1
|
Zhang T, Liu Y, Wang G, Wang Z, Fan X, Shen Y, Liu W, Zhang D, He L, Xie L, Yu T, Liang Y. Evidence of the "hit and run" characteristics of Cerebroprotein Hydrolysate-I in the treatment of neonatal HIE based on pharmacokinetic and pharmacological studies. Int Immunopharmacol 2024; 143:113580. [PMID: 39547013 DOI: 10.1016/j.intimp.2024.113580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the leading cause of neonatal mortality and disability, but its treatment options are very limited and there is an urgent need to further improve treatment outcomes. The present study aims to reveal the therapeutic effects, action pattern, and potential mechanisms of Cerebroprotein hydrolysate-I (CH-I), a mixture of hydrolyzed peptides and amino acids, for the management of HIE. To simulate the complex pathogenesis of HIE more accurately, we innovatively constructed a "triple hit" neonatal HIE rat model. The efficacy of CH-1 was examined in this model, and it was found that CH-I treatment not only significantly improved the behavior and small molecule metabolism disorders of neonatal HIE rats, but also reduced intracerebral neuronal apoptosis, neuroinflammation, and oxidative stress levels. In addition, the neuroprotective effect of CH-I was also confirmed in the hypoxic oligodendrocyte precursor cell model. We innovatively found that CH-I could reverse myelin damage induced by HIE modeling via activating the Wnt/β-catenin signaling pathway. More importantly, a robust quantitative analysis assay for the main peptides in CH-I was developed based on LC-MS/MS system combining Skyline software. Then the pharmacokinetics of the main peptides was studied based on 'relative exposure approach' combining 'mixed calibration curves' strategy. The transient exposure of peptides in vivo indicated that CH-I should exert neuroprotective effects through the "hit and run" pattern.
Collapse
Affiliation(s)
- Tingting Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Ye Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Zhongbo Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Xin Fan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Yun Shen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Wei Liu
- Hebei Zhitong Biopharmaceutical Co., Ltd, No. 1, Gucheng, Dingxing County, Hebei Province, 072656, PR China
| | - Dianzhui Zhang
- Hebei Zhitong Biopharmaceutical Co., Ltd, No. 1, Gucheng, Dingxing County, Hebei Province, 072656, PR China
| | - Laipeng He
- Hebei Zhitong Biopharmaceutical Co., Ltd, No. 1, Gucheng, Dingxing County, Hebei Province, 072656, PR China
| | - Lin Xie
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Tengjie Yu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China.
| | - Yan Liang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China.
| |
Collapse
|
2
|
Koehn LM, Nguyen KV, Tucker R, Lim YP, Chen X, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Microvascular Endothelial Components and Cytokines After Exposure to Hypoxia-Ischemia in Neonatal Rats. Mol Neurobiol 2024:10.1007/s12035-024-04594-7. [PMID: 39505805 DOI: 10.1007/s12035-024-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are neuroprotective and attenuate lipopolysaccharide (LPS)-mediated blood-brain barrier (BBB) disruption in neonatal rodents. We investigated some mechanism(s) fundamental to neuroprotection by IAIPs including changes in cerebral endothelial components and inflammation. Postnatal day-7 rats exposed to sham surgery and placebo or carotid ligation plus 8% FiO2 (90 min) were given IAIPs (30 or 60 mg/kg) or placebo and were killed 6, 12, 24, or 36 h after hypoxia-ischemia (HI). Proteins regulating BBB permeability to leukocytes (vascular cell adhesion molecule 1, VCAM-1), lipid-soluble (P-glycoprotein, PGP), and lipid-insoluble molecules (zonula occludens-1, ZO-1) were measured by immunoblot, and cytokines were measured in serum and cortex. HI resulted in reductions in ZO-1 and increases in VCAM-1, PGP, interferon-γ (IFN-γ), interleukin-12 (IL-12), vascular endothelial growth factor (VEGF), IL-α, and macrophage colony-stimulating factor (M-CSF) in cortex and increases in IL-4, IL-5, IL-10, and granulocyte colony-stimulating factor (G-CSF) in serum. IAIPs attenuated the reductions in ZO-1 and delayed increases in VCAM-1 and PGP in cortex and attenuated increases in cytokines in serum (IL-4, IL-5, IL-10, IFN-γ, G-CSF) and cortex (IL-1α, IL-12, IFN-γ, VEGF, M-CSF) after HI. We conclude that vascular endothelial proteins and cytokines exhibit sequential changes after HI and IAIPs modulate some of these HI-related changes in neonatal rats.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
- Present Address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kevin V Nguyen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Tassinari ID, Zang J, Ribeiro NH, Martins BB, Tauffer JVM, Nunes RR, Sanches EF, Sizonenko S, Netto CA, Paz AH, de Fraga LS. Lactate administration causes long-term neuroprotective effects following neonatal hypoxia-ischemia. Exp Neurol 2024; 381:114929. [PMID: 39168170 DOI: 10.1016/j.expneurol.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of mortality and long-term disabilities in newborns, and the only clinical approach to treat this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models of HI. Lactate is a preferential metabolic substrate of the neonatal brain and has already been shown to produce beneficial neuroprotective outcomes in neonatal animals exposed to HI. Here, we administered lactate as a treatment in neonatal rats previously exposed to HI and evaluated the impact of this treatment in adulthood. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to one of four experimental groups: HI, HI+LAC, SHAM, SHAM+LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI+LAC and SHAM+LAC groups, whereas HI and SHAM groups received vehicle. Animals were tested in the behavioral tasks of negative geotaxis and righting reflex (P8), cylinder test (P24), and the modified neurological severity score was calculated (P25). Open field (OF), and novel object recognition (NOR) were evaluated in adulthood. Animals were killed at P60, and the brains were harvested and processed to evaluate the volume of brain injury. Our results showed that lactate administration reduced the volume of brain lesion and improved sensorimotor and cognitive behaviors in neonatal, juvenile, and adult life in HI animals from both sexes. Thus, lactate administration might be considered as a potential neuroprotective strategy for the treatment of neonatal HI, which is a prevalent disorder affecting newborns.
Collapse
Affiliation(s)
- Isadora D'Ávila Tassinari
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Janaína Zang
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Nícolas Heller Ribeiro
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Bianca Büchele Martins
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - João Vitor Miotto Tauffer
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ricardo Ribeiro Nunes
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Bioquímica, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Ciências Morfológicas, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil.
| |
Collapse
|
4
|
Lee S, Kim SH, Kim HD, Lee JS, Ko A, Kang HC. Genetic Diagnosis in Neonatal Encephalopathy With Hypoxic Brain Damage Using Targeted Gene Panel Sequencing. J Clin Neurol 2024; 20:519-528. [PMID: 39227335 PMCID: PMC11372210 DOI: 10.3988/jcn.2023.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Neonatal encephalopathy (NE) is a neurological syndrome that presents with severe neurological impairments and complications. Hypoxic-ischemic encephalopathy is a major contributor to poor outcomes, being responsible for 50%-80% of admissions to neonatal intensive care units. However, some cases of NE accompanied by hypoxic brain damage cannot be solely attributed to hypoxia-ischemia. We aimed to identify diverse pathogenic genetic variations that may be associated with cases of NE accompanied by hypoxic brain damage rather than hypoxia-ischemia. METHODS We collected data from 34 patients diagnosed with NE accompanied by hypoxic brain damage over a 10-year period. Patients with the following specific conditions were excluded: 1) premature birth (<32 weeks), 2) no history of hypoxic events, 3) related anomalies, 4) neonatal infections, 5) antenatal or perinatal obstetrical complications, 6) severe hypoxia due to other medical conditions, and 7) early death (within 1 week). A comprehensive review of clinical and radiological features was conducted. RESULTS A genetic diagnosis was made in 11 (32.4%) patients, with pathogenic variants being identified in the following 9 genes: CACNA1A (n=2), KCNQ2 (n=2), SCN2A (n=1), SCN8A (n=1), STXBP1 (n=1), NSD1 (n=1), PURA (n=1), ZBTB20 (n=1), and ENG (n=1). No specific treatment outcomes or clinical features other than preterm birth were associated with the results of the genetic analyses. Personalized treatments based on the results of genetic tests were attempted, such as the administration of sodium-channel blockers in patients with KCNQ2 or SCN8A variants and the implementation of a ketogenic diet in patients with STXBP1 or SCN2A mutations, which demonstrated some degree of effectiveness in these patients. CONCLUSIONS Genetic analyses may help in diagnosing the underlying etiology of NE and concurrent hypoxic brain damage, irrespective of the initial clinical features.
Collapse
Affiliation(s)
- Sangbo Lee
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Feng Y, Huang Z, Ma X, Zong X, Xu P, Lin HW, Zhang Q. Intermittent theta-burst stimulation alleviates hypoxia-ischemia-caused myelin damage and neurologic disability. Exp Neurol 2024; 378:114821. [PMID: 38782349 PMCID: PMC11214828 DOI: 10.1016/j.expneurol.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Neonatal hypoxia-ischemia (HI) results in behavioral deficits, characterized by neuronal injury and retarded myelin formation. To date, limited treatment methods are available to prevent or alleviate neurologic sequelae of HI. Intermittent theta-burst stimulation (iTBS), a non-invasive therapeutic procedure, is considered a promising therapeutic tool for treating some neurocognitive disorders and neuropsychiatric diseases. Hence, this study aims to investigate whether iTBS can prevent the negative behavioral manifestations of HI and explore the mechanisms for associations. We exposed postnatal day 10 Sprague-Dawley male and female rats to 2 h of hypoxia (6% O2) following right common carotid artery ligation, resulting in oligodendrocyte (OL) dysfunction, including reduced proliferation and differentiation of oligodendrocyte precursor cells (OPCs), decreased OL survival, and compromised myelin in the corpus callosum (CC) and hippocampal dentate gyrus (DG). These alterations were concomitant with cognitive dysfunction and depression-like behaviors. Crucially, early iTBS treatment (15 G, 190 s, seven days, initiated one day post-HI) significantly alleviated HI-caused myelin damage and mitigated the neurologic sequelae both in male and female rats. However, the late iTBS treatment (initiated 18 days after HI insult) could not significantly impact these behavioral deficits. In summary, our findings support that early iTBS treatment may be a promising strategy to improve HI-induced neurologic disability. The underlying mechanisms of iTBS treatment are associated with promoting the differentiation of OPCs and alleviating myelin damage.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, College of Pharmacy, 715 Sumter Street, CLS609D, Columbia, SC 29208, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA.
| |
Collapse
|
6
|
Ren SY, Xia Y, Yu B, Lei QJ, Hou PF, Guo S, Wu SL, Liu W, Yang SF, Jiang YB, Chen JF, Shen KF, Zhang CQ, Wang F, Yan M, Ren H, Yang N, Zhang J, Zhang K, Lin S, Li T, Yang QW, Xiao L, Hu ZX, Mei F. Growth hormone promotes myelin repair after chronic hypoxia via triggering pericyte-dependent angiogenesis. Neuron 2024; 112:2177-2196.e6. [PMID: 38653248 DOI: 10.1016/j.neuron.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.
