1
|
Sann S, Kleinewietfeld M, Cantaert T. Balancing functions of regulatory T cells in mosquito-borne viral infections. Emerg Microbes Infect 2024; 13:2304061. [PMID: 38192073 PMCID: PMC10812859 DOI: 10.1080/22221751.2024.2304061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
Mosquito-borne viral infections are on the rise worldwide and can lead to severe symptoms such as haemorrhage, encephalitis, arthritis or microcephaly. A protective immune response following mosquito-borne viral infections requires the generation of a controlled and balanced immune response leading to viral clearance without immunopathology. Here, regulatory T cells play a central role in restoring immune homeostasis. In current review, we aim to provide an overview and summary of the phenotypes of FOXP3+ Tregs in various mosquito-borne arboviral disease, their association with disease severity and their functional characteristics. Furthermore, we discuss the role of cytokines and Tregs in the immunopathogenesis of mosquito-borne infections. Lastly, we discuss possible novel lines of research which could provide additional insight into the role of Tregs in mosquito-borne viral infections in order to develop novel therapeutic approaches or vaccination strategies.
Collapse
Affiliation(s)
- Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
2
|
Salma M, Soumia EG, Ihssan HH, Nazik A, Latifa C, Siham EH. Microcephaly Resulting From Congenital Toxoplasmosis: What the Radiologist can Expect to See? A Case Report. Radiol Case Rep 2024; 19:6657-6661. [PMID: 39430228 PMCID: PMC11489125 DOI: 10.1016/j.radcr.2024.09.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Microcephaly is defined as an occipitofrontal head circumference two standard deviations (2SD) below average for age and sex, with severe microcephaly below three standard deviations (3SD). Congenital toxoplasmosis is one of the congenital infections that can potentially lead to microcephaly. It reflects neurotropism for fetal central nervous system (CNS) cells from toxoplasma, causing massive destruction of neural tissue, resulting in serious neurological damage. We present a case of severe microcephaly observed at birth in a newborn from an unmonitored pregnancy with an unknown maternal serological profile. The mother, aged 25 years, had no prior medical history. Imaging investigations revealed significant neurological lesions, while serological tests confirmed congenital toxoplasmosis. This case report illustrates the radiological semiology of neurological involvement in congenital toxoplasmosis and serves as a reference for radiologists, highlighting the importance of recognizing the radiological features of congenital toxoplasmosis.
Collapse
Affiliation(s)
| | - El Graini Soumia
- Paediatric radiology department, Ibn Sina University Hospital Center, Rabat, Morocco
| | - Hadj Hsain Ihssan
- Paediatric radiology department, Ibn Sina University Hospital Center, Rabat, Morocco
| | - Allali Nazik
- Paediatric radiology department, Ibn Sina University Hospital Center, Rabat, Morocco
| | - Chat Latifa
- Paediatric radiology department, Ibn Sina University Hospital Center, Rabat, Morocco
| | - El Haddad Siham
- Paediatric radiology department, Ibn Sina University Hospital Center, Rabat, Morocco
| |
Collapse
|
3
|
Mahmoud A, Pomar L, Lambert V, Picone O, Hcini N. Prenatal and Postnatal Ocular Abnormalities Following Congenital Zika Virus Infections: A Systematic Review. Ocul Immunol Inflamm 2024; 32:2217-2227. [PMID: 38350011 DOI: 10.1080/09273948.2024.2314086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE To assess fetal and neonatal eyes abnormalities and their progression during the last ZIKV outbreak and summarize learned lessons. METHODS A systematic review and meta-analysis was conducted by a team of obstetricians and ophthalmologists. RESULTS Studies reporting ocular abnormalities during the prenatal (n = 5) and postnatal (n = 24) periods were included in the analysis. In the prenatal period, the most common ocular findings were intraocular calcification cases (4/6, 66.6%) and microphthalmia (3/6, 50%). Postnatal ocular abnormalities of congenital ZIKV infection were described after birth in 479 cases. Among them microphthalmia was reported in 13 cases (13/479, 2.7%). Posterior segment (retina and optic nerve) was the most affected structure, consisting of pigmentary changes (229/479, 47.8%), macular chorioretinal atrophy (216/479, 45%), optic nerve atrophy (181/479, 37.8%), increased cup-to-disk ratio (190/479, 39.6.%), optic nerve hypoplasia (93/479,19.4%), vascular changes (26/479, 5.4%), and retinal coloboma (20/479, 4.1%). The anterior segment was involved in 4.6% (22/479) of cases, including cataract (9/479, 1.8%), lens subluxation (1/479, 0.2%), iris coloboma (5/479, 1%), and congenital glaucoma (7/479, 1.4%). These ocular anomalies were isolated in one case (1/479, 0.2%) and multiple anomalies were found in the other cases. Long-term visual disorders have been described, with no possible improvement and even a worsening of some of the ocular anomalies previously observed. No reactivation of ocular lesions was observed. CONCLUSION This review highlights the severe ocular abnormalities associated with congenital ZIKV infections. The importance of multidisciplinary communication between the obstetrician, the maternal-fetal medicine specialist, and the ophthalmologist is emphasized. PROTOCOL REGISTRATION This systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO), registration440 188.
Collapse
Affiliation(s)
- Anis Mahmoud
- Department of Ophthalmology, Tahar Sfar University Hospital, Mahdia, Tunisia
- Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Léo Pomar
- Ultrasound and Fetal Medicine, Department "Woman-Mother-Child", Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| | - Veronique Lambert
- Department of Obstetrics and Gynaecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Olivier Picone
- Service Gynécologie Obstétrique, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique : Hôpitaux de Paris, Université Paris Diderot, Colombes, France
| | - Najeh Hcini
- Department of Obstetrics and Gynaecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
- INSERM CIC1424 Centre d'Investigation Clinique Antilles Guyane, Cayenne, French Guiana
| |
Collapse
|
4
|
Qin C, Wang Y, Liu M, Liu J. Global burden and incidence trends of zika virus infection among women aged 15-49 years from 2011 to 2021: A systematic analysis. J Infect Public Health 2024; 17:102557. [PMID: 39353399 DOI: 10.1016/j.jiph.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection during pregnancy presents a significant health risk in women of reproductive age and their offspring due to severe neurological complications. It is meaningful to assess its global burden and temporal trends. METHODS This study extracted annual incidence cases and rates of ZIKV among women of reproductive age (15-49 years) between 2011 and 2021 from Global Burden of Diseases (GBD) 2021, including global level, 21 GBD regions, 5 socio-demographic index (SDI) regions, 7 age groups, and 204 countries and territories. Relative percent change in cases and estimated annual percentage change (EAPC) of incidence rates were used to quantify the temporal trends. RESULTS The incidence rate of ZIKV infection exhibited a pronounced peak in 2016 at 174.27 per 100,000 population, with an EAPC of 158.30 % from 2011 to 2016 and -51.86 % from 2016 to 2021 at 3.06 per 100,000 population. And only 5 out of the 21 GBD regions reported ZIKV infection in 2021, predominantly concentrated in Latin America and Caribbean. The outbreaks were primarily concentrated in low-middle and middle SDI regions. In 2021, at the global level, the incidence rates of ZIKV infection among women of reproductive age were similar across different age groups, ranging from 2.41 to 3.39 per 100,000 population. The proportion of ZIKV infection cases was slightly higher in women aged 25-29 and 30-34 years compared to other age groups in 2021, whereas a higher proportion of cases were observed in younger age groups in 2011 and 2016. CONCLUSIONS Women of reproductive age in Latin America and Caribbean continue to face the threat of ZIKV. Regions with lower SDI had a disproportionately severe burden. Future public health strategies should focus on high-risk areas and populations of reproductive age, enhancing surveillance, prevention, and education efforts to further mitigate the public health threat posed by ZIKV.
