r2 = 0.037, p = 0.461). The PEEP level obtained with the Crossing Point strategy was impacted by the PEEP range used during the decremental PEEP trial. CONCLUSIONS CoV and Express strategies led to higher PEEP levels than the Crossing Point and Positive PLe strategies. Optimal PEEP levels proposed by these four methods were not associated with recruitability. Recruitability should be specifically assessed in ARDS patients to optimize PEEP titration.
Collapse
Affiliation(s)
- Bertrand Pavlovsky
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France.
| | - Christophe Desprez
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Jean-Christophe Richard
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Nicolas Fage
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Arnaud Lesimple
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Dara Chean
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Antonin Courtais
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research, Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alain Mercat
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - François Beloncle
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| |
Collapse
|
47
|
Chiumello D, Coppola S, Catozzi G, Danzo F, Santus P, Radovanovic D. Lung Imaging and Artificial Intelligence in ARDS. J Clin Med 2024; 13:305. [PMID: 38256439 PMCID: PMC10816549 DOI: 10.3390/jcm13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI) can make intelligent decisions in a manner akin to that of the human mind. AI has the potential to improve clinical workflow, diagnosis, and prognosis, especially in radiology. Acute respiratory distress syndrome (ARDS) is a very diverse illness that is characterized by interstitial opacities, mostly in the dependent areas, decreased lung aeration with alveolar collapse, and inflammatory lung edema resulting in elevated lung weight. As a result, lung imaging is a crucial tool for evaluating the mechanical and morphological traits of ARDS patients. Compared to traditional chest radiography, sensitivity and specificity of lung computed tomography (CT) and ultrasound are higher. The state of the art in the application of AI is summarized in this narrative review which focuses on CT and ultrasound techniques in patients with ARDS. A total of eighteen items were retrieved. The primary goals of using AI for lung imaging were to evaluate the risk of developing ARDS, the measurement of alveolar recruitment, potential alternative diagnoses, and outcome. While the physician must still be present to guarantee a high standard of examination, AI could help the clinical team provide the best care possible.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, 20122 Milan, Italy
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
| | - Giulia Catozzi
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Fiammetta Danzo
- Division of Respiratory Diseases, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Pierachille Santus
- Division of Respiratory Diseases, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Dejan Radovanovic
- Division of Respiratory Diseases, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
48
|
Hoshino T, Yoshida T. Future directions of lung-protective ventilation strategies in acute respiratory distress syndrome. Acute Med Surg 2024; 11:e918. [PMID: 38174326 PMCID: PMC10761614 DOI: 10.1002/ams2.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the heterogeneous distribution of lung aeration along a gravitational direction due to increased lung density. Therefore, the lung available for ventilation is usually limited to ventral, nondependent lung regions and has been called the "baby" lung. In ARDS, ventilator-induced lung injury is known to occur in nondependent "baby" lungs, as ventilation is shifted to ventral, nondependent lung regions, increasing stress and strain. To protect this nondependent "baby" lung, the clinician targets and limits global parameters such as tidal volume and plateau pressure. In addition, positive end-expiratory pressure (PEEP) is used to prevent dorsal, dependent atelectasis and, if successful, increases the size of the baby lung and lessens its susceptibility to injury from inspiratory stretch. Although many clinical trials have been performed in patients with ARDS over the last two decades, there are few successfully showing benefits on mortality (ie, prone positioning and neuromuscular blocking agents). These disappointing results contrast with other medical disciplines, especially in oncology, where the heterogeneity of diseases is recognized widely and precision medicine has been promoted. Thus, lung-protective ventilation strategies need to take an innovative approach that accounts for the heterogeneity of injured lungs. This article summarizes ventilator-induced lung injury and ARDS and discusses how to implement precision medicine in the field of ARDS. Potentially useful methods to individualize PEEP with esophageal balloon manometry, lung recruitability, and electrical impedance tomography were discussed.