Collapse
Affiliation(s)
- Shu-Yu Ren
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Xia
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qi-Jing Lei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng-Fei Hou
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sheng Guo
- Department of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Ling Wu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shao-Fan Yang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi-Bin Jiang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mi Yan
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China
| | - Hong Ren
- Department of Emergence, 5(th) People's Hospital of Chongqing, Chongqing 400062, China
| | - Nian Yang
- Department of Physiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Zhang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhang-Xue Hu
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China.
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
7
|
Wu L, Chang E, Zhao H, Ma D. Regulated cell death in hypoxic-ischaemic encephalopathy: recent development and mechanistic overview. Cell Death Discov 2024; 10:277. [PMID: 38862503 PMCID: PMC11167026 DOI: 10.1038/s41420-024-02014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) in termed infants remains a significant cause of morbidity and mortality worldwide despite the introduction of therapeutic hypothermia. Depending on the cell type, cellular context, metabolic predisposition and insult severity, cell death in the injured immature brain can be highly heterogenous. A continuum of cell death exists in the H/I-injured immature brain. Aside from apoptosis, emerging evidence supports the pathological activation of necroptosis, pyroptosis and ferroptosis as alternative regulated cell death (RCD) in HIE to trigger neuroinflammation and metabolic disturbances in addition to cell loss. Upregulation of autophagy and mitophagy in HIE represents an intrinsic neuroprotective strategy. Molecular crosstalk between RCD pathways implies one RCD mechanism may compensate for the loss of function of another. Moreover, mitochondrion was identified as the signalling "hub" where different RCD pathways converge. The highly-orchestrated nature of RCD makes them promising therapeutic targets. Better understanding of RCD mechanisms and crosstalk between RCD subtypes likely shed light on novel therapy development for HIE. The identification of a potential RCD converging node may open up the opportunity for simultaneous and synergistic inhibition of cell death in the immature brain.
Collapse
Affiliation(s)
- Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
- Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
8
|
Simpson S, Steinmeyer S, Nguyen T, Nienaber T. Positive outcome in a patient with severe hypoxic-ischaemic encephalopathy. BMJ Case Rep 2024; 17:e259877. [PMID: 38839399 DOI: 10.1136/bcr-2024-259877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
A male infant was born at 40 and 4/7 weeks of gestation via caesarean section for non-reassuring foetal heart tracing. The infant was non-responsive in the delivery room. with no heart rate detected until 40 min of life. The infant's physical examination and laboratory findings were consistent with severe hypoxic-ischaemic encephalopathy. Given the presumption of a very poor neurological prognosis, redirection to comfort care was recommended to the family. However, the family opted for intensive care. The infant underwent therapeutic hypothermia and management of multiorgan dysfunction. The infant survived with no findings of ischaemic injury on MRI and was discharged with no respiratory support and taking all feeds by mouth, with normal development at a year and a half of age. This case report demonstrates the imperative to understand family goals and to acknowledge the need for ongoing humility in providing prognostication for families.
Collapse
Affiliation(s)
- Samantha Simpson
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shelby Steinmeyer
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Timothy Nguyen
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas Nienaber
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Poupon-Bejuit L, Geard A, Millicheap N, Rocha-Ferreira E, Hagberg H, Thornton C, Rahim AA. Diabetes drugs activate neuroprotective pathways in models of neonatal hypoxic-ischemic encephalopathy. EMBO Mol Med 2024; 16:1284-1309. [PMID: 38783166 PMCID: PMC11178908 DOI: 10.1038/s44321-024-00079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.
Collapse
Affiliation(s)
- Laura Poupon-Bejuit
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Amy Geard
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Nathan Millicheap
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
10
|
Srivastava T, Nguyen H, Haden G, Diba P, Sowa S, LaNguyen N, Reed-Dustin W, Zhu W, Gong X, Harris EN, Baltan S, Back SA. TSG-6-Mediated Extracellular Matrix Modifications Regulate Hypoxic-Ischemic Brain Injury. J Neurosci 2024; 44:e2215232024. [PMID: 38569926 PMCID: PMC11112645 DOI: 10.1523/jneurosci.2215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Hung Nguyen
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Gage Haden
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Parham Diba
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Steven Sowa
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Norah LaNguyen
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - William Reed-Dustin
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Wenbin Zhu
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Xi Gong
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Selva Baltan
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
- Department of Neurology, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| |
Collapse
|
11
|
Lavrentev SN, Petrova AS, Serova OF, Vishnyakova P, Kondratev MV, Gryzunova AS, Zakharova NI, Zubkov VV, Silachev DN. Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:591. [PMID: 38790586 PMCID: PMC11119551 DOI: 10.3390/children11050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Brain injury resulting from adverse events during pregnancy and delivery is the leading cause of neonatal morbidity and disability. Surviving neonates often suffer long-term motor, sensory, and cognitive impairments. Birth asphyxia is among the most common causes of neonatal encephalopathy. The integration of ultrasound, including Doppler ultrasound, and near-infrared spectroscopy (NIRS) offers a promising approach to understanding the pathology and diagnosis of encephalopathy in this special patient population. Ultrasound diagnosis can be very helpful for the assessment of structural abnormalities associated with neonatal encephalopathy such as alterations in brain structures (intraventricular hemorrhage, infarcts, hydrocephalus, white matter injury) and evaluation of morphologic changes. Doppler sonography is the most valuable method as it provides information about blood flow patterns and outcome prediction. NIRS provides valuable insight into the functional aspects of brain activity by measuring tissue oxygenation and blood flow. The combination of ultrasonography and NIRS may produce complementary information on structural and functional aspects of the brain. This review summarizes the current state of research, discusses advantages and limitations, and explores future directions to improve applicability and efficacy.
Collapse
Affiliation(s)
- Simeon N. Lavrentev
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Anastasia S. Petrova
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Olga F. Serova
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
| | - Polina Vishnyakova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maxim V. Kondratev
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
| | - Anastasia S. Gryzunova
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Nina I. Zakharova
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
| | - Victor V. Zubkov
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Denis N. Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Yuliati A, Zayek M, Maertens P. The Impact of Phenobarbital on the Ability of Electroencephalogram to Predict Adverse Outcome in Asphyxiated Neonates during Therapeutic Hypothermia. Am J Perinatol 2024; 41:e1681-e1688. [PMID: 37186086 DOI: 10.1055/s-0043-1768487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Classification of electroencephalogram (EEG) background has been established to predict outcome in neonates with hypoxic ischemic encephalopathy (HIE). However, the impact of phenobarbital therapy on the predictability of EEG background has not been studied. Our objective is to determine if EEG background after treatment with phenobarbital during therapeutic hypothermia (TH) remains a good predictor for brain injury in neonates with HIE. STUDY DESIGN This is a single-center, retrospective study of consecutive neonates with HIE who underwent TH and EEG monitoring from October 2017 to March 2021. Per institutional protocol, all infants received a dose of prophylactic phenobarbital and bumetanide therapy at the onset of TH for sedative and neuroprotective measures. The initial 3 hours of EEG background activity was classified based on national guidelines. Infants were separated into two groups based on EEG background scores: group 1 (normal-mild, n = 30) and group 2 (moderate-severe, n = 36). Brain magnetic resonance imaging (MRI) results were scored based on the National Institute of Child Health and Human Development (NICHD) criteria. Adverse outcomes were defined as death before MRI or NICHD brain injury score > 1A. RESULTS Infants in group 2 had lower Apgar scores at 5 minutes of age, severe acidemia, moderate to severe encephalopathy score, and earlier initiation of EEG monitoring than infants in group 1. Moderate to severe EEG background score was associated with presence of brain injury on MRI or death (p = 0.003), and this association remained significant even after adjustment for independent risk factors (odds ratio = 56.24 [95% confidence interval = 1.841-1718], p = 0.021). CONCLUSION Phenobarbital therapy does not affect the ability of EEG to predict adverse outcome in infants with perinatal asphyxia during TH. KEY POINTS · EEG has a clinical utility for predicting outcome in neonates with hypoxia-ischemia.. · Phenobarbital therapy is commonly used in neonates, and may impact EEG background findings.. · In spite phenobarbital therapy, moderate to severe EEG background abnormalities in infants with perinatal asphyxia during TH remain an excellent predictor for poor outcome..