Collapse
Affiliation(s)
- Chenyuan Qin
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yaping Wang
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Min Liu
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Jue Liu
- School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China; Institute for Global Health and Development, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China; National Health Commission Key Laboratory of Reproductive Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
5
|
Tajik S, Farahani AV, Ardekani OS, Seyedi S, Tayebi Z, Kami M, Aghaei F, Hosseini TM, Nia MMK, Soheili R, Letafati A. Zika virus tropism and pathogenesis: understanding clinical impacts and transmission dynamics. Virol J 2024; 21:271. [PMID: 39472938 PMCID: PMC11523830 DOI: 10.1186/s12985-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The Zika virus (ZIKV) is classified within the Flavivirus genus of the Flaviviridae family and is categorized as an arbovirus. The virus was initially identified in a rhesus monkey in Uganda in 1947 and later in a human in Nigeria in 1952. Since 2007, the prevalence of the virus has been on the rise, culminating in a major outbreak in the United States (US) in 2015. During this outbreak, the adult population was severely impacted, experiencing a range of symptoms, including organ failure, microcephaly, fetal death, and Guillain-Barré syndrome (GBS). Additionally, skin rash, limb swelling, fever, headache, and heightened sensitivity are found in most adults with Zika syndrome. Although the virus can be transmitted through blood, vertical transmission from mother to child, and sexual contact, the primary way of transmission of the virus is through the Aedes mosquito. Cells such as neurons, macrophages, peripheral dendritic cells, and placental cells are among the target cells that the virus can infect. The TAM AXL receptor plays a crucial role in infection. After the virus enters the body through the bloodstream, it spreads in the body with a latent period of 3 to 12 days. Currently, there is no specific treatment or publicly available vaccine for the ZIKV. Limited laboratory testing has been conducted, and existing drugs originally designed for other pathogens have been repurposed for treatment. Given the Aedes mosquito's role as a vector and the wide geographical impact of the virus, this study aims to comprehensively investigate Zika's pathogenesis and clinical symptoms based on existing knowledge and research. By doing so, we seek to enhance our understanding of the virus and inform future prevention and treatment strategies.
Collapse
Affiliation(s)
- Saeed Tajik
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Vasheghani Farahani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Tayebi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Kami
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pathology, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | - Faezeh Aghaei
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Mohammad Mahdi Khosravi Nia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Student Research Committee, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roben Soheili
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arash Letafati
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Nieves C, Victoria da Costa Ghignatti P, Aji N, Bertagnolli M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can J Cardiol 2024:S0828-282X(24)00950-4. [PMID: 39304126 DOI: 10.1016/j.cjca.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Preeclampsia is a severe pregnancy disorder, affecting approximately 10% of pregnancies worldwide, characterised by hypertension and proteinuria after the 20th week of gestation. The condition poses significant risks to both maternal and fetal health, including cardiovascular complications and impaired fetal development. Recent trends indicate a rising incidence of preeclampsia, correlating with factors such as advanced maternal age and cardiovascular comorbidities. Emerging evidence also highlights a notable increase in the association between autoimmune and infectious diseases with preeclampsia. Autoimmune conditions, such as type 1 diabetes and systemic lupus erythematosus, and infections triggered by global health challenges, including leptospirosis, Zika, toxoplasmosis, and Chagas disease, are now recognised as significant contributors to preeclampsia susceptibility by affecting placental formation and function. This review focuses on the immunologic mechanisms underpinning preeclampsia, exploring how immune system dysregulation and infectious triggers exacerbate the condition. It also discusses the pathologic mechanisms, including galectins, that preeclampsia shares with autoimmune and infectious diseases, and their significant risk for adverse pregnancy outcomes. We emphasise the necessity for accurate diagnosis and vigilant monitoring of immune and infectious diseases during pregnancy to optimise management and reduce risks. By raising awareness about these evolving risks and their impact on pregnancy, we aim to enhance diagnostic practices and preventive strategies, ultimately improving outcomes for pregnant women, especially in regions affected by environmental changes and endemic diseases.
Collapse
Affiliation(s)
- Cecilia Nieves
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| | - Paola Victoria da Costa Ghignatti
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Narjiss Aji
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mariane Bertagnolli
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Wilken L, Rimmelzwaan GF, Elbahesh H. The Raf kinase inhibitors Dabrafenib and Regorafenib impair Zika virus replication via distinct mechanisms. J Virol 2024; 98:e0061824. [PMID: 39023323 PMCID: PMC11334485 DOI: 10.1128/jvi.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses. IMPORTANCE There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| |
Collapse
|
9
|
Liang Y, Dai X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front Microbiol 2024; 15:1458166. [PMID: 39206366 PMCID: PMC11349664 DOI: 10.3389/fmicb.2024.1458166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Flavivirus pose a continued threat to global health, yet their worldwide burden and trends remain poorly quantified. We aimed to evaluate the global, regional, and national incidence of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Methods Data on the number and rate of incidence for the three common flavivirus infection in 204 countries and territories were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021. The estimated annual percent change (EAPC) was calculated to quantify the temporal trend during 2011-2016, 2016-2019, and 2019-2021, respectively. Results In 2021, an estimated 59,220,428 individuals were infected globally, comprising 58,964,185 cases of dengue, 86,509 cases of yellow fever, and 169,734 cases of Zika virus infection. The age-standardized incidence rate (ASIR) of the three common flavivirus infections increased by an annual average of 5.08% (95% CI 4.12 to 6.05) globally from 2011 to 2016, whereas decreased by an annual average of -8.37% (95% CI -12.46 to -4.08) per year between 2016 to 2019. The ASIR remained stable during 2019-2021, with an average change of 0.69% (95% CI -0.96 to 2.37) per year globally for the three common flavivirus infections. Regionally, the burden of the three common flavivirus infections was primarily concentrated in those regions with middle income, such as South Asia, Southeast Asia, and Tropical Latin America. Additionally, at the country level, there was an inverted "U" relationship between the SDI level and the ASI. Notably, an increase in the average age of infected cases has been observed worldwide, particularly in higher-income regions. Conclusion Flavivirus infections are an expanding public health concern worldwide, with considerable regional and demographic variation in the incidence. Policymakers and healthcare providers must stay vigilant regarding the impact of COVID-19 and other environmental factors on the risk of flavivirus infection and be prepared for potential future outbreaks.
