1
|
Brier MR, Judge B, Ying C, Salter A, An H, Patel A, Wang Q, Wang Y, Cross AH, Naismith RT, Benzinger TLS, Goyal MS. Increased White Matter Aerobic Glycolysis in Multiple Sclerosis. Ann Neurol 2025; 97:766-778. [PMID: 39714123 PMCID: PMC11890956 DOI: 10.1002/ana.27165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE Despite treatments which reduce relapses in multiple sclerosis (MS), many patients continue to experience progressive disability accumulation. MS is associated with metabolic disruptions and cerebral metabolic stress predisposes to tissue injury and possibly impaired remyelination. Additionally, myelin homeostasis is metabolically expensive and reliant on glycolysis. We investigated cerebral metabolic changes in MS and when in the disease course they occurred, and assessed their relationship with microstructural changes. METHODS This study used combined fluorodeoxyglucose (FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) to measure cerebral metabolic rate of glucose and oxygen, thereby quantifying glycolysis. Twelve healthy controls, 20 patients with relapsing MS, and 13 patients with non-relapsing MS were studied. Relapsing patients with MS were treatment naïve and scanned pre- and post-initiation of high efficacy disease modifying therapy. RESULTS In normal appearing white matter, we observed increased glucose utilization and reduced oxygen utilization in newly diagnosed MS, consistent with increased glycolysis. Increased glycolysis was greater in patients with a longer disease duration course and higher disability. Among newly diagnosed patients, different treatments had differential impacts on glucose utilization. Last, whereas hypermetabolism within lesions was clearly associated with inflammation, no such relationship was found within normal appearing white matter. INTERPRETATION Increased white matter glycolysis is a prominent feature of cerebral metabolism in MS. It begins early in the disease course, increases with disease duration and is independent of microstructural evidence of inflammation in normal appearing white matter. Optimization of the metabolic environment may be an important component of therapies designed to reduce progressive disability. ANN NEUROL 2025;97:766-778.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, Washington University in St. Louis School of Medicine
- Department of Radiology, Washington University in St. Louis School of Medicine
| | - Bradley Judge
- Department of Neurology, Washington University in St. Louis School of Medicine
| | - Chunwei Ying
- Department of Radiology, Washington University in St. Louis School of Medicine
| | - Amber Salter
- Department of Neurology, University of Texas Southwestern Medical Center
| | - Hongyu An
- Department of Radiology, Washington University in St. Louis School of Medicine
| | - Aakash Patel
- Department of Psychiatry, Washington University in St. Louis School of Medicine
| | - Qing Wang
- Department of Radiology, Washington University in St. Louis School of Medicine
| | - Yong Wang
- Department of Radiology, Washington University in St. Louis School of Medicine
- Departments of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis School of Medicine
| | - Robert T Naismith
- Department of Neurology, Washington University in St. Louis School of Medicine
| | - Tammie LS Benzinger
- Department of Radiology, Washington University in St. Louis School of Medicine
| | - Manu S Goyal
- Department of Neurology, Washington University in St. Louis School of Medicine
- Department of Radiology, Washington University in St. Louis School of Medicine
| |
Collapse
|
2
|
Tefon Aribas AB, Mungan S, Işik FD, Celik G, Vural G, Ulusoy EK, Yuksel N. Effects of systemic fingolimod treatment on anterior segment parameters and tear film functions. Cutan Ocul Toxicol 2025; 44:50-54. [PMID: 39673145 DOI: 10.1080/15569527.2024.2432508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
PURPOSE To investigate the potential effects of systemic fingolimod treatment on parameters of the anterior segment of the eye and tear film function tests in patients with multiple sclerosis (MS). METHODS Forty-eight eyes of 24 individuals who were started on systemic fingolimod treatment for relapsing-remitting MS were prospectively enrolled in this study. Patients underwent examinations immediately before initiation of systemic fingolimod treatment, and at the first and sixth months of treatment. Anterior segment parameters were measured using Sirius Topography. The Schirmer-I test and tear break-up time (TBUT) were recorded during follow-up. Retinal thickness was also analyzed using spectral-domain optical coherence tomography (SD-OCT). RESULTS There was no statistically significant difference in retinal thickness measurements between follow-up visits. The central corneal thickness, keratometric values, anterior chamber depth, aqueous humor depth, iridocorneal angle, horizontal anterior chamber tilt and anterior chamber volume values remained similar during follow-up. The Schirmer-I test value was 15.10 ± 2.65 mm at the zeroth month and 17.03 ± 3.61 mm at the sixth month (p = 0.044). The mean TBUT was significantly higher at the six-month visit compared to baseline and the one-month visit (p0-6 < 0.001, p1-6 < 0.001), but there was no statistically significant difference between baseline and month 1 (p0-1 = 0.419). CONCLUSION Systemic use of fingolimod may increase Schirmer I test and TBUT values in MS patients without altering other anterior segment parameters within 6 months.
Collapse
Affiliation(s)
| | - Semra Mungan
- Department of Neurology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Feyza Dicle Işik
- Department of Ophthalmology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Gokhan Celik
- Department of Ophthalmology, Tarsus State Hospital, Mersin, Turkey
| | - Gonul Vural
- Department of Neurology, Ankara Bilkent City Hospital, Ankara, Turkey
| | | | - Nilay Yuksel
- Department of Ophthalmology, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Wang X, Wang M, Zhu TT, Zheng ZJ, Li S, Sui ZY, Guo X, Wu S, Zhang NN, Yu ZY, Hu CP, Tang YB, Wang Q, Zhang Z. The TRPM7 chanzyme in smooth muscle cells drives abdominal aortic aneurysm in mice. NATURE CARDIOVASCULAR RESEARCH 2025; 4:216-234. [PMID: 39953275 DOI: 10.1038/s44161-025-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Ionic signaling in smooth muscle cells (SMCs) is critical for vascular homeostasis. In this study, we untangled the role of the bifunctional TRPM7 channel kinase (chanzyme) in abdominal aortic aneurysm (AAA) pathogenesis. Comparing SMC-specific, macrophage-specific and endothelial cell-specific Trpm7 knockout, we revealed that SMC-specific Trpm7 deficiency protected mice from AAA in two distinct preclinical models of the disease. We showed that the TRPM7 channel activity increased the Ca2+ and Zn2+ influx and the Ca2+/calcineurin/CRTC2/CREB-dependent and Zn2+/MTF1-dependent Mmp2 transcription. Repurposing the clinical drug FTY720 to prevent and treat AAA resulted in improved aortic phenotypes through inhibition of TRPM7 channel activity. This study highlights the ionic mechanisms underlying AAA, identifies TRPM7 as a potential therapeutic target and suggests that blocking TRPM7 channels could be a viable strategy for treating AAA.
Collapse
MESH Headings
- Animals
- TRPM Cation Channels/metabolism
- TRPM Cation Channels/genetics
- TRPM Cation Channels/antagonists & inhibitors
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 2/genetics
- Fingolimod Hydrochloride/pharmacology
- Fingolimod Hydrochloride/therapeutic use
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/drug effects
- Mice
- Zinc/metabolism
- Mice, Inbred C57BL
- Male
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Calcium Signaling/drug effects
- Mice, Knockout
- Cells, Cultured
- Humans
- Phenotype
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Hunan Key Laboratory of Cardiometabolic Medicine, Central South University, Changsha, China
| | - Tian-Tian Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zi-Jie Zheng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Shuang Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhao-Yi Sui
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xin Guo
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sha Wu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Nai-Ning Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Yi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, China
| | - Yong-Bo Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qing Wang
- Department of Interventional Radiology & Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, China.
| |
Collapse
|
4
|
Jia A, Kuramoto L, Khakban A, Sio WS, Traboulsee A, De Vera MA, Oh J, Loree J, Tam R, Lynd LD, Cragg JJ. Fingolimod and risk of skin cancer among individuals with multiple sclerosis: a population-based cohort study protocol. BMJ Open 2025; 15:e088924. [PMID: 39855661 PMCID: PMC11759199 DOI: 10.1136/bmjopen-2024-088924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Long-term population-based safety studies, applying advanced causal inference techniques, including an active comparator with new-user design, are needed to investigate skin cancer outcomes among individuals with multiple sclerosis (MS) treated with fingolimod. This study aims to describe a protocol for investigating the relationship between fingolimod use and the incidence of skin cancer among individuals with MS. METHODS AND ANALYSIS We will use population-based administrative health data from two Canadian provinces (British Columbia and Alberta) to conduct an observational cohort 'trial emulation' study with an active comparator and new-user design. Individuals with MS aged ≥18 years will be identified using a validated algorithm. Incident users of fingolimod and active comparators (natalizumab, alemtuzumab, dimethyl fumarate, teriflunomide) will then be identified. The outcome of interest will be skin cancer (melanoma and non-melanoma skin cancers). Survival analysis will be used to estimate HRs and corresponding 95% CIs, adjusted for potential confounders. ETHICS AND DISSEMINATION Ethics approval for this study was obtained from the University of British Columbia Clinical Research Ethics Board (H24-03199). No personal identifying information will be made available as part of this study. Findings will be disseminated through presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT06705608.