Collapse
Affiliation(s)
- Asri Yuliati
- Division of Pediatric Neurology, Department of Pediatrics, University of South Alabama, Mobile, Alabama
| | - Michael Zayek
- Department of Pediatrics, Division of Neonatology, University of South Alabama, Mobile, Alabama
| | - Paul Maertens
- Division of Pediatric Neurology, Department of Pediatrics, University of South Alabama, Mobile, Alabama
| |
Collapse
|
13
|
Anderberg RH, Andersson EA, Bucher V, Preissner KT, Mallard C, Ek CJ. Treatment with RNase alleviates brain injury but not neuroinflammation in neonatal hypoxia/ischemia. J Neurosci Res 2024; 102:e25329. [PMID: 38597144 DOI: 10.1002/jnr.25329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E Axel Andersson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bucher
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klaus T Preissner
- Department of Cardiology, Medical School, Kerckhoff-Heart Research Institute, Justus-Liebig-University, Giessen, Germany
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Gunn AJ, Soul JS, Vesoulis ZA, Ferriero DM. The importance of not increasing confusion around neonatal encephalopathy and hypoxic-ischemic encephalopathy. Pediatr Res 2024; 95:871-872. [PMID: 38158415 DOI: 10.1038/s41390-023-03001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Janet S Soul
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Donna M Ferriero
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Geng J, Feng J, Ke F, Fang F, Jing X, Tang J, Fang C, Zhang B. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress. Aging (Albany NY) 2024; 16:2828-2847. [PMID: 38319722 PMCID: PMC10911356 DOI: 10.18632/aging.205513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNA-124 (miR-124) is implicated in various neurological diseases; however, its significance in hypoxic-ischaemic brain damage (HIBD) remains unclear. This study aimed to elucidate the underlying pathophysiological mechanisms of miR-124 in HIBD. In our study performed on oxygen-glucose deprivation followed by reperfusion (OGD)/R-induced primary cortical neurons, a substantial reduction in miR-124 was observed. Furthermore, the upregulation of miR-124 significantly mitigated oxidative stress, apoptosis, and mitochondrial impairment. We demonstrated that miR-124 interacts with the signal transducer and activator of transcription 3 (STAT3) to exert its biological function using the dual-luciferase reporter gene assay. As the duration of OGD increased, miR-124 exhibited a negative correlation with STAT3. STAT3 overexpression notably attenuated the protective effects of miR-124 mimics, while knockdown of STAT3 reversed the adverse effects of the miR-124 inhibitor. Subsequently, we conducted an HIBD model in rats. In vivo experiments, miR-124 overexpression attenuated cerebral infarction volume, cerebral edema, apoptosis, oxidative stress, and improved neurological function recovery in HIBD rats. In summary, the neuroprotective effects of the miR-124/STAT3 axis were confirmed in the HIBD model. MiR-124 may serve as a potential biomarker with significant therapeutic implications for HIBD.
Collapse
Affiliation(s)
- Jiaqing Geng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Fangzi Ke
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Fang Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Xiaoqi Jing
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiaxin Tang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Binghong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| |
Collapse
|
16
|
Liu L, Yang Y, Wu T, Du J, Long F. NKG2D knockdown improves hypoxic-ischemic brain damage by inhibiting neuroinflammation in neonatal mice. Sci Rep 2024; 14:2326. [PMID: 38282118 PMCID: PMC10822867 DOI: 10.1038/s41598-024-52780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal death and neurological dysfunction. Neuroinflammation is identified as one of the crucial pathological mechanisms after HIBD, and natural killer group 2 member D (NKG2D) is reported to be implicated in the pathogenesis of immunoinflammatory diseases. However, the role of NKG2D in neonatal HIBD is seldomly investigated. In this study, a neonatal mice model of HIBD was induced, and the role of the NKG2D in neuroinflammation and brain injury was explored by intracerebroventricular injection of lentivirus to knockdown NKG2D in neonatal mice with HIBD. The results showed that a significant increase in NKG2D protein level in the brain of neonatal mice with HIBD. The NKG2D knockdown in the brain significantly alleviated cerebral infarction, neurobehavioral deficits, and neuronal loss in neuronal HIBD. Moreover, the neuroprotective effect of NKG2D knockdown was associated with inhibition of the activation of microglia and astrocytes, expression of NKG2D ligands (NKG2DLs) and DAP10, and the nuclear translocation of NF-κB p65. Our findings reveal NKG2D knockdown may exert anti-inflammatory and neuroprotective effects in the neonatal mice with HIBD through downregulation of NKG2D/NKG2DLs/DAP10/NF-κB pathway. These results suggest that NKG2D may be a potential target for the treatment of neonatal HIBD.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yuxin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Fangyi Long
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Chanana V, Hackett M, Deveci N, Aycan N, Ozaydin B, Cagatay NS, Hanalioglu D, Kintner DB, Corcoran K, Yapici S, Camci F, Eickhoff J, Frick KM, Ferrazzano P, Levine JE, Cengiz P. TrkB-mediated sustained neuroprotection is sex-specific and Erα-dependent in adult mice following neonatal hypoxia ischemia. Biol Sex Differ 2024; 15:1. [PMID: 38178264 PMCID: PMC10765746 DOI: 10.1186/s13293-023-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of life-long neurological morbidities that result in learning and memory impairments. Evidence suggests that male neonates are more susceptible to the detrimental effects of HI, yet the mechanisms mediating these sex-specific responses to neural injury in neonates remain poorly understood. We previously tested the effects of treatment with a small molecule agonist of the tyrosine kinase B receptor (TrkB), 7,8-dihydroxyflavone (DHF) following neonatal HI and determined that females, but not males exhibit increased phosphorylation of TrkB and reduced apoptosis in their hippocampi. Moreover, these female-specific effects of the TrkB agonist were found to be dependent upon the expression of Erα. These findings demonstrated that TrkB activation in the presence of Erα comprises one pathway by which neuroprotection may be conferred in a female-specific manner. The goal of this study was to determine the role of Erα-dependent TrkB-mediated neuroprotection in memory and anxiety in young adult mice exposed to HI during the neonatal period. METHODS In this study, we used a unilateral hypoxic ischemic (HI) mouse model. Erα+/+ or Erα-/- mice were subjected to HI on postnatal day (P) 9 and mice were treated with either vehicle control or the TrkB agonist, DHF, for 7 days following HI. When mice reached young adulthood, we used the novel object recognition, novel object location and open field tests to assess long-term memory and anxiety-like behavior. The brains were then assessed for tissue damage using immunohistochemistry. RESULTS Neonatal DHF treatment prevented HI-induced decrements in recognition and location memory in adulthood in females, but not in males. This protective effect was absent in female mice lacking Erα. The female-specific improved recognition and location memory outcomes in adulthood conferred by DHF therapy after neonatal HI tended to be or were Erα-dependent, respectively. Interestingly, DHF triggered anxiety-like behavior in both sexes only in the mice that lacked Erα. When we assessed the severity of injury, we found that DHF therapy did not decrease the percent tissue loss in proportion to functional recovery. We additionally observed that the presence of Erα significantly reduced overall HI-associated mortality in both sexes. CONCLUSIONS These observations provide evidence for a therapeutic role for DHF in which TrkB-mediated sustained recovery of recognition and location memories in females are Erα-associated and dependent, respectively. However, the beneficial effects of DHF therapy did not include reduction of gross tissue loss but may be derived from the enhanced functioning of residual tissues in a cell-specific manner.
Collapse
Affiliation(s)
- Vishal Chanana
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Margaret Hackett
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nazli Deveci
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nur Aycan
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
| | - Burak Ozaydin
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nur Sena Cagatay
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Damla Hanalioglu
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
| | - Douglas B Kintner
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Karson Corcoran
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sefer Yapici
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Furkan Camci
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
| | - Jens Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Peter Ferrazzano
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Logsdon AF, Erickson MA, Herbert MJ, Noonan C, Foresi BD, Qiu J, Lim YP, Banks WA, Stonestreet BS. Inter-alpha inhibitor proteins attenuate lipopolysaccharide-induced blood-brain barrier disruption in neonatal mice. Exp Neurol 2023; 370:114563. [PMID: 37806514 DOI: 10.1016/j.expneurol.2023.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice. We hypothesized that LPS also disrupts the function of the BBB in neonatal mice and that IAIPs attenuate the LPS-induced BBB disruption in male and female neonatal mice. IAIPs were administered to neonatal mice after LPS and BBB permeability quantified with intravenous 14C-sucrose and 99mTc-albumin. Although repeated high doses (3 mg/kg) of LPS in neonates resulted in high mortality rates and a robust increase in BBB permeability, repeated lower doses (1 mg/kg) of LPS resulted in lower mortality rates and disruption of the BBB in both male and female neonates. IAIP treatment attenuated disruption of the BBB similarly to sucrose and albumin after exposure to low-dose LPS in neonatal mice. Exposure to low-dose LPS elevated IAIP concentrations in blood, but it did not appear to increase the systemic levels of Pre-alpha inhibitor (PaI), one of the family members of the IAIPs that contains heavy chain 3. We conclude that IAIPs attenuate LPS-related disruption of the BBB in both male and female neonatal mice.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Melanie J Herbert
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian D Foresi
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI 02903, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA; Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Barbara S Stonestreet
- The Alpert Medical School of Brown University, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
| |
Collapse
|
19
|
Turner MJ, Dietz RM. Potential Adjuncts to Therapeutic Hypothermia to Mitigate Multiorgan Injury in Perinatal Hypoxia-Ischemia. Neoreviews 2023; 24:e771-e782. [PMID: 38036441 DOI: 10.1542/neo.24-12-e771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Over the last 2 decades, therapeutic hypothermia has become the standard of care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischemic encephalopathy (HIE). There is a significant interest in improving the neurologic outcomes of neonatal HIE, ranging from adjunctive therapy to therapeutic hypothermia. Importantly, the pathophysiologic mechanisms underlying HIE also affect multiple other organs, contributing to high morbidity and mortality in this patient population. This review focuses on the adjunct therapies currently under investigation to mitigate the impact of hypoxic-ischemic injury on the brain, kidneys, liver, heart, and gastrointestinal system.