Collapse
Affiliation(s)
- Yuanhao Liang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Omme S, Wang J, Sifuna M, Rodriguez J, Owusu NR, Goli M, Jiang P, Waziha P, Nwaiwu J, Brelsfoard CL, Vigneron A, Ciota AT, Kramer LD, Mechref Y, Onyangos MG. Multi-omics analysis of antiviral interactions of Elizabethkingia anophelis and Zika virus. Sci Rep 2024; 14:18470. [PMID: 39122799 PMCID: PMC11315927 DOI: 10.1038/s41598-024-68898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The microbial communities residing in the mosquito midgut play a key role in determining the outcome of mosquito pathogen infection. Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae possess a broad-spectrum antiviral phenotype, yet a gap in knowledge regarding the mechanistic basis of its interaction with viruses exists. The current study aims to identify pathways and genetic factors linked to E. anophelis antiviral activity. The understanding of E. anophelis antiviral mechanism could lead to novel transmission barrier tools to prevent arboviral outbreaks. We utilized a non-targeted multi-omics approach, analyzing extracellular lipids, proteins, metabolites of culture supernatants coinfected with ZIKV and E. anophelis. We observed a significant decrease in arginine and phenylalanine levels, metabolites that are essential for viral replication and progression of viral infection. This study provides insights into the molecular basis of E. anophelis antiviral phenotype. The findings lay a foundation for in-depth mechanistic studies.
Collapse
Affiliation(s)
- S Omme
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Wang
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M Sifuna
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Rodriguez
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - N R Owusu
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M Goli
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - P Jiang
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - P Waziha
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Nwaiwu
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - C L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - A Vigneron
- Laboratoire d'Ecologie Microbienne, Claude Bernard University Lyon, University of Lyon, Lyon, France
| | - A T Ciota
- Wadsworth Centre, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - L D Kramer
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Y Mechref
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M G Onyangos
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA.
| |
Collapse
|
11
|
Tong X, Zhang K, Han Y, Li T, Duan M, Ji R, Wang X, Zhou X, Zhang Y, Yin H. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat Chem Biol 2024; 20:885-893. [PMID: 38332130 DOI: 10.1038/s41589-023-01534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Despite the great potential of CRISPR-based detection, it has not been competitive with other market diagnostics for on-site and in-home testing. Here we dissect the rate-limiting factors that undermine the performance of Cas12b- and Cas13a-mediated detection. In one-pot testing, Cas12b interferes with loop-mediated isothermal amplification by binding to and cleaving the amplicon, while Cas13a directly degrades the viral RNA, reducing its amplification. We found that the protospacer-adjacent motif-interacting domain engineered Cas12b accelerated one-pot testing with 10-10,000-fold improved sensitivity, and detected 85 out of 85 SARS-CoV-2 clinical samples with a sensitivity of 0.5 cp μl-1, making it superior to wild-type Cas12b. In parallel, by diminishing the interference of Cas13a with viral RNA, the optimized Cas13a-based assay detected 86 out of 87 SARS-CoV-2 clinical samples at room temperature in 30 min with a sensitivity of 0.5 cp μl-1. The relaxed reaction conditions and improved performance of CRISPR-based assays make them competitive for widespread use in pathogen detection.
Collapse
Affiliation(s)
- Xiaohan Tong
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kun Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Tianle Li
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Min Duan
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Ruijin Ji
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xianguang Wang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
12
|
CONSIGNY PH. [Zika virus infection: sexual transmission and implications for prevention]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2024; 4:mtsi.v4i2.2024.502. [PMID: 39099710 PMCID: PMC11292433 DOI: 10.48327/mtsi.v4i2.2024.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/19/2024] [Indexed: 08/06/2024]
Abstract
Zika virus infection, most oft n responsible for a benign arboviral disease or an asymptomatic infection, rarely Guillain-Barré syndrome, can become problematic in pregnant women, due to a risk of fetal malformations, in particular microcephaly linked to its neurotropism. The most recent large-scale epidemic was observed throughout Latin America between 2015 and 2017, causing several hundred thousand cases. Transmission is predominantly vector-borne, but sexual transmission has been described, mainly among travelers, although it undoubtedly accounts for a significant proportion of transmission in epidemic areas. The aim of this review is to describe this sexual transmission, mainly through examples linked to this large-scale epidemic in Latin America, to describe the link with prolonged excretion of infectious viral particles in genital secretions, especially semen but also vaginal secretions, and to highlight possible preventive measures apart from vector transmission, in particular the need for pregnant women or women wishing to become pregnant to avoid visiting countries where circulation of Zika virus is described.
Collapse
Affiliation(s)
- Paul Henri CONSIGNY
- Centre médical de l’Institut Pasteur, 211 rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
13
|
Adam A, Wenzel R, Unger E, Reiche S, Jassoy C. Serological Evidence of Zika Virus Infections in Sudan. Viruses 2024; 16:1045. [PMID: 39066208 PMCID: PMC11281350 DOI: 10.3390/v16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Little is known about the frequency of Zika virus (ZIKV) infections in Sudan. The aim of this study was to obtain data on the prevalence of ZIKV infections and the immunity of the population in the country. To this end, 198 sera obtained between December 2012 and January 2013 in different regions in Sudan were examined for neutralizing antibodies against ZIKV, dengue virus (DENV), and yellow fever virus (YFV). The sera were non-randomly selected. The neutralization titers were compared with each other and with the WHO 1st International Standard for anti-Asian lineage Zika virus antibody. Twenty-six sera neutralized ZIKV. One-third of these sera had higher neutralization titers against ZIKV than against DENV-2 and -3. Two sera showed higher neutralization titers than the WHO standard for ZIKV antibodies. These data suggest occasional ZIKV infections in Sudan. The low percentage of sera in this cohort that neutralized ZIKV indicates that, in the study period, the population was susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Robert Wenzel
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Elisabeth Unger
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| |
Collapse
|
14
|
Kumaree KK, Anthikapalli NVA, Prasansuklab A. In silico screening for potential inhibitors from the phytocompounds of Carica papaya against Zika virus NS5 protein. F1000Res 2024; 12:655. [PMID: 39132582 PMCID: PMC11310656 DOI: 10.12688/f1000research.134956.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/13/2024] Open
Abstract
Background The Zika virus (ZIKV) infection has emerged as a global health threat. The causal reasoning is that Zika infection is linked to the development of microcephaly in newborns and Guillain-Barré syndrome in adults. With no clinically approved antiviral treatment for ZIKV, the need for the development of potential inhibitors against the virus is essential. In this study, we aimed to screen phytochemicals from papaya ( Carica papaya L.) against NS5 protein domains of ZIKV. Methods Approximately 193 phytochemicals from an online database (IMPACT) were subjected to molecular docking using AutoDock Vina against the NS5-MTase protein domain (5WXB) and -RdRp domain (5U04). Results Our results showed that β-sitosterol, carpaine, violaxanthin, pseudocarpaine, Δ7-avenasterols, Rutin, and cis-β-carotene had the highest binding affinity to both protein domains, with β-sitosterol having the most favorable binding energy. Furthermore, ADMET analysis revealed that selected compounds had good pharmacokinetic properties and were nontoxic. Conclusions Our findings suggest that papaya-derived phytochemicals could be potential candidates for developing antiviral drugs against ZIKV. However, further experimental studies using cell lines and in vivo models are needed to validate their efficacy and safety.
