1
|
Guo Y, Zhang J, Chai R, Yang Y, Tian K, Shi G, Zhang L. Cerebral schistosomiasis in a 3-year-old girl due to Schistosoma japonicum: a case report. Front Immunol 2024; 15:1502627. [PMID: 39697332 PMCID: PMC11652511 DOI: 10.3389/fimmu.2024.1502627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Cerebral schistosomiasis is a rare but severe manifestation of Schistosoma japonicum infection, often leading to significant neurological impairment. This case report details the clinical presentation, diagnostic challenges, and treatment of a 3-year-old girl with cerebral schistosomiasis in Sichuan, China. Case description A 3-year-old girl from a rural area in Sichuan, China, presented with a 3-month history of unstable walking, left facial paralysis, drowsiness, and intermittent fever. Brain MRI revealed giant polycystic lesions in the right temporal, parietal, and occipital lobes, suggestive of an abscess with ependymitis. Despite no history of travel to endemic areas or known freshwater exposure, the patient was diagnosed with cerebral schistosomiasis due to Schistosoma japonicum based on histological examination and metagenomic next-generation sequencing (mNGS) of brain tissue obtained through surgery. The patient underwent surgical resection of the lesions and received two courses of praziquantel combined with corticosteroids and anticonvulsants. Despite residual left-sided hemiplegia, her cognitive function remained comparable to that of her peers, and no recurrence of the disease was observed over three years of follow-up. Conclusion This case underscores the diagnostic challenges of cerebral schistosomiasis, particularly in non-endemic areas or in the absence of a clear history of freshwater exposure. Early surgical intervention combined with praziquantel treatment can lead to favorable outcomes, even in severe cases with extensive brain involvement.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanlin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibing Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guangzhi Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Abaver DT. A Retrospective Study of Urinary Schistosomiasis in the Eastern Cape Province, South Africa. Trop Med Infect Dis 2024; 9:293. [PMID: 39728820 DOI: 10.3390/tropicalmed9120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Schistosomiasis is caused by infection with trematode flukes of the genus Schistosoma. More than 700 million people worldwide are estimated to be susceptible to infection. In sub-Saharan Africa, schistosomiasis is the second most widespread neglected tropical disease after malaria. This retrospective investigation evaluated the incidence and impacts of schistosomiasis on communities across three major districts of the Eastern Cape province in South Africa using a cross-sectional retrospective observational analysis of secondary data from patients with microscopically confirmed schistosomiasis between 2019 and 2020. This study focused upon both rural and semi-urban areas, including Bizana, Butterworth, Centane, Elliotdale, Flagstaff, Idutywa, Lusikisiki, Libode, Mqanduli, Port St. Johns, Willowvale, and Mthatha. Data were obtained from three districts-Alfred Nzo, Amatole, and OR Tambo-covering both rural and semi-urban regions. This study included patients of all ages who submitted urine samples for schistosomiasis testing in the specified districts. A simple random sampling method was used to select 337 clinical records from the National Health Laboratory Service (NHLS) of Mthatha. Hospital records from the NHLS Microbiology Department of Mthatha were analyzed. St Barnabas Laboratory had the highest frequency of cases (34.1%), followed by Greenville Depot (17.8%) and Willowvale Laboratory (11.3%). Most cases were in the 10-19 age group (63.4%), followed by those under 10 years of age (24.9%). Male patients constituted 76.4% of the cases, while female patients accounted for 23.6%. Viable ova were observed in 98.2% of the samples. This study highlights a significant prevalence of schistosomiasis in the Eastern Cape province, with a higher incidence in rural areas and among males aged 10-19. These findings underscore the need for targeted public health interventions and continuous monitoring to control and prevent schistosomiasis in this region.
Collapse
Affiliation(s)
- Dominic Targema Abaver
- HERENDA Program, New Medical School, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5100, Eastern Cape, South Africa
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, New Medical School, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5100, Eastern Cape, South Africa
| |
Collapse
|
3
|
Thakker C, Warrell C, Barrett J, Booth HL, Chiodini PL, Defres S, Falconer J, Jacobs N, Jones J, Lambert J, Leong C, McBride A, Moore E, Moshiri T, Nabarro LE, O'Hara G, Stone N, van Halsema C, Checkley AM. UK guidelines for the investigation and management of eosinophilia in returning travellers and migrants. J Infect 2024:106328. [PMID: 39537036 DOI: 10.1016/j.jinf.2024.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Eosinophilia is a common finding in returning travellers, migrants and other travelling groups. In this setting it often indicates an underlying helminth infection. Infections associated with eosinophilia are frequently either asymptomatic or associated with non-specific symptoms but some can cause severe disease. Here the British Infection Association guidelines group has comprehensively reviewed and updated the UK recommendations for the investigation and management of eosinophilia in returning travellers, migrants and other relevant groups, first published in 2010.1 Literature reviews have been undertaken to update the evidence on the prevalence and causes of eosinophilia in these groups and on the treatment of relevant pathogens and clinical conditions. Diagnostic tests available to UK-based clinicians are summarised. Changes made to the updated guidelines include in sections on the investigation and empirical treatment of asymptomatic eosinophilia and on the treatment of trichuriasis, lymphatic filariasis, onchocerciasis, hookworm, fascioliasis, taeniasis. Pathogens which are rarely encountered in UK practice have been removed from the guidelines and others added, including an expanded section on fungal infection. A section on off-license and rarely used drugs has been included.
Collapse
Affiliation(s)
- Clare Thakker
- Hospital for Tropical Diseases, Capper Street, London, WC1E 6JB, UK; University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Warrell
- Hospital for Tropical Diseases, Capper Street, London, WC1E 6JB, UK; Rare and Imported Pathogens Laboratory, UKHSA, Porton Down, SP4 0JG, UK; London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jessica Barrett
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | - Helen L Booth
- University College London Hospitals NHS Trust, 235 Euston Road, London NW1 2BU, UK
| | - Peter L Chiodini
- Hospital for Tropical Diseases, Capper Street, London, WC1E 6JB, UK; London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sylviane Defres
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Liverpool University Hospitals NHS Foundation Trust, Mount Vernon Street, Liverpool, L7 8XP, UK; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jane Falconer
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nathan Jacobs
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester University NHS Foundation Trust, M8 5RB, UK
| | - Jayne Jones
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jonathan Lambert
- University College London Hospitals NHS Trust, 235 Euston Road, London NW1 2BU, UK; UCL Cancer Institute, 72 Huntley St, London, WC1E 6DD, UK
| | - Clare Leong
- Cambridge University Hospitals, Addenbrookes Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Angela McBride
- Kings College Hospital, Denmark Hill, London, SE5 9RS, JK; University of Oxford, Oxford, OX1 2JD, UK
| | - Elinor Moore
- Cambridge University Hospitals, Addenbrookes Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Tara Moshiri
- Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Laura E Nabarro
- Hospital for Tropical Diseases, Capper Street, London, WC1E 6JB, UK
| | | | - Neil Stone
- University College London Hospitals NHS Trust, 235 Euston Road, London NW1 2BU, UK
| | - Clare van Halsema
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester University NHS Foundation Trust, M8 5RB, UK
| | - Anna M Checkley
- Hospital for Tropical Diseases, Capper Street, London, WC1E 6JB, UK; London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
4
|
Cesar-Rodo E, Dupouy B, Häberli C, Strub JM, Williams DL, Mäser P, Rottmann M, Keiser J, Lanfranchi DA, Davioud-Charvet E. Regioselective Synthesis of Potential Non-Quinonoid Prodrugs of Plasmodione: Antiparasitic Properties Against Two Hemoglobin-Feeding Parasites and Drug Metabolism Studies. Molecules 2024; 29:5268. [PMID: 39598657 PMCID: PMC11596610 DOI: 10.3390/molecules29225268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Ψ-1,4-naphthoquinones (Ψ-NQ) are non-quinoid compounds in which aromaticity-found in 1,4-naphthoquinones-is broken by the introduction of an angular methyl at C-4a or -8a. This series was designed to act as prodrugs of 1,4-naphthoquinones in an oxidative environment. Furthermore, from a medicinal chemistry point of view, the loss of planarity of the scaffold might lead to an improved solubility and circumvent the bad reputation of quinones in the pharmaceutical industry. In this work, we illustrated the concept by the synthesis of Ψ -plasmodione regioisomers as prodrugs of the antimalarial plasmodione. The presence of a chiral center introduces a new degree of freedom to be controlled by enantioselectivity and regioselectivity of the cycloaddition in the Diels-Alder reaction. The first strategy that was followed was based on the use of a chiral enantiopure sulfoxide to govern the stereoselective formation of (+)Ψ-NQ or (-)Ψ-NQ, depending on the chirality of the sulfoxide (R or S). New sulfinylquinones were synthesized but were found to be ineffective in undergoing cycloaddition with different dienes under a wide range of conditions (thermal, Lewis acid). The second strategy was based on the use of boronic acid-substituted benzoquinones as auxiliaries to control the regioselectivity. Using this methodology to prepare the (±)Ψ-NQ racemates, promising results (very fast cycloaddition time: ~2 h) were obtained with boronic acid-based quinones 25 and 27 in the presence of 1-methoxy-1,3-butadiene, to generate the 4a- and the 8a-Ψ-plasmodione regioisomers 1 and 2 (synthesized in six steps with a total yield of 10.5% and 4.1%, respectively. As the expected prodrug effect can only be revealed if the molecule undergoes an oxidation of the angular methyl, e.g., in blood-feeding parasites that digest hemoglobin from the host, the antimalarial and the antischistosomal properties of both (±)Ψ-NQ regioisomers were determined in drug assays with Plasmodium falciparum and Schistosoma mansoni. Metabolic studies under quasi-physiological conditions and LC-MS analyses were undertaken to reveal the generation of plasmodione from both the 4a- and the 8a-Ψ-plasmodione regioisomers.
Collapse
Affiliation(s)
- Elena Cesar-Rodo
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| | - Baptiste Dupouy
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC UMR 7178 CNRS, Université de Strasbourg, F-67087 Strasbourg, France
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA;
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland (P.M.); (M.R.); (J.K.)
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Don Antoine Lanfranchi
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, Rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
5
|
Yankey KP, Awoonor-William R, Owusu DN, Sackeyfio A, Nyarko V, Gross-Fenandez L, Addai F, Wulff I, Boachie-Adjei O. Neuroschistosomiasis: A Case Report and Review of Literature. JOURNAL OF THE WEST AFRICAN COLLEGE OF SURGEONS 2024; 14:450-454. [PMID: 39309391 PMCID: PMC11412587 DOI: 10.4103/jwas.jwas_174_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 09/25/2024]
Abstract
Spinal cord involvement is a rare complication of the schistosomiasis manifesting as myeloradiculopathy, medullary or conus-cauda equina syndrome which can lead to potentially serious long-term disability. Computed tomography and magnetic resonance imaging coupled with biochemical parameters have become the mainstay of diagnosis. Biopsy which is the gold standard of diagnosis demonstrating the organism is usually reserved for cases of diagnostic challenge. We report a rare case of upper thoracic spinal cord schistosomiasis diagnosed by biopsy in an 18-year-old male migrant presenting to a spine and orthopaedic centre in Ghana with complaints of upper back pain and associated myeloradiculopathy symptoms. Initial suspicion of intramedullary cord tumour was made based on magnetic resonance imaging findings warranting biopsy which revealed schistosoma spp. He was treated with anthelminthics and corticosteroids with a resolution of symptoms.
Collapse
Affiliation(s)
- Kwadwo Poku Yankey
- FOCOS Orthopaedic Hospital, Department of Neurosurgery Research Accra, Ghana
| | | | | | - Arthur Sackeyfio
- FOCOS Orthopaedic Hospital, Department of Neurosurgery Research Accra, Ghana
| | | | | | - Francis Addai
- FOCOS Orthopaedic Hospital, Department of Neurosurgery Research Accra, Ghana
| | - Irene Wulff
- FOCOS Orthopaedic Hospital, Department of Neurosurgery Research Accra, Ghana
| | | | | |
Collapse
|
6
|
Itoh K, Nakahara H, Takashino A, Hara A, Katsuno A, Abe Y, Mizuguchi T, Karaki F, Hirayama S, Nagai K, Seki R, Sato N, Okuyama K, Hashimoto M, Tokunaga K, Ishida H, Mikami F, Kwofie KD, Kawada H, Lin B, Nunomura K, Kanai T, Hatta T, Tsuji N, Haruta J, Fujii H. Anti-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis. RSC Med Chem 2024; 15:d4md00599f. [PMID: 39399310 PMCID: PMC11467761 DOI: 10.1039/d4md00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the anti-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of anti-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with N,N,N',N'-tetraalkyldiaminomethane in the presence of an IrIII complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent anti-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.