Collapse
Affiliation(s)
- Analisa Jia
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Kuramoto
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Khakban
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Weng Sut Sio
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Traboulsee
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - M A De Vera
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advancing Health, Providence Health Research Institute, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Loree
- Division of Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Roger Tam
- School of Biomedical Engineering, Department of Radiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advancing Health, Providence Health Research Institute, Vancouver, British Columbia, Canada
| | - Jacquelyn J Cragg
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Wu J, Santos-Garcia I, Eiriz I, Brüning T, Kvasnička A, Friedecký D, Nyman TA, Pahnke J. Sex-dependent efficacy of sphingosine-1-phosphate receptor agonist FTY720 in mitigating Huntington's disease. Pharmacol Res 2025; 211:107557. [PMID: 39725338 DOI: 10.1016/j.phrs.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions. Our study aimed to investigate the therapeutic potential of FTY for treating HD by utilizing a well-characterized mouse model of HD (zQ175dn) and wild-type littermates. The study design included a crossover, long-term oral treatment with 1 mg/kg to 2 mg/kg FTY from the age of 15-46 weeks (n = 128). Different motor behavior and physiological parameters were assessed throughout the study. The findings revealed that FTY rescued disease-related body weight loss in a sex-dependent manner, indicating its potential to regulate metabolic disturbances and to counteract neurodegenerative processes in HD. FTY intervention also rescued testicular atrophy, restored testis tissue structure in male mice suggesting a broader impact on peripheral tissues affected by huntingtin pathology. Histological analyses of the brain revealed delayed accumulation of activated astrocytes contributing to the preservation of the neural microenvironment by reducing neuroinflammation. The extent of FTY-related disease improvement was sex-dependent. Motor functions and body weight improved mostly in female mice with sustained estrogen levels, whereas males had to compensate for the ongoing, disease-related testis atrophy and the loss of androgen production. Our study underscores the beneficial therapeutic effects of FTY on HD involving endogenous steroid hormones and their important anabolic effects. It positions FTY as a promising candidate for therapeutic interventions targeting various aspects of HD pathology. Further studies are needed to fully evaluate its therapeutic potential in patients.
Collapse
Affiliation(s)
- Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Irene Santos-Garcia
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, Olomouc CZ-77900, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, Olomouc CZ-77900, Czech Republic
| | - Tuula A Nyman
- Proteomics Core Facility (PCF), Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Neuromedicine and Neuroscience, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, Rīga LV-1004, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
6
|
Xu H, Zhang X, Wang X, Li B, Yu H, Quan Y, Jiang Y, You Y, Wang Y, Wen M, Liu J, Wang M, Zhang B, Li Y, Zhang X, Lu Q, Yu CY, Cao X. Cellular spermine targets JAK signaling to restrain cytokine-mediated autoimmunity. Immunity 2024; 57:1796-1811.e8. [PMID: 38908373 DOI: 10.1016/j.immuni.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-β-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.
Collapse
Affiliation(s)
- Henan Xu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xin Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bo Li
- Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hang Yu
- Institute of Materia Medical, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yuan Quan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuling You
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yan Wang
- Institute of Materia Medical, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Mingyue Wen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, Beijing 100730, China
| | - Bo Zhang
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yixian Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, Beijing 100730, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chu-Yi Yu
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
7
|
Toubasi AA, Allon S, Bagnato F. Disseminated histoplasmosis mimicking post-vaccination side effects in an immunocompromised person with multiple sclerosis. Mult Scler J Exp Transl Clin 2024; 10:20552173241271790. [PMID: 39119360 PMCID: PMC11307347 DOI: 10.1177/20552173241271790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
We describe the case of a gentleman with relapsing-remitting multiple sclerosis and chronic lymphocytopenia secondary to treatment with fingolimod who presented with disseminated histoplasmosis after receiving the third dose of the Moderna coronavirus disease 2019 (mRNA-1273) vaccine. Following the vaccination the patient noted fatigue which worsened over time along with gradual weight loss. A few months later he noted low-grade fever and finally shortness of breath. A diagnosis of disseminated histoplasmosis was performed based on urine, blood, and imaging data. He responded well to prolonged antifungal treatment. Fingolimod was discontinued and replaced with glatiramer acetate. He has been clinically stable until the time of this report, 33 months following symptom onset.
Collapse
Affiliation(s)
- Ahmad A Toubasi
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven Allon
- Division of General Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Francesca Bagnato
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
8
|
Stefanović M, Jovanović I, Živković M, Stanković A. Pathway analysis of peripheral blood CD8+ T cell transcriptome shows differential regulation of sphingolipid signaling in multiple sclerosis and glioblastoma. PLoS One 2024; 19:e0305042. [PMID: 38861512 PMCID: PMC11166308 DOI: 10.1371/journal.pone.0305042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Fox RJ, Wiendl H, Wolf C, De Stefano N, Sellner J, Gryb V, Rejdak K, Bozhinov PS, Vitt D, Kohlhof H, Slizgi J, Ondrus M, Sciacca V, Muehler AR. Safety and Dose-Response of Vidofludimus Calcium in Relapsing Multiple Sclerosis: Extended Results of a Placebo-Controlled Phase 2 Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200208. [PMID: 38662979 PMCID: PMC11087024 DOI: 10.1212/nxi.0000000000200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Vidofludimus calcium suppressed MRI disease activity compared with placebo in patients with relapsing-remitting multiple sclerosis (RRMS) in the first cohort of the phase 2 EMPhASIS study. Because 30 mg and 45 mg showed comparable activity on multiple end points, the study enrolled an additional low-dose cohort to further investigate a dose-response relationship. METHODS In a randomized, placebo-controlled, phase 2 trial, patients with RRMS, aged 18-55 years, and with ≥2 relapses in the last 2 years or ≥1 relapse in the last year, and ≥1 gadolinium-enhancing brain lesion in the last 6 months. Patients were randomly assigned (1:1:1) vidofludimus calcium (30 or 45 mg) or placebo in cohort 1 and vidofludimus calcium (10 mg) or placebo (4:1) in cohort 2 for 24 weeks. The primary end point was the cumulative number of combined unique active (CUA) lesions at week 24. Secondary end points were clinical outcomes and safety. RESULTS Across cohorts 1 and 2, 268 patients were randomized to placebo (n = 81), 10 mg (n = 47) vidofludimus calcium, 30 mg (n = 71) vidofludimus calcium, or 45 mg (n = 69) vidofludimus calcium. The mean cumulative CUA lesions over 24 weeks was 5.8 (95% CI 4.1-8.2) for placebo, 5.9 (95% CI 3.9-9.0) for 10 mg treatment group, 1.4 (95% CI 0.9-2.1) for 30 mg treatment group, and 1.7 (95% CI 1.1-2.5) for 45 mg treatment group. Serum neurofilament light chain decreased in a dose-dependent manner. The number of patients with confirmed disability worsening after 24 weeks was 3 (3.7%) patients receiving placebo and 3 (1.6%) patients receiving any dose of vidofludimus calcium. Treatment-emergent adverse events occurred in 35 (43%) placebo patients compared with 11 (23%) and 71 (37%) patients in the 10 mg or any dose of vidofludimus calcium groups, respectively. The incidence of liver enzyme elevations and infections were similar between placebo and any dose of vidofludimus calcium. No new safety signals were observed. DISCUSSION Compared with placebo, vidofludimus calcium suppressed the development of new brain lesions with daily doses of 30 mg and 45 mg, but not 10 mg, establishing the lowest efficacious dose is 30 mg. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that among adults with active RRMS and ≥1 Gd+ brain lesion in the past 6 months, the cumulative number of active lesions decreased with vidofludimus calcium. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov (NCT03846219) and EudraCT (2018-001896-19).
Collapse
Affiliation(s)
- Robert J Fox
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Heinz Wiendl
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Christian Wolf
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Nicola De Stefano
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Johann Sellner
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Viktoriia Gryb
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Konrad Rejdak
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Plamen S Bozhinov
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Daniel Vitt
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Hella Kohlhof
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Jason Slizgi
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Matej Ondrus
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Valentina Sciacca
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| | - Andreas R Muehler
- From the Mellen Center for Multiple Sclerosis (R.J.F.), Cleveland Clinic, OH; Department of Neurology with Institute of Translational Neurology (H.W.), University of Münster, Germany; Lycalis sprl (C.W.), Brussels, Belgium; Department of Medicine (N.D.S.), Surgery and Neuroscience, University of Siena, Italy; Department of Neurology (J. Sellner), Landesklinikum Mistelbach-Gänserndorf, Austria; Regional Clinical Hospital Department of Vascular Neurology (V.G.), Ivano-Frankivsk, Ukraine; Department of Neurology (K.R.), Medical University of Lublin, Lublin, Poland; Medical University of Pleven (P.S.B.), Bulgaria; Immunic AG (D.V., H.K., M.O., V.S., A.R.M.), Gräfelfing, Germany; and independent consultant (J. Slizgi), Raleigh, NC
| |
Collapse
|
10
|
Treiber A, Seeland S, Segrestaa J, Lescop C, Bolli MH. Reversible oxidation/reduction steps in the metabolic degradation of the glycerol side chain of the S1P 1 modulator ponesimod. Xenobiotica 2024; 54:182-194. [PMID: 38400854 DOI: 10.1080/00498254.2024.2319812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
1. Ponesimod is a selective modulator of the sphingosine 1-phosphate receptor 1 (S1P1) approved for the treatment of active relapsing forms of multiple sclerosis. The chemical structure of ponesimod contains a glycerol side chain which is the major target of drug metabolism in humans. 2. The two major metabolic pathways give the acids M12 (-OCH2CH(OH)COOH) and M13 (-OCH2COOH). While the former results from oxidation of the terminal alcohol, the mechanism yielding the chain-shortened acid M13 is less obvious. A detailed mechanistic study with human liver microsomes and hepatocytes using ponesimod, M12 and some of the suspected intermediates revealed an unexpectedly complex pattern of enzyme-mediated and chemical reactions. 3. Metabolic pathways for both acids were not independent and several of the transformations were reversible, depending on reaction conditions. Formation of M13 occurred either via initial oxidation of the secondary alcohol, or as a downstream process starting from M12. 4. The phenol metabolite M32 was produced as part of several pathways. Control experiments at various pH values and in the absence of metabolising enzymes support the conclusion that its formation resulted from chemical degradation rather than from metabolic processes.