Collapse
Affiliation(s)
- Kishore Krishna Kumaree
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
15
|
Auger N, Arbour L, Lewin A, Brousseau É, Healy-Profitós J, Luu TM. Congenital anomalies during Covid-19: artifact of surveillance or a real TORCH? Eur J Epidemiol 2024; 39:613-621. [PMID: 38589643 DOI: 10.1007/s10654-024-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Infections in the first trimester of pregnancy can be teratogenic, but the possibility that Covid-19 could lead to birth defects is unclear. We examined whether SARS-CoV-2 infection during pregnancy or exposure to pandemic conditions were associated with the risk of congenital anomalies. We carried out a retrospective study of 420,222 neonates born in Quebec, Canada in two time periods: prepandemic (January 1, 2017 to March 12, 2020) vs. pandemic (March 13, 2020 to March 31, 2022). We classified pandemic births as early (first trimester completed before the pandemic) or late (first trimester during the pandemic), and identified patients with SARS-CoV-2 infections during pregnancy. We applied (1) adjusted log-binomial regression models to assess the association between SARS-CoV-2 infection and congenital anomalies, and (2) autoregressive interrupted time series regression to analyze temporal trends in the monthly number of defects in all patients regardless of infection. In total, 29,263 newborns (7.0%) had a congenital anomaly. First trimester SARS-CoV-2 infections were not associated with a greater risk of birth defects compared with no infection (RR 1.07, 95% CI 0.59-1.95). However, births during the late pandemic period were more likely to be diagnosed with congenital microcephaly compared with prepandemic births (RR 1.44, 95% CI 1.21-1.71). Interrupted time series analysis confirmed that the frequency of microcephaly increased during the late pandemic period, whereas other anomalies did not. We conclude that Covid-19 is likely not teratogenic, but enhanced surveillance of anomalies among late pandemic births may have heightened the detection of infants with microcephaly.
Collapse
Affiliation(s)
- Nathalie Auger
- University of Montreal Hospital Research Centre, Montreal, QC, Canada.
- Institut national de santé publique du Québec, Montreal, QC, Canada.
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Lewin
- Medical Affairs and Innovation, Hema-Quebec, Montreal, QC, Canada
| | - Émilie Brousseau
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
- Institut national de santé publique du Québec, Montreal, QC, Canada
| | - Jessica Healy-Profitós
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
- Institut national de santé publique du Québec, Montreal, QC, Canada
| | - Thuy Mai Luu
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
16
|
Drwiega EN, Danziger LH, Burgos RM, Michienzi SM. Commonly Reported Mosquito-Borne Viruses in the United States: A Primer for Pharmacists. J Pharm Pract 2024; 37:741-752. [PMID: 37018738 DOI: 10.1177/08971900231167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mosquito-borne diseases are a public health concern. Pharmacists are often a patient's first stop for health information and may be asked questions regarding transmission, symptoms, and treatment of mosquito borne viruses (MBVs). The objective of this paper is to review transmission, geographic location, symptoms, diagnosis and treatment of MBVs. We discuss the following viruses with cases in the US in recent years: Dengue, West Nile, Chikungunya, LaCrosse Encephalitis, Eastern Equine Encephalitis Virus, and Zika. Prevention, including vaccines, and the impact of climate change are also discussed.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodrigo M Burgos
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah M Michienzi
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Azamor T, Cunha DP, Nobre Pires KS, Lira Tanabe EL, Melgaço JG, Vieira da Silva AM, Ribeiro-Alves M, Calvo TL, Tubarão LN, da Silva J, Fernandes CB, Fonseca de Souza A, Torrentes de Carvalho A, Avvad-Portari E, da Cunha Guida L, Gomes L, Lopes Moreira ME, Dinis Ano Bom AP, Cristina da Costa Neves P, Missailidis S, Vasconcelos Z, Borbely AU, Moraes MO. Decidual production of interferon lambda in response to ZIKV persistence: Clinical evidence and in vitro modelling. Heliyon 2024; 10:e30613. [PMID: 38737240 PMCID: PMC11087979 DOI: 10.1016/j.heliyon.2024.e30613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Zika virus (ZIKV) infections during pregnancy can result in Congenital Zika Syndrome (CZS), a range of severe neurological outcomes in fetuses that primarily occur during early gestational stages possibly due to placental damage. Although some placentas can maintain ZIKV persistence for weeks or months after the initial infection and diagnosis, the impact of this viral persistence is still unknown. Here, we aimed to investigate the immunological repercussion of ZIKV persistence in term placentas. As such, term placentas from 64 pregnant women diagnosed with Zika in different gestational periods were analyzed by ZIKV RT-qPCR, examination of decidua and placental villous histopathology, and expression of inflammation-related genes and IFNL1-4. Subsequently, we explored primary cultures of term decidual Extravillous Trophoblasts (EVTs) and Term Chorionic Villi (TCV) explants, as in vitro models to access the immunological consequences of placental ZIKV infection. Placenta from CZS cases presented low IFNL1-4 expression, evidencing the critical protective role of theses cytokines in the clinical outcome. Term placentas cleared for ZIKV showed increased levels of IFNL1, 3, and 4, whether viral persistence was related with a proinflammatory profile. Conversely, upon ZIKV persistence placentas with decidual inflammation showed high IFNL1-4 levels. In vitro experiments showed that term EVTs are more permissive, and secreted higher levels of IFN-α2 and IFN-λ1 compared to TCV explants. The results suggest that, upon ZIKV persistence, the maternal-skewed decidua contributes to placental inflammatory and antiviral signature, through chronic deciduitis and IFNL upregulation. Although further studies are needed to elucidate the mechanisms underlying the decidual responses against ZIKV. Hence, this study presents unique insights and valuable in vitro models for evaluating the immunological landscape of placentas upon ZIKV persistence.