Collapse
Affiliation(s)
- Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Hiroki Nakahara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Atsushi Takashino
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Aya Hara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Akiho Katsuno
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Abe
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Reiko Seki
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Noriko Sato
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| | - Kazuki Okuyama
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Masashi Hashimoto
- Department of Material Science, Graduate School of Science, Josai University 1-1 Keyakidai Sakado Saitama 350-0295 Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Center for Promotion of Higher Education, Kogakuin University 2665-1 Nakano-machi Hachioji Tokyo 192-0015 Japan
| | - Hitoshi Ishida
- Graduate School of Science and Engineering, Department of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Kofi Dadzie Kwofie
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Hayato Kawada
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Bangzhong Lin
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Kazuto Nunomura
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Toshio Kanai
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine 1-15-1 Kitazato, Minami-ku Sagamihara Kanagawa 252-0374 Japan
| | - Junichi Haruta
- Drug Innovation Center Lead Exploration Unit, Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University 5-9-1 Shirokane Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
7
|
Feakins RM. Inflammatory disorders of the large intestine. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:709-857. [DOI: 10.1002/9781119423195.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Wang XY, Li Q, Li YL, Guo SY, Li SZ, Zhou XN, Guo JG, Bergquist R, Juma S, Zhang JF, Yang K, Xu J. Prevalence and correlations of schistosomiasis mansoni and schistosomiasis haematobium among humans and intermediate snail hosts: a systematic review and meta-analysis. Infect Dis Poverty 2024; 13:63. [PMID: 39218903 PMCID: PMC11367875 DOI: 10.1186/s40249-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The control of schistosomiasis is particularly difficult in sub-Saharan Africa, which currently harbours 95% of this disease. The target population for preventive chemotherapy (PC) is expanded to all age group at risk of infection, thus increasing the demands of praziquantel (PZQ) tablets according to the new released guideline by World Health Organization. Due to the gap between available PZQ for PC and requirements, alternative approaches to assess endemicity of schistosomiasis in a community, are urgently needed for more quick and precise methods. We aimed to find out to which degree the infection status of snails can be used to guide chemotherapy against schistosomiasis. METHODS We searched literature published from January 1991 to December 2022, that reported on the prevalence rates of Schistosoma mansoni, S. haematobium in the intermediate snails Biomphalaria spp. and Bulinus spp., respectively, and in humans. A random effect model for meta-analyses was used to calculate the pooled prevalence estimate (PPE), with heterogeneity assessed using I-squared statistic (I2), with correlation and regression analysis for the exploration of the relationship between human S. mansoni and S. haematobium infections and that in their specific intermediate hosts. RESULTS Forty-seven publications comprising 59 field investigations were included. The pooled PPE of schistosomiasis, schistosomiasis mansoni and schistosomiasis haematobium in humans were 27.5% [95% confidence interval (CI): 24.0-31.1%], 25.6% (95% CI: 19.9-31.3%), and 28.8% (95% CI: 23.4-34.3%), respectively. The snails showed an overall infection rate of 8.6% (95% CI: 7.7-9.4%), with 12.1% (95% CI: 9.9-14.2%) in the Biomphalaria spp. snails and 6.9% (95% CI: 5.7-8.1%) in the Bulinus spp. snails. The correlation coefficient was 0.3 (95% CI: 0.01-0.5%, P < 0.05) indicating that the two variables, i.e. all intermediate host snails on the one hand and the human host on the other, were positively correlated. CONCLUSIONS The prevalence rate of S. mansoni and S. haematobium is still high in endemic areas. Given the significant, positive correlation between the prevalence of schistosomes in humans and the intermediate snail hosts, more attention should be paid to programme integration of snail surveillance in future.
Collapse
Affiliation(s)
- Xin-Yao Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, 214064, Jiangsu, China
- Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, 214064, Jiangsu, China
| | - Qin Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yin-Long Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China
| | - Su-Ying Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shi-Zhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Xiao-Nong Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Jia-Gang Guo
- WHO Department of Control of Neglected Tropical Diseases, Geneva, Switzerland
| | - Robert Bergquist
- Geospatial Health, Ingerod, formerly UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Brastad, Sweden
| | - Saleh Juma
- Ministry of Health of Zanzibar, P.O. Box 236, Zanzibar, United Republic of Tanzania
| | - Jian-Feng Zhang
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, 214064, Jiangsu, China
- Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, 214064, Jiangsu, China
| | - Kun Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, 214064, Jiangsu, China
- Jiangsu Provincial Key Laboratory on the Molecular Biology of Parasites, Wuxi, 214064, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, No. 207 Ruijin 2nd Road, Shanghai, 200025, China.
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China.
| |
Collapse
|
9
|
Sassi S, Touarsa F, Jaradat T, Arkha Y, El Ouazzani H, Cherradi N. Intramedullary spinal schistosomiasis: A case report and review of the literature. Int J Surg Case Rep 2024; 122:110103. [PMID: 39094321 PMCID: PMC11342890 DOI: 10.1016/j.ijscr.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Spinal cord schistosomiasis is an extremely rare entity presenting with a wide range of neurological symptoms. The early diagnosis and treatment can improve neurological outcome. Histopathological examination is the gold standard for establishing the diagnosis of spinal schistosomiasis, revealing schistosoma eggs. CASE REPORT We report a case of a 13-year-old male, from Mauritania, with a history of drinking unsafe water, presenting with an acute urinary retention and gait disturbances evolving for 1 month. His clinical examination found an incomplete conus medullary syndrome made up of urinary retention, lively patellar reflexes on the right, ataxia when walking on the same side and indifferent cutaneous planter reflex. The magnetic resonance imaging (MRI) on dorsal spine revealed an enhancing mass involving the conus medullaris in the L1-L2 region suggestive of an arteriovenous malformation or a cavernoma. The resection tissue specimens for diagnosis were fixed with 10 % buffered formalin. The slides were stained with haematoxylin-eosin staining for light microscopy. The diagnosis of schistosomiasis spinal cord was retained. The child has been treated with oral praziquantel 25 mg/kg. DISCUSSION Diagnosis of schistosomiasis is based on a combination of clinical evaluation, imaging studies, and laboratory tests. However, definitive diagnosis typically requires histopathological examination of spinal cord lesions obtained through biopsy. Differential diagnosis is broad, including an acute vascular event and/or tumor, especially in children from endemic areas for schistosomiasis. CONCLUSION Schistosomiasis infection should be suspected when encountering medullary lesion associated to peripheral hypereosinophilia. Surgical excision combined with praziquantel may help improve neurological deficits.
Collapse
Affiliation(s)
- S Sassi
- Department of Pathology, Specialties Hospital, Ibn Sina university Hospital, Rabat 12000, Morocco; Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - F Touarsa
- Department of Radiology, Specialties Hospital, Ibn Sina university Hospital, Rabat 12000, Morocco; Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - T Jaradat
- Department of Neurosurgery, Specialties Hospital, Ibn Sina university Hospital, Rabat 12000, Morocco; Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Y Arkha
- Department of Neurosurgery, Specialties Hospital, Ibn Sina university Hospital, Rabat 12000, Morocco; Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - H El Ouazzani
- Department of Pathology, Specialties Hospital, Ibn Sina university Hospital, Rabat 12000, Morocco; Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - N Cherradi
- Department of Pathology, Specialties Hospital, Ibn Sina university Hospital, Rabat 12000, Morocco; Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
10
|
Li Q, Wang J, Lv J, Liu D, Xiao S, Mo J, Lu Z, Qiu R, Li C, Tang L, He S, Tang Z, Cheng Q, Zhan T. Total flavonoids of litchi Seed alleviates schistosomiasis liver fibrosis in mice by suppressing hepatic stellate cells activation and modulating the gut microbiomes. Biomed Pharmacother 2024; 178:117240. [PMID: 39094546 DOI: 10.1016/j.biopha.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-β1 (TGF-β1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jilong Wang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Lv
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengyu Liu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Suyu Xiao
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingquan Mo
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zuochao Lu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Qiu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiqi Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Qiuchen Cheng
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China; Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Mazigo HD, Kayange N, Ambrose EE, Zinga MM, Mugassa S, Ruganuza D, Mwingira UJ, Uisso C, Mutapi F. Efficacy of praziquantel drug against Schistosoma haematobium and performance of urine reagent strips among pre-and-school aged children during the high transmission season in North-Western Tanzania. Acta Trop 2024; 256:107232. [PMID: 38729329 DOI: 10.1016/j.actatropica.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
The World Health Organization calls for schistosomiasis endemic countries to regularly monitor the efficacy of Praziquantel (PZQ) drug, the only antischistosomal drug used for four decades in Tanzania. In response to that call, the current study investigated the efficacy of single dose of PZQ against Schistosoma haematobium during the high transmission season and further assessed, the sensitivity and specificity of urine reagent strips before and after treatment. The study recruited a total of 2,498 -children aged (4 -17 years old) who provided a single urine sample that was visually examined for macro-haematuria, then using urine dipstick and urine filtration technique for microhaematuria and the presence of S. haematobium eggs. The baseline prevalence of S. haematobium eggs positive based on urine filtration test was 29.2 % (95 %CI:27.5-31.0) and that of microhaematuria was 43.1 % (95 %CI:41.1-45.0). Of the infected participants, 40.9 % (95 %CI:37.4-44.6) had a heavy intensity of infection and the geometrical mean intensity (GMI) of infection was 33.7 eggs/10mls of urine. A single dose of PZQ reduced the prevalence of infection to 16.2 %, the GMI of infection to 18.8eggs/10mls of urine and that of microhaematuria to 27.9 %. Cure rate and egg reduction rates (ERR) were 83.8 % and 44.3 % respectively. At baseline, the sensitivity and specificity of the urine reagent strips were 59.7 % and 93.8 %, whereas at post-treatment they were 16.7 % and 93.6 %. When PZQ drug is administered during the high transmission season, its efficacy in term of ERR is poor. The urine reagent strips had low sensitivity but high specificity at pre-and-post PZQ treatment.
Collapse
Affiliation(s)
- Humphrey D Mazigo
- Tackling Infections to Benefit Africa Partnership and School of Public Health, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania; Tackling Infections to Benefit Africa Partnership, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom.
| | - Neema Kayange
- Tackling Infections to Benefit Africa Partnership and Department of Paediatrics and Child Health, Bugando Medical Centre, P.O. Box 1370, Mwanza, Tanzania
| | - Emmanuela E Ambrose
- Tackling Infections to Benefit Africa Partnership and Department of Paediatrics and Child Health, Bugando Medical Centre, P.O. Box 1370, Mwanza, Tanzania
| | - Maria M Zinga
- Tackling Infections to Benefit Africa Partnership and School of Public Health, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Stella Mugassa
- Tackling Infections to Benefit Africa Partnership and School of Public Health, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Deodatus Ruganuza
- Tackling Infections to Benefit Africa Partnership and School of Public Health, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Upendo J Mwingira
- National Neglected Tropical Diseases Control Programme, National Institute for Medical Research, P.O. Box 9653, 3 Barack Obama Drive, 11101 Dar-Es-Salaam, Tanzania
| | - Cecilia Uisso
- National Neglected Tropical Diseases Control Programme, National Institute for Medical Research, P.O. Box 9653, 3 Barack Obama Drive, 11101 Dar-Es-Salaam, Tanzania
| | - Francesca Mutapi
- Tackling Infections to Benefit Africa Partnership, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom; Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Yamey G, McDade KK, Anderson RM, Bartsch SM, Bottazzi ME, Diemert D, Hotez PJ, Lee BY, McManus D, Molehin AJ, Roestenberg M, Rollinson D, Siddiqui AA, Tendler M, Webster JP, You H, Zellweger RM, Marshall C. Vaccine value profile for schistosomiasis. Vaccine 2024:126020. [PMID: 39592316 DOI: 10.1016/j.vaccine.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 11/28/2024]
Abstract
Schistosomiasis is caused by parasitic flatworms (Schistosoma). The disease in humans can be caused by seven different species of Schistosoma: S. mansoni, S. japonicum, S. haematobium, S. malayensis, S. mekongi, S. guineensis and S. intercalatum, as well as by hybrids between species, including livestock schistosome species. People are infected when exposed to infested water and the parasite larvae penetrate the skin. Poor and rural communities are typically the most affected, and the general population who lives in affected areas and is exposed to contaminated water is at risk. Areas with poor access to safe water and adequate sanitation are also at heightened risk. About 236.6 million people required treatment for schistosomiasis in 2019-mostly people living in poor, rural communities, especially fishing and agricultural communities. This 'Vaccine Value Profile' (VVP) for schistosomiasis is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic, and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the schistosomiasis VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Gavin Yamey
- Duke Global Health Institute, Duke University, Durham, NC, United States.
| | | | - Roy M Anderson
- Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| | - Sarah M Bartsch
- Public Health Informatics, Computational, and Operations Research and Center for Advanced Technology and Communication in Health, City University of New York Graduate School of Public Health and Health Policy, New York City, NY, United States.