Collapse
Affiliation(s)
- Taiki Hoshino
- The Department of Anesthesiology and Intensive Care MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Yoshida
- The Department of Anesthesiology and Intensive Care MedicineOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
49
|
Jacquier M, Labruyère M, Ecarnot F, Roudaut JB, Andreu P, Voizeux P, Save Q, Pedri R, Rigaud JP, Quenot JP. Ventilatory Management of Patients with Acute Respiratory Distress Syndrome Due to SARS-CoV-2. J Clin Med 2023; 12:7509. [PMID: 38137578 PMCID: PMC10743400 DOI: 10.3390/jcm12247509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of the new SARS-CoV-2 in December 2019 caused a worldwide pandemic of the resultant disease, COVID-19. There was a massive surge in admissions to intensive care units (ICU), notably of patients with hypoxaemic acute respiratory failure. In these patients, optimal oxygen therapy was crucial. In this article, we discuss tracheal intubation to provide mechanical ventilation in patients with hypoxaemic acute respiratory failure due to SARS-CoV-2. We first describe the pathophysiology of respiratory anomalies leading to acute respiratory distress syndrome (ARDS) due to infection with SARS-CoV-2, and then briefly review management, focusing particularly on the ventilation strategy. Overall, the ventilatory management of ARDS due to SARS-CoV-2 infection is largely the same as that applied in ARDS from other causes, and lung-protective ventilation is recommended. The difference lies in the initial clinical presentation, with profound hypoxaemia often observed concomitantly with near-normal pulmonary compliance.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, 21000 Dijon, France
| | - Marie Labruyère
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, 21000 Dijon, France
| | - Fiona Ecarnot
- Department of Cardiology, University Hospital Besancon, 25030 Besançon, France;
- EA3920, University of Franche-Comté, 25000 Besançon, France
| | - Jean-Baptiste Roudaut
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Pascal Andreu
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Pierre Voizeux
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Quentin Save
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Romain Pedri
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
| | - Jean-Philippe Rigaud
- Department of Intensive Care, Centre Hospitalier de Dieppe, 76202 Dieppe, France;
- Espace de Réflexion Éthique de Normandie, University Hospital Caen, 14000 Caen, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, François Mitterrand, University Hospital, 21000 Dijon, France; (M.J.); (M.L.); (J.-B.R.); (P.A.); (P.V.); (Q.S.); (R.P.)
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, 21000 Dijon, France
- INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, 21000 Dijon, France
- DRCI, USMR, CHU Dijon Bourgogne, 21000 Dijon, France
- Espace de Réflexion Éthique Bourgogne Franche-Comté (EREBFC), University of Burgundy, 21000 Dijon, France
| |
Collapse
|
50
|
Grieco DL, Pintaudi G, Bongiovanni F, Anzellotti GM, Menga LS, Cesarano M, Dell’Anna AM, Rosá T, Delle Cese L, Bello G, Giammatteo V, Gennenzi V, Tanzarella ES, Cutuli SL, De Pascale G, De Gaetano A, Maggiore SM, Antonelli M. Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology 2023; 139:801-814. [PMID: 37523486 PMCID: PMC10723770 DOI: 10.1097/aln.0000000000004716] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2022] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) benefits in acute respiratory distress syndrome are driven by lung dynamic strain reduction. This depends on the variable extent of alveolar recruitment. The recruitment-to-inflation ratio estimates recruitability across a 10-cm H2O PEEP range through a simplified maneuver. Whether recruitability is uniform or not across this range is unknown. The hypotheses of this study are that the recruitment-to-inflation ratio represents an accurate estimate of PEEP-induced changes in dynamic strain, but may show nonuniform behavior across the conventionally tested PEEP range (15 to 5 cm H2O). METHODS Twenty patients with moderate-to-severe COVID-19 acute respiratory distress syndrome underwent a decremental PEEP trial (PEEP 15 to 13 to 10 to 8 to 5 cm H2O). Respiratory mechanics and end-expiratory lung volume by nitrogen dilution were measured the end of each step. Gas exchange, recruited volume, recruitment-to-inflation ratio, and changes in dynamic, static, and total strain were computed between 15 and 5 cm H2O (global recruitment-to-inflation ratio) and within narrower PEEP ranges (granular recruitment-to-inflation ratio). RESULTS Between 15 and 5 cm H2O, median [interquartile range] global recruitment-to-inflation ratio was 1.27 [0.40 to 1.69] and displayed a linear correlation with PEEP-induced dynamic strain reduction (r = -0.94; P < 0.001). Intraindividual recruitment-to-inflation ratio variability within the narrower ranges was high (85% [70 to 109]). The relationship between granular recruitment-to-inflation ratio and PEEP was mathematically described by a nonlinear, quadratic equation (R2 = 0.96). Granular recruitment-to-inflation ratio across the narrower PEEP ranges itself had a linear correlation with PEEP-induced reduction in dynamic strain (r = -0.89; P < 0.001). CONCLUSIONS Both global and granular recruitment-to-inflation ratio accurately estimate PEEP-induced changes in lung dynamic strain. However, the effect of 10 cm H2O of PEEP on lung strain may be nonuniform. Granular recruitment-to-inflation ratio assessment within narrower PEEP ranges guided by end-expiratory lung volume measurement may aid more precise PEEP selection, especially when the recruitment-to-inflation ratio obtained with the simplified maneuver between PEEP 15 and 5 cm H2O yields intermediate values that are difficult to interpret for a proper choice between a high and low PEEP strategy. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Pintaudi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Bongiovanni
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS, Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Salvatore Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Melania Cesarano
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio M. Dell’Anna
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tommaso Rosá
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Delle Cese
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Bello
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giammatteo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Gennenzi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eloisa S. Tanzarella
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore L. Cutuli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gennaro De Pascale
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea De Gaetano
- Consiglio Nazionale delle Ricerche, IRIB Istituto per la Ricerca e l’Innovazione Biomedica, Palermo, Italy; IASI Istituto per l’Analisi dei Sistemi ed Informatica, Rome, Italy; Department of Biomatics, Óbuda University, Budapest, Hungary
| | - Salvatore M. Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS, Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|