Collapse
|
18
|
Cáceres Munar BA, Urbina A, Ortíz T, Rodríguez A, Fernández OL, Ospina LF, Flórez I, Uribe D, Alvarado C, Calvo EP, Delgado FG, Castellanos JE. High prevalence of dengue, Zika, and chikungunya viruses in blood donors during a dengue outbreak and an endemic period in Colombia. Front Med (Lausanne) 2024; 11:1380129. [PMID: 38751980 PMCID: PMC11094337 DOI: 10.3389/fmed.2024.1380129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Arboviruses pose a challenge in ensuring the supply of pathogen-free blood components because they are not routinely screened in blood banks, and blood components from infected asymptomatic donors could be transfused. This study aimed to detect and characterize arboviral infections in Colombian blood donors. Methods In a cross-sectional study, the prevalence of dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses and co-infections of blood donors were compared between an epidemic period (November 2019-February 2020, n = 462) and an endemic period (November 2021-August 2022, n = 1,119). Viral RNA from each donor serum was purified, and the viruses were detected using a previously standardized multiplex hemi-nested RT-PCR protocol. Subsequently, donors who tested positive were surveyed 15 days after the detection of the virus to identify clinical characteristics related to the arboviral infection. The prevalences of each virus were presented as percentages and compared between epidemic and endemic periods. Results Significantly higher prevalences were found in the epidemic period compared with the endemic period for DENV (14.5 vs. 1.9%), ZIKV (7.8 vs. 0.3%), CHIKV (8 vs. 3.3%), and co-infections (4.3 vs. 0.2%). The survey response rate of positive donors in the two periods was 83/175 (47%). In total, 57% of the donors surveyed were asymptomatic. Symptomatic donors most frequently reported headache (31%), malaise (13%), arthralgia (10%), and fever/chills (8%). Conclusion The prevalence observed in epidemic and endemic periods was higher than that reported in other studies in the Americas. The high proportion of asymptomatic cases found, in addition to the mild and nonspecific manifestations among the symptomatic, may limit the effectiveness of the donor selection criteria used to mitigate the risk of transfusion-transmitted arboviruses.
Collapse
Affiliation(s)
| | | | - Tatiana Ortíz
- Banco Nacional de Sangre Cruz Roja Colombiana, Bogotá, Colombia
| | - Ayda Rodríguez
- Banco Nacional de Sangre Cruz Roja Colombiana, Bogotá, Colombia
| | | | | | - Iris Flórez
- Banco de Sangre Bolívar, Cruz Roja Colombiana, Cartagena, Colombia
| | - Dora Uribe
- Hemocentro del Café, Cruz Roja Colombiana, Manizales, Colombia
| | - Celia Alvarado
- Banco de Sangre Antioquia, Cruz Roja Colombiana, Medellín, Colombia
| | - Eliana Patricia Calvo
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Félix Giovanni Delgado
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
19
|
Irfan S, Etekochay MO, Atanasov AG, Prasad VP, Kandimalla R, Mofatteh M, V P, Emran TB. Human olfactory neurosphere-derived cells: A unified tool for neurological disease modelling and neurotherapeutic applications. Int J Surg 2024; 110:01279778-990000000-01366. [PMID: 38652180 PMCID: PMC11486950 DOI: 10.1097/js9.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
As one of the leading causes of global mortality and morbidity, various neurological diseases cause social and economic burdens. Despite significant advances in the treatment of neurological diseases, establishing a proper disease model, especially for degenerative and infectious diseases, remains a major challenging issue. For long, mice were the model of choice but suffered from serious drawbacks of differences in anatomical and functional aspects of the nervous system. Furthermore, the collection of post-mortem brain tissues limits their usage in cultured cell lines. Overcoming such limitations has prompted the usage of stem cells derived from the peripheral nervous system, such as the cells of the olfactory mucosa as a preferred choice. These cells can be easily cultured in vitro and retain the receptors of neuronal cells life-long. Such cells have various advantages over embryonic or induced stem cells, including homology, and ease of culture and can be conveniently obtained from diseased individuals through either biopsies or exfoliation. They have continuously helped in understanding the genetic and developmental mechanisms of degenerative diseases like Alzheimer's and Parkinson's disease. Moreover, the mode of infection of various viruses that can lead to post-viral olfactory dysfunction, such as the Zika virus can be monitored through these cells in vitro and their therapeutic development can be fastened.
Collapse
Affiliation(s)
- Saad Irfan
- Animal Science Department, Faculty of Animal and Agriculture Sciences, Universitas Diponegoro, Semarang, Indonesia
| | | | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Vishnu P. Prasad
- Rajiv Gandhi University of Health Sciences, Jayanagar, Bengaluru, Karnataka
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad, Telangana State
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Mohammad Mofatteh
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Priyanka V
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Talha B. Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Calderón-Peláez MA, Maradei Anaya SJ, Bedoya-Rodríguez IJ, González-Ipuz KG, Vera-Palacios D, Buitrago IV, Castellanos JE, Velandia-Romero ML. Zika Virus: A Neurotropic Warrior against High-Grade Gliomas-Unveiling Its Potential for Oncolytic Virotherapy. Viruses 2024; 16:561. [PMID: 38675903 PMCID: PMC11055012 DOI: 10.3390/v16040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.
Collapse
Affiliation(s)
- María-Angélica Calderón-Peláez
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Silvia Juliana Maradei Anaya
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | | | - Karol Gabriela González-Ipuz
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Daniela Vera-Palacios
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Isabella Victoria Buitrago
- Semillero ViroLogic 2020–2022, Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia
| | - Jaime E. Castellanos
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| | - Myriam L. Velandia-Romero
- Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá 110121, Colombia; (M.-A.C.-P.); (S.J.M.A.); (J.E.C.)