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.
| | - David Diemert
- School of Medicine and Health Sciences, George Washington University, Washington, D.C., United States.
| | - Peter J Hotez
- National School of Tropical Medicine, Baylor College of Medicine, Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.
| | - Bruce Y Lee
- Public Health Informatics, Computational, and Operations Research and Center for Advanced Technology and Communication in Health, City University of New York Graduate School of Public Health and Health Policy, New York City, NY, United States.
| | - Donald McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Adebayo J Molehin
- Department of Microbiology & Immunology, Midwestern University, Glendale, AZ, United States.
| | | | | | - Afzal A Siddiqui
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - Miriam Tendler
- Laboratory of Research and Development of Anti-Helminth Vaccines, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil.
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, United Kingdom.
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
13
|
Kura K, Mutono N, Basáñez MG, Collyer BS, Coffeng LE, Thumbi SM, Anderson RM. How Does Treatment Coverage and Proportion Never Treated Influence the Success of Schistosoma mansoni Elimination as a Public Health Problem by 2030? Clin Infect Dis 2024; 78:S126-S130. [PMID: 38662698 PMCID: PMC11045018 DOI: 10.1093/cid/ciae074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The 2030 target for schistosomiasis is elimination as a public health problem (EPHP), achieved when the prevalence of heavy-intensity infection among school-aged children (SAC) reduces to <1%. To achieve this, the new World Health Organization guidelines recommend a broader target of population to include pre-SAC and adults. However, the probability of achieving EPHP should be expected to depend on patterns in repeated uptake of mass drug administration by individuals. METHODS We employed 2 individual-based stochastic models to evaluate the impact of school-based and community-wide treatment and calculated the number of rounds required to achieve EPHP for Schistosoma mansoni by considering various levels of the population never treated (NT). We also considered 2 age-intensity profiles, corresponding to a low and high burden of infection in adults. RESULTS The number of rounds needed to achieve this target depends on the baseline prevalence and the coverage used. For low- and moderate-transmission areas, EPHP can be achieved within 7 years if NT ≤10% and NT <5%, respectively. In high-transmission areas, community-wide treatment with NT <1% is required to achieve EPHP. CONCLUSIONS The higher the intensity of transmission, and the lower the treatment coverage, the lower the acceptable value of NT becomes. Using more efficacious treatment regimens would permit NT values to be marginally higher. A balance between target treatment coverage and NT values may be an adequate treatment strategy depending on the epidemiological setting, but striving to increase coverage and/or minimize NT can shorten program duration.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, United Kingdom
| | - Nyamai Mutono
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, United Kingdom
| | - Benjamin S Collyer
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, United Kingdom
| | - Luc E Coffeng
- Department of Public Health, Erasmus University Medical Center, University Medical Center Rotterdam, The Netherlands
| | - S M Thumbi
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Roy M Anderson
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London
- Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, United Kingdom
| |
Collapse
|
14
|
Alemu G, Nibret E, Amor A, Munshea A, Anegagrie M. Knowledge, attitude and practice towards intestinal schistosomiasis among school-aged children and adults in Amhara Regional State, northwest Ethiopia. A cross-sectional study. Trop Med Health 2024; 52:23. [PMID: 38462634 PMCID: PMC10926617 DOI: 10.1186/s41182-024-00584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Schistosoma mansoni causes intestinal schistosomiasis (SCH) in all regions of Ethiopia. Despite many years of mass treatment, the prevalence has not dropped significantly. The reduction of SCH transmission demands the integration of deworming with safe water, sanitation, and hygiene (WASH) activities. Adequate knowledge and a positive attitude towards SCH are critical to practicing those interventions. However, data on the knowledge, attitude, and practice (KAP) level in school and community settings is limited in Ethiopia. METHODS School and community-based cross-sectional studies were conducted from February to June 2023 among 634 school-aged children (SAC) and 558 adults. A pre-tested questionnaire was used to collect socio-demographic and KAP data. Records were entered and analyzed using SPSS software version 21. Correct responses for each of the KAP questions were scored as one, while incorrect or 'I don't know' responses were scored as zero. Good knowledge, a positive attitude and good practice were declared if percentage scores were ≥ 80%, ≥ 90% and ≥ 75%, respectively. RESULTS Only 229 (19.2%) respondents, comprising 91 (14.4%) SAC and 138 (24.7%) adults, had ever heard of SCH. Adults, males, and urban residents had higher awareness level compared to their respective counterparts (p < 0.05). Only 28.4% of aware respondents knew that swimming or bathing in freshwater is a risk factor for schistosoma infection; 10.9% knew the etiologic agent; and 14.4% mentioned at least one sign and symptom associated with SCH. The majority (97.8%) of the respondents were willing to take therapeutic drugs, but only 37.6% believed that SCH is a serious disease. Regarding risky practices, 89.5% practiced swimming or bathing in freshwater, and 25.3% had no access to piped water. Among the aware respondents, only 18 (7.9%) had good knowledge, while 30 (13.1%) had a positive attitude towards SCH. Ninety-nine (43.2%) respondents had good Schistosoma infection prevention practices. CONCLUSIONS The knowledge, attitude, and preventive practice level towards schistosomiasis are low in the study area. Therefore, strengthening school and community-based health education, along with mass drug administration (MDA), WASH, and a vector control program, is recommended for preventing SCH.
Collapse
Affiliation(s)
- Getaneh Alemu
- Department of Medical Laboratory Science, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Endalkachew Nibret
- Biology Department, Science College, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology (IoB), Bahir Dar University, Bahir Dar, Ethiopia
| | - Arancha Amor
- Mundo Sano Foundation and Institute of Health Carlos III, Madrid, Spain
| | - Abaineh Munshea
- Biology Department, Science College, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology (IoB), Bahir Dar University, Bahir Dar, Ethiopia
| | - Melaku Anegagrie
- Mundo Sano Foundation and Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Qi YX, Huang MR, Sun HY, Wu XY, Liu ZT, Lu DB. Prevalence of depressive symptoms in patients with advanced schistosomiasis in China: A systematic review and meta-analysis. PLoS Negl Trop Dis 2024; 18:e0012003. [PMID: 38452104 PMCID: PMC10950241 DOI: 10.1371/journal.pntd.0012003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/19/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Advanced schistosomiasis is the most serious outcome of infection and has a negative impact on both physical fitness and mental health of patients, the latter of which has long been overlooked. Therefore, we performed this systematic review and meta-analysis to estimate the overall prevalence of depressive symptoms, one of the most common mental problems, in patients with advanced schistosomiasis in China. METHODS Six electronic databases were searched for studies reporting the prevalence of depressive symptoms in the targeted patients. Assessments were pooled using a fixed- or random-effects model based on heterogeneity test. Subgroup analyses were further performed and differences between/among groups were examined using the chi-squared test. The protocol had previously been registered in PROSPERO (CRD42023406708). RESULTS A total of 11 studies with 1,673 participants were included. The pooled prevalence of depressive symptoms in advanced schistosomiasis in China was 62.01% (95% CI: 51.30% - 72.72%), with a significant heterogeneity among studies. Depressive symptoms were more prevalent in patients with complications and more than half of the patients suffered a mild- or moderate-level of depression. No publication bias was found, and sensitivity analysis showed a stable result. CONCLUSIONS The overall prevalence of depressive symptoms in advanced schistosomiasis in China was high enough to warrant psychotherapeutic interventions, especially for patients with complications. This would greatly prevent or/and reduce depression and improve their quality of life.
Collapse
Affiliation(s)
- Yu-Xin Qi
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Meng-Rui Huang
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Hui-Ying Sun
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiao-Yan Wu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ze-Ting Liu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Da-Bing Lu
- Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Kołodziej P, Szostakowska B, Lass A, Sulima M, Sikorska K, Kocki J, Krupski W, Starownik D, Bojar P, Szumiło J, Kasztelan-Szczerbińska B, Cichoż-Lach H, Bogucki J, Szymańska M, Fota-Markowska H, Bogucka-Kocka A. Chronic intestinal schistosomiasis caused by co-infection with Schistosoma intercalatum and Schistosoma mansoni. THE LANCET. INFECTIOUS DISEASES 2024; 24:e196-e205. [PMID: 37783223 DOI: 10.1016/s1473-3099(23)00486-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023]
Abstract
The Grand Round concerns a 24-year-old man from Zimbabwe who was studying and living in Poland. The patient had been complaining of abdominal pain, fatigue, alternating diarrhoea and constipation, and presence of blood in his stool for 3 years. The patient had the following diagnostic tests: colonoscopy, CT scan, histopathology, and parasitological and molecular tests. Results of the examinations showed that the cause of the patient's complaints was chronic intestinal schistosomiasis due to the co-infection with Schistosoma intercalatum and Schistosoma mansoni. The patient had two cycles of praziquantel therapy (Biltricide) and responded well to the treatment. In the Grand Round, we describe full diagnostics as well as clinical and therapeutic management in the patient with S intercalatum and S mansoni co-infection. This case allows us to draw attention to cases of forgotten chronic tropical diseases (including rare ones) in patients from regions with a high endemic index staying in non-endemic regions of the world for a long time. Co-infection with S intercalatum and S mansoni should be considered as a very rare clinical case.
Collapse
Affiliation(s)
- Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland.
| | - Beata Szostakowska
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Anna Lass
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Sulima
- Division of Tropical and Parasitic Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Sikorska
- Division of Tropical and Parasitic Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Witold Krupski
- Department of Medical Radiology, Medical University of Lublin, Lublin, Poland
| | - Dorota Starownik
- Independent Public Clinical Hospital No. 4 in Lublin, Medical University of Lublin, Lublin, Poland
| | - Paweł Bojar
- Department of Pathomorphology, Beskid Oncology Centre-John Paul II Memorial City Hospital in Bielsko-Biala, Bielsko-Biała, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | | | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Magdalena Szymańska
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
17
|
Lopez S, Majid S, Syed R, Rychtar J, Taylor D. Mathematical model of voluntary vaccination against schistosomiasis. PeerJ 2024; 12:e16869. [PMID: 39670094 PMCID: PMC11636677 DOI: 10.7717/peerj.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 12/14/2024] Open
Abstract
Human schistosomiasis is a chronic and debilitating neglected tropical disease caused by parasitic worms of the genus Schistosoma. It is endemic in many countries in sub-Saharan Africa. Although there is currently no vaccine available, vaccines are in development. In this paper, we extend a simple compartmental model of schistosomiasis transmission by incorporating the vaccination option. Unlike previous models of schistosomiasis transmission that focus on control and treatment at the population level, our model focuses on incorporating human behavior and voluntary individual vaccination. We identify vaccination rates needed to achieve herd immunity as well as optimal voluntary vaccination rates. We demonstrate that the prevalence remains too high (higher than 1%) unless the vaccination costs are sufficiently low. Thus, we can conclude that voluntary vaccination (with or without mass drug administration) may not be sufficient to eliminate schistosomiasis as a public health concern. The cost of the vaccine (relative to the cost of schistosomiasis infection) is the most important factor determining whether voluntary vaccination can yield elimination of schistosomiasis. When the cost is low, the optimal voluntary vaccination rate is high enough that the prevalence of schistosomiasis declines under 1%. Once the vaccine becomes available for public use, it will be crucial to ensure that the individuals have as cheap an access to the vaccine as possible.
Collapse
Affiliation(s)
- Santiago Lopez
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Samiya Majid
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rida Syed
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Jan Rychtar
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
18
|
Esteban JG, Muñoz-Antolí C, Toledo R, Ash LR. Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:541-582. [PMID: 39008275 DOI: 10.1007/978-3-031-60121-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes form a major group of human parasites, affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver and intestinal parasites. Traditionally, trematode infections have been diagnosed by parasitological methods based on the detection and the identification of eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated by migratory flows, international travel, international trade of foods and changes in alimentary habits. Although efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In the present chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze the most relevant characteristics used to identify eggs with a quick key for the identification of eggs.
Collapse
Affiliation(s)
- J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Lawrence R Ash
- Infectious & Tropical Diseases, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Jain S, Rana M. From the discovery of helminths to the discovery of their carcinogenic potential. Parasitol Res 2023; 123:47. [PMID: 38095695 DOI: 10.1007/s00436-023-08022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Cancer involves a major aberration in the normal behaviour of cells, making them divide continuously, which interferes with the normal physiology of the body. The link between helminths and their cancer-inducing potential has been proposed in the last century. The exact pathway is still not clear but chronic inflammation in response to the deposited eggs, immune response against soluble egg antigens, and co-infection with a third party (a bacteria, a virus, or infection leading to a change in microbiome) seems to be the reasons for cancer induction. This review looks into the historical outlook on helminths along with their epidemiology, morphology, and life cycle. It then focuses on providing correlations between helminth infection and molecular mechanism of carcinogenesis by elaborating upon epidemiological, clinical, and surgical studies. While the cancer-inducing potential has been convincingly established only for a few helminths and studies point out towards possible cancer-inducing ability of the rest of the helminths elucidated in this work, however, more insights into the immunobiology of helminths as well as infected patients are required to conclusively comment upon this ability of the latter.