Collapse
Affiliation(s)
- Alexander Treiber
- Department of Non-Clinical Drug Metabolism and Pharmacokinetics (AT, SS, JS), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Swen Seeland
- Department of Non-Clinical Drug Metabolism and Pharmacokinetics (AT, SS, JS), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Jérôme Segrestaa
- Department of Non-Clinical Drug Metabolism and Pharmacokinetics (AT, SS, JS), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Cyrille Lescop
- Drug Discovery Chemistry (CL, MHB), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Martin H Bolli
- Drug Discovery Chemistry (CL, MHB), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
11
|
Chen J, Stork T, Kang Y, Nardone KAM, Auer F, Farrell RJ, Jay TR, Heo D, Sheehan A, Paton C, Nagel KI, Schoppik D, Monk KR, Freeman MR. Astrocyte growth is driven by the Tre1/S1pr1 phospholipid-binding G protein-coupled receptor. Neuron 2024; 112:93-112.e10. [PMID: 38096817 PMCID: PMC11073822 DOI: 10.1016/j.neuron.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.
Collapse
Affiliation(s)
- Jiakun Chen
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Tobias Stork
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Katherine A M Nardone
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan J Farrell
- Neuroscience Institute, NYU Medical Center, New York, NY 10016, USA
| | - Taylor R Jay
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dongeun Heo
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cameron Paton
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - David Schoppik
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Marc R Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
13
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
14
|
Jonnalagadda D, Kihara Y, Groves A, Ray M, Saha A, Ellington C, Lee-Okada HC, Furihata T, Yokomizo T, Quadros EV, Rivera R, Chun J. FTY720 requires vitamin B 12-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023; 42:113545. [PMID: 38064339 PMCID: PMC11066976 DOI: 10.1016/j.celrep.2023.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Neuroscience Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Clayton Ellington
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Meca-Lallana V, Esparcia-Pinedo L, Aguirre C, Díaz-Pérez C, Gutierrez-Cobos A, Sobrado M, Carabajal E, Río BD, Ropero N, Villagrasa R, Vivancos J, Sanchez-Madrid F, Alfranca A. Analysis of humoral and cellular immunity after SARS-CoV-2 vaccination in patients with multiple sclerosis treated with immunomodulatory drugs. CLINICAL IMMUNOLOGY COMMUNICATIONS 2023; 3:6-13. [PMID: 38014396 PMCID: PMC9898989 DOI: 10.1016/j.clicom.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 09/29/2023]
Abstract
We analyzed immune response to SARS-CoV-2 vaccination by measuring specific IgG titers and T-cell reactivity to different SARS-CoV-2 peptides in multiple sclerosis patients taking different disease-modifying treatments. Of the 88 patients included, 72 developed any kind of immune response after vaccination. Although DMTs such as fingolimod and anti-CD20+ treatments prevented patients from developing a robust humoral response to the vaccine, most of them were still able to develop a cellular response, which could be crucial for long-term immunity. It is probably advisable that all MS patients take additional/booster doses to increase their humoral and/or cellular immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Virginia Meca-Lallana
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Laura Esparcia-Pinedo
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Clara Aguirre
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Carolina Díaz-Pérez
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Ainhoa Gutierrez-Cobos
- Microbiology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Mónica Sobrado
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Estefanía Carabajal
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Beatriz Del Río
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Noelia Ropero
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Ramón Villagrasa
- Preventive Medicine Unit. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - José Vivancos
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Francisco Sanchez-Madrid
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
16
|
Doskas T, Dardiotis E, Vavougios GD, Ntoskas KT, Sionidou P, Vadikolias K. Stroke risk in multiple sclerosis: a critical appraisal of the literature. Int J Neurosci 2023; 133:1132-1152. [PMID: 35369835 DOI: 10.1080/00207454.2022.2056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Observational studies suggest that the occurrence of stroke on multiple sclerosis (MS) patients is higher compared to the general population. MS is a heterogeneous disease that involves an interplay of genetic, environmental and immune factors. The occurrence of stroke is subject to a wide range of both modifiable and non-modifiable, short- and long-term risk factors. Both MS and stroke share common risk factors. The immune mechanisms that underlie stroke are similar to neurodegenerative diseases and are attributed to neuroinflammation. The inflammation in autoimmune diseases may, therefore, predispose to an increased risk for stroke or potentiate the effect of conventional stroke risk factors. There are, however, additional determinants that contribute to a higher risk and incidence of stroke in MS. Due to the challenges that are associated with their differential diagnosis, the objective is to present an overview of the factors that may contribute to increased susceptibility or occurrence of stroke in MSpatients by performing a review of the available to date literature. As both MS and stroke can individually detrimentally affect the quality of life of afflicted patients, the identification of factors that contribute to an increased risk for stroke in MS is crucial for the prompt implementation of preventative therapeutic measures to limit the additive burden that stroke imposes.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
17
|
Tramacere I, Virgili G, Perduca V, Lucenteforte E, Benedetti MD, Capobussi M, Castellini G, Frau S, Gonzalez-Lorenzo M, Featherstone R, Filippini G. Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2023; 11:CD012186. [PMID: 38032059 PMCID: PMC10687854 DOI: 10.1002/14651858.cd012186.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects mainly young adults (two to three times more frequently in women than in men) and causes significant disability after onset. Although it is accepted that immunotherapies for people with MS decrease disease activity, uncertainty regarding their relative safety remains. OBJECTIVES To compare adverse effects of immunotherapies for people with MS or clinically isolated syndrome (CIS), and to rank these treatments according to their relative risks of adverse effects through network meta-analyses (NMAs). SEARCH METHODS We searched CENTRAL, PubMed, Embase, two other databases and trials registers up to March 2022, together with reference checking and citation searching to identify additional studies. SELECTION CRITERIA We included participants 18 years of age or older with a diagnosis of MS or CIS, according to any accepted diagnostic criteria, who were included in randomized controlled trials (RCTs) that examined one or more of the agents used in MS or CIS, and compared them versus placebo or another active agent. We excluded RCTs in which a drug regimen was compared with a different regimen of the same drug without another active agent or placebo as a control arm. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods for data extraction and pairwise meta-analyses. For NMAs, we used the netmeta suite of commands in R to fit random-effects NMAs assuming a common between-study variance. We used the CINeMA platform to GRADE the certainty of the body of evidence in NMAs. We considered a relative risk (RR) of 1.5 as a non-inferiority safety threshold compared to placebo. We assessed the certainty of evidence for primary outcomes within the NMA according to GRADE, as very low, low, moderate or high. MAIN RESULTS This NMA included 123 trials with 57,682 participants. Serious adverse events (SAEs) Reporting of SAEs was available from 84 studies including 5696 (11%) events in 51,833 (89.9%) participants out of 57,682 participants in all studies. Based on the absolute frequency of SAEs, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 18 additional people would have a SAE compared to placebo. Low-certainty evidence suggested that three drugs may decrease SAEs compared to placebo (relative risk [RR], 95% confidence interval [CI]): interferon beta-1a (Avonex) (0.78, 0.66 to 0.94); dimethyl fumarate (0.79, 0.67 to 0.93), and glatiramer acetate (0.84, 0.72 to 0.98). Several drugs met our non-inferiority criterion versus placebo: moderate-certainty evidence for teriflunomide (1.08, 0.88 to 1.31); low-certainty evidence for ocrelizumab (0.85, 0.67 to 1.07), ozanimod (0.88, 0.59 to 1.33), interferon beta-1b (0.94, 0.78 to 1.12), interferon beta-1a (Rebif) (0.96, 0.80 to 1.15), natalizumab (0.97, 0.79 to 1.19), fingolimod (1.05, 0.92 to 1.20) and laquinimod (1.06, 0.83 to 1.34); very low-certainty evidence for daclizumab (0.83, 0.68 to 1.02). Non-inferiority with placebo was not met due to imprecision for the other drugs: low-certainty evidence for cladribine (1.10, 0.79 to 1.52), siponimod (1.20, 0.95 to 1.51), ofatumumab (1.26, 0.88 to 1.79) and rituximab (1.01, 0.67 to 1.52); very low-certainty evidence for immunoglobulins (1.05, 0.33 to 3.32), diroximel fumarate (1.05, 0.23 to 4.69), peg-interferon beta-1a (1.07, 0.66 to 1.74), alemtuzumab (1.16, 0.85 to 1.60), interferons (1.62, 0.21 to 12.72) and azathioprine (3.62, 0.76 to 17.19). Withdrawals due to adverse events Reporting of withdrawals due to AEs was available from 105 studies (85.4%) including 3537 (6.39%) events in 55,320 (95.9%) patients out of 57,682 patients in all studies. Based on the absolute frequency of withdrawals, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 31 additional people would withdraw compared to placebo. No drug reduced withdrawals due to adverse events when compared with placebo. There was very low-certainty evidence (meaning that estimates are not reliable) that two drugs met our non-inferiority criterion versus placebo, assuming an upper 95% CI RR limit of 1.5: diroximel fumarate (0.38, 0.11 to 1.27) and alemtuzumab (0.63, 0.33 to 1.19). Non-inferiority with placebo was not met due to imprecision for the following drugs: low-certainty evidence for ofatumumab (1.50, 0.87 to 2.59); very low-certainty evidence for methotrexate (0.94, 0.02 to 46.70), corticosteroids (1.05, 0.16 to 7.14), ozanimod (1.06, 0.58 to 1.93), natalizumab (1.20, 0.77 to 1.85), ocrelizumab (1.32, 0.81 to 2.14), dimethyl fumarate (1.34, 0.96 to 1.86), siponimod (1.63, 0.96 to 2.79), rituximab (1.63, 0.53 to 5.00), cladribine (1.80, 0.89 to 3.62), mitoxantrone (2.11, 0.50 to 8.87), interferons (3.47, 0.95 to 12.72), and cyclophosphamide (3.86, 0.45 to 33.50). Eleven drugs may have increased withdrawals due to adverse events compared with placebo: low-certainty evidence for teriflunomide (1.37, 1.01 to 1.85), glatiramer acetate (1.76, 1.36 to 2.26), fingolimod (1.79, 1.40 to 2.28), interferon beta-1a (Rebif) (2.15, 1.58 to 2.93), daclizumab (2.19, 1.31 to 3.65) and interferon beta-1b (2.59, 1.87 to 3.77); very low-certainty evidence for laquinimod (1.42, 1.01 to 2.00), interferon beta-1a (Avonex) (1.54, 1.13 to 2.10), immunoglobulins (1.87, 1.01 to 3.45), peg-interferon beta-1a (3.46, 1.44 to 8.33) and azathioprine (6.95, 2.57 to 18.78); however, very low-certainty evidence is unreliable. Sensitivity analyses including only studies with low attrition bias, drug dose above the group median, or only patients with relapsing remitting MS or CIS, and subgroup analyses by prior disease-modifying treatments did not change these figures. Rankings No drug yielded consistent P scores in the upper quartile of the probability of being better than others for primary and secondary outcomes. AUTHORS' CONCLUSIONS We found mostly low and very low-certainty evidence that drugs used to treat MS may not increase SAEs, but may increase withdrawals compared with placebo. The results suggest that there is no important difference in the occurrence of SAEs between first- and second-line drugs and between oral, injectable, or infused drugs, compared with placebo. Our review, along with other work in the literature, confirms poor-quality reporting of adverse events from RCTs of interventions. At the least, future studies should follow the CONSORT recommendations about reporting harm-related issues. To address adverse effects, future systematic reviews should also include non-randomized studies.