Collapse
Affiliation(s)
- Megan J Turner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, Denver Health Medical Center, Denver, CO
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
20
|
Chen A, Hua J, Yuan J, Feng Y, Chen F, Zhou Y, Han T, Jiang W, Chen H. Ginkgolide B promotes spontaneous recovery and enhances endogenous netrin-1 after neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci 2023; 83:740-752. [PMID: 37771243 DOI: 10.1002/jdn.10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES Perinatal hypoxic-ischemic encephalopathy (HIE) is a condition that can lead to long-term cognitive, motor, and behavioral impairments in newborns. Although brain hypothermia therapy is currently the standard treatment for HIE, it does not provide complete neuroprotection. As a result, there is a need to explore additional therapies to enhance treatment outcomes. This study aims to investigate the potential role of Ginkgolide B (GB) in promoting neuroplasticity and facilitating spontaneous recovery after HIE. METHODS In this study, we employed a neonatal rat model of HIE to investigate the effects of GB on spontaneous recovery. GB treatment was initiated 24 h after hypoxia and administered continuously for a duration of 14 days. We evaluated several outcome measures after the treatment period, including spontaneous behavioral recovery and brain repair. Additionally, we quantified the levels of netrin-1 in both plasma and the peri-ischemic zone after the occurrence of HIE. RESULTS We found that GB treatment significantly facilitated spontaneous behavioral recovery in the HIE pups. Furthermore, cognitive function was restored, and brain tissue repair had a noticeable acceleration. We observed increased cell proliferation in the subventricular, stratum, and subgranular zones. Of particular interest, we observed elevated levels of netrin-1 in both plasma and the ischemic penumbra following GB treatment. CONCLUSION Our findings suggest that GB promotes neuroplasticity and enhances spontaneous recovery in newborns affected by HIE. The observed upregulation of netrin-1 may be crucial in mediating these effects. These results highlight the promising potential of GB as a post-HIE therapy, particularly in enhancing spontaneous recovery and improving long-term outcomes.
Collapse
Affiliation(s)
- Aiming Chen
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Jun Hua
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jun Yuan
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Yajuan Feng
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Fengzhan Chen
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Yongqin Zhou
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Ting Han
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Weiwei Jiang
- Department of Pediatrics, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Huiping Chen
- Department of Vasculocardiology, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| |
Collapse
|
21
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. Biol Sex Differ 2023; 14:81. [PMID: 37951901 PMCID: PMC10640736 DOI: 10.1186/s13293-023-00557-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Gestational sleep apnea is a hypoxic sleep disorder that affects 8-26% of pregnancies and increases the risk for central nervous system dysfunction in offspring. Specifically, there are sex differences in the sensitivity of the fetal hippocampus to hypoxic insults, and hippocampal impairments are associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. Yet, it is unclear whether gestational sleep apnea impacts these hippocampal-associated functions and if sex and age modify these effects. To examine the relationship between gestational sleep apnea and hippocampal-associated behaviors, we used chronic intermittent hypoxia (CIH) to model late gestational sleep apnea in pregnant rats. We hypothesized that late gestational CIH would produce sex- and age-specific social, anxiety-like, repetitive, and cognitive impairments in offspring. METHODS Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine gestational hypoxia-induced behavioral phenotypes, we quantified hippocampal-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal neuronal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, early growth response protein 1, and doublecortin), and circulating hormones in offspring. RESULTS Late gestational CIH induced sex- and age-specific differences in social, repetitive, and memory functions in offspring. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and elevated circulating corticosterone levels but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH on social behaviors were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed in anxiety-like behaviors, hippocampal neuronal activity, or circulating testosterone and estradiol levels, regardless of sex or age of offspring. CONCLUSIONS Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for behavioral and physiological outcomes in offspring, such as social dysfunction, repetitive behaviors, and cognitive impairment, that are dependent on sex and age.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Edward Vera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Departments of Basic Sciences, Gynecology and Obstetrics, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
22
|
Russ JB, Ostrem BEL. Acquired Brain Injuries Across the Perinatal Spectrum: Pathophysiology and Emerging Therapies. Pediatr Neurol 2023; 148:206-214. [PMID: 37625929 DOI: 10.1016/j.pediatrneurol.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The development of the central nervous system can be directly disrupted by a variety of acquired factors, including infectious, inflammatory, hypoxic-ischemic, and toxic insults. Influences external to the fetus also impact neurodevelopment, including placental health, maternal comorbidities, adverse experiences, environmental exposures, and social determinants of health. Acquired perinatal brain insults tend to affect the developing brain in a stage-specific manner that reflects the susceptible cell types, developmental processes, and risk factors present at the time of the insult. In this review, we discuss the pathophysiology, neurodevelopmental outcomes, and management of common acquired perinatal brain conditions. In the fetal brain, we divide insults based on trimester, and in the postnatal brain, we focus on common pathologies that have a presentation dependent on gestational age at birth: white matter injury and germinal matrix hemorrhage/intraventricular hemorrhage in preterm infants and hypoxic-ischemic encephalopathy in term infants. Although specific treatments for fetal and newborn brain disorders are currently limited, we emphasize therapies in preclinical or early clinical phases of the development pipeline. The growing number of novel cell type- and stage-specific emerging therapies suggests that in the near future we may have a dramatically improved ability to treat acquired perinatal brain disorders and to mitigate the associated neurodevelopmental consequences.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Bridget E L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
23
|
Pavlov V, Papazovska Cherepnalkovski A, Marcic M, Marcic L, Kuzmanic Samija R. The Association of Different Genetic Variants with the Development of Hypoxic-Ischemic Encephalopathy. Biomedicines 2023; 11:2795. [PMID: 37893168 PMCID: PMC10603921 DOI: 10.3390/biomedicines11102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study is to investigate the frequency of six tag SNPs (single nucleotide polymorphisms) within specific genes (F2, F5, F7, MTHFR, NOS2A, PAI 2-1, PAI 2-2, and PAI 3-3): F2 (rs1799963), F5 (rs6025), F7 (rs6046), NOS 2 (rs1137933), PAI 2 (SERPINB2) (rs6103), MTHFR (rs1801133). The study also investigates their association with the development and severity of HIE. The genes F2, F5, and F7 code for proteins involved in blood clotting. MTHFR is a gene that plays a significant role in processing amino acids, the fundamental building blocks of proteins. NOS2A, PAI 2-1, PAI 2-2, and PAI 3-3 are genes involved in the regulation of various physiological processes, such as the relaxation of smooth muscle, regulation of central blood pressure, vasodilatation, and synaptic plasticity. Changes in these genes may be associated with brain injury. This retrospective study included 279 participants, of which 132 participants had Hypoxic-Ischemic Encephalopathy (HIE) and 147 subjects were in the control group. Our study found that certain genetic variants in the rs61103 and rs1137933 polymorphisms were associated with hypoxic-ischemic encephalopathy (HIE) and the findings of the magnetic resonance imaging. There was a correlation between Apgar scores and the degree of damage according to the ultrasound findings. These results highlight the complex relationship between genetic factors, clinical parameters, and the severity of HIE.
Collapse
Affiliation(s)
- Vesna Pavlov
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia;
| | - Anet Papazovska Cherepnalkovski
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia;
- University Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Marino Marcic
- Department of Neurology, Clinical Hospital Center Split, 21000 Split, Croatia;
| | - Ljiljana Marcic
- Department of Radiology, Polyclinic Medikol, 10000 Zagreb, Croatia;
| | | |
Collapse
|
24
|
Gaston-Breton R, Maïza Letrou A, Hamoudi R, Stonestreet BS, Mabondzo A. Brain organoids for hypoxic-ischemic studies: from bench to bedside. Cell Mol Life Sci 2023; 80:318. [PMID: 37804439 PMCID: PMC10560197 DOI: 10.1007/s00018-023-04951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Auriane Maïza Letrou
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara S Stonestreet
- Departments of Molecular Biology, Cell Biology and Biochemistry and Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
25
|
Hencz A, Magony A, Thomas C, Kovacs K, Szilagyi G, Pal J, Sik A. Mild hypoxia-induced structural and functional changes of the hippocampal network. Front Cell Neurosci 2023; 17:1277375. [PMID: 37841285 PMCID: PMC10576450 DOI: 10.3389/fncel.2023.1277375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Hypoxia causes structural and functional changes in several brain regions, including the oxygen-concentration-sensitive hippocampus. We investigated the consequences of mild short-term hypoxia on rat hippocampus in vivo. The hypoxic group was treated with 16% O2 for 1 h, and the control group with 21% O2. Using a combination of Gallyas silver impregnation histochemistry revealing damaged neurons and interneuron-specific immunohistochemistry, we found that somatostatin-expressing inhibitory neurons in the hilus were injured. We used 32-channel silicon probe arrays to record network oscillations and unit activity from the hippocampal layers under anaesthesia. There were no changes in the frequency power of slow, theta, beta, or gamma bands, but we found a significant increase in the frequency of slow oscillation (2.1-2.2 Hz) at 16% O2 compared to 21% O2. In the hilus region, the firing frequency of unidentified interneurons decreased. In the CA3 region, the firing frequency of some unidentified interneurons decreased while the activity of other interneurons increased. The activity of pyramidal cells increased both in the CA1 and CA3 regions. In addition, the regularity of CA1, CA3 pyramidal cells' and CA3 type II and hilar interneuron activity has significantly changed in hypoxic conditions. In summary, a low O2 environment caused profound changes in the state of hippocampal excitatory and inhibitory neurons and network activity, indicating potential changes in information processing caused by mild short-term hypoxia.