Collapse
Affiliation(s)
- Sidhant Jain
- Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, Haryana, India.
| | - Meenakshi Rana
- Dyal Singh College, University of Delhi, Lodhi Road, Pragati Vihaar, New Delhi, India
| |
Collapse
|
20
|
Saidu U, Ibrahim MA, de Koning HP, McKerrow JH, Caffrey CR, Balogun EO. Human schistosomiasis in Nigeria: present status, diagnosis, chemotherapy, and herbal medicines. Parasitol Res 2023; 122:2751-2772. [PMID: 37851179 DOI: 10.1007/s00436-023-07993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Schistosomiasis is a neglected tropical disease caused by a parasitic, trematode blood fluke of the genus Schistosoma. With 20 million people infected, mostly due to Schistosoma haematobium, Nigeria has the highest burden of schistosomiasis in the world. We review the status of human schistosomiasis in Nigeria regarding its distribution, prevalence, diagnosis, prevention, orthodox and traditional treatments, as well as snail control strategies. Of the country's 36 states, the highest disease prevalence is found in Lagos State, but at a geo-political zonal level, the northwest is the most endemic. The predominantly used diagnostic techniques are based on microscopy. Other methods such as antibody-based serological assays and DNA detection methods are rarely employed. Possible biomarkers of disease have been identified in fecal and blood samples from patients. With respect to preventive chemotherapy, mass drug administration with praziquantel as well as individual studies with artemisinin or albendazole have been reported in 11 out of the 36 states with cure rates between 51.1 and 100%. Also, Nigerian medicinal plants have been traditionally used as anti-schistosomal agents or molluscicides, of which Tetrapleura tetraptera (Oshosho, aridan, Aidan fruit), Carica papaya (Gwanda, Ìbẹ́pẹ, Pawpaw), Borreria verticillata (Karya garma, Irawo-ile, African borreria), and Calliandra portoricensis (Tude, Oga, corpse awakener) are most common in the scientific literature. We conclude that the high endemicity of the disease in Nigeria is associated with the limited application of various diagnostic tools and preventive chemotherapy efforts as well as poor knowledge, attitudes, and practices (KAP). Nonetheless, the country could serve as a scientific base in the discovery of biomarkers, as well as novel plant-derived schistosomicides and molluscicides.
Collapse
Affiliation(s)
- Umar Saidu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Auwal Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA, 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA, 92093, USA
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA, 92093, USA.
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
21
|
Pan W, Guo J, Li J, Su J, Zhang X, Liu J, Xu C, Hou Y. Presence of schistosome eggs in lymph node predict unfavorable prognosis in schistosomal colorectal cancer. Eur J Cancer Prev 2023; 32:566-574. [PMID: 37200090 PMCID: PMC10538618 DOI: 10.1097/cej.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the prognostic significance of schistosome eggs' location in schistosomal colorectal cancer (SCRC). METHODS 172 cases of SCRC were retrospectively analyzed. Patient clinicopathological parameters and survival rates were analyzed. RESULTS There were 102 males and 70 females, the median age was 71 years (range, 44-91). All patients were followed, and the median time was 50.1 months (range, 1.0-79.7). There were 87 patients with PS1 (presence site 1, eggs deposited in the mucosa) and 85 patients with PS2 (presence site 2, eggs deposited in the muscularis propria or throughout the full thickness of the intestinal wall), 159 patients presented with eggs in cutting edge and 83 patients presented with eggs in lymph node (LN). Hepatic schistosomiasis was found in 27.3% of patients by imaging modalities and correlated to patients with PS2 ( P < 0.001) and LNs' eggs ( P < 0.001). Survival analyses showed that in stage III SCRC, eggs' presence in LN associated with worse DFS ( P = 0.004) or marginally worse OS ( P = 0.056), patients with PS2 had shorter OS ( P = 0.044). Multivariate analyses revealed hepatic schistosomiasis was an independent prognostic factor for DFS and OS in stage III SCRC ( P = 0.001, 0.002, respectively). In adjusted multivariate analysis, eggs' presence in LN was an independent prognostic factor for DFS in stage III SCRC ( P = 0.006). CONCLUSIONS In stage III SCRC, eggs' presence in LN could predict poor prognosis and hepatic schistosomiasis was an independently unfavorable prognosis factor.
Collapse
Affiliation(s)
- Weiyu Pan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jiaojiao Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jiali Li
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jia Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
22
|
Suwancharoen C, Phuangsri C, Siriwechviriya P, Bunsong T, Japa O. Diversity of trematode cercariae among naturally infected lymnaeid snails from Phayao, Thailand. Parasitol Res 2023; 122:2691-2708. [PMID: 37698606 DOI: 10.1007/s00436-023-07971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Lymnaeids are aquatic snails playing an important role in the transmission of many parasitic trematode species of veterinary and medical importance. In this study, we assessed the presence of cercarial flukes in naturally infected lymnaeid snails from Phayao province, Thailand, and determined the species diversity of both the intermediate snail hosts and parasite larvae. A total of 3,185 lymnaeid snails were collected from paddy fields at 31 sites in eight districts of Phayao province between October 2021 and December 2022. Larval fluke infection was assessed using the cercarial shedding method. The collected snails as well as emerging cercariae were identified at the species level via morphological and molecular methods. The sequences of snail internal transcribed spacer region 2 (ITS2) and cercarial 28S ribosomal RNA gene (28S rDNA) and cytochrome C oxidase1 (Cox1) were determined by PCR amplification and sequencing. Three species of lymnaeid snails were detected in this study, including Radix (Lymnaea) rubiginosa (Michelin, 1831), Radix (Lymnaea) swinhoei (Adams, 1866) and Austropeplea viridis (Quoy & Gaimard, 1832), of which R. rubiginosa was the most abundant, followed by A. viridis and R. swinhoei. The overall rate of trematode cercarial infection in the lymnaeid snails was 2.8% (90/3,185); the cercarial infection rate in R. rubiginosa and A. viridis was 3.5% (60/1,735) and 3.1% (30/981), respectively. No larval fluke infection was observed in the studied R. swinhoei (0/469). Nine morphotypes of cercariae were detected at 15 sites from four districts. The emerging cercariae were molecularly identified as Clinostomum sp., Aporocotylidae sp., Apharyngostrigea sp., Trichobilharzia sp., Apatemon sp., Pegosomum sp., Petasiger sp., Echinostoma revolutum and Plagiorchis sp. These findings emphasize the occurrence and diversity of trematode cercariae among naturally infected lymnaeid snails in Phayao province and could contribute to broadening our understanding of the host-parasite relationships between trematodes and their first intermediate hosts as well as developing effective interventions to control trematode parasitic diseases.
Collapse
Affiliation(s)
- Chittakun Suwancharoen
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
| | - Chorpaka Phuangsri
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
| | - Pannawich Siriwechviriya
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
| | - Thanakon Bunsong
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ornampai Japa
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand.
- Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand.
| |
Collapse
|
23
|
Comelli A, Genovese C, Gobbi F, Brindicci G, Capone S, Corpolongo A, Crosato V, Mangano VD, Marrone R, Merelli M, Prato M, Santoro CR, Scarso S, Vanino E, Marchese V, Antinori S, Mastroianni C, Raglio A, Bruschi F, Minervini A, Donà D, Garazzino S, Galli L, Lo Vecchio A, Galli A, Dragoni G, Cricelli C, Colacurci N, Ferrazzi E, Pieralli A, Montresor A, Richter J, Calleri G, Bartoloni A, Zammarchi L. Schistosomiasis in non-endemic areas: Italian consensus recommendations for screening, diagnosis and management by the Italian Society of Tropical Medicine and Global Health (SIMET), endorsed by the Committee for the Study of Parasitology of the Italian Association of Clinical Microbiologists (CoSP-AMCLI), the Italian Society of Parasitology (SoIPa), the Italian Society of Gastroenterology and Digestive Endoscopy (SIGE), the Italian Society of Gynaecology and Obstetrics (SIGO), the Italian Society of Colposcopy and Cervico-Vaginal Pathology (SICPCV), the Italian Society of General Medicine and Primary Care (SIMG), the Italian Society of Infectious and Tropical Diseases (SIMIT), the Italian Society of Pediatrics (SIP), the Italian Society of Paediatric Infectious Diseases (SITIP), the Italian Society of Urology (SIU). Infection 2023; 51:1249-1271. [PMID: 37420083 PMCID: PMC10545632 DOI: 10.1007/s15010-023-02050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/08/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Agnese Comelli
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Genovese
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- II Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
- University of Brescia, Brescia, Italy
| | - Gaetano Brindicci
- AOU Consorziale Policlinico di Bari, Infectious Diseases Unit, Bari, Italy
| | - Susanna Capone
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Angela Corpolongo
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' (IRCCS), Rome, Italy
| | - Verena Crosato
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Dianora Mangano
- Department of Translational Research, N.T.M.S, Università di Pisa, Pisa, Italy
- Programma Di Monitoraggio Delle Parassitosi e f.a.d, AOU Pisana, Pisa, Italy
| | - Rosalia Marrone
- National Institute for Health, Migration and Poverty, Rome, Italy
| | - Maria Merelli
- Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Marco Prato
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | | | - Salvatore Scarso
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisa Vanino
- Unit of Infectious Diseases, Ospedale "Santa Maria delle Croci", AUSL Romagna, Ravenna, Italy
| | - Valentina Marchese
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annibale Raglio
- Committee for the Study of Parasitology of the Italian Association of Clinical Microbiologists (CoSP-AMCLI), Milan, Italy
| | - Fabrizio Bruschi
- Department of Translational Research, N.T.M.S, Università di Pisa, Pisa, Italy
- Programma Di Monitoraggio Delle Parassitosi e f.a.d, AOU Pisana, Pisa, Italy
| | - Andrea Minervini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Urology, University of Florence, Florence, Italy
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padua, Padua, Italy
| | - Silvia Garazzino
- Paediatric Infectious Disease Unit, Regina Margherita Children's Hospital, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Galli
- Infectious Diseases Unit, Meyer Children's Hospital, IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Paediatric Infectious Disease Unit, University of Naples Federico II, Naples, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudio Cricelli
- Health Search-Istituto di Ricerca della SIMG (Italian Society of General Medicine and Primary Care), Florence, Italy
| | - Nicola Colacurci
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enrico Ferrazzi
- Department of Woman, New-Born and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Pieralli
- Ginecologia Chirurgica Oncologica, Careggi University and Hospital, Florence, Italy
| | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Joachim Richter
- Institute of International Health, Charité Universitätsmedizin, Corporate Member of Freie und Humboldt Universität Berlin and Berlin Institute of Health, Berlin, Germany
| | - Guido Calleri
- Amedeo Di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
24
|
Phillips AE, Ower AK, Mekete K, Liyew EF, Maddren R, Mengistu B, Anjulo U, Chernet M, Dunn JC, Mohammed H, Belay H, Gidey B, Tasew G, Tadesse G, Salasibew M, Tollera G, Anderson R. Baseline soil-transmitted helminth and schistosome infection in the Geshiyaro project, Ethiopia: A unique transmission interruption project using biometric fingerprinting for longitudinal individual analysis. PLoS Negl Trop Dis 2023; 17:e0011589. [PMID: 37851666 PMCID: PMC10615263 DOI: 10.1371/journal.pntd.0011589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND The Geshiyaro project aims to assess the feasibility of interrupting transmission of soil-transmitted helminths (STH) and schistosome (SCH) infection in the Wolaita zone of southern Ethiopia through high coverage community-wide mass drug administration (MDA), in combination with improved water, sanitation, and hygiene services and behaviour change communication delivered through the existing health care infrastructure. To accurately measure treatment coverage a population census was conducted enrolling individuals with biometric fingerprinting and barcoded ID cards. This paper details the baseline census and parasitology surveys conducted before the start of any interventions. METHODS The census was conducted in five of the 15 Wolaita districts between October 2018 and December 2019, enrolling all consenting participants from every household. Simultaneously, a cross-sectional parasitology survey was conducted in 130 out of 361 randomly selected communities from all 15 districts, with 100 individuals across all age groups (infant to adult) per community providing stool and urine for analysis by duplicate Kato-Katz and a point-of-care circulating cathodic antigen (POC-CCA) to test for Schistosoma mansoni and STH, and microhaematuria and urine filtration for Schistosoma haematobium. Of the 130 communities, 30 were randomly selected for annual, longitudinal parasitological monitoring, with 150 randomly selected individuals from infant to adult providing two days of stool and urine samples for analysis by the same diagnostic tests per community. RESULTS In total 97,919 households participated in the baseline census enrolling 466,071 individuals, with parasitological data obtained from 10,785 people. At baseline, 15.5% were infected with at least one STH species, with Ascaris lumbricoides (9.5%), followed by hookworm (7.2%) and Trichuris trichiura (1.8%). Substantial heterogeneity in STH prevalence was observed between communities ranging from 0% to 61% where most infections were low intensity. Schistosoma mansoni infection was the dominant schistosome infection (0.85% by Kato-Katz and 13.3% by POC-CCA trace negative and 21.5% trace positive), with few Schistosoma haematobium infections identified (2.77% haematuria positive and 0.13% positive by urine filtration). CONCLUSIONS While the national control program in Ethiopia has made good progress in reducing prevalence of STH and SCH in Wolaita since it was launched in 2015, there remain areas of persistent infection suggesting the existence of environmental or behavioural risk factors that contribute to ongoing transmission. This project aims to identify the most efficient intervention strategies to reduce community burden and reach interruption of transmission.