Collapse
Affiliation(s)
- Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Vittorio Perduca
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Maria Donata Benedetti
- UOC Neurologia B - Policlinico Borgo Roma, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Capobussi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Greta Castellini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Marien Gonzalez-Lorenzo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Oncology, Laboratory of Clinical Research Methodology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| |
Collapse
|
18
|
Schwab N, Wiendl H. Learning CNS immunopathology from therapeutic interventions. Sci Transl Med 2023; 15:eadg7863. [PMID: 37939164 DOI: 10.1126/scitranslmed.adg7863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Modulation of immune cell trafficking across the blood-brain barrier has not only introduced a therapeutic avenue for multiple sclerosis (MS) but also represents an example of reverse translational medicine. Data from clinical trials of drugs such as natalizumab and fingolimod have revealed the involvement of different compartments in relapsing versus non-relapsing MS immune biology, contributed to our understanding of central nervous system (CNS) immune surveillance, and stimulated new fields of research. Here, we discuss the results of these trials, as well as patient biomaterial-based scientific projects, and how both have informed our understanding of CNS immunopathology.
Collapse
Affiliation(s)
- Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster 48149, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster 48149, Germany
- Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| |
Collapse
|
19
|
Maguire TJA, Yung S, Ortiz-Zapater E, Kayode OS, Till S, Corrigan C, Siew LQC, Knock GA, Woszczek G. Sphingosine-1-phosphate induces airway smooth muscle hyperresponsiveness and proliferation. J Allergy Clin Immunol 2023; 152:1131-1140.e6. [PMID: 37474025 DOI: 10.1016/j.jaci.2023.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The emerging role of sphingosine-1-phosphate (S1P) in regulating smooth muscle functions has led to the exploration of the possibility that this sphingolipid could represent a potential therapeutic target in asthma and other lung diseases. Several studies in animal surrogates have suggested a role for S1P-mediated signaling in the regulation of airway smooth muscle (ASM) contraction, airway hyperresponsiveness, and airway remodeling, but evidence from human studies is lacking. OBJECTIVE We sought to compare the responsiveness of the airways to S1P in healthy and asthmatic individuals in vivo, in isolated human airways ex vivo, and in murine airways dissected from healthy and house dust mite (HDM)-sensitized animals. METHODS Airway responsiveness was measured by spirometry during inhalation challenges and by wire myography in airways isolated from human and mouse lungs. Thymidine incorporation and calcium mobilization assays were used to study human ASM cell responses. RESULTS S1P did not induce contraction of airways isolated from healthy and HDM-exposed mice, nor in human airways. Similarly, there was no airway constriction observed in healthy and asthmatic subjects in response to increasing concentrations of inhaled S1P. However, a 30-minute exposure to S1P induced a significant concentration-dependent enhancement of airway reactivity to methacholine and to histamine in murine and human airways, respectively. HDM-sensitized mice demonstrated a significant increase in methacholine responsiveness, which was not further enhanced by S1P treatment. S1P also concentration-dependently enhanced proliferation of human ASM cells, an effect mediated through S1P receptor type 2, as shown by selective antagonism and S1P receptor type 2 small-interfering RNA knockdown. CONCLUSIONS Our data suggest that S1P released locally into the airways may be involved in the regulation of ASM hyperresponsiveness and hyperplasia, defining a novel target for future therapies.
Collapse
Affiliation(s)
- Thomas J A Maguire
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephanie Yung
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Elena Ortiz-Zapater
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom; Department of Biochemistry and Molecular Biology, Faculty of Medicina-IIS INCLIVA, University of Valencia, Valencia, Spain
| | - O Stephanie Kayode
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Stephen Till
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Chris Corrigan
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Leonard Q C Siew
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Gregory A Knock
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Grzegorz Woszczek
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
20
|
Alping P. Disease-modifying therapies in multiple sclerosis: A focused review of rituximab. Basic Clin Pharmacol Toxicol 2023; 133:550-564. [PMID: 37563891 DOI: 10.1111/bcpt.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Treatment for multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system, has changed drastically in the last 30 years. Several different disease-modifying therapies are now available, with off-label use of the B-cell-depleting antibody rituximab becoming an increasingly popular choice, as more and more studies report on its effectiveness. OBJECTIVES The objective of this study was to summarize the current state of evidence for rituximab as a treatment for relapsing-remitting MS (RRMS). METHODS A structured literature search was conducted in PubMed, focusing on peer-reviewed studies of adult populations with RRMS. Ongoing trials with rituximab in MS were identified through Clinicaltrials.gov and additional references were identified through review articles. FINDINGS Despite promising results for rituximab as a treatment of MS, the market-authorization holder switched focus from rituximab and discontinued the industry-sponsored trials programme. However, several observational studies, smaller clinical trials and one large investigator-initiated randomized-controlled trial have continued to report fewer clinical relapses, fewer contrast-enhancing lesions on magnetic resonance imaging and better drug survival with rituximab, compared with MS-approved alternatives. CONCLUSIONS Rituximab should be considered as both a first- and second-line therapy option for most MS patients with active, non-progressive disease. However, as an off-label therapy for MS, regulatory approval remains a barrier for wider adoption in many countries.
Collapse
Affiliation(s)
- Peter Alping
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
22
|
Liu Q, Shi K, Wang Y, Shi FD. Neurovascular Inflammation and Complications of Thrombolysis Therapy in Stroke. Stroke 2023; 54:2688-2697. [PMID: 37675612 DOI: 10.1161/strokeaha.123.044123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Intravenous thrombolysis via tPA (tissue-type plasminogen activator) is the only approved pharmacological treatment for acute ischemic stroke, but its benefits are limited by hemorrhagic transformation. Emerging evidence reveals that tPA swiftly mobilizes immune cells which extravasate into the brain parenchyma via the cerebral vasculature, augmenting neurovascular inflammation, and tissue injury. In this review, we summarize the pronounced alterations of immune cells induced by tPA in patients with stroke and experimental stroke models. We argue that neuroinflammation, triggered by ischemia-induced cell death and exacerbated by tPA, compromises neurovascular integrity and the microcirculation, leading to hemorrhagic transformation. Finally, we discuss current and future approaches to attenuate thrombolysis-associated hemorrhagic transformation via uncoupling immune cells from the neurovascular unit.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
| | - Kaibin Shi
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Yongjun Wang
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| |
Collapse
|
23
|
Evonuk KS, Wang S, Mattie J, Cracchiolo CJ, Mager R, Ferenčić Ž, Sprague E, Carrier B, Schofield K, Martinez E, Stewart Z, Petrosino T, Johnson GA, Yusuf I, Plaisted W, Naiman Z, Delp T, Carter L, Marušić S. Bruton's tyrosine kinase inhibition reduces disease severity in a model of secondary progressive autoimmune demyelination. Acta Neuropathol Commun 2023; 11:115. [PMID: 37438842 PMCID: PMC10337138 DOI: 10.1186/s40478-023-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is an emerging target in multiple sclerosis (MS). Alongside its role in B cell receptor signaling and B cell development, BTK regulates myeloid cell activation and inflammatory responses. Here we demonstrate efficacy of BTK inhibition in a model of secondary progressive autoimmune demyelination in Biozzi mice with experimental autoimmune encephalomyelitis (EAE). We show that late in the course of disease, EAE severity could not be reduced with a potent relapse inhibitor, FTY720 (fingolimod), indicating that disease was relapse-independent. During this same phase of disease, treatment with a BTK inhibitor reduced both EAE severity and demyelination compared to vehicle treatment. Compared to vehicle treatment, late therapeutic BTK inhibition resulted in fewer spinal cord-infiltrating myeloid cells, with lower expression of CD86, pro-IL-1β, CD206, and Iba1, and higher expression of Arg1, in both tissue-resident and infiltrating myeloid cells, suggesting a less inflammatory myeloid cell milieu. These changes were accompanied by decreased spinal cord axonal damage. We show similar efficacy with two small molecule inhibitors, including a novel, highly selective, central nervous system-penetrant BTK inhibitor, GB7208. These results suggest that through lymphoid and myeloid cell regulation, BTK inhibition reduced neurodegeneration and disease progression during secondary progressive EAE.