Collapse
Affiliation(s)
- Alexandra Hencz
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Andor Magony
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
| | - Chloe Thomas
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Krisztina Kovacs
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gabor Szilagyi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Hungary
| | - Jozsef Pal
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Baldari B, De Simone S, Cipolloni L, Frisoni P, Alfieri L, D’Errico S, Fineschi V, Turillazzi E, Greco P, Vitagliano A, Scutiero G, Neri M. Oxidative Stress Markers in Human Brain and Placenta May Reveal the Timing of Hypoxic-Ischemic Injury: Evidence from an Immunohistochemical Study. Int J Mol Sci 2023; 24:12221. [PMID: 37569597 PMCID: PMC10418753 DOI: 10.3390/ijms241512221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
During pregnancy, reactive oxygen species (ROS) serve as crucial signaling molecules for fetoplacental circulatory physiology. Oxidative stress is thought to sustain the pathogenesis and progression of hypoxic-ischemic encephalopathy (HIE). A retrospective study was performed on the brains and placentas of fetuses and newborns between 36-42 weeks of gestation (Group_1: Fetal intrauterine deaths, Group_2: Intrapartum deaths, Group_3: Post-partum deaths, Control group sudden neonatal death); all groups were further divided into two subgroups (Subgroup_B [brain] and Subgroup_P [placenta]), and the study was conducted through the immunohistochemical investigations of markers of oxidative stress (NOX2, 8-OHdG, NT, iNOS), IL-6, and only on the brain samples, AQP4. The results for the brain samples suggest that NOX2, 8-OHdG, NT, iNOS, and IL-6 were statistically significantly expressed above the controls. iNOS was more expressed in the fetal intrauterine death (Group_1) and less expressed in post-partum death (Group_3), while in intrapartum death (Group_2), the immunoreactivity was very low. IL-6 showed the highest expression in the brain cortex of the fetal intrauterine death (Group_1), while intrapartum death (Group_2) and post-partum death (Group_3) showed weak immunoreactivity. Post-partum death (Group_3) placentas showed the highest immunoreactivity to NOX2, which was almost double that of the fetal intrauterine death (Group_1) and intrapartum death (Group_2) placentas. Placental tissues of fetal intrauterine death (Group_1) and intrapartum death (Group_2) showed higher expression of iNOS than post-partum death (Group_3), while the IL-6 expression was higher in the fetal intrauterine death (Group_1) than the post-partum death (Group_3). The AQP4 was discarded as a possible marker because the immunohistochemical reaction in the three groups of cases and the control group was negative. The goal of this study, from the point of view of forensic pathology, is to provide scientific evidence in cases of medical liability in the Obstetric field to support the clinical data of the timing of HIE.
Collapse
Affiliation(s)
- Benedetta Baldari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (B.B.); (V.F.)
| | - Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Viale Europa 12, 71122 Foggia, Italy; (S.D.S.); (L.C.)
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Viale Europa 12, 71122 Foggia, Italy; (S.D.S.); (L.C.)
| | - Paolo Frisoni
- Unit of Legal Medicine, Azienda USL di Ferrara, Via Arturo Cassoli 30, 44121 Ferrara, Italy;
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Stefano D’Errico
- Department of Medicine, Surgery and Health, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (B.B.); (V.F.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Via Roma, 55/57, 56126 Pisa, Italy;
| | - Pantaleo Greco
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (P.G.); (G.S.)
| | - Amerigo Vitagliano
- 1st Unit of Obstetrics and Gynecology, Department of Biomedical and Human Oncological Science (DIMO), University of Bari, Policlinico, Piazza Giulio Cesare, 11, 70124 Bari, Italy;
| | - Gennaro Scutiero
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy; (P.G.); (G.S.)
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| |
Collapse
|
27
|
Mietzsch U, Flibotte JJ, Law JB, Puia-Dumitrescu M, Juul SE, Wood TR. Temperature dysregulation during therapeutic hypothermia predicts long-term outcome in neonates with HIE. J Cereb Blood Flow Metab 2023; 43:1180-1193. [PMID: 36883364 PMCID: PMC10291460 DOI: 10.1177/0271678x231162174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Few reliable or easily obtainable biomarkers to predict long-term outcome in infants with hypoxic-ischemic encephalopathy (HIE) have been identified. We previously showed that mattress temperature (MT), as proxy for disturbed temperature regulation during therapeutic hypothermia (TH), predicts injury on early MRI and holds promise as physiologic biomarker. To determine whether MT in neonates treated with TH for moderate-severe HIE is associated with long-term outcome at 18-22 months, we performed a secondary analysis of the Optimizing Cooling trial using MT data from 167 infants treated at a core temperature of 33.5°C. Median MTs from four time-epochs (0-6 h, 6-24 h, 24-48 h, and 48-72 h of TH) were used to predict death or moderate-severe neurodevelopmental impairment (NDI), using epoch-specific derived and validated MT cutoffs. Median MT of infants who died or survived with NDI was consistently 1.5-3.0°C higher throughout TH. Infants requiring a median MT above the derived cut-offs had a significantly increased odds of death or NDI, most notably at 0-6 h (aOR 17.0, 95%CI 4.3-67.4). By contrast, infants who remained below cut-offs across all epochs had 100% NDI-free survival. MTs in neonates with moderate-severe HIE during TH are highly predictive of long-term outcome and can be used as physiologic biomarker.
Collapse
Affiliation(s)
- Ulrike Mietzsch
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - John J Flibotte
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Janessa B Law
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Mihai Puia-Dumitrescu
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Thomas R Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. RESEARCH SQUARE 2023:rs.3.rs-2507737. [PMID: 37333114 PMCID: PMC10275064 DOI: 10.21203/rs.3.rs-2507737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Gestational sleep apnea affects 8-26% of pregnancies and can increase the risk for autism spectrum disorder (ASD) in offspring. ASD is a neurodevelopmental disorder associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. To examine the relationship between gestational sleep apnea and ASD-associated behaviors, we used a chronic intermittent hypoxia (CIH) protocol between gestational days (GD) 15-19 in pregnant rats to model late gestational sleep apnea. We hypothesized that late gestational CIH would produce sex- and age-specific social, mood, and cognitive impairments in offspring. Methods Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine ASD-associated phenotypes, we quantified ASD-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, EGR-1, and doublecortin), and circulating hormones in offspring. Results Late gestational CIH induced sex- and age-specific differences in social, repetitive and memory functions in offspring. These effects were mostly transient and present during puberty. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and increased circulating corticosterone levels, but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed on anxiety-like behaviors, hippocampal activity, circulating testosterone levels, or circulating estradiol levels, regardless of sex or age of offspring. Conclusions Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for ASD-associated behavioral and physiological outcomes, such as pubertal social dysfunction, corticosterone dysregulation, and memory impairments.
Collapse
Affiliation(s)
- Steve Mabry
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | - Edward Vera
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | | |
Collapse
|
29
|
Guez-Barber D, Eisch AJ, Cristancho AG. Developmental Brain Injury and Social Determinants of Health: Opportunities to Combine Preclinical Models for Mechanistic Insights into Recovery. Dev Neurosci 2023; 45:255-267. [PMID: 37080174 PMCID: PMC10614252 DOI: 10.1159/000530745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiological studies show that social determinants of health are among the strongest factors associated with developmental outcomes after prenatal and perinatal brain injuries, even when controlling for the severity of the initial injury. Elevated socioeconomic status and a higher level of parental education correlate with improved neurologic function after premature birth. Conversely, children experiencing early life adversity have worse outcomes after developmental brain injuries. Animal models have provided vital insight into mechanisms perturbed by developmental brain injuries, which have indicated directions for novel therapeutics or interventions. Animal models have also been used to learn how social environments affect brain maturation through enriched environments and early adverse conditions. We recognize animal models cannot fully recapitulate human social circumstances. However, we posit that mechanistic studies combining models of developmental brain injuries and early life social environments will provide insight into pathways important for recovery. Some studies combining enriched environments with neonatal hypoxic injury models have shown improvements in developmental outcomes, but further studies are needed to understand the mechanisms underlying these improvements. By contrast, there have been more limited studies of the effects of adverse conditions on developmental brain injury extent and recovery. Uncovering the biological underpinnings for early life social experiences has translational relevance, enabling the development of novel strategies to improve outcomes through lifelong treatment. With the emergence of new technologies to analyze subtle molecular and behavioral phenotypes, here we discuss the opportunities for combining animal models of developmental brain injury with social construct models to deconvolute the complex interactions between injury, recovery, and social inequity.
Collapse
Affiliation(s)
- Danielle Guez-Barber
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Tung S, Delavogia E, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol 2023; 47:151730. [PMID: 36990921 PMCID: PMC10133192 DOI: 10.1016/j.semperi.2023.151730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Preterm birth and intrapartum related complications account for a substantial amount of mortality and morbidity in the neonatal period despite significant advancements in neonatal-perinatal care. Currently, there is a noticeable lack of curative or preventative therapies available for any of the most common complications of prematurity including bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage, periventricular leukomalacia and retinopathy of prematurity or hypoxic-ischemic encephalopathy, the main cause of perinatal brain injury in term infants. Mesenchymal stem/stromal cell-derived therapy has been an active area of investigation for the past decade and has demonstrated encouraging results in multiple experimental models of neonatal disease. It is now widely acknowledged that mesenchymal stem/stromal cells exert their therapeutic effects via their secretome, with the principal vector identified as extracellular vesicles. This review will focus on summarizing the current literature and investigations on mesenchymal stem/stromal cell-derived extracellular vesicles as a treatment for neonatal diseases and examine the considerations to their application in the clinical setting.