Collapse
Affiliation(s)
- Anna E. Phillips
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary’s Campus, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Alison K. Ower
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary’s Campus, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | | | | | - Rosie Maddren
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Birhan Mengistu
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary’s Campus, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Ufaysa Anjulo
- Children’s Investment Fund Foundation, London, United Kingdom
| | - Melkie Chernet
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Julia C. Dunn
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary’s Campus, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | | | - Habtamu Belay
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | | | - Roy Anderson
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St Mary’s Campus, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| |
Collapse
|
25
|
Boyd MJ, Mendelson M, Dlamini SK, Wasserman S, Fakier G, Roberts R, Papavarnavas NS. A case of pericardial schistosomiasis and non-Hodgkin high grade B-cell lymphoma. S Afr J Infect Dis 2023; 38:524. [PMID: 37795202 PMCID: PMC10546256 DOI: 10.4102/sajid.v38i1.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Chronic schistosomiasis affects either the genitourinary or gastrointestinal tract. Rarely, schistosomes cause ectopic disease, such as in the case of a South African woman from a non-endemic province, who presented with suspected pericardial tamponade because of tuberculosis. However, histology and polymerase chain reaction from pericardial biopsy confirmed Schistosoma haematobium. A finding of mediastinal non-Hodgkin lymphoma came to light when our patient's clinical condition unexpectedly deteriorated. Contribution This case highlights an unusual manifestation of schistosomiasis.
Collapse
Affiliation(s)
- Michael J Boyd
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marc Mendelson
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sipho K Dlamini
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ghaalied Fakier
- Division of Anatomical Pathology, Department of Pathology and National Health Laboratory Services, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Riyaadh Roberts
- Division of Anatomical Pathology, Department of Pathology and National Health Laboratory Services, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nectarios S Papavarnavas
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Azevedo CM, Meira CS, da Silva JW, Moura DMN, de Oliveira SA, da Costa CJ, Santos EDS, Soares MBP. Therapeutic Potential of Natural Products in the Treatment of Schistosomiasis. Molecules 2023; 28:6807. [PMID: 37836650 PMCID: PMC10574020 DOI: 10.3390/molecules28196807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.
Collapse
Affiliation(s)
- Carine Machado Azevedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
| | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Jaqueline Wang da Silva
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Danielle Maria Nascimento Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Sheilla Andrade de Oliveira
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Cícero Jádson da Costa
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ/PE), Recife 50740-465, Brazil; (D.M.N.M.); (S.A.d.O.); (C.J.d.C.)
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil; (C.M.A.); (C.S.M.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (J.W.d.S.); (E.d.S.S.)
| |
Collapse
|
27
|
Maggi L, Camelo GMA, Rocha IC, Pereira Alves W, Moreira JMP, Almeida Pereira T, Tafuri WL, Rabelo ÉML, Correa A, Ecco R, Negrão-Corrêa DA. Role of the IL-33/ST2 Activation Pathway in the Development of the Hepatic Fibrosis Induced by Schistosoma mansoni Granulomas in Mice. Int J Mol Sci 2023; 24:10237. [PMID: 37373379 PMCID: PMC10299179 DOI: 10.3390/ijms241210237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Schistosoma mansoni eggs retained in host tissues induce innate cytokine release, contributing to the induction of Type-2 immune responses and granuloma formation, important to restrain cytotoxic antigens, but leading to fibrosis. Interleukin(IL)-33 participates in experimental models of inflammation and chemically induced fibrosis, but its role in S. mansoni-induced fibrosis is still unknown. To explore the role of the IL-33/suppressor of the tumorigenicity 2 (ST2) pathway, serum and liver cytokine levels, liver histopathology, and collagen deposition were comparatively evaluated in S. mansoni-infected wild-type (WT) and IL-33-receptor knockout (ST2-/-) BALB/c mice. Our data show similar egg counts and hydroxyproline in the livers of infected WT and ST2-/- mice; however, the extracellular matrix in ST2-/- granulomas was loose and disorganised. Pro-fibrotic cytokines, such as IL-13 and IL-17, and the tissue-repairing IL-22 were significantly lower in ST2-/- mice, especially in chronic schistosomiasis. ST2-/- mice also showed decreased α-smooth muscle actin (α-SMA) expression in granuloma cells, in addition to reduced Col III and Col VI mRNA levels and reticular fibres. Therefore, IL-33/ST2 signalling is essential for tissue repairing and myofibroblast activation during S. mansoni infection. Its disruption results in inappropriate granuloma organisation, partly due to the reduced type III and VI collagen and reticular fibre formation.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
- Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça 78698-000, MG, Brazil
| | - William Pereira Alves
- Laboratório de Parasitologia Molecular, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (W.P.A.); (É.M.L.R.)
| | - João Marcelo Peixoto Moreira
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Wagner Luiz Tafuri
- Laboratório de Patologia das Leishmanioses, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Élida Mara Leite Rabelo
- Laboratório de Parasitologia Molecular, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (W.P.A.); (É.M.L.R.)
| | - Ary Correa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Roselene Ecco
- Setor de Patologia, Escola Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Deborah Aparecida Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| |
Collapse
|
28
|
Stark KA, Rinaldi G, Cortés A, Costain A, MacDonald AS, Cantacessi C. The role of the host gut microbiome in the pathophysiology of schistosomiasis. Parasite Immunol 2023; 45:e12970. [PMID: 36655799 DOI: 10.1111/pim.12970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The pathophysiology of schistosomiasis is linked to the formation of fibrous granulomas around eggs that become trapped in host tissues, particularly the intestines and liver, during their migration to reach the lumen of the vertebrate gut. While the development of Schistosoma egg-induced granulomas is the result of finely regulated crosstalk between egg-secreted antigens and host immunity, evidence has started to emerge of the likely contribution of an additional player-the host gut microbiota-to pathological processes that culminate with the formation of these tissue lesions. Uncovering the role(s) of schistosome-mediated changes in gut microbiome composition and function in granuloma formation and, more broadly, in the pathophysiology of schistosomiasis, will shed light on the mechanisms underlying this three-way parasite-host-microbiome interplay. Such knowledge may, in turn, pave the way towards the discovery of novel therapeutic targets and control strategies.
Collapse
Affiliation(s)
- Klara A Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| | - Alice Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
30
|
Lowe C, Ahmadabadi Z, Gray D, Kelly M, McManus DP, Williams G. Systematic review of applied mathematical models for the control of Schistosoma japonicum. Acta Trop 2023; 241:106873. [PMID: 36907291 DOI: 10.1016/j.actatropica.2023.106873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Schistosoma japonicum remains endemic in China and the Philippines. Substantial progress has been made in the control of Japonicum in both China and the Philippines. China is reaching elimination thanks to a concerted effort of control strategies. Mathematical modelling has been a key tool in the design of control strategies, in place of expensive randomised-controlled trials. We conducted a systematic review to investigate mathematical models of Japonicum control strategies in China and the Philippines. METHODS We conducted a systematic review on July 5, 2020, in four electronic bibliographic databases - PubMed, Web of Science, SCOPUS and Embase. Articles were screened for relevance and for meeting the inclusion criteria. Data extracted included authors, year of publication, year of data collection, setting and ecological context, objectives, control strategies, main findings, the form and content of the model including its background, type, representation of population dynamics, heterogeneity of hosts, simulation period, source of parameters, model validation and sensitivity analysis. Results After screening, 19 eligible papers were included in the systematic review. Seventeen considered control strategies in China and two in the Philippines. Two frameworks were identified; the mean-worm burden framework and the prevalence-based framework, the latter of which increasingly common. Most models considered human and bovine definitive hosts. There were mixed additional elements included in the models, such as alternative definitive hosts and the role of seasonality and weather. Models generally agreed upon the need for an integrated control strategy rather than reliance on mass drug administration alone to sustain reductions in prevalence. CONCLUSIONS Mathematical modelling of Japonicum has converged from multiple approaches to modelling using the prevalence-based framework with human and bovine definitive hosts and find integrated control strategies to be most effective. Further research could investigate the role of other definitive hosts and model the effect of seasonal fluctuations in transmission.
Collapse
Affiliation(s)
- Callum Lowe
- Department of Global Health, National Centre for Epidemiology and Population Health, Australian National University, Building 62a Mills Street, ACT, Acton 2601, Australia.
| | - Zohre Ahmadabadi
- School of Public Health, Discipline of Epidemiology and Biostatistics, University of Queensland, Brisbane, Australia
| | - Darren Gray
- Department of Global Health, National Centre for Epidemiology and Population Health, Australian National University, Building 62a Mills Street, ACT, Acton 2601, Australia; School of Public Health, Discipline of Epidemiology and Biostatistics, University of Queensland, Brisbane, Australia; Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Matthew Kelly
- Department of Global Health, National Centre for Epidemiology and Population Health, Australian National University, Building 62a Mills Street, ACT, Acton 2601, Australia
| | - Donald P McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gail Williams
- School of Public Health, Discipline of Epidemiology and Biostatistics, University of Queensland, Brisbane, Australia
| |
Collapse
|
31
|
Chala B. Advances in Diagnosis of Schistosomiasis: Focus on Challenges and Future Approaches. Int J Gen Med 2023; 16:983-995. [PMID: 36967838 PMCID: PMC10032164 DOI: 10.2147/ijgm.s391017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Schistosomiasis is the second most devastating parasite prevalent in the tropical region of the world, posing significant public health impacts in endemic areas. Presently, several disease mitigation measures have shown a decline in transmission of the infection rate in risk localities using mass drug administration (MDA) of school-based or community-wide treatments. Despite all the endeavors made, the decline in transmission of infection rate has not been attained in the entire medicated segment of the population. Perhaps the current challenges of control of the disease appear to be strongly associated with a lack of appropriate diagnostic tools. It's well known that the current diagnosis of schistosomiasis greatly relies on conventional methods. On the other hand, minor symptoms of schistosomiasis and low sensitivity and specificity of diagnostic methods are still unresolved diagnostic challenges to clinicians. Numerous scholars have reviewed various diagnostic methods of schistosomiasis and attempted to identify their strengths and weaknesses, currently on function. As a result of the known limitations of the existing diagnostic tools, the need to develop new and feasible diagnostic methods and diagnostic markers is unquestionable for more precise detection of the infection. Hence, advances in diagnostic methods have been considered part of the solution for the control and eventual elimination strategy of the disease in endemic areas. As of today, easy, cheap, and accurate diagnostics for schistosomiasis are difficult to get, and this limits the concerted efforts towards full control of schistosomiasis. While looking for new diagnostic methods and markers, it is important to simultaneously work on improving the existing diagnostic methods for better results. This review tries to give new insights to the status of the existing diagnostic methods of schistosomiasis from conventional to modern via summarizing the strengths and limitations of the methods. It also tries to recommend new, sensitive and feasible diagnostic methods for future approaches.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Correspondence: Bayissa Chala, Email ;
| |
Collapse
|
32
|
Mansour MA, Bayoumi M, Hamdi A, Moawad Y, Ayad AA, Ahmadi Z. Spinal Schistosomiasis Masquerading as an Intramedullary Tumor. IDCases 2023; 32:e01759. [PMID: 37077420 PMCID: PMC10106914 DOI: 10.1016/j.idcr.2023.e01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
|
33
|
Farid A. Preparation of polyclonal anti-Schistosoma mansoni cysteine protease antibodies for early diagnosis. Appl Microbiol Biotechnol 2023; 107:1609-1619. [PMID: 36773062 PMCID: PMC10006032 DOI: 10.1007/s00253-023-12408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/12/2023]
Abstract
In many parts of the tropics, schistosomiasis is a major parasitic disease second only to malaria as a cause of morbidity and mortality. Diagnostic approaches include microscopic sampling of excreta such as the Kato-Katz method, radiography, and serology. Due to their vital role in many stages of the parasitic life cycle, proteases have been under investigation as targets of immunological or chemotherapeutic anti-Schistosoma agents. Five major classes of protease have been identified on the basis of the peptide hydrolysis mechanism: serine, cysteine, aspartic, threonine, and metalloproteases. Proteases of all five catalytic classes have been identified from S. mansoni through proteomic or genetic analysis. The study aimed to produce polyclonal antibodies (pAbs) against schistosomal cysteine proteases (CP) to be used in the diagnosis of schistosomiasis. This study was conducted on S. mansoni-infected patients from highly endemic areas and from outpatients' clinic and hospitals and other patients infected with other parasites (Fasciola, hookworm, hydatid, and trichostrongyloids). In this study, the produced polyclonal antibodies against S. mansoni cysteine protease antigens were labeled with horseradish peroxidase (HRP) conjugate and used to detect CP antigens in stool and serum samples of S. mansoni-infected patients by sandwich ELISA. The study involved 200 S. mansoni-infected patients (diagnosed by finding characteristic eggs in the collected stool samples), 100 patients infected with other parasites (Fasciola, hookworm, hydatid, and trichostrongyloids), and 100 individuals who served as parasite-free healthy negative control. The prepared pAb succeeded in detecting CP antigens in stool and serum samples of S. mansoni-infected patients by sandwich ELISA with a sensitivity of 98.5% and 98.0% respectively. A positive correlation was observed between S. mansoni egg counts and both stool and serum antigen concentrations. Purified 27.5 kDa CP could be introduced as a suitable candidate antigen for early immunodiagnosis using sandwich ELISA for antigen detection. KEY POINTS: • Detection of cysteine protease antigens can replace parasitological examination. • Sandwich ELISA has a higher sensitivity than microscopic examination of eggs. • Identification of antigens is important for the goal of obtaining diagnostic tools.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
34
|
Aschenbrenner D, Ye Z, Zhou Y, Hu W, Brooks I, Williams I, Capitani M, Gartner L, Kotlarz D, Snapper SB, Klein C, Muise AM, Marsden BD, Huang Y, Uhlig HH. Pathogenic Interleukin-10 Receptor Alpha Variants in Humans - Balancing Natural Selection and Clinical Implications. J Clin Immunol 2023; 43:495-511. [PMID: 36370291 PMCID: PMC9892166 DOI: 10.1007/s10875-022-01366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
Balancing natural selection is a process by which genetic variants arise in populations that are beneficial to heterozygous carriers, but pathogenic when homozygous. We systematically investigated the prevalence, structural, and functional consequences of pathogenic IL10RA variants that are associated with monogenic inflammatory bowel disease. We identify 36 non-synonymous and non-sense variants in the IL10RA gene. Since the majority of these IL10RA variants have not been functionally characterized, we performed a systematic screening of their impact on STAT3 phosphorylation upon IL-10 stimulation. Based on the geographic accumulation of confirmed pathogenic IL10RA variants in East Asia and in Northeast China, the distribution of infectious disorders worldwide, and the functional evidence of IL-10 signaling in the pathogenesis, we identify Schistosoma japonicum infection as plausible selection pressure driving variation in IL10RA. Consistent with this is a partially augmented IL-10 response in peripheral blood mononuclear cells from heterozygous variant carriers. A parasite-driven heterozygote advantage through reduced IL-10 signaling has implications for health care utilization in regions with high allele frequencies and potentially indicates pathogen eradication strategies that target IL-10 signaling.