| |
Collapse
|
21
|
Nisar KS, Anjum MW, Raja MAZ, Shoaib M. Recurrent neural network for the dynamics of Zika virus spreading. AIMS Public Health 2024; 11:432-458. [PMID: 39027393 PMCID: PMC11252581 DOI: 10.3934/publichealth.2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 07/20/2024] Open
Abstract
Recurrent Neural Networks (RNNs), a type of machine learning technique, have recently drawn a lot of interest in numerous fields, including epidemiology. Implementing public health interventions in the field of epidemiology depends on efficient modeling and outbreak prediction. Because RNNs can capture sequential dependencies in data, they have become highly effective tools in this field. In this paper, the use of RNNs in epidemic modeling is examined, with a focus on the extent to which they can handle the inherent temporal dynamics in the spread of diseases. The mathematical representation of epidemics requires taking time-dependent variables into account, such as the rate at which infections spread and the long-term effects of interventions. The goal of this study is to use an intelligent computing solution based on RNNs to provide numerical performances and interpretations for the SEIR nonlinear system based on the propagation of the Zika virus (SEIRS-PZV) model. The four patient dynamics, namely susceptible patients S(y), exposed patients admitted in a hospital E(y), the fraction of infective individuals I(y), and recovered patients R(y), are represented by the epidemic version of the nonlinear system, or the SEIR model. SEIRS-PZV is represented by ordinary differential equations (ODEs), which are then solved by the Adams method using the Mathematica software to generate a dataset. The dataset was used as an output for the RNN to train the model and examine results such as regressions, correlations, error histograms, etc. For RNN, we used 100% to train the model with 15 hidden layers and a delay of 2 seconds. The input for the RNN is a time series sequence from 0 to 5, with a step size of 0.05. In the end, we compared the approximated solution with the exact solution by plotting them on the same graph and generating the absolute error plot for each of the 4 cases of SEIRS-PZV. Predictions made by the model appeared to be become more accurate when the mean squared error (MSE) decreased. An increased fit to the observed data was suggested by this decrease in the MSE, which suggested that the variance between the model's predicted values and the actual values was dropping. A minimal absolute error almost equal to zero was obtained, which further supports the usefulness of the suggested strategy. A small absolute error shows the degree to which the model's predictions matches the ground truth values, thus indicating the level of accuracy and precision for the model's output.
Collapse
Affiliation(s)
- Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Science and Humanities in Al Kharj, Prince Sattam bin Abdulaziz University, 11942, Saudi Arabia
- Saveetha School of Engineering, SIMATS, Chennai, India
| | | | - Muhammad Asif Zahoor Raja
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section .3, Douliou, Yunlin 64002, Taiwan, R.O.C
| | | |
Collapse
|
22
|
Dos Santos AS, da Costa MG, Faustino AM, de Almeida W, Danilevicz CK, Peres AM, de Castro Saturnino BC, Varela APM, Teixeira TF, Roehe PM, Krolow R, Dalmaz C, Pereira LO. Neuroinflammation, blood-brain barrier dysfunction, hippocampal atrophy and delayed neurodevelopment: Contributions for a rat model of congenital Zika syndrome. Exp Neurol 2024; 374:114699. [PMID: 38301864 DOI: 10.1016/j.expneurol.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The congenital Zika syndrome (CZS) has been characterized as a set of several brain changes, such as reduced brain volume and subcortical calcifications, in addition to cognitive deficits. Microcephaly is one of the possible complications found in newborns exposed to Zika virus (ZIKV) during pregnancy, although it is an impacting clinical sign. This study aimed to investigate the consequences of a model of congenital ZIKV infection by evaluating the histopathology, blood-brain barrier, and neuroinflammation in pup rats 24 h after birth, and neurodevelopment of the offspring. Pregnant rats were inoculated subcutaneously with ZIKV-BR at the dose 1 × 107 plaque-forming unit (PFU mL-1) of ZIKV isolated in Brazil (ZIKV-BR) on gestational day 18 (G18). A set of pups, 24 h after birth, was euthanized. The brain was collected and later evaluated for the histopathology of brain structures through histological analysis. Additionally, analyses of the blood-brain barrier were conducted using western blotting, and neuroinflammation was assessed using ELISA. Another set of animals was evaluated on postnatal days 3, 6, 9, and 12 for neurodevelopment by observing the developmental milestones. Our results revealed hippocampal atrophy in ZIKV animals, in addition to changes in the blood-brain barrier structure and pro-inflammatory cytokines expression increase. Regarding neurodevelopment, a delay in important reflexes during the neonatal period in ZIKV animals was observed. These findings advance the understanding of the pathophysiology of CZS and contribute to enhancing the rat model of CZS.
Collapse
Affiliation(s)
- Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Meirylanne Gomes da Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Chris Krebs Danilevicz
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariadni Mesquita Peres
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Carolina de Castro Saturnino
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rachel Krolow
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Pérez-Yanes S, Lorenzo-Sánchez I, Cabrera-Rodríguez R, García-Luis J, Trujillo-González R, Estévez-Herrera J, Valenzuela-Fernández A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic p62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024; 13:598. [PMID: 38607037 PMCID: PMC11011779 DOI: 10.3390/cells13070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Department of Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, 38296 La Laguna, Spain;
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| |
Collapse
|
24
|
Wang L, Jia Q, Zhu G, Ou G, Tang T. Transmission dynamics of Zika virus with multiple infection routes and a case study in Brazil. Sci Rep 2024; 14:7424. [PMID: 38548897 PMCID: PMC11369273 DOI: 10.1038/s41598-024-58025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
The Zika virus (ZIKV) is a serious global public health crisis. A major control challenge is its multiple transmission modes. This paper aims to simulate the transmission patterns of ZIKV using a dynamic process-based epidemiological model written in ordinary differential equations, which incorporates the human-to-mosquito infection by bites and sewage, mosquito-to-human infection by bites, and human-to-human infection by sex. Mathematical analyses are carried out to calculate the basic reproduction number and backward bifurcation, and prove the existence and stability of the equilibria. The model is validated with infection data by applying it to the 2015-2016 ZIKV epidemic in Brazil. The results indicate that the reproduction number is estimated to be 2.13, in which the contributions by mosquito bite, sex and sewage account for 85.7%, 3.5% and 10.8%, respectively. This number and the morbidity rate are most sensitive to parameters related to mosquito ecology, rather than asymptomatic or human-to-human transmission. Multiple transmission routes and suitable temperature exacerbate ZIKV infection in Brazil, and the vast majority of human infection cases were prevented by the intervention implemented. These findings may provide new insights to improve the risk assessment of ZIKV infection.
Collapse
Affiliation(s)
- Liying Wang
- Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology), Guilin, 541004, China
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Qiaojuan Jia
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Guanghu Zhu
- Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology), Guilin, 541004, China
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Guanlin Ou
- Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology), Guilin, 541004, China
| | - Tian Tang
- Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology), Guilin, 541004, China.