Collapse
Affiliation(s)
- Stephanie Tung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
31
|
Sibrecht G, Borys F, Campone C, Bellini C, Davis P, Bruschettini M. Cooling strategies during neonatal transport for hypoxic-ischaemic encephalopathy. Acta Paediatr 2023; 112:587-602. [PMID: 36527301 DOI: 10.1111/apa.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
AIM We reviewed the literature on cooling methods during transport of newborn infants with hypoxic-ischaemic encephalopathy (HIE) born in a non-tertiary centre and transferred to a neonatal intensive care unit for therapeutic hypothermia. METHODS The electronic databases CENTRAL, MEDLINE, Embase, CINAHL, and Scopus were searched from inception up to 8 March 2022 for studies comparing cooling versus no cooling, active versus passive cooling, and servo-controlled versus non-servo-controlled cooling. Odds ratio and confidence of interval were calculated for dichotomous outcomes and mean difference and confidence interval for continuous outcomes. RESULTS The final analysis included 14 studies, 1 randomised and 13 non-randomised, involving 1098 newborn infants. Compared with the other cooling methods, servo-controlled active cooling was more likely to maintain body temperature within the target range of 33°C-34°C on arrival at a neonatal intensive care unit: odds ratio 13.58, 95% confidence interval 4.32-42.66, risk difference 0.33, 95% confidence interval 0.19-0.46; 224 participants; three studies; I2 0%. The certainty of evidence was low. Only five studies reported mortality rates. CONCLUSION Servo-controlled active cooling may be the preferred method during transport of newborn infants with HIE. A future area of focus should be long-term neurodevelopmental outcomes after servo-controlled active cooling.
Collapse
Affiliation(s)
- Greta Sibrecht
- II Neonatology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Franciszek Borys
- II Neonatology Department, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Peter Davis
- Department of Newborn Research, The Royal Women's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Australia
| | - Matteo Bruschettini
- Cochrane Sweden, Department of Research and Development, Skåne University Hospital, Clinical Science Lund, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Ahn SY, Chang YS, Park WS. Stem cells for neonatal brain injury - Lessons from the bench. Semin Perinatol 2023; 47:151726. [PMID: 37003920 DOI: 10.1016/j.semperi.2023.151726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Neonatal brain injury resulting from various intractable disorders including intraventricular hemorrhage and hypoxic ischemic encephalopathy still remains a major cause of mortality and morbidities with few effective treatments. Recent preclinical research results showing the pleiotropic neuroprotective effects of stem cell therapy, specifically mesenchymal stem cells (MSCs), suggest that MSCs transplantation might be a promising new therapeutic modality for neuroprotection against the currently intractable and devastating neonatal brain injury with complex multifactorial etiology. This review summarizes recent advances in preclinical stem cell research for treating neonatal brain injury with a focus on the important issues including the mechanism of neuroprotection, and determining the ideal cell source, route, timing and dose of MSCs transplantation.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Samsung Medical Center, Seoul 06351, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
33
|
Abstract
Early childhood affords rapid brain development and advancement of the motor system. In High-Risk Infant Follow-Up programs, watchful waiting and monitoring of infants at high risk is shifting toward active surveillance and early diagnosis, followed by immediate targeted very early interventions. Infants with delayed motor skills benefit from developmental care, NIDCAP, and generic or specific motor training. Infants with cerebral palsy benefit from enrichment, targeted skills interventions, and task-specific motor training at high intensity. Infants with degenerative conditions benefit from enrichment but also require accommodations such as powered mobility.
Collapse
Affiliation(s)
- Lynda McNamara
- The Children's Hospital Westmead Clinical School, The University of Sydney, Locked Bag 4001, Westmead, Sydney, NSW 2145, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, The University of Sydney, PO Box 171, Forestville, Sydney, NSW 2006, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, The University of Sydney, PO Box 171, Forestville, Sydney, NSW 2006, Australia.
| |
Collapse
|
34
|
Huang AS, Chin HS, Reljic B, Djajawi TM, Tan IKL, Gong JN, Stroud DA, Huang DCS, van Delft MF, Dewson G. Mitochondrial E3 ubiquitin ligase MARCHF5 controls BAK apoptotic activity independently of BH3-only proteins. Cell Death Differ 2023; 30:632-646. [PMID: 36171332 PMCID: PMC9984372 DOI: 10.1038/s41418-022-01067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Intrinsic apoptosis is principally governed by the BCL-2 family of proteins, but some non-BCL-2 proteins are also critical to control this process. To identify novel apoptosis regulators, we performed a genome-wide CRISPR-Cas9 library screen, and it identified the mitochondrial E3 ubiquitin ligase MARCHF5/MITOL/RNF153 as an important regulator of BAK apoptotic function. Deleting MARCHF5 in diverse cell lines dependent on BAK conferred profound resistance to BH3-mimetic drugs. The loss of MARCHF5 or its E3 ubiquitin ligase activity surprisingly drove BAK to adopt an activated conformation, with resistance to BH3-mimetics afforded by the formation of inhibitory complexes with pro-survival proteins MCL-1 and BCL-XL. Importantly, these changes to BAK conformation and pro-survival association occurred independently of BH3-only proteins and influence on pro-survival proteins. This study identifies a new mechanism by which MARCHF5 regulates apoptotic cell death by restraining BAK activating conformation change and provides new insight into how cancer cells respond to BH3-mimetic drugs. These data also highlight the emerging role of ubiquitin signalling in apoptosis that may be exploited therapeutically.
Collapse
Affiliation(s)
- Allan Shuai Huang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Hui San Chin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Boris Reljic
- Bio21 Molecular Science & Biotechnology Institute, 30 Flemington Road, Parkville, Melbourne, 3052, Australia
- Department of Biochemistry and Pharmacology Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Tirta M Djajawi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Iris K L Tan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Jia-Nan Gong
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, the Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Disease, Beijing, China
| | - David A Stroud
- Bio21 Molecular Science & Biotechnology Institute, 30 Flemington Road, Parkville, Melbourne, 3052, Australia
- Department of Biochemistry and Pharmacology Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - David C S Huang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Mark F van Delft
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
35
|
AlMuqbil M, Alanazi J, Alsaif N, Baarmah D, Altwaijri W, Alrumayyan A, Alrifai MT, Othman F, Al-shehri H, Alsaif S. Clinical Characteristics and Risk Factors of Neonatal Hypoxic-Ischaemic Encephalopathy and Its Associated Neurodevelopmental Outcomes During the First Two Years of Life: A Retrospective Study in Saudi Arabia. Int J Gen Med 2023; 16:525-536. [PMID: 36818761 PMCID: PMC9930584 DOI: 10.2147/ijgm.s401803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Objective This study aimed to determine the clinical characteristics and factors associated with neonatal hypoxic-ischaemic encephalopathy (HIE) and its neurodevelopmental outcomes. Methods We conducted retrospective case-control research to investigate the clinical and labour-related risk factors for HIE. In addition, a single-centre cohort study was conducted on infants with HIE to describe their neurodevelopment from birth to 24 months. For this investigation, cases with a diagnosis of HIE who were born at King Abdullah Children's Specialist Hospital (KASCH), Riyadh, Saudi Arabia, between 2015 and 2019 were identified and matched with controls from the same facility (1:4). Each case's clinical information was extracted using electronic medical records. In addition, 24-month follow-up HIE cases were included in a cohort study to describe their neurodevelopmental outcomes. Results The sample includes 60 infants diagnosed with HIE and 234 infants serving as controls, with a mean gestational age of 38.8 weeks (SD 1.6) and a predominance of males (56.4%). Around one-third of the HIE cases (36.6%) had moderate HIE (stage 2), whereas 35.1% of infants had severe HIE (stage 3), according to Sarnat staging. Compared to the control group, children with HIE were twice as likely to be born to mothers with maternal comorbidities and more likely to have prepartum and intrapartum complications. A 24-month follow-up of neurodevelopmental outcomes for HIE babies revealed that approximately 24% exhibited delays in gross motor skill development, 22% in fine motor skill development, 33% in language skill development, and 22% in social skill development. Conclusion In the HIE group, maternal comorbidities and prepartum or intrapartum complications were more common. The severity grade of HIE can be used to predict neurodevelopmental consequences. Enhancing patient care and rehabilitation requires a minimum of 24 months of neurodevelopmental follow-up.