Collapse
Affiliation(s)
| | - Sen Wang
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Josh Mattie
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - C. J. Cracchiolo
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Reine Mager
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Željko Ferenčić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Ethan Sprague
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Brandon Carrier
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Kai Schofield
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Evelyn Martinez
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Zachary Stewart
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Tara Petrosino
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | | | - Isharat Yusuf
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Warren Plaisted
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Zachary Naiman
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Timothy Delp
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Laura Carter
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Suzana Marušić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| |
Collapse
|
24
|
Behara M, Goudy S. FTY720 in immuno-regenerative and wound healing technologies for muscle, epithelial and bone regeneration. Front Physiol 2023; 14:1148932. [PMID: 37250137 PMCID: PMC10213316 DOI: 10.3389/fphys.2023.1148932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In 2010, the FDA approved the administration of FTY720, S1P lipid mediator, as a therapy to treat relapsing forms of multiple sclerosis. FTY720 was found to sequester pro-inflammatory lymphocytes within the lymph node, preventing them from causing injury to the central nervous system due to inflammation. Studies harnessing the anti-inflammatory properties of FTY720 as a pro-regenerative strategy in wound healing of muscle, bone and mucosal injuries are currently being performed. This in-depth review discusses the current regenerative impact of FTY720 due to its anti-inflammatory effect stratified into an assessment of wound regeneration in the muscular, skeletal, and epithelial systems. The regenerative effect of FTY720 in vivo was characterized in three animal models, with differing delivery mechanisms emerging in the last 20 years. In these studies, local delivery of FTY720 was found to increase pro-regenerative immune cell phenotypes (neutrophils, macrophages, monocytes), vascularization, cell proliferation and collagen deposition. Delivery of FTY720 to a localized wound environment demonstrated increased bone, muscle, and mucosal regeneration through changes in gene and cytokine production primarily by controlling the local immune cell phenotypes. These changes in gene and cytokine production reduced the inflammatory component of wound healing and increased the migration of pro-regenerative cells (neutrophils and macrophages) to the wound site. The application of FTY720 delivery using a biomaterial has demonstrated the ability of local delivery of FTY720 to promote local wound healing leveraging an immunomodulatory mechanism.
Collapse
Affiliation(s)
- Monica Behara
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Steven Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Otolaryngology, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
26
|
Muñoz JP, Sànchez-Fernàndez-de-Landa P, Diarte-Añazco EMG, Zorzano A, Blanco-Vaca F, Julve J. FTY720-P, a Biased S1PR Ligand, Increases Mitochondrial Function through STAT3 Activation in Cardiac Cells. Int J Mol Sci 2023; 24:ijms24087374. [PMID: 37108539 PMCID: PMC10139230 DOI: 10.3390/ijms24087374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
FTY720 is an FDA-approved sphingosine derivative drug for the treatment of multiple sclerosis. This compound blocks lymphocyte egress from lymphoid organs and autoimmunity through sphingosine 1-phosphate (S1P) receptor blockage. Drug repurposing of FTY720 has revealed improvements in glucose metabolism and metabolic diseases. Studies also demonstrate that preconditioning with this compound preserves the ATP levels during cardiac ischemia in rats. The molecular mechanisms by which FTY720 promotes metabolism are not well understood. Here, we demonstrate that nanomolar concentrations of the phosphorylated form of FTY720 (FTY720-P), the active ligand of S1P receptor (S1PR), activates mitochondrial respiration and the mitochondrial ATP production rate in AC16 human cardiomyocyte cells. Additionally, FTY720-P increases the number of mitochondrial nucleoids, promotes mitochondrial morphology alterations, and induces activation of STAT3, a transcription factor that promotes mitochondrial function. Notably, the effect of FTY720-P on mitochondrial function was suppressed in the presence of a STAT3 inhibitor. In summary, our results suggest that FTY720 promotes the activation of mitochondrial function, in part, through a STAT3 action.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
27
|
Liu W, Yu Z, Wang Z, Waubant EL, Zhai S, Benet LZ. Using an animal model to predict the effective human dose for oral multiple sclerosis drugs. Clin Transl Sci 2023; 16:467-477. [PMID: 36419359 PMCID: PMC10014696 DOI: 10.1111/cts.13458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to determine the potential usefulness of an animal model to predict the appropriate dose of newly developed drugs for treating relapsing remitting multiple sclerosis (RRMS). Conversion of the lowest effective dose (LEffD) for mice and rats in the experimental autoimmune encephalomyelitis (EAE) model was used to predict the human effective dose utilizing the body surface area correction factor found in the 2005 US Food and Drug Administration (FDA) Guidance for Industry in selecting safe starting doses for clinical trials. Predictions were also tested by comparison with doses estimated by scaling up the LEffD in the model by the human to animal clearance ratio. Although initial proof-of-concept studies of oral fingolimod tested the efficacy and safety of 1.25 and 5 mg in treating RRMS, the EAE animal model predicted the approved dose of this drug, 0.5 mg daily. This approach would have also provided useful predictions of the approved human oral doses for cladribine, dimethyl fumarate, ozanimod, ponesimod, siponimod, and teriflunomide, drugs developed with more than one supposed mechanism of action. The procedure was not useful for i.v. dosed drugs, including monoclonal antibodies. We maintain that drug development scientists should always examine a simple allometric method to predict the therapeutic effective dose in humans. Then, following clinical studies, we believe that the animal model might be expected to yield useful predictions of other drugs developed to treat the same condition. The methodology may not always be predictive, but the approach is so simple it should be investigated.
Collapse
Affiliation(s)
- Wei Liu
- Department of PharmacyPeking University Third HospitalBeijingChina
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhiheng Yu
- Department of PharmacyPeking University Third HospitalBeijingChina
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ziyu Wang
- Department of PharmacyPeking University Third HospitalBeijingChina
- School of Basic Medical Sciences and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Emmanuelle L. Waubant
- Weill Institute for Neurosciences and San Francisco Multiple Sclerosis CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Suodi Zhai
- Department of PharmacyPeking University Third HospitalBeijingChina
| | - Leslie Z. Benet
- Department of PharmacyPeking University Third HospitalBeijingChina
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
28
|
Lee J, Lester R, O'Reilly T, Lowe ER, Slatkin NE, Franklin H, Israel RJ. A Randomized, Double-Blind, Parallel Design Thorough QT Study With a Nested Crossover to Compare the Cardiac Safety of Amiselimod With Placebo and Positive Control in Healthy Volunteers. Clin Pharmacol Drug Dev 2023; 12:236-248. [PMID: 36708138 DOI: 10.1002/cpdd.1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/28/2022] [Indexed: 01/29/2023]
Abstract
This double-blind study evaluated the cardiac safety of amiselimod. Healthy adults (n = 190) were randomized (2:1:1) to receive (1) oral placebo (day -1), followed by oral amiselimod (days 1-26), which was upwardly titrated from 0.4 to 1.6 mg once daily to achieve steady-state concentrations comparable with 0.4 (therapeutic) and 0.8 mg (supratherapeutic) once daily, and placebo (day 27); (2) placebo (day -1), oral moxifloxacin 400 mg (day 1; positive control), followed by placebo (days 1-27); or (3) placebo (days -1 to 26), followed by moxifloxacin 400 mg (day 27). No participant had a corrected QT interval by Fredericia (QTcF) >500 milliseconds or a change from baseline (dQTcF) >60 milliseconds. The upper limits of the 90%CIs for the differences in least-squares mean difference in dQTcF between amiselimod and placebo on days 13 and 26 were <10 milliseconds. Area under the concentration-time curve from 0 to 23.5 hours after dosing and maximum plasma concentration of amiselimod and amiselimod-P (active metabolite) at steady-state concentrations for the 0.8-mg dose on day 26 were approximately double that observed with the 0.4-mg dose on day 13. All adverse events were mild to moderate in severity, and no deaths occurred. Amiselimod did not have any clinically relevant effect on the QTcF interval.