Collapse
Affiliation(s)
- Dominik Aschenbrenner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ziqing Ye
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Zhou
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenhui Hu
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Isabel Brooks
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Isabelle Williams
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Melania Capitani
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- SenTcell Ltd., London, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF) and Deutsches Zentrum für Kinder- und Jugendgesundheit, Partner site Munich, Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Brian D Marsden
- Centre of Medicines Discovery, NDM, University of Oxford, Oxford, OX3 7DQ, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Department of Pediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Center, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Lau R, Makhani L, Omoruna O, Lecce C, Shao E, Cunanan M, Ralevski F, Cheema K, Boggild AK. Performance characteristics of diagnostic assays for schistosomiasis in Ontario, Canada. Ther Adv Infect Dis 2023; 10:20499361231173843. [PMID: 37223452 PMCID: PMC10201143 DOI: 10.1177/20499361231173843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Due to lower intensity of infection and greater intervals from last exposure, parasitologic detection methods for schistosomiasis are poorly sensitive in non-endemic areas, challenging accurate diagnosis. Methods We evaluated parasitologic versus indirect detection methods for schistosomiasis. We included specimens submitted for Schistosoma serology, and stool for ova and parasite microscopy. Three real-time PCR assays targeting Schistosoma mansoni and S. haematobium were performed. Primary outcome measures were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), where both microscopy and serology were the composite reference standard against serum PCR. Results Of 8168 serum specimens submitted for Schistosoma serology, 638 (7.8%) were reactive and 6705 (82.1%) were non-reactive. Of 156,771 stool specimens submitted for ova and parasite testing, 46 (0.03%) were positive for eggs of S. mansoni. Four (0.5%) urine specimens were positive for eggs of S. haematobium. Combined serum PCRs targeting S. mansoni had a sensitivity and specificity of 27.8% (95% CI = 18.3-39.1%) and 100% (95% CI = 83.9-100%), respectively, with PPV of 100% (95% CI = 100%) and NPV of 26.9% (95% CI = 24.3-29.7%). The one serum sample positive for S. haematobium was also detectable by our S. haematobium PCR. No cross-reactivity was observed for all three PCR assays. Conclusions Although serology is highly sensitive, parasitologic tests signify active infection, but are limited by low population-level sensitivity, particularly in non-endemic settings. Although serum PCR offered no performance advantage over stool microscopy, its role in diagnostic parasitology should be pursued due to its high-throughput and operator-independent nature.
Collapse
Affiliation(s)
- Rachel Lau
- Public Health Ontario Laboratory, Public Health
Ontario, Toronto, ON, Canada
| | - Leila Makhani
- Department of Family and Community Medicine,
University of Toronto, Toronto, ON, Canada
- Tropical Disease Unit, Toronto General
Hospital, Toronto, ON, Canada
| | - Osaru Omoruna
- Department of Laboratory Medicine and
Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Celine Lecce
- School of Medicine, Queen’s University,
Kingston, ON, Canada
| | - Eric Shao
- Department of Microbiology and Immunology, The
University of Western Ontario, London, ON, Canada
| | - Marlou Cunanan
- Public Health Ontario Laboratory, Public Health
Ontario, Toronto, ON, Canada
| | - Filip Ralevski
- Public Health Ontario Laboratory, Public Health
Ontario, Toronto, ON, Canada
| | - Karamjit Cheema
- Public Health Ontario Laboratory, Public Health
Ontario, Toronto, ON, Canada
| | - Andrea K. Boggild
- Tropical Disease Unit, Toronto General
Hospital, 200 Elizabeth Street, Toronto, ON, Canada, M5R 2C4
- Department of Medicine, University of Toronto,
Toronto, ON, Canada
- Institute of Medical Science, University of
Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Environmental Factors Affecting Freshwater Snail Intermediate Hosts in Shenzhen and Adjacent Region, South China. Trop Med Infect Dis 2022; 7:tropicalmed7120426. [PMID: 36548681 PMCID: PMC9782201 DOI: 10.3390/tropicalmed7120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Sound knowledge of the local distribution and diversity of freshwater snail intermediate hosts and the factors driving the occurrence and abundance of them is crucial to understanding snail-borne parasitic disease transmission and to setting up effective interventions in endemic areas. In this study, we investigated the freshwater snails, water quality parameters, physical characteristics of habitats, predators and competitors, and human activity variables at 102 sites during December 2018 and August 2019 in Shenzhen and adjacent areas in China. We used decision tree models and canonical correspondence analysis to identify the main environmental and biotic factors affecting the occurrence and abundance of snail species. A total of nine species of snail were collected throughout the study area, with Biomphalaria straminea, Sinotaia quadrata, and Physella acuta being the most predominant species. Our study showed that the most important variables affecting the abundance and occurrence of snail species were the presence of predators and competitors, macrophyte cover, chlorophyll-a, substrate type, river depth, and water velocity. In terms of human activities, snail species occurred more frequently and in larger numbers in water bodies affected by human disturbances, especially for sewage discharge, which may reduce the occurrence and abundance of snail predators and competitors. These findings suggest that proper management of water bodies to reduce water pollution may increase the abundance of snail predators and competitors, and should be considered in integrated snail control strategies in the study area.
Collapse
|
37
|
Mathavan I, Liu LJ, Robinson SW, El-Sakkary N, Elatico AJJ, Gomez D, Nellas R, Owens RJ, Zuercher W, Navratilova I, Caffrey CR, Beis K. Identification of Inhibitors of the Schistosoma mansoni VKR2 Kinase Domain. ACS Med Chem Lett 2022; 13:1715-1722. [PMID: 36385939 PMCID: PMC9661718 DOI: 10.1021/acsmedchemlett.2c00248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms. Current treatment relies on just one partially effective drug, praziquantel (PZQ). Schistosoma mansoni Venus Kinase Receptors 1 and 2 (SmVKR1 and SmVKR2) are important for parasite growth and egg production, and are potential targets for combating schistosomiasis. VKRs consist of an extracellular Venus Flytrap Module (VFTM) linked via a transmembrane helix to a kinase domain. Here, we initiated a drug discovery effort to inhibit the activity of the SmVKR2 kinase domain (SmVKR2KD) by screening the GSK published kinase inhibitor set 2 (PKIS2). We identified several inhibitors, of which four were able to inhibit its enzymatic activity and induced phenotypic changes in ex vivo S. mansoni. Our crystal structure of the SmVKR2KD displays an active-like state that sheds light on the activation process of VKRs. Our data provide a basis for the further exploration of SmVKR2 as a possible drug target.
Collapse
Affiliation(s)
- Indran Mathavan
- Department
of Life Sciences, Imperial College London, Exhibition Road, London, South Kensington SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Lawrence J. Liu
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sean W. Robinson
- Kinetic
Discovery Ltd., an Exscientia group company, The Schrödinger Building, Oxford Science
Park, Oxford OX4 4GE, United Kingdom
| | - Nelly El-Sakkary
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Adam Jo J. Elatico
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City, Philippines 1101
| | - Darwin Gomez
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City, Philippines 1101
| | - Ricky Nellas
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, Quezon City, Philippines 1101
| | - Raymond J. Owens
- The Rosalind
Franklin Institute, Harwell Campus, Didcot, OX11 0QX, United Kingdom
- Division
of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United
Kingdom
| | - William Zuercher
- Structural
Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Iva Navratilova
- Kinetic
Discovery Ltd., an Exscientia group company, The Schrödinger Building, Oxford Science
Park, Oxford OX4 4GE, United Kingdom
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, London, South Kensington SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, United Kingdom
| |
Collapse
|
38
|
Muhsin MA, Wang X, Kabole FM, Zilabumba J, Yang K. The Indispensability of Snail Control for Accelerating Schistosomiasis Elimination: Evidence from Zanzibar. Trop Med Infect Dis 2022; 7:tropicalmed7110347. [PMID: 36355889 PMCID: PMC9699613 DOI: 10.3390/tropicalmed7110347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Schistosomiasis is a serious and neglected global tropical disease, affecting upwards of 230 million people, with more than 95% of infections concentrated in Africa. For many years, the main schistosomiasis control strategy in Africa focused on mass drug administration (MDA). The aim of this study was to compare the difference between MDA alone and alongside another intervention, namely snail control, by exploring effective measures for eliminating schistosomiasis. Retrospective data of human prevalence on Schistosoma haematobium and major control measures were collected from the China-Zanzibar-WHO Cooperation Project for Schistosomiasis Elimination (CZW) and the Zanzibar Elimination of Schistosomiasis Transmission (ZEST) project since 2012. The optimal order polynomial regression fitting model and joinpoint regression model (JRM) were used to analyze trends in schistosomiasis prevalence and the consistency of change points with strengthening of the control measures. In Unguja Island, the main control measure was MDA, and prevalence decreased to a nadir in 2019, and then rebounded. The R2 value of the optimal fitting model was 0.6641. There was a single JRM changepoint in 2019, the annual percent change (APC) was −19.3% (p < 0.05) from 2012 to 2019, and the APC was 59.7% (p > 0.05) from 2019 to 2021. In Pemba Island, the main control measures until 2016 was MDA, while integrated measures of MDA and snail control were implemented from 2017, the prevalence continuously decreased, and the R2 value was 0.8673. There was also a single JRM changepoint in 2017, the APC was −22.2% (p < 0.05) from 2012 to 2017, and was maintained at −8.6% (p > 0.05) from 2017 to 2021. Our data indicate that, while it is challenging to eliminate schistosomiasis by MDA alone, integrated measures, including both MDA and snail control, can prevent reinfection and help to eliminate the diseases in Africa.