Collapse
Affiliation(s)
- Mohammed AlMuqbil
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia,Division of Pediatric Neurology, King Abdullah Specialist Children’s Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Riyadh, Saudi Arabia,Correspondence: Mohammed AlMuqbil, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, 11481, Saudi Arabia, Tel +966 50533 7752, Email
| | - Jawaher Alanazi
- Division of Pediatric Neurology, King Abdullah Specialist Children’s Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Nada Alsaif
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Duaa Baarmah
- Division of Pediatric Neurology, King Abdullah Specialist Children’s Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia,Division of Pediatric Neurology, King Abdullah Specialist Children’s Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ahmad Alrumayyan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia,Division of Pediatric Neurology, King Abdullah Specialist Children’s Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Muhammad Talal Alrifai
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia,Division of Pediatric Neurology, King Abdullah Specialist Children’s Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Fatmah Othman
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Riyadh, Saudi Arabia,Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health-Science, Riyadh, Saudi Arabia
| | - Hassan Al-shehri
- Department of Pediatrics, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Saif Alsaif
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Zhang Y, Chen D, Wang Y, Wang X, Zhang Z, Xin Y. Neuroprotective effects of melatonin-mediated mitophagy through nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 in neonatal hypoxic-ischemic brain damage. FASEB J 2023; 37:e22784. [PMID: 36692416 DOI: 10.1096/fj.202201523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Hypoxia-ischemia (HI) is a major cause of brain damage in neonates. Mitochondrial dysfunction acts as a hub for a broad spectrum of signaling events, culminating in cell death triggered by HI. A neuroprotective role of melatonin (MT) has been proposed, and mitophagy regulation seems to be important for cell survival. However, the molecular mechanisms underlying MT-mediated mitophagy during HI treatment are poorly defined. Nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 (NLRX1) has emerged as a critical regulator of mitochondrial dynamics and neuronal death that participates in the pathology of diverse diseases. This study aimed to clarify whether NLRX1 participates in the regulation of mitophagy during MT treatment for hypoxic-ischemic brain damage (HIBD). We demonstrated that MT protected neonates from HIBD through NLRX1-mediated mitophagy in vitro and in vivo. Meanwhile, MT upregulated the expression of NLRX1, Beclin-1, and autophagy-related 7 (ATG7) but decreased the expression of the mammalian target of rapamycin (mTOR) and translocase of the inner membrane of mitochondrion 23 (TIM23). Moreover, the neuroprotective effects of MT were abolished by silencing NLRX1 after oxygen-glucose deprivation (OGD). In addition, the downregulation of mTOR and upregulation of Beclin-1 and ATG7 by MT were inhibited after silencing NLRX1 under OGD. In summary, MT modulates mitophagy induction through NLRX1 and plays a protective role in HIBD, providing insight into potential therapeutic targets for MT to exert neuroprotection.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| | - Dan Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| | - Yiwei Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China.,Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Xingzao Wang
- Department of Clinical Medicine, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Ying Xin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| |
Collapse
|
37
|
Fidelity of 3D Printed Brains from MRI Scan in Children with Pathology (Prior Hypoxic Ischemic Injury). J Digit Imaging 2023; 36:17-28. [PMID: 36280655 PMCID: PMC9984578 DOI: 10.1007/s10278-022-00723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2022] Open
Abstract
Cortical injury on the surface of the brain in children with hypoxic ischemic injury (HII) can be difficult to demonstrate to non-radiologists and lay people using brain images alone. Three-dimensional (3D) printing is helpful to communicate the volume loss and pathology due to HII in children's brains. 3D printed models represent the brain to scale and can be held up against models of normal brains for appreciation of volume loss. If 3D printed brains are to be used for formal communication, e.g., with medical colleagues or in court, they should have high fidelity of reproduction of the actual size of patients' brains. Here, we evaluate the size fidelity of 3D printed models from MRI scans of the brain, in children with prior HII. Twelve 3D prints of the brain were created from MRI scans of children with HII and selected to represent a variety of cortical pathologies. Specific predetermined measures of the 3D prints were made and compared to measures in matched planes on MRI. Fronto-occipital length (FOL) and bi-temporal/bi-parietal diameters (BTD/BPD) demonstrated high interclass correlations (ICC). Correlations were moderate to weak for hemispheric height, temporal height, and pons-cerebellar thickness. The average standard error of measurement (SEM) was 0.48 cm. Our results demonstrate high correlations in overall measurements of each 3D printed model derived from brain MRI scans versus the original MRI, evidenced by high ICC values for FOL and BTD/BPD. Measures with low correlation values can be explained by variability in matching the plane of measurement to the MRI slice orientation.
Collapse
|
38
|
Zuo D, Zheng Q, Xiao M, Wang X, Chen H, Xu J, Zhang Q, Xiong Y, Ye L, Feng Z. Anti-apoptosis effect of recombinant human interleukin-11 in neonatal hypoxic-ischemic rats through activating the IL-11Rα/STAT3 signaling pathway. J Stroke Cerebrovasc Dis 2023; 32:106923. [PMID: 36521373 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Apoptosis contributes to HI development. Interleukin-11(IL-11) has been shown to protect mice from cerebral ischemia/reperfusion injury. However, whether IL-11 exerts the anti-apoptotic effect on HI injury is unclear. In this study, we demonstrated that recombinant human IL-11 (rhIL-11) prevented apoptosis of rat neonates with HI through activating IL-11Rα/STAT3 signaling. Sprague-Dawley rat pups on the 7th day after birth were used to establish an HI injury model. The expression levels of IL-11Rα and GP130 were increased first and then decreased after HI. In contrast, IL-11 expression was first decreased and then increased. Immunofluorescence staining showed that IL-11Rα was localized in neurons and oligodendrocytes. RhIL-11 treatment alleviated hippocampal and cortical damages, significantly reduced cerebral infarction volumes, cerebral edema, and loss of the Nissl body and nerve cells, and also ameliorated the outcomes of HI injury and long-term neurological deficits. In addition, rhIL-11 treatment upregulated the expressions levels of Bcl-2 and p-STAT3/STAT3, and downregulated the protein concentrations of the lytic protease, and cleaved-caspase-3. Furthermore, GP130 inhibitor and JAK1 inhibitor reversed the protective effects of rhIL-11. Overall, rhIL-11 showed an anti-apoptosis effect on the brain after HI injury. Our results indicated that rhIL-11 reduced neuronal apoptosis by activating the brain IL-11Rα/STAT3 pathway.
Collapse
Affiliation(s)
- Ding Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Mei Xiao
- The Pharmacy Department, People's Hospital of Nayong County, Nayong County, China
| | - Xiaoya Wang
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Huixin Chen
- Department of Pharmacology, Guizhou Vocational and Technical College of Nursing, Qiannan Prefecture, China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, School of Basic Medical Sciences, Guizhou Medical University, China
| | - Qing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Ying Xiong
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.
| | - Zhanhui Feng
- Department of neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
39
|
Perrone S, Grassi F, Caporilli C, Boscarino G, Carbone G, Petrolini C, Gambini LM, Di Peri A, Moretti S, Buonocore G, Esposito SMR. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants (Basel) 2023; 12:antiox12020309. [PMID: 36829868 PMCID: PMC9952571 DOI: 10.3390/antiox12020309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The Brain is vulnerable to numerous insults that can act in the pre-, peri-, and post-natal period. There is growing evidence that demonstrate how oxidative stress (OS) could represent the final common pathway of all these insults. Fetuses and newborns are particularly vulnerable to OS due to their inability to active the antioxidant defenses. Specific molecules involved in OS could be measured in biologic fluids as early biomarkers of neonatal brain injury with an essential role in neuroprotection. Although S-100B seems to be the most studied biomarker, its use in clinical practice is limited by the complexity of brain damage etiopathogenesis and the time of blood sampling in relation to the brain injury. Reliable early specific serum markers are currently lacking in clinical practice. It is essential to determine if there are specific biomarkers that can help caregivers to monitor the progression of the disease in order to active an early neuroprotective strategy. We aimed to describe, in an educational review, the actual evidence on serum biomarkers for the early identification of newborns at a high risk of neurological diseases. To move the biomarkers from the bench to the bedside, the assays must be not only be of a high sensitivity but suitable for the very rapid processing and return of the results for the clinical practice to act on. For the best prognosis, more studies should focus on the association of these biomarkers to the type and severity of perinatal brain damage.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Carbone
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lucia Maria Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Di Peri
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sabrina Moretti
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
40
|
Mukherjee D, Kanold PO. Changing subplate circuits: Early activity dependent circuit plasticity. Front Cell Neurosci 2023; 16:1067365. [PMID: 36713777 PMCID: PMC9874351 DOI: 10.3389/fncel.2022.1067365] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Early neural activity in the developing sensory system comprises spontaneous bursts of patterned activity, which is fundamental for sculpting and refinement of immature cortical connections. The crude early connections that are initially refined by spontaneous activity, are further elaborated by sensory-driven activity from the periphery such that orderly and mature connections are established for the proper functioning of the cortices. Subplate neurons (SPNs) are one of the first-born mature neurons that are transiently present during early development, the period of heightened activity-dependent plasticity. SPNs are well integrated within the developing sensory cortices. Their structural and functional properties such as relative mature intrinsic membrane properties, heightened connectivity via chemical and electrical synapses, robust activation by neuromodulatory inputs-place them in an ideal position to serve as crucial elements in monitoring and regulating spontaneous endogenous network activity. Moreover, SPNs are the earliest substrates to receive early sensory-driven activity from the periphery and are involved in its modulation, amplification, and transmission before the maturation of the direct adult-like thalamocortical connectivity. Consequently, SPNs are vulnerable to sensory manipulations in the periphery. A broad range of early sensory deprivations alters SPN circuit organization and functions that might be associated with long term neurodevelopmental and psychiatric disorders. Here we provide a comprehensive overview of SPN function in activity-dependent development during early life and integrate recent findings on the impact of early sensory deprivation on SPNs that could eventually lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Patrick O. Kanold ✉
| |
Collapse
|
41
|
Xiao J, Zhou Y, Sun L, Wang H. Role of integrating cannabinoids and the endocannabinoid system in neonatal hypoxic-ischaemic encephalopathy. Front Mol Neurosci 2023; 16:1152167. [PMID: 37122621 PMCID: PMC10130673 DOI: 10.3389/fnmol.2023.1152167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Neonatal hypoxic-ischaemic events, which can result in long-term neurological impairments or even cell death, are among the most significant causes of brain injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic pathophysiology and cellular pathways make it difficult to treat brain damage; hence, the development of new neuroprotective medicines is of great interest. Recently, numerous neuroprotective medicines have been developed to treat brain injuries and improve long-term outcomes based on comprehensive knowledge of the mechanisms that underlie neuronal plasticity following hypoxic-ischaemic brain injury. In this context, understanding of the medicinal potential of cannabinoids and the endocannabinoid system has recently increased. The endocannabinoid system plays a vital neuromodulatory role in numerous brain regions, ensuring appropriate control of neuronal activity. Its natural neuroprotection against adult brain injury or acute brain injury also clearly demonstrate the role of endocannabinoid signalling in modulating neuronal activity in the adult brain. The goal of this review is to examine how cannabinoid-derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury and to assess the critical function of the endocannabinoid system and its potential for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain injury.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Haichuan Wang,
| |
Collapse
|
42
|
General Anesthesia and the Premature Baby: Identifying Risks for Poor Neurodevelopmental Outcomes. J Neurosurg Anesthesiol 2023; 35:130-132. [PMID: 36745176 DOI: 10.1097/ana.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
Preterm birth affects 1 in every 10 infants born in the United States. Importantly, more preterm infants are surviving to discharge from hospital, including those born at the cusp of viability (eg, 22 to 24 wk gestation). Such improvements, however, come at a cost as those delivered at less than 28 weeks gestation have the highest rates of morbidity and mortality. To complicate matters, these extremely preterm infants often require multiple surgical procedures resulting in repeated and prolonged exposures to anesthetic, analgesic, and sedative agents both during procedures and in the neonatal intensive care unit. Consequently, all of these factors, including premature birth itself, correlate with a higher risk for neurodevelopmental disabilities. More studies are needed to address the effects of prematurity-related morbidities and drug exposures on this vulnerable population, with the goal of improving neurodevelopmental outcomes. This brief review will discuss risk factors that impact neurodevelopmental outcomes in premature infants, with a particular focus on anesthetic, analgesic, and sedative agents.