Collapse
Affiliation(s)
- Jimin Lee
- Bausch Health US, LLC, Bridgewater, New Jersey, USA
| | | | | | - Ezra R Lowe
- Bausch Health US, LLC, Bridgewater, New Jersey, USA
| | | | | | | |
Collapse
|
29
|
Sasset L, Chowdhury KH, Manzo OL, Rubinelli L, Konrad C, Maschek JA, Manfredi G, Holland WL, Di Lorenzo A. Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL. EMBO Rep 2023; 24:e54689. [PMID: 36408842 PMCID: PMC9827560 DOI: 10.15252/embr.202254689] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Kamrul H Chowdhury
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Onorina L Manzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Department of PharmacyUniversity of Naples “Federico II”NaplesItaly
| | - Luisa Rubinelli
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Csaba Konrad
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - J Alan Maschek
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - William L Holland
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
30
|
Basavarajappa D, Gupta V, Wall RV, Gupta V, Chitranshi N, Mirshahvaladi SSO, Palanivel V, You Y, Mirzaei M, Klistorner A, Graham SL. S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma. FASEB J 2023; 37:e22710. [PMID: 36520045 DOI: 10.1096/fj.202201346r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Basavarajappa D, Gupta V, Chitranshi N, Wall R, Rajput R, Pushpitha K, Sharma S, Mirzaei M, Klistorner A, Graham S. Siponimod exerts neuroprotective effects on the retina and higher visual pathway through neuronal S1PR1 in experimental glaucoma. Neural Regen Res 2023; 18:840-848. [DOI: 10.4103/1673-5374.344952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Kervella D, Blancho G. New immunosuppressive agents in transplantation. Presse Med 2022; 51:104142. [PMID: 36252821 DOI: 10.1016/j.lpm.2022.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Immunosuppressive agents have enabled the development of allogenic transplantation during the last 40 years, allowing considerable improvement in graft survival. However, several issues remain such as the nephrotoxicity of calcineurin inhibitors, the cornerstone of immunosuppressive regimens and/or the higher risk of opportunistic infections and cancers. Most immunosuppressive agents target T cell activation and may not be efficient enough to prevent allo-immunization in the long term. Finally, antibody mediated rejection due to donor specific antibodies strongly affects allograft survival. Many drugs have been tested in the last decades, but very few have come to clinical use. The most recent one is CTLA4-Ig (belatacept), a costimulation blockade molecule that targets the second signal of T cell activation and is associated with a better long term kidney function than calcineurin inhibitors, despite an increased risk of acute cellular rejection. The research of new maintenance long-term immunosuppressive agents focuses on costimulation blockade. Agents inhibiting CD40-CD40 ligand interaction may enable a good control of both T cells and B cells responses. Anti-CD28 antibodies may promote regulatory T cells. Agents targeting this costimulation pathways are currently evaluated in clinical trials. Immunosuppressive agents for ABMR treatment are scarce since anti-CD20 agent rituximab and proteasome inhibitor bortezomib have failed to demonstrate an interest in ABMR. New drugs focusing on antibodies removal (imlifidase), B cell and plasmablasts (anti-IL-6/IL-6R, anti-CD38…) and complement inhibition are in the pipeline, with the challenge of their evaluation in such a heterogeneous pathology.
Collapse
Affiliation(s)
- Delphine Kervella
- CHU Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, ITUN, Nantes, France; Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, ITUN, Nantes, France; Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France.
| |
Collapse
|
33
|
Jiang H, Zhang X, Wu Y, Zhang B, Wei J, Li J, Huang Y, Chen L, He X. Bioinformatics identification and validation of biomarkers and infiltrating immune cells in endometriosis. Front Immunol 2022; 13:944683. [PMID: 36524127 PMCID: PMC9745028 DOI: 10.3389/fimmu.2022.944683] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Endometriosis (EM) is a common gynecological disorder that often leads to irregular menstruation and infertility. The pathogenesis of EM remains unclear and delays in diagnosis are common. Thus, it is urgent to explore potential biomarkers and underlying molecular mechanisms for EM diagnosis and therapies. Methods Three EM-related datasets (GSE11691, GSE25628, and GSE86534) were downloaded from the Gene Expression Omnibus (GEO) which were integrated into a combined dataset after removing batch effect. Differentially expressed immune cell-related genes were obtained by CIBERSORT, WGCNA, and the identification of differentially expressed genes. Random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM) were then constructed and the biomarkers for EM were determined. A nomogram evaluating the risk of disease was constructed and the validity was assessed by the calibration curve, DCA curve, and clinical impact curve. Single-gene Gene Set Enrichment Analysis (GSEA)was performed to explore the molecular mechanisms of biomarkers. The ceRNA regulatory network of biomarkers was created by Cytoscape and potential target drugs were obtained in the DGIdb database (Drug-Gene Interaction database).The expression levels of biomarkers from clinical samples was quantified by RT-qPCR. Results The ratio of eight immune cells was significantly different between the eutopic and ectopic endometrium samples. A total of eight differentially expressed immune cell-related genes were investigated. The SVM model was a relatively suitable model for the prediction of EM and five genes (CXCL12, PDGFRL, AGTR1, PTGER3, and S1PR1) were selected from the model as biomarkers. The calibration curve, DCA curve, and clinical impact curve indicated that the nomogram based on the five biomarkers had a robust ability to predict disease. Single gene GSEA result suggested that all five biomarkers were involved in labyrinthine layer morphogenesis and transmembrane transport-related biological processes in EM. A ceRNA regulatory network containing 184 nodes and 251 edges was constructed. Seven drugs targeting CXCL12, 49 drugs targeting AGTR1, 16 drugs targeting PTGER3, and 21 drugs targeting S1PR1 were extracted as potential drugs for EM therapy. Finally, the expression of PDGFRL and S1PR1 in clinical samples was validated by RT-qPCR, which was consistent with the result of public database. Conclusions In summary, we identified five biomarkers (CXCL12, PDGFRL, AGTR1, PTGER3, and S1PR1) and constructed diagnostic model, furthermore predicted the potential therapeutic drugs for EM. Collectively, these findings provide new insights into EM diagnosis and treatment.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xia Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yalan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Baozhu Zhang
- Department of Obstetrics and Gynecology, Fu’an Hospital, Fuan, Fujian, China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianhua Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yuxiu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinqin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China,*Correspondence: Xinqin He,
| |
Collapse
|
34
|
Constantinescu V, Akgün K, Ziemssen T. Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opin Drug Metab Toxicol 2022; 18:675-693. [PMID: 36260948 DOI: 10.1080/17425255.2022.2138330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fingolimod was the first oral disease-modifying treatment approved for relapsing-remitting multiple sclerosis (MS) that serves as a sphingosine-1-phosphate receptor (S1PR) agonist. The efficacy is primarily mediated by S1PR subtype 1 activation, leading to agonist-induced down-modulation of receptor expression and further functional antagonism, blocking the egression of auto-aggressive lymphocytes from the lymph nodes in the peripheral compartment. The role of S1P signaling in the regulation of other pathways in human organisms through different S1PR subtypes has received much attention due to its immune-modulatory function and its significance for the regeneration of the central nervous system (CNS). The more selective second-generation S1PR modulators have improved safety and tolerability profiles. AREAS COVERED This review has been carried out based on current data on S1PR modulators, emphasizing the benefits of recent advances in this emergent class of immunomodulatory treatment for MS. EXPERT OPINION Ongoing clinical research suggests that S1PR modulators represent an alternative to first-line therapies in selected cases of MS. A better understanding of the relevance of selective S1PR pathways and the ambition to optimize selective modulation has improved the safety and tolerability of S1PR modulators in MS therapy and opened new perspectives for the treatment of other diseases.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| |
Collapse
|
35
|
Xu L, Lu P, Wang Y. Sphingosine 1-phosphate receptor modulators for the treatment of inflammatory bowel disease and other immune-mediated diseases. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Fingolimod exerts in vitro anticancer activity against hepatocellular carcinoma cell lines via YAP/TAZ suppression. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:427-436. [PMID: 36651547 DOI: 10.2478/acph-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 01/26/2023]
Abstract
Hepatocellular carcinoma (HCC) remains a notably global health challenge with high mortality rates and poor prognosis. The deregulation of the Hippo signalling pathway, especially the overexpression and activation of downstream effector Yes-associated protein (YAP), has been demonstrated to result in the rapid malignant evolution of HCC. In this context, multiple efforts have been dedicated to targeting YAP for HCC therapy, but effective YAP inhibitors are still lacking. In this study, through a YAP-TEAD (8×GTIIC) luciferase reporter assay, we identified fingolimod, an immunomodulatory drug approved for the treatment of multiple sclerosis, as a novel YAP inhibitor. Fingolimod suppressed the proliferation of HCC cell lines by downregulating the protein levels as well as the trans-activating function of YAP. Overall, our current study not only identifies fingolimod as a novel YAP-targeting in hibitor, but also indicates that this clinically-approved drug could be utilized as a potential and feasible therapeutic drug for HCC.
Collapse
|
37
|
Manke MC, Ahrends R, Borst O. Platelet lipid metabolism in vascular thrombo-inflammation. Pharmacol Ther 2022; 237:108258. [DOI: 10.1016/j.pharmthera.2022.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
38
|
Zietzer A, Düsing P, Reese L, Nickenig G, Jansen F. Ceramide Metabolism in Cardiovascular Disease: A Network With High Therapeutic Potential. Arterioscler Thromb Vasc Biol 2022; 42:1220-1228. [PMID: 36004640 DOI: 10.1161/atvbaha.122.318048] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that ceramides play an important role in the development of atherosclerotic and valvular heart disease. Ceramides are biologically active sphingolipids that are produced by a complex network of enzymes. Lowering cellular and tissue levels of ceramide by inhibiting the ceramide-producing enzymes counteracts atherosclerotic and valvular heart disease development in animal models. In vascular tissues, ceramides are produced in response to hyperglycemia and TNF (tumor necrosis factor)-α signaling and are involved in NO-signaling and inflammation. In humans, elevated blood ceramide levels are associated with cardiovascular events. Furthermore, important cardiovascular risk factors, such as obesity and diabetes, have been linked to ceramide accumulation. This review summarizes the basic mechanisms of how ceramides drive cardiovascular disease locally and links these findings to the intriguing results of human studies on ceramides as biomarkers for cardiovascular events. Moreover, we discuss the current state of interventions to therapeutically influence vascular ceramide metabolism, both locally and systemically.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Laurine Reese
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| |
Collapse
|
39
|
Zeraatpisheh Z, Shamsi F, Sarkoohi P, Torabi S, Alipour H, Aligholi H. Effects of FTY720 on Neural Cell Behavior in Two and Three-Dimensional Culture and in Compression Spinal Cord Injury. Cell Mol Bioeng 2022; 15:331-340. [PMID: 36119134 PMCID: PMC9474962 DOI: 10.1007/s12195-022-00724-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction The present study aimed to evaluate the effects of FTY720 as a neuromodulatory drug on the behaviors of neural stem/progenitor cells (NS/PCs) in two-dimensional (2-D) and three-dimensional (3-D) cultures and in spinal cord injury (SCI). Methods The NS/PCs isolated from the ganglionic eminence of the 13.5-day old embryos were cultured as free-floating spheres. The single cells obtained from the second passage were cultured in 96-well plates without any scaffold (2-D) or containing PuraMatrix (PM, 3-D) or were used for transplantation in a mouse model of compression SCI. After exposure to 0, 10, 50, and 100 nanomolar of FTY720, the survival, proliferation, and migration of the NS/PCs were evaluated in vitro using MTT assay, neurosphere assay, and migration assay, respectively. Moreover, the functional recovery, survival and migration capacity of transplanted cells exposure to 100 nanomolar FTY720 were investigated in SCI. Results Cell survival and migration capacity increased after exposure to 50 and 100 nanomolar FTY720. In addition, higher doses of FTY720 led to the formation of more extensive and more neurospheres. Although this phenomenon was similar in both 2-D and 3-D cultures, PM induced better distribution of the cells in a 3-D environment. Furthermore, co-administration of FTY720 and NS/PCs 7 days after SCI enhanced functional recovery and both survival and migration of transplanted cells in the lesion site. Conclusions Due to the positive effects of FTY720 on the behavior of NS/PCs, using them in combination therapies can be an appealing approach for stem cell therapy in CNS injury.