- School of Information and Communication, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
25
|
Mwanga EP, Mchola IS, Makala FE, Mshani IH, Siria DJ, Mwinyi SH, Abbasi S, Seleman G, Mgaya JN, Jiménez MG, Wynne K, Sikulu-Lord MT, Selvaraj P, Okumu FO, Baldini F, Babayan SA. Rapid assessment of the blood-feeding histories of wild-caught malaria mosquitoes using mid-infrared spectroscopy and machine learning. Malar J 2024; 23:86. [PMID: 38532415 PMCID: PMC10964711 DOI: 10.1186/s12936-024-04915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The degree to which Anopheles mosquitoes prefer biting humans over other vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing malaria transmission risk. However, existing techniques for identifying mosquito blood meals are demanding in terms of time and effort, involve costly reagents, and are prone to inaccuracies due to factors such as cross-reactivity with other antigens or partially digested blood meals in the mosquito gut. This study demonstrates the first field application of mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-feeding histories of malaria vectors, with direct comparison to PCR assays. METHODS AND RESULTS Female Anopheles funestus mosquitoes (N = 1854) were collected from rural Tanzania and desiccated then scanned with an attenuated total reflectance Fourier-transform Infrared (ATR-FTIR) spectrometer. Blood meals were confirmed by PCR, establishing the 'ground truth' for machine learning algorithms. Logistic regression and multi-layer perceptron classifiers were employed to identify blood meal sources, achieving accuracies of 88%-90%, respectively, as well as HBI estimates aligning well with the PCR-based standard HBI. CONCLUSIONS This research provides evidence of MIRS-ML effectiveness in classifying blood meals in wild Anopheles funestus, as a potential complementary surveillance tool in settings where conventional molecular techniques are impractical. The cost-effectiveness, simplicity, and scalability of MIRS-ML, along with its generalizability, outweigh minor gaps in HBI estimation. Since this approach has already been demonstrated for measuring other entomological and parasitological indicators of malaria, the validation in this study broadens its range of use cases, positioning it as an integrated system for estimating pathogen transmission risk and evaluating the impact of interventions.
Collapse
Affiliation(s)
- Emmanuel P Mwanga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Idrisa S Mchola
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Faraja E Makala
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Issa H Mshani
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Doreen J Siria
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sophia H Mwinyi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Said Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Godian Seleman
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Jacqueline N Mgaya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maggy T Sikulu-Lord
- Faculty of Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Prashanth Selvaraj
- Institute for Disease Modelling, Bill and Melinda Gates Foundation, Seattle, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Bioengineering, The Nelson Mandela African, Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| | - Francesco Baldini
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simon A Babayan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
26
|
Balint E, Feng E, Giles EC, Ritchie TM, Qian AS, Vahedi F, Montemarano A, Portillo AL, Monteiro JK, Trigatti BL, Ashkar AA. Bystander activated CD8 + T cells mediate neuropathology during viral infection via antigen-independent cytotoxicity. Nat Commun 2024; 15:896. [PMID: 38316762 PMCID: PMC10844499 DOI: 10.1038/s41467-023-44667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.
Collapse
Affiliation(s)
- Elizabeth Balint
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth C Giles
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tyrah M Ritchie
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amelia Montemarano
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ana L Portillo
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Monteiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
27
|
Savino DF, Silva JV, da Silva Santos S, Lourenço FR, Giarolla J. How do physicochemical properties contribute to inhibitory activity of promising peptides against Zika Virus NS3 protease? J Mol Model 2024; 30:54. [PMID: 38289526 DOI: 10.1007/s00894-024-05843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
CONTEXT AND RESULTS Flavivirus diseases' cycles, especially Dengue and Yellow Fever, can be observed all over Brazilian territory, representing a great health concern. Additionally, there are no drugs available in therapy. In this scenario, in silico methodologies were applied to obtain physicochemical properties, as well as to better understand the ligand-biological target interaction mode of 20 previously reported NS2B/NS3 protease inhibitors of Dengue virus. Since catalytic site of flavivirus hold similarities, such as the same catalytic triad (His51, Asp75 e Ser135), the ability of this series of molecules to fit in Zika NS3 domains can be achieved. We performed an exploratory data analysis, using statistical methodologies, such as PCA (Principal Component Analysis) and HCA (Hierarchical Component Analysis), to assist the comprehension of how physicochemical properties impact the interaction observed by the docking studies, as well as to build a correlation between the respective ranked characteristics. Based on these previous studies, peptides were selected for the dynamics simulations, which were useful to better understand the ligand-protein interactions. Information relating to, for instance, energy, ΔG, average number of hydrogen bonds and distance from Ser135 (one of the main amino acids in the catalytic pocket) were discussed. In this sense, peptides 15 (considering ΔG value and Hbond number), 7 (ΔG and energy) and 1, 6, 7 and 15 (the proximity to Ser135 throughout the dynamics simulation) were highlighted as promising. Those interesting results could contribute to future studies regarding Zika virus drug design, since this infection represents a great concern in neglected populations. METHODS The models were constructed in the ChemDraw software. The ligand parametrization was performed in the CHEM3D 17.0, UCSF Chimera. Docking simulations were carried out in the GOLD software, after the redocking validation. We used ASP as the function score. Additionally, for dynamics simulations we applied GROMACS software, exploring, mainly, free binding energy calculations. Exploratory analysis was carried out in Minitab 17.3.1 statistical software. Prior to the exploratory analysis, data of quantum chemical properties of the peptides were collected in Microsoft Excel spreadsheet and organized to obtain Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA).
Collapse
Affiliation(s)
- Débora Feliciano Savino
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580, Building 13, São Paulo, SP, 05508-900, Brazil
| | - João Vitor Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580, Building 13, São Paulo, SP, 05508-900, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580, Building 13, São Paulo, SP, 05508-900, Brazil
| | - Felipe Rebello Lourenço
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580, Building 13, São Paulo, SP, 05508-900, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), Professor Lineu Prestes Avenue, 580, Building 13, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
28
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
29
|
Renard A, Pérez Lombardini F, Pacheco Zapata M, Porphyre T, Bento A, Suzán G, Roiz D, Roche B, Arnal A. Interaction of Human Behavioral Factors Shapes the Transmission of Arboviruses by Aedes and Culex Mosquitoes. Pathogens 2023; 12:1421. [PMID: 38133304 PMCID: PMC10746986 DOI: 10.3390/pathogens12121421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Arboviruses, i.e., viruses transmitted by blood-sucking arthropods, trigger significant global epidemics. Over the past 20 years, the frequency of the (re-)emergence of these pathogens, particularly those transmitted by Aedes and Culex mosquitoes, has dramatically increased. Therefore, understanding how human behavior is modulating population exposure to these viruses is of particular importance. This synthesis explores human behavioral factors driving human exposure to arboviruses, focusing on household surroundings, socio-economic status, human activities, and demographic factors. Household surroundings, such as the lack of water access, greatly influence the risk of arbovirus exposure by promoting mosquito breeding in stagnant water bodies. Socio-economic status, such as low income or low education, is correlated to an increased incidence of arboviral infections and exposure. Human activities, particularly those practiced outdoors, as well as geographical proximity to livestock rearing or crop cultivation, inadvertently provide favorable breeding environments for mosquito species, escalating the risk of virus exposure. However, the effects of demographic factors like age and gender can vary widely through space and time. While climate and environmental factors crucially impact vector development and viral replication, household surroundings, socio-economic status, human activities, and demographic factors are key drivers of arbovirus exposure. This article highlights that human behavior creates a complex interplay of factors influencing the risk of mosquito-borne virus exposure, operating at different temporal and spatial scales. To increase awareness among human populations, we must improve our understanding of these complex factors.