Collapse
|
43
|
Paz AA, González-Candia A. Potential pharmacological target of tight junctions to improve the BBB permeability in neonatal Hypoxic-Ischemic encephalopathy Diseases. Biochem Pharmacol 2023; 207:115356. [PMID: 36455671 DOI: 10.1016/j.bcp.2022.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.
Collapse
Affiliation(s)
- Adolfo A Paz
- Institute of Health Sciences, University O'Higgins, Rancagua, Chile
| | | |
Collapse
|
44
|
Kawamura T, Singh Mallah G, Ardalan M, Chumak T, Svedin P, Jonsson L, Jabbari Shiadeh SM, Goretta F, Ikeda T, Hagberg H, Sandberg M, Mallard C. Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice. ASN Neuro 2023; 15:17590914231198983. [PMID: 37787108 PMCID: PMC10548811 DOI: 10.1177/17590914231198983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
SUMMARY STATEMENT Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.
Collapse
Affiliation(s)
- Takuya Kawamura
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Gagandeep Singh Mallah
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Goretta
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
N-Acetylcysteine Administration Attenuates Sensorimotor Impairments Following Neonatal Hypoxic-Ischemic Brain Injury in Rats. Int J Mol Sci 2022; 23:ijms232416175. [PMID: 36555816 PMCID: PMC9783020 DOI: 10.3390/ijms232416175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects. To this end, NAC (50 mg/kg/dose, i.p.) was administered prior to and instantly after HI, in order to evaluate hippocampal and cerebral cortex damage as well as long-term functional outcome. Immunohistochemistry was used to detect inducible nitric oxide synthase (iNOS) expression. The results revealed that NAC significantly alleviated sensorimotor deficits and this effect was maintained up to adulthood. These improvements in functional outcome were associated with a significant decrease in the severity of brain damage. Moreover, NAC decreased the short-term expression of iNOS, a finding implying that iNOS activity may be suppressed and that through this action NAC may exert its therapeutic action against neonatal HI brain injury.
Collapse
|
46
|
Jensen A. Cerebral palsy - brain repair with stem cells. J Perinat Med 2022:jpm-2022-0505. [PMID: 36503655 DOI: 10.1515/jpm-2022-0505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
Cerebral palsy, the most common disability in childhood, is a devastating non-progressive ailment of the infants' brain with lifelong sequelae, e.g., spastic paresis, chronic pain, inability to walk, intellectual disability, behavioral disorders, for which there is no cure at present. CP may develop after pediatric brain damage caused, e.g., by hypoxic-ischemia, periventricular leukomalacia, intracranial hemorrhage, hypoxic-ischemic encephalopathy, trauma, stroke, and infection. About 17 million people worldwide live with cerebral palsy as a result of pediatric brain damage. This reflects both the magnitude of the personal, medical, and socioeconomic global burden of this brain disorder and the overt unmet therapeutic needs of the pediatric population. This review will focus on recent preclinical, clinical, and regulatory developments in cell therapy for infantile cerebral palsy by transplantation of cord blood derived mononuclear cells from bench to bedside. The body of evidence suggests that cord blood cell therapy of cerebral palsy in the autologous setting is feasible, effective, and safe, however, adequately powered phase 3 trials are overdue.
Collapse
Affiliation(s)
- Arne Jensen
- Campus Clinic Gynecology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Siddappa AM. EBNEO commentary: Association between seizures during rewarming after hypothermia therapy for neonatal hypoxic-ischemic encephalopathy and abnormal neurodevelopmental outcomes. Acta Paediatr 2022; 111:2428-2429. [PMID: 35949059 PMCID: PMC9804153 DOI: 10.1111/apa.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023]
|
48
|
Ok M, Naseri A, Ates MB, Ider M, Uney K, Sevinc M, Hatipoglu F, Yildiz R, Erturk A, Baspinar N, Iyigun SS. The Usefulness of Serum Brain Damage Biomarkers in Detection and Evaluation of Hypoxic Ischemic Encephalopathy in Calves with Perinatal Asphyxia. Animals (Basel) 2022; 12:3223. [PMID: 36428450 PMCID: PMC9686605 DOI: 10.3390/ani12223223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to determine hypoxic brain damage in calves with perinatal asphyxia using brain-specific damage biomarkers. Ten healthy and 25 calves with perinatal asphyxia were enrolled in the study. Clinical examination, neurological status score, and laboratory analysis were performed at admission, 24, 48, and 72 h. Serum concentrations of ubiquitin carboxy-terminal hydrolysis 1 (UCHL1), calcium-binding protein B (S100B), adrenomodullin (ADM), activitin A (ACTA), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP) and creatine kinase-brain (CK-B) were measured. Histopathological and immunohistochemical examinations of the brain tissue were performed in 13 nonsurvivor calves. The neurological status score of the calves with asphyxia was significantly (p < 0.05) lower. Mix metabolic-respiratory acidosis and hypoxemia were detected in calves with asphyxia. Serum UCHL1 and S100B were significantly (p < 0.05) increased, and NSE, ACTA, ADM, and CK-B were decreased (p < 0.05) in calves with asphyxia. Histopathological and immunohistochemical examinations confirmed the development of mild to severe hypoxic-ischemic encephalopathy. In conclusion, asphyxia and hypoxemia caused hypoxic-ischemic encephalopathy in perinatal calves. UCHL1 and S100B concentrations were found to be useful markers for the determination of hypoxic-ischemic encephalopathy in calves with perinatal asphyxia. Neurological status scores and some blood gas parameters were helpful in mortality prediction.
Collapse
Affiliation(s)
- Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Amir Naseri
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Mehmet Burak Ates
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Mutlu Sevinc
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Fatih Hatipoglu
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Ramazan Yildiz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Alper Erturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay 31060, Türkiye
| | - Nuri Baspinar
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| | - Suleyman Serhat Iyigun
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya 42250, Türkiye
| |
Collapse
|
49
|
Zhang Y, Cui H, Mei H, Yang L, Xin C. Effect of Hypoxic-Ischemic Brain Injury in Neonatal Rats on Behavioral Parameters and Expression of CDK8 in the Brain Tissue. Bull Exp Biol Med 2022; 174:13-17. [PMID: 36449110 DOI: 10.1007/s10517-022-05638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/02/2022]
Abstract
Behavioral changes in newborn 3-day-old rats (n=44) with modeled hypoxic-ischemic brain injury (HIBI) were observed, and the expression of CDK8 in brain tissues was detected to clarify the significance of CDK8. In 30 min, 3 h, and 3 days after HIBI, the left (ischemic) hemisphere was taken for examination. In 3 days after HIBI, the rat pups were examined in the behavioral tests. In rat pups with HIBI, changes of CDK8 expression were detected by Western blotting and real-time PCR and changes in the righting reflex and forelimb grip strength test (p<0.05) were revealed in comparison with sham-operated animals. The expression of CDK8 increased 30 min after HIBI and decreased in 3 h and 3 days. Hypoxia and ischemia of the left brain may affect locomotion, but not sensation. Since CDK8 is involved in the immune response after cerebral hypoxia and ischemia, this kinase can be used as an early diagnostic index.
Collapse
Affiliation(s)
- Y Zhang
- Department of Pediatric, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - H Cui
- Department of Pediatric, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - H Mei
- Department of Neonatology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - L Yang
- Department of Pediatric, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - C Xin
- Department of Neonatology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
50
|
Bailey SM, Prakash SS, Verma S, Desai P, Kazmi S, Mally PV. Near-infrared spectroscopy in the medical management of infants. Curr Probl Pediatr Adolesc Health Care 2022; 52:101291. [PMID: 36404215 DOI: 10.1016/j.cppeds.2022.101291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Near-infrared spectroscopy (NIRS) is a technology that is easy to use and can provide helpful information about organ oxygenation and perfusion by measuring regional tissue oxygen saturation (rSO2) with near-infrared light. The sensors can be placed in different anatomical locations to monitor rSO2 levels in several organs. While NIRS is not without limitations, this equipment is now becoming increasingly integrated into modern healthcare practice with the goal of achieving better outcomes for patients. It can be particularly applicable in the monitoring of pediatric patients because of their size, and especially so in infant patients. Infants are ideal for NIRS monitoring as nearly all of their vital organs lie near the skin surface which near-infrared light penetrates through. In addition, infants are a difficult population to evaluate with traditional invasive monitoring techniques that normally rely on the use of larger catheters and maintaining vascular access. Pediatric clinicians can observe rSO2 values in order to gain insight about tissue perfusion, oxygenation, and the metabolic status of their patients. In this way, NIRS can be used in a non-invasive manner to either continuously or periodically check rSO2. Because of these attributes and capabilities, NIRS can be used in various pediatric inpatient settings and on a variety of patients who require monitoring. The primary objective of this review is to provide pediatric clinicians with a general understanding of how NIRS works, to discuss how it currently is being studied and employed, and how NIRS could be increasingly used in the near future, all with a focus on infant management.
Collapse
Affiliation(s)
- Sean M Bailey
- Division of Neonatology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016.
| | - Shrawani Soorneela Prakash
- Division of Neonatology, Department of Pediatrics, NYCHHC/Lincoln Medical and Mental Health Center, Bronx, NY 10451
| | - Sourabh Verma
- Division of Neonatology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016
| | - Purnahamsi Desai
- Division of Neonatology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016
| | - Sadaf Kazmi
- Division of Neonatology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016
| | - Pradeep V Mally
- Division of Neonatology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|