Collapse
Affiliation(s)
- Mtumweni Ali Muhsin
- School of Medicine, Jiangnan University, Wuxi 214122, China
- Neglected Tropical Disease Control Programme, Ministry of Health, Mnazi Mmoja, Zanzibar 16108, Tanzania
| | - Xinyao Wang
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Key Laboratory of National Health and Family Planning, Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Fatma Mohammed Kabole
- Neglected Tropical Disease Control Programme, Ministry of Health, Mnazi Mmoja, Zanzibar 16108, Tanzania
| | - January Zilabumba
- Neglected Tropical Disease Control Programme, Ministry of Health, Mnazi Mmoja, Zanzibar 16108, Tanzania
| | - Kun Yang
- School of Medicine, Jiangnan University, Wuxi 214122, China
- Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Key Laboratory of National Health and Family Planning, Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Correspondence:
| |
Collapse
|
39
|
Sree CJ, Samatha V, Sreedevi C, Devi VR. A retrospective study on Schistosoma spindale infection in domestic ruminants, Andhra Pradesh, India. J Parasit Dis 2022; 46:869-875. [PMID: 36091293 PMCID: PMC9458812 DOI: 10.1007/s12639-022-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022] Open
Abstract
The present study was undertaken to determine the prevalence of Schistosoma spindale infection in domestic ruminants in Krishna district, Andhra Pradesh by coprological and necropsy examination. Examination of 177 buffaloes, 283 sheep and 166 goats faecal samples (n = 626) revealed 2.25, 2.82 and 1.80% of S. spindale infection, respectively. Necropsy examination of 21 buffaloes, 185 sheep and 217 goats revealed 14.2, 1.08 and 3.68% of S. spindale infection, respectively. Overall, microscopic examination of faecal smears revealed 2.39% (n = 15) prevalence of S. spindale infection in ruminants in the study area, while 3.07% (n = 13) of ruminants were found to be positive for S. spindale during postmortem examination. Adult worms collected from the mesenteric veins were processed and identified as S. spindale. Grossly, the infected livers were found with petechial haemorrhages, cirrhotic changes and pinpoint granulomas in parenchymatous tissue. Histological sections of livers revealed microgranulomas with infiltration of mononuclears, eosinophils and fibroblast cells surrounding the Schistosome ova. The intestinal mucosa was thickened, edematous and haemorrhagic with copious mucous exudates. Cut section of infected intestines revealed severe inflammatory reactions in the mucosa and sub mucosa and granulomatous changes surrounding the Schistosoma eggs.
Collapse
Affiliation(s)
- Ch. Jyothi Sree
- Department of Veterinary Pathology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh India
- Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh India
| | - V. Samatha
- Department of Veterinary Pathology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh India
| | - C. Sreedevi
- Department of Veterinary Pathology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh India
| | - V. Rama Devi
- Department of Veterinary Pathology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh India
| |
Collapse
|
40
|
Wu Y, Duffey M, Alex SE, Suarez-Reyes C, Clark EH, Weatherhead JE. The role of helminths in the development of non-communicable diseases. Front Immunol 2022; 13:941977. [PMID: 36119098 PMCID: PMC9473640 DOI: 10.3389/fimmu.2022.941977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
Non-communicable diseases (NCDs) like cardiovascular disease, chronic respiratory diseases, cancers, diabetes, and neuropsychiatric diseases cause significant global morbidity and mortality which disproportionately affect those living in low resource regions including low- and middle-income countries (LMICs). In order to reduce NCD morbidity and mortality in LMIC it is imperative to understand risk factors associated with the development of NCDs. Certain infections are known risk factors for many NCDs. Several parasitic helminth infections, which occur most commonly in LMICs, have been identified as potential drivers of NCDs in parasite-endemic regions. Though understudied, the impact of helminth infections on the development of NCDs is likely related to helminth-specific factors, including species, developmental stage and disease burden. Mechanical and chemical damage induced by the helminth in combination with pathologic host immune responses contribute to the long-term inflammation that increases risk for NCD development. Robust studies from animal models and human clinical trials are needed to understand the immunologic mechanisms of helminth-induced NCDs. Understanding the complex connection between helminths and NCDs will aid in targeted public health programs to reduce helminth-induced NCDs and reduce the high rates of morbidity that affects millions of people living in parasite-endemic, LMICs globally.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Megan Duffey
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Saira Elizabeth Alex
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Charlie Suarez-Reyes
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Eva H. Clark
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States,National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jill E. Weatherhead
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States,National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Jill E. Weatherhead,
| |
Collapse
|
41
|
Ketema W, Taye K, Tagesse N, Shibeshi MS, Alemayehu B, G/tsadik F, Girma B, Teklehaymanote A, Debiso A. Fulminant Hepatitis and Ulcerative Colitis: Case Report of Ethiopian Child with Schistosomiasis and Amebiasis Co-Infection. Int Med Case Rep J 2022; 15:409-418. [PMID: 35999858 PMCID: PMC9393029 DOI: 10.2147/imcrj.s377632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Schistosomiasis is a neglected tropical disease (NTD) that affects around 200 million people worldwide, the majority of whom are children aged 5 to 15 years. It is one of the most significant public health problems in tropical and subtropical regions. Entamoeba histolytica infection is common in areas where schistosomiasis is endemic because Schistosoma mansoni infection can reduce the host's immune response, resulting in increased morbidity. Case Presentation This is the story of a 12-year-old male adolescent from the Guji zone of the Oromia regional state of Ethiopia who presented to Hawassa University Comprehensive Specialized Hospital (HUCSH) complaining of bloody diarrhea of 1 week associated with vomiting of ingested matter of 2 weeks. He also had history of fever, chills, rigors, arthralgia, and weight loss during a 2 weeks period. Further questioning revealed that he had previously swum in a pond and had a self-limited itchy skin condition. The family said that similar cases had occurred in their town that resolved with medications provided at a local health center. Conclusion Schistosomiasis and amebiasis are major public health issues, especially in impoverished areas. Schistosomiasis presents differently clinically depending on the phase and clinical form in which it manifests, making diagnosis and management challenging. As a result, it necessitates an integrated collaboration involving clinicians, pathologists, and public health professionals. We describe ulcerative colitis (UC) ascribed to schistosomiasis and amoebiasis coinfection, and fulminant hepatitis due to schistosomiasis. As there was no report of liver abscess on sonographic scanning, hepatitis may not be due to coinfection. This case will be an alert to clinicians and public health personnel who are striving for the ultimate eradication of schistosomiasis and also teaches us that treating co-infections of both is beyond just giving praziquantel and antiamebics.
Collapse
Affiliation(s)
- Worku Ketema
- Department of Pediatrics and Child Health, HawassaUniversity, Hawassa, Sidama, Ethiopia
| | - Kefyalew Taye
- Department of Pediatrics and Child Health, HawassaUniversity, Hawassa, Sidama, Ethiopia
| | - Negash Tagesse
- Department of Pediatrics and Child Health, HawassaUniversity, Hawassa, Sidama, Ethiopia
| | | | - Bizuneh Alemayehu
- Department of Pediatrics and Child Health, HawassaUniversity, Hawassa, Sidama, Ethiopia
| | - Fikre G/tsadik
- Department of Pediatrics and Child Health, HawassaUniversity, Hawassa, Sidama, Ethiopia
| | - Birhanu Girma
- Department of Pediatrics and Child Health, HawassaUniversity, Hawassa, Sidama, Ethiopia
| | | | - Alemu Debiso
- Department of Public Health, Hawassa University, Hawassa, Sidama, Ethiopia
| |
Collapse
|
42
|
Balogun JB, Adewale B, Balogun SU, Lawan A, Haladu IS, Dogara MM, Aminu AU, Caffrey CR, De Koning HP, Watanabe Y, Balogun EO. Prevalence and Associated Risk Factors of Urinary Schistosomiasis among Primary School Pupils in the Jidawa and Zobiya Communities of Jigawa State, Nigeria. Ann Glob Health 2022; 88:71. [PMID: 36062044 PMCID: PMC9389954 DOI: 10.5334/aogh.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Urogenital schistosomiasis (UgS) is a parasitic disease caused by Schistosoma haematobium and can lead to chronic ill-health. Nigeria is endemic for schistosomiasis, but epidemiology of UgS has not been studied in most states. This study was conceived with the aim to contribute towards an accurate national picture of UgS in Nigeria. The prevalence of UgS and the associated risk factors were for the first time investigated among primary school pupils in Jidawa and Zobiya communities of the Dutse Local Government Area (LGAs) of Jigawa State, Nigeria. Method Focus group discussions with teachers and parents were conducted. After obtaining written consent from parents, questionnaires were administered to pupils to obtain socio-demographic data and information on water contact activities. Urine samples (279) were collected and processed by the urine filtration technique to evaluate haematuria and the presence of S. haematobium eggs. Results Prevalences of 65.7% (90/137) and 69.0% (98/142) were recorded in the Jidawa and Zobiya communities, respectively. In both communities, there was a significant association between gender and UgS: 63.3% of the infected pupils were males as compared to 36.7% females (χ2 = 5.42, p = 0.020). Grade 5 students had a significantly higher prevalence (χ2 = 17.919, p = 0.001) (80.0%) compared to those in grades 2, 3, 4, and 6 (63.8%, 66.7%, 61.5%, and 64.6%, respectively). Water contact activities showed that pupils involved in fishing, irrigation, and swimming were at greater risk of becoming infected in Jidawa and Zobiya, with odds ratios (risk factors) of 5.4 (0.994-28.862) and 4.1 (1.709-9.862), respectively (p = 0.05). Conclusion Both the Jidawa and Zobiya communities of the Dutse LGAs of Jigawa State are hyperendemic for UgS. In collaboration with the State Ministry of Health, mass administration of praziquantel was carried out in the Jidawa and Zobiya communities after this study.
Collapse
Affiliation(s)
- J. B. Balogun
- Department of Biological Sciences, Federal University Dutse, P.M.B. 7156, Jigawa State, NG
| | - B. Adewale
- Department of Public Health and Epidemiology, Nigerian Institute for Medical Research (NIMR), Lagos State, NG
| | - S. U. Balogun
- Department of Human Anatomy, College of Basic Medical Sciences, Federal University Dutse, P.M.B. 7156, Jigawa State, NG
| | - A. Lawan
- Department of Biological Sciences, Federal University Dutse, P.M.B. 7156, Jigawa State, NG
| | - I. S. Haladu
- Department of Biological Sciences, Federal University Dutse, P.M.B. 7156, Jigawa State, NG
| | - M. M. Dogara
- Department of Biological Sciences, Federal University Dutse, P.M.B. 7156, Jigawa State, NG
| | - A. U. Aminu
- Jigawa State Ministry of Health, Block B, New Complex Secretariat, Takur Dutse, Jigawa State, NG
| | - C. R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - H. P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Y. Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, JP
| | - E. O. Balogun
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, JP
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Kaduna State, NG
| |
Collapse
|
43
|
Ouji Y, Hamasaki M, Misu M, Kitamura T, Hamano S, Yoshikawa M. Schistosoma mansoni larvae in vitro cultures using Biomphalaria glabrata extracts. Acta Trop 2022; 235:106636. [DOI: 10.1016/j.actatropica.2022.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/01/2022]
|
44
|
Xu X, Wang Y, Wang C, Guo G, Yu X, Dai Y, Liu Y, Wei G, He X, Jin G, Zhang Z, Guan Q, Pain A, Wang S, Zhang W, Young ND, Gasser RB, McManus DP, Cao J, Zhou Q, Zhang Q. Chromosome-level genome assembly defines female-biased genes associated with sex determination and differentiation in the human blood fluke Schistosoma japonicum. Mol Ecol Resour 2022; 23:205-221. [PMID: 35844053 DOI: 10.1111/1755-0998.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Schistosomiasis is a neglected tropical disease of humans caused by blood flukes of the genus Schistosoma, the only dioecious parasitic flatworm. Although aspects of sex determination, differentiation and reproduction have been studied in some Schistosoma species, almost nothing is known for Schistosoma japonicum, the causative agent of schistosomiasis japonica. This mainly reflects the lack of high-quality genomic and transcriptomic resources for this species. As current genomes for S. japonicum are highly fragmented, we assembled and report a chromosome-level reference genome (seven autosomes, the Z-chromosome and partial W-chromosome), achieving a substantially enhanced gene annotation. Utilizing this genome, we discovered that the sex chromosomes of S. japonicum and its congener S. mansoni independently suppressed recombination during evolution, forming five and two evolutionary strata, respectively. By exploring the W-chromosome and sex-specific transcriptomes, we identified 35 W-linked genes and 257 female-preferentially transcribed genes (FTGs) from our chromosomal assembly and uncovered a signature for sex determination and differentiation in S. japonicum. These FTGs clustering within autosomes or the Z-chromosome exhibit a highly dynamic transcription profile during the pairing of female and male schistosomula, thereby representing a critical phase for the maturation of the female worms and suggesting distinct layers of regulatory control of gene transcription at this development stage. Collectively, these data provide a valuable resource for further functional genomic characterization of S. japonicum, shed light on the evolution of sex chromosomes in this highly virulent human blood fluke, and provide a pathway to identify novel targets for development of intervention tools against schistosomiasis.