Collapse
Affiliation(s)
- Zahra Zeraatpisheh
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Somayyeh Torabi
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Alipour
- Department of Tissue Engineering & Applied cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
de Stefano N, Barkhof F, Montalban X, Achiron A, Derfuss T, Chan A, Hodgkinson S, Prat A, Leocani L, Schmierer K, Sellebjerg F, Vermersch P, Wiendl H, Keller B, Roy S. Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly Active Relapsing Multiple Sclerosis: MAGNIFY-MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1187. [PMID: 35701185 PMCID: PMC9197134 DOI: 10.1212/nxi.0000000000001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives The onset of action for high-efficacy immunotherapies in multiple sclerosis (MS) is an important parameter. This study (MAGNIFY-MS) evaluates the onset of action of cladribine tablets by observing changes in combined unique active (CUA) MRI lesion counts during the first 6 months of treatment in patients with highly active relapsing MS. Methods MRI was performed at screening, baseline, and at months 1, 2, 3, and 6 after initiating treatment with cladribine tablets 3.5 mg/kg. CUA lesion counts, defined as the sum of T1 gadolinium-enhancing (Gd+) lesions and new or enlarging active T2 lesions (without T1 Gd+), were compared between postbaseline and the baseline period and standardized to the period length and the number of MRIs performed. Results Included in this analysis were 270 patients who received ≥1 dose of cladribine tablets. After treatment initiation, significant reductions in mean CUA lesion counts were observed from month 1 onward compared with the baseline period (−1.193 between month 1 and month 6, −1.500 between month 2 and month 6, and −1.692 between month 3 and month 6; all p < 0.0001). Mean T1 Gd+ lesion counts were decreased from month 2 onward compared with baseline (−0.857 at month 2, −1.355 at month 3, and −1.449 at month 6; all p < 0.0001), whereas the proportion of patients without any CUA lesions increased from 52.0% between month 1 and month 6 to 80.5% between month 3 and month 6. Discussion Findings suggest an early onset of action for cladribine tablets, with an increasing reduction in active MRI lesions over time. Trial Registration Information NCT03364036; Date registered: December 06, 2017. Classification of Evidence Using frequent MRI assessments of the brain over the first 6 months of the MAGNIFY-MS study (NCT03364036), we aimed to determine the onset of action of cladribine tablets 3.5 mg/kg in adult patients with highly active relapsing MS. This study provides Class IV evidence that, in such patients, treatment with cladribine tablets is associated with an early onset of action with reductions in active MRI lesion counts from month 2 (day 60) onward, with an increasing reduction in such lesions over time.
Collapse
Affiliation(s)
- Nicola de Stefano
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany).
| | - Frederik Barkhof
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Xavier Montalban
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Anat Achiron
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Tobias Derfuss
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Andrew Chan
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Suzanne Hodgkinson
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Alexandre Prat
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Letizia Leocani
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Klaus Schmierer
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Finn Sellebjerg
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Patrick Vermersch
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Heinz Wiendl
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Birgit Keller
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Sanjeev Roy
- From the Department of Medicine (N.S.), Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Radiology (F.B.), VU University Medical Center, Amsterdam, The Netherlands; UCL Institute of Neurology (F.B.), London, UK; Department of Neurology-Neuroimmunology (X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d'Hebron, Universitat Autonoma de Barcelona, Spain; Multiple Sclerosis Center (A.A.), Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (T.D.), University Hospital Basel, Switzerland; Department of Neurology (A.C.), Inselspital, Bern University Hospital, University of Bern, Switzerland; Ingham Institute for Applied Medical Research (S.H.), University of New South Wales Medicine, Sydney, Australia; Department of Neurosciences (A.P.), Université de Montréal, QC, Canada; Experimental Neurophysiology Unit (L.L.), Vita-Salute San Raffaele University, Milan, Italy; The Blizard Institute (K.S.), Centre for Neuroscience, Surgery & Trauma, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, UK and; Clinical Board Medicine (Neuroscience) (K.S.), The Royal London Hospital, Barts Health NHS Trust, UK; Danish MS Center (F.S.), Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine (F.S.), University of Copenhagen, Denmark; Univ. Lille (P.V.), Inserm U1172 LilNCog, CHU Lille, FHU Precise, France; Department of Neurology (H.W.), Institute of Translational Neurology, University of Münster, Germany; the healthcare business of Merck KGaA (B.K.), Darmstadt, Germany; and Ares Trading S.A. (S.R.), Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | | |
Collapse
|
41
|
Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells 2022; 11:cells11132058. [PMID: 35805142 PMCID: PMC9265592 DOI: 10.3390/cells11132058] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) are bioactive lipid molecules that are ubiquitously expressed in the human body and play an important role in the immune system. S1P-S1PR signaling has been well characterized in immune trafficking and activation in both innate and adaptive immune systems. Despite this knowledge, the full scope in the pathogenesis of autoimmune disorders is not well characterized yet. From the discovery of fingolimod, the first S1P modulator, until siponimod, the new molecule recently approved for the treatment of secondary progressive multiple sclerosis (SPMS), there has been a great advance in understanding the S1P functions and their involvement in immune diseases, including multiple sclerosis (MS). Modulation on S1P is an interesting target for the treatment of various autoimmune disorders. Improved understanding of the mechanism of action of fingolimod has allowed the development of the more selective second-generation S1PR modulators. Subtype 1 of the S1PR (S1PR1) is expressed on the cell surface of lymphocytes, which are known to play a major role in MS pathogenesis. The understanding of S1PR1’s role facilitated the development of pharmacological strategies directed to this target, and theoretically reduced the safety concerns derived from the use of fingolimod. A great advance in the MS treatment was achieved in March 2019 when the Food and Drug Association (FDA) approved Siponimod, for both active secondary progressive MS and relapsing–remitting MS. Siponimod became the first oral disease modifying therapy (DMT) specifically approved for active forms of secondary progressive MS. Additionally, for the treatment of relapsing forms of MS, ozanimod was approved by FDA in March 2020. Currently, there are ongoing trials focused on other new-generation S1PR1 modulators. This review approaches the fundamental aspects of the sphingosine phosphate modulators and their main similarities and differences.
Collapse
|
42
|
D'Haens G, Danese S, Davies M, Watanabe M, Hibi T. A phase II, Multicentre, Randomised, Double-Blind, Placebo-controlled Study to Evaluate Safety, Tolerability, and Efficacy of Amiselimod in Patients with Moderate to Severe Active Crohn's Disease. J Crohns Colitis 2022; 16:746-756. [PMID: 34758080 DOI: 10.1093/ecco-jcc/jjab201] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Amiselimod is an oral selective S1P1 receptor modulator with potentially fewer adverse effects than fingolimod. We evaluated the safety, tolerability, and clinical efficacy of amiselimod in participants with moderate to severe active Crohn's disease. METHODS This was a phase IIa, multicentre, randomised, double-blind, parallel group, placebo-controlled study comparing amiselimod 0.4 mg with placebo over a 14-Week treatment period. The primary endpoint of the study was the proportion of participants with clinical response (Crohn's Disease activity Index [CDAI] 100) from baseline at Week 12. RESULTS A total of 180 patients were screened and 78 were randomised [40 to amiselimod 0.4 mg and 38 to placebo]. There was no significant difference in the proportion of patients achieving CDAI 100 at Week 12 on amiselimod 0.4 mg and on placebo [48.7% vs. 54.1%, respectively] (odds ratio [OR] [95% confidence interval]: 0.79 [0.31, 1.98]). The results from the secondary endpoint analyses supported the results of the primary endpoint analysis. Treatment with amiselimod 0.4 mg was generally well tolerated, with 71.8% of participants completing the 14-week treatment period. Seven participants had serious adverse events and four discontinued treatment in the amiselimod group. CONCLUSIONS Amiselimod 0.4 mg for 12 weeks was not superior to placebo for the induction of clinical response [CDAI 100] in Crohn's disease. Treatment with amiselimod 0.4 mg was generally well tolerated and no new safety concerns related to amiselimod were reported in this study.