Collapse
Affiliation(s)
- Aubane Renard
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
| | - Fernanda Pérez Lombardini
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Mitsuri Pacheco Zapata
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, VetAgro Sup, Campus Vétérinaire de Lyon, 69280 Marcy-l’Etoile, France;
| | - Ana Bento
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gerardo Suzán
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - David Roiz
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Benjamin Roche
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Audrey Arnal
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| |
Collapse
|
30
|
Dong J, Wu X, Hu Q, Sun C, Li J, Song P, Su Y, Zhou L. An immobilization-free electrochemical biosensor based on CRISPR/Cas13a and FAM-RNA-MB for simultaneous detection of multiple pathogens. Biosens Bioelectron 2023; 241:115673. [PMID: 37717422 DOI: 10.1016/j.bios.2023.115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
To better respond to biosecurity issues, we need to build good technology and material reserves for pathogenic microorganism screening. Here, we designed an electrochemical/optical signal probe with a common fluorophore and an electrochemically active group, breaking the previous perception that the signal probe is composed of a fluorophore and a quenching group and realizing the response of three signals: electrochemistry, fluorescence, and direct observation. Then, we proposed a homogeneous electrochemical nucleic acid detection system based on CRISPR/Cas named "HELEN-CR" by integrating free electrochemical/optical signal probes and Cas13a cleavage, achieving a limit of detection of 1 pM within 25 min. To improve the detection sensitivity, we applied recombinase polymerase amplification to amplify the target nucleic acid, achieving a limit of detection of 30 zM within 45 min. Complemented by our self-developed multi-chamber microfluidic chip and portable electrochemical instrument, simultaneous detection of multiple pathogens can be achieved within 50 min, facilitating minimally trained personnel to obtain detection results quickly in a difficult environment. This study proposes a simple, scalable, and general idea and solution for the rapid detection of pathogenic microorganisms and biosecurity monitoring.
Collapse
Affiliation(s)
- Jinying Dong
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoya Wu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushi Hu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China; Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, China
| | - Chongsi Sun
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiahao Li
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Song
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Su
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Zhou
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China; Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, China.
| |
Collapse
|
31
|
Tafesh-Edwards G, Eleftherianos I. The Drosophila melanogaster prophenoloxidase system participates in immunity against Zika virus infection. Eur J Immunol 2023; 53:e2350632. [PMID: 37793051 PMCID: PMC10841153 DOI: 10.1002/eji.202350632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Drosophila melanogaster relies on an evolutionarily conserved innate immune system to protect itself from a wide range of pathogens, making it a convenient genetic model to study various human pathogenic viruses and host antiviral immunity. Here we explore for the first time the contribution of the Drosophila phenoloxidase (PO) system to host survival and defenses against Zika virus (ZIKV) infection by analyzing the role of mutations in the three prophenoloxidase (PPO) genes in female and male flies. We show that only PPO1 and PPO2 genes contribute to host survival and appear to be upregulated following ZIKV infection in Drosophila. Also, we present data suggesting that a complex regulatory system exists between Drosophila PPOs, potentially allowing for a sex-dependent compensation of PPOs by one another or other immune responses such as the Toll, Imd, and JAK/STAT pathways. Furthermore, we show that PPO1 and PPO2 are essential for melanization in the hemolymph and the wound site in flies upon ZIKV infection. Our results reveal an important role played by the melanization pathway in response to ZIKV infection, hence highlighting the importance of this pathway in insect host defense against viral pathogens and potential vector control strategies to alleviate ZIKV outbreaks.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
32
|
Smith TC, Espinoza DO, Zhu Y, Cardona-Ospina JA, Bowman NM, Becker-Dreps S, Rouphael N, Rodriguez-Morales AJ, Bucardo F, Edupuganti S, Premkumar L, Mulligan MJ, de Silva AM, Collins MH. Natural infection by Zika virus but not DNA vaccination consistently elicits antibodies that compete with two potently neutralising monoclonal antibodies targeting distinct epitopes. EBioMedicine 2023; 98:104875. [PMID: 37983984 PMCID: PMC10694573 DOI: 10.1016/j.ebiom.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Autochthonous transmission of Zika virus (ZIKV) has been reported in 87 countries since 2015. Although most infections are mild, there is risk of Guillain-Barré syndrome and adverse pregnancy outcomes. Vaccines are urgently needed to prevent Zika, but sufficient understanding of humoral responses and tools to assess ZIKV-specific immunity are lacking. METHODS We developed a blockade-of-binding (BOB) ELISA using A9E and G9E, two strongly neutralising ZIKV-specific monoclonal antibodies, which do not react with dengue virus. Receiver operating characteristic curve analysis assessed A9E and G9E BOB serodiagnostic performance. BOB was then applied to samples from a surveillance cohort in Risaralda, Colombia, and phase 1 ZIKV vaccine trial samples, comparing results against traditional serologic tests. FINDINGS In the validation sample set (n = 120), A9E BOB has a sensitivity of 93.5% (95% CI: 79.3, 98.9) and specificity 97.8 (95% CI: 92.2, 99.6). G9E BOB had a sensitivity of 100% (95% CI: 89.0, 100.0) and specificity 100% (95% CI: 95.9, 100). Serum from natural infections consistently tested positive in these assays for up to one year, and reactivity tracks well with ZIKV infection status among sera from endemic areas with complicated flavivirus exposures. Interestingly, a leading ZIKV vaccine candidate elicited minimal BOB reactivity despite generating neutralising antibody responses. INTERPRETATION In conclusion, A9E and G9E BOB assays are sensitive and specific assays for detecting antibodies elicited by recent or remote ZIKV infections. Given the additional ability of these BOB assays to detect immune responses that target different epitopes, further development of these assays is well justified for applications including flavivirus surveillance, translational vaccinology research and as potential serologic correlates of protective immunity against Zika. FUNDING R21 AI129532 (PI: S. Becker-Dreps), CDCBAA 2017-N-18041 (PI: A. M. de Silva), Thrasher Fund (PI: M. H. Collins), K22 AI137306 (PI: M. H. Collins).
Collapse
Affiliation(s)
- Teresa C Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Daniel O Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yerun Zhu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Natalie M Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Wang TY, Meng FD, Sang GJ, Zhang HL, Tian ZJ, Zheng H, Cai XH, Tang YD. A novel viral vaccine platform based on engineered transfer RNA. Emerg Microbes Infect 2023; 12:2157339. [PMID: 36482724 PMCID: PMC9769134 DOI: 10.1080/22221751.2022.2157339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, an increasing number of emerging and remerging virus outbreaks have occurred and the rapid development of vaccines against these viruses has been crucial. Controlling the replication of premature termination codon (PTC)-containing viruses is a promising approach to generate live but replication-defective viruses that can be used for potent vaccines. Here, we used anticodon-engineered transfer RNAs (ACE-tRNAs) as powerful precision switches to control the replication of PTC-containing viruses