Collapse
Affiliation(s)
- Xindong Xu
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yifeng Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Changhong Wang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Gangqiang Guo
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yang Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Guiying Wei
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohui He
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ge Jin
- Novogene Bioinformatics Institute, Beijing, China
| | - Ziqiu Zhang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qingtian Guan
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Shengyue Wang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald P McManus
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.,Center for Reproductive Medicine, the Second Affiliated Hospital School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
45
|
Ju T, Vander Does A, Ingrasci G, Norton SA, Yosipovitch G. Tropical parasitic itch in returned travellers and immigrants from endemic areas. J Eur Acad Dermatol Venereol 2022; 36:2279-2290. [PMID: 35793476 DOI: 10.1111/jdv.18408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Itch is the most common skin symptom among tropical parasitic diseases (TPD), but there are limited data about its characteristics in these conditions. In dermatology practices and travellers' health clinics in the developed world, itch is a common complaint among travellers returning from endemic areas, as well among migrants arriving from endemic areas, where they may have been exposed to TPD. Studying aspects of pruritus among TPD may lead to improvements in prompt, accurate diagnosis and management of these conditions. This review examines the major itch-inducing TPDs, including schistosomiasis, echinococcosis, onchocerciasis, scabies, cutaneous larva migrans, larva currens, African trypanosomiasis, dracunculiasis and other causes of travel associated pruritus. We focus on the link between pruritus and other symptoms, aetiology, clinical staging and therapeutic options for these parasitic illnesses. Because some tropical parasitic diseases can present with significant pruritus, we attempt to identify aspects of the pruritus that are characteristic of-or unique to-specific conditions. These diagnostic insights may help clinicians create a rational and focused differential diagnosis and help determine optimal disease management pathways. In this sense, management involves treating the individual, seeking epidemiologically linked cases, preventing recurrences or relapses, and reducing spread of the disease.
Collapse
Affiliation(s)
- T Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - A Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - G Ingrasci
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - S A Norton
- Department of Dermatology and Pediatrics, George Washington University, Washington, DC, USA
| | - G Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| |
Collapse
|
46
|
Zdesenko G, Mduluza T, Mutapi F. Pharmacogenetics of Praziquantel Metabolism: Evaluating the Cytochrome P450 Genes of Zimbabwean Patients During a Schistosomiasis Treatment. Front Genet 2022; 13:914372. [PMID: 35754834 PMCID: PMC9213834 DOI: 10.3389/fgene.2022.914372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a parasitic disease infecting over 236 million people annually, with the majority affected residing on the African continent. Control of this disease is reliant on the drug praziquantel (PZQ), with treatment success dependent on an individual reaching PZQ concentrations lethal to schistosomes. Despite the complete reliance on PZQ to treat schistosomiasis in Africa, the characterization of the pharmacogenetics associated with PZQ metabolism in African populations has been sparse. We aimed to characterize genetic variation in the drug-metabolising cytochrome P450 enzymes (CYPs) and determine the association between each variant and the efficacy of PZQ treatment in Zimbabwean patients exposed to Schistosoma haematobium infection. Genomic DNA from blood samples of 114 case-control Zimbabweans infected with schistosomes were sequenced using the CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 genes as targets. Bioinformatic tools were used to identify and predict functional effects of detected single nucleotide polymorphisms (SNPs). A random forest (RF) model was then used to assess SNPs most predictive of PZQ efficacy, with a misclassification rate of 29%. SNPs were detected across all six genes, with 70 SNPs identified and multiple functional changes to the CYP enzymes predicted. Only four SNPs were significantly associated with PZQ efficacy using χ2 tests, with rs951840747 (OR: 3.61, p = 0.01) in the CYP1A2 gene having the highest odds of an individual possessing this SNP clearing infection, and rs6976017 (OR: 2.19, p = 0.045) of CYP3A5 determined to be the most predictive of PZQ efficacy via the RF. Only the rs28371702 (CC) genotype (OR: 2.36, p = 0.024) of CYP2D6 was significantly associated with an unsuccessful PZQ treatment. This study adds to the genomic characterization of the diverse populations in Africa and identifies variants relevant to other pharmacogenetic studies crucial for the development and usage of drugs in these populations.
Collapse
Affiliation(s)
- Grace Zdesenko
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh, United Kingdom.,Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Francisca Mutapi
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Saber S, Alomar SY, Yahya G. Blocking prostanoid receptors switches on multiple immune responses and cascades of inflammatory signaling against larval stages in snail fever. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43546-43555. [PMID: 35396684 PMCID: PMC9200668 DOI: 10.1007/s11356-022-20108-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/01/2022] [Indexed: 05/27/2023]
Abstract
Schistosomiasis, also known as snail fever or bilharziasis, is a worm infection caused by trematode called schistosomes that affects humans and animals worldwide. Schistosomiasis endemically exists in developing countries. Inflammatory responses elicited in the early phase of infection represent the rate limiting step for parasite migration and pathogenesis and could be a valuable target for therapeutic interventions. Prostaglandin E2 (PGE2) and interleukin (IL)-10 were found to be differentially affected in case of immune-modulation studies and cytokine analysis of hosts infected with either normal or radiation-attenuated parasite (RA) which switches off the development of an effective immune response against the migrating parasite in the early phase of schistosomiasis. Normal parasites induce predominantly a T helper 2 (Th2)-type cytokine response (IL-4 and IL-5) which is essential for parasite survival; here, we discuss in detail the downstream effects and cascades of inflammatory signaling of PGE2 and IL10 induced by normal parasites and the effect of blocking PGE2 receptors. We suggest that by selectively constraining the production of PGE2 during vaccination or therapy of susceptible persons or infected patients of schistosomiasis, this would boost IL-12 and reduce IL-10 production leading to a polarization toward the anti-worm Thl cytokine synthesis (IL-2 and Interferon (IFN)-γ).
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Suliman Y. Alomar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharkia, 44519 Egypt
| |
Collapse
|
48
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
49
|
Belizario VY, Delos Trinos JPCR, Sison OT, Destura RV, Medina JR, Gigataras AJE, Petronio-Santos JAG, Abarientos AB. Evaluation of loop-mediated isothermal amplification assay and enzyme-linked immunosorbent assay in detecting Schistosoma japonicum in Siargao Island, Surigao del Norte, the Philippines. Acta Trop 2022; 228:106306. [PMID: 35038427 DOI: 10.1016/j.actatropica.2022.106306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study aimed to describe the prevalence and seroprevalence of schistosomiasis in Siargao Island, Surigao del Norte and to compare the performance of enzyme-linked immunosorbent assay antibody test (ELISA Ab) and loop-mediated isothermal amplification assay (LAMP) for diagnosis of schistosomiasis. METHODS The study was conducted in selected barangays (villages) in five municipalities in Siargao Island, Surigao del Norte and included school-age children (SAC) who submitted stool and blood samples. Stool samples were examined using the Kato-Katz technique. Blood samples were collected through venipuncture. The stool samples and the blood samples collected were tested using LAMP assay and polymerase chain reaction (PCR). The blood samples were examined using ELISA Ab. Diagnostic performance of LAMP assay using stool specimen was evaluated using Kato-Katz technique and PCR assay as the composite reference standard, while PCR assay was used as the reference standard to evaluate LAMP assay and ELISA Ab using blood specimens. RESULTS A total of 417 stool samples from SAC were examined. The prevalence of schistosomiasis and moderate-heavy intensity (MHI) schistosomiasis were 3.8% and 1.4%, respectively. Schistosomiasis and soil-transmitted helminthiases (STH) coinfection prevalence were 2.6%. A total of 425 blood samples were examined using ELISA Ab. Seroprevalence was 61.6%. The municipality of San Isidro had the highest seroprevalence at 84.8%, while Burgos had the lowest seroprevalence at 48.5%.LAMP assay had higher sensitivity and positive predictive value but lower specificity when using stool than when using blood samples. Its negative predictive value was similar regardless of the specimen used. ELISA Ab has higher sensitivity and negative predictive value than LAMP assay although it has lower specificity and positive predictive value. This may be due to ELISA Ab measuring Schistosoma exposure and is thus unable to distinguish past from active infection. CONCLUSIONS Schistosomiasis remains a public health concern in Siargao Island, Surigao del Norte. The locally developed LAMP assay offers a simpler diagnostic test for schistosomiasis compared with PCR, while minimizing the risk of misdiagnosis compared with Kato-Katz technique. It could serve as a point of care diagnostics for schistosomiasis. ELISA Ab is more useful in surveillance particularly in low-endemicity areas where determination of exposure is more important than differentiating past from active infection. ELISA Ab may be helpful in the clinical setting when coupled with the expertise of a physician who is familiar with schistosomiasis.
Collapse
Affiliation(s)
- Vicente Y Belizario
- College of Public Health, University of the Philippines (UP) Manila, Manila, Philippines; Neglected Tropical Diseases Study Group, National Institutes of Health (NIH), UP Manila, Manila, Philippines
| | - John Paul Caesar R Delos Trinos
- Neglected Tropical Diseases Study Group, National Institutes of Health (NIH), UP Manila, Manila, Philippines; Kirby Institute, University of New South Wales-Sydney, Australia
| | - Olivia T Sison
- Institute of Clinical Epidemiology, NIH, UP Manila, Manila, Philippines
| | - Raul V Destura
- Institute of Molecular Biology and Biotechnology, NIH, UP Manila, Manila, Philippines; Research and Biotechnology Division, Manila HealthTek, Marikina, Philippines
| | - John Robert Medina
- College of Public Health, University of the Philippines (UP) Manila, Manila, Philippines
| | - April Joy E Gigataras
- Neglected Tropical Diseases Study Group, National Institutes of Health (NIH), UP Manila, Manila, Philippines
| | | | - Adrian B Abarientos
- Institute of Molecular Biology and Biotechnology, NIH, UP Manila, Manila, Philippines
| |
Collapse
|
50
|
Gu MM, Sun MT, Zhang JY, Yu QF, Lu DB. The prevalence of liver abnormalities in humans due to Schistosoma japonicum by ultrasonography in China: a meta-analysis. BMC Infect Dis 2022; 22:236. [PMID: 35260103 PMCID: PMC8903095 DOI: 10.1186/s12879-022-07241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Schistosoma japonicum was once one of the most severe parasitic diseases in China. After 70 years of national schistosomiasis control programmes, the prevalence and associated morbidity of the infection have been reduced to a much lower level. However, due to the low sensitivity of the current detection approaches, many minor infections in humans could not be identified and ultimately develop chronic injuries with liver abnormalities, a specific ‘network’ echogenic pattern under ultrasonography. Therefore, as more people take part in physical examinations, we performed this meta-analysis to estimate the overall prevalence of schistosomiasis-associated liver abnormalities in China. Methods The publications were searched systematically across five electronic databases. All eligible studies were assessed with quality evaluation forms. Heterogeneity of studies was determined using the I2 and Q tests. A random effects or fixed effects model was employed based on heterogeneity results. The pooled prevalence and its 95% confidence intervals were calculated with the Freeman-Tukey double arcsine transformation. All analyses were conducted using R with the “meta” package. The protocol registration number was CRD42021232982. Results A total of 19 relevant articles, including 21 studies, were included. The average score of study quality was 6.4 (total score 7), indicating high quality of all included studies. A total of 268, 247 persons were included, and 43, 917 persons were diagnosed with schistosomiasis liver abnormalities by ultrasonography. High degrees of heterogeneity existed among all studies or within subgroups. The overall pooled prevalence was 18.64% (95% CI: 11.88–26.50%). The estimate significantly increased over time and varied among provinces, with the highest in Shanghai and the lowest in Sichuan. The estimate in people aged 60 years or older was significantly higher than that in people of all ages. No significant difference was seen when based on study areas (urban or rural areas) or gender. Conclusion The long-term burden of schistosomiasis in China remains large, as nearly one-fifth of the examined persons were diagnosed with schistosomiasis liver abnormalities. The pooled prevalence was associated with regions or age groups. Such may have a high reference value in the exact calculation of the disease burden and can be helpful for policy makers in prioritizing public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07241-5.
Collapse
Affiliation(s)
- Man-Man Gu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Meng-Tao Sun
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Jie-Ying Zhang
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Qiu-Fu Yu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China
| | - Da-Bing Lu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China.
| |
Collapse
|