Collapse
Affiliation(s)
- Geert D'Haens
- Inflammatory Bowel Disease Centre, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | - Martin Davies
- Clinical Operations, Mitsubishi Tanabe Pharma Europe, London, UK
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| |
Collapse
|
43
|
Fox RJ, Wiendl H, Wolf C, De Stefano N, Sellner J, Gryb V, Rejdak K, Bozhinov PS, Tomakh N, Skrypchenko I, Muehler AR. A double-blind, randomized, placebo-controlled phase 2 trial evaluating the selective dihydroorotate dehydrogenase inhibitor vidofludimus calcium in relapsing-remitting multiple sclerosis. Ann Clin Transl Neurol 2022; 9:977-987. [PMID: 35698927 PMCID: PMC9268865 DOI: 10.1002/acn3.51574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Inhibition of dihydroorotate dehydrogenase suppresses magnetic resonance imaging brain lesions and disease activity in multiple sclerosis but has limiting tolerability. We assessed the safety and efficacy of vidofludimus calcium, a novel, selective dihydroorotate dehydrogenase inhibitor, in patients with relapsing-remitting multiple sclerosis. METHODS This double-blind, 24 weeks, placebo-controlled, phase 2 trial (EMPhASIS) enrolled patients 18-55 years with relapsing-remitting multiple sclerosis. Eligible patients were randomly assigned (1:1:1) to once-daily vidofludimus calcium (30 mg or 45 mg) or placebo. The primary endpoint was the cumulative number of combined unique active lesions to week 24 between vidofludimus calcium 45 mg and placebo (clinicalTrials.gov number NCT03846219; EudraCT 2018-001896-19). RESULTS After 24 weeks, the mean cumulative number of combined unique active lesions was 6.4 (95% CI: 2.8-13.9) with placebo compared to 2.4 (95% CI: 1.1-4.9) with vidofludimus calcium 45 mg (rate ratio 0.38, 95% CI: 0.22-0.64; p = 0.0002); the rate ratio between vidofludimus calcium 30 mg and placebo was 0.30 (95% CI: 0.17-0.53; p < 0.0001). Treatment-emergent adverse events occurred in 30 (44%) of patients assigned placebo and 60 (43%) of patients assigned vidofludimus calcium. Serious adverse events occurred in one (1%) assigned placebo and two (1%) assigned vidofludimus calcium. No increased incidence of infectious, hepatic, or renal treatment-emergent adverse events or serious adverse events was observed. INTERPRETATION Treatment with vidofludimus calcium led to a reduction in new magnetic resonance imaging lesions in patients with relapsing-remitting multiple sclerosis and was well tolerated with a favorable safety profile. Assessment in longer, larger trials is justified.
Collapse
Affiliation(s)
- Robert J Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, 2130, Mistelbach, Austria
| | - Viktoriia Gryb
- Regional Clinical Hospital Department of Vascular Neurology, Ivano-Frankivsk, Ukraine
| | - Konrad Rejdak
- Medical University of Lublin, Department of Neurology, Jaczewskiego 8, 20-954, Lublin, Poland
| | | | - Nataliya Tomakh
- LLC "INET-09" 32, Zhabotinskogo Leonida Street, Zaporozhye, Ukraine
| | - Iryna Skrypchenko
- Kharkiv Regional Clinical Hospital Department of Neurology, Kharkiv, Ukraine
| | | |
Collapse
|
44
|
Sphingosine-1-phosphate receptor modulators versus interferon beta for the treatment of relapsing–remitting multiple sclerosis: findings from randomized controlled trials. Neurol Sci 2022; 43:3565-3581. [DOI: 10.1007/s10072-022-05988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
45
|
A Targeted Literature Search and Phenomenological Review of Perspectives of People with Multiple Sclerosis and Healthcare Professionals of the Immunology of Disease-Modifying Therapies. Neurol Ther 2022; 11:955-979. [PMID: 35608740 PMCID: PMC9127487 DOI: 10.1007/s40120-022-00349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction The mechanisms of action of disease-modifying therapies (DMTs) for multiple sclerosis (MS) are complex and involve an interplay of immune system components. People with MS (PwMS) may lack a clear understanding of the immunological pathways involved in MS and its treatment; effective communication between healthcare professionals (HCPs) and PwMS is needed to facilitate shared decision-making when discussing the disease and selecting DMTs and is particularly important in the coronavirus disease 2019 (COVID-19) era. Methods In this patient-authored two-part review, we performed a targeted literature search to assess the need for better communication between HCPs and PwMS regarding treatment selection, and also conducted a qualitative survey of four patient and care-partner authors to obtain insights regarding their understanding of and preferences for the treatment and management of MS. Results Following a search of the Embase and MEDLINE databases using Ovid in June 2020, an analysis of 40 journal articles and conference abstracts relating to patient empowerment and decision-making in DMT selection for MS showed a preference for safety and efficacy of treatments, followed by autonomy and convenience of administration. A need for better communication between HCPs and PwMS during treatment selection to improve patient satisfaction was also identified. The open survey responses from the patient authors revealed a need for greater involvement in decision-making processes and desire for improved communication and information tools. Conclusions This targeted literature search and phenomenological review confirms PwMS preferences for empowered decision-making in disease management and treatment selection, to optimize independence, safety, and efficacy. It also identifies an unmet need for improved communication and information tools that convey MS information in a relatable manner. Furthermore, this review seeks to address this unmet need by providing plain language figures and descriptions of MS immune mechanisms that can be used to facilitate discussions between HCPs and PwMS. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-022-00349-5. In multiple sclerosis (MS), there are different cells in the immune system that contribute to the disease. The main cells in the immune system are T and B cells. People with MS (PwMS) might not be familiar with details about the immune system, and healthcare professionals might not always communicate details about how treatments work clearly to PwMS when choosing treatments with them. It is important for PwMS to have all the information they need to help make decisions about treatments. This information needs to be given in a way they can understand. This is especially important during the coronavirus disease 2019 (COVID-19) pandemic. In this paper, we first looked at what research has already been published about what is most important to PwMS when making treatment decisions. The existing research says that safety and effectiveness are the most important things and that PwMS prefer treatments that they can take themselves. PwMS also need better communication and information from doctors to make decisions and to help explain how MS treatments work in the body. Next, we gave a survey to the patients who are authors of this paper to ask about what is important to them when making treatment decisions. Their answers were very similar to the existing research. Overall, PwMS need better communication from healthcare professionals about the immune system. This paper also includes plain language descriptions and figures to help healthcare professionals explain and discuss the importance of the immune system in MS with PwMS.
Collapse
|
46
|
Alipour H, Alizadeh A, Azarpira N, Saudi A, Alavi O, Tanideh N, Dehghani F. Incorporating fingolimod through poly(lactic‐co‐glycolic acid) nanoparticles in electrospun polyurethane/polycaprolactone/gelatin scaffold: An in vitro study for nerve tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamed Alipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran
| | - Negar Azarpira
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Ahmad Saudi
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Pharmacology, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
47
|
Bownes LV, Marayati R, Quinn CH, Beierle AM, Hutchins SC, Julson JR, Erwin MH, Stewart JE, Mroczek-Musulman E, Ohlmeyer M, Aye JM, Yoon KJ, Beierle EA. Pre-Clinical Study Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Neuroblastoma. Cancers (Basel) 2022; 14:1952. [PMID: 35454859 PMCID: PMC9026148 DOI: 10.3390/cancers14081952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) functions as an inhibitor of cancer cell proliferation, and its tumor suppressor function is attenuated in many cancers. Previous studies utilized FTY720, an immunomodulating compound known to activate PP2A, and demonstrated a decrease in the malignant phenotype in neuroblastoma. We wished to investigate the effects of two novel PP2A activators, ATUX-792 (792) and DBK-1154 (1154). METHODS Long-term passage neuroblastoma cell lines and human neuroblastoma patient-derived xenograft (PDX) cells were used. Cells were treated with 792 or 1154, and viability, proliferation, and motility were examined. The effect on tumor growth was investigated using a murine flank tumor model. RESULTS Treatment with 792 or 1154 resulted in PP2A activation, decreased cell survival, proliferation, and motility in neuroblastoma cells. Immunoblotting revealed a decrease in MYCN protein expression with increasing concentrations of 792 and 1154. Treatment with 792 led to tumor necrosis and decreased tumor growth in vivo. CONCLUSIONS PP2A activation with 792 or 1154 decreased survival, proliferation, and motility of neuroblastoma in vitro and tumor growth in vivo. Both compounds resulted in decreased expression of the oncogenic protein MYCN. These findings indicate a potential therapeutic role for these novel PP2A activators in neuroblastoma.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Andee M. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Sara C. Hutchins
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.)
| | - Janet R. Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Michael H. Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | | | | | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| |
Collapse
|
48
|
Grewe JM, Knapstein PR, Donat A, Jiang S, Smit DJ, Xie W, Keller J. The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Res 2022; 10:34. [PMID: 35396384 PMCID: PMC8993882 DOI: 10.1038/s41413-022-00205-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic bone disease that affects more than 200 million people worldwide and is caused by the disruption of the equilibrium between osteoclastic bone resorption and osteoblastic bone formation. Sphingosine-1-phosphate (S1P) is a natural, bioactive sphingolipid that has been shown to play a major role in cardiovascular and immunological pathologies by regulating biological and cellular processes, including migration, differentiation, proliferation and survival. Recent studies also suggest a central role for S1P in bone diseases, including osteoporosis; however, the effects of S1P, particularly in bone metabolism, remain to be further elucidated. In this review, we summarize the available literature on the role of S1P in bone metabolism with a focus on osteoporosis. On the cellular level, S1P acts as an osteoclast-osteoblast coupling factor to promote osteoblast proliferation and bone formation. Moreover, the recruitment of osteoclast precursors to resorption sites is regulated by the interplay of S1P gradients and S1P receptor expression. From a clinical perspective, increasing evidence suggests that systemically elevated S1P blood levels may serve as an independent risk factor for osteoporosis-related fractures. Taken together, S1P signaling is a potential therapeutic target and may serve as a novel biomarker in patients with systemic bone disease.
Collapse
Affiliation(s)
- Justus M Grewe
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Clinic and Polyclinic for Vascular Medicine, University Heart Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paul-Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
49
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
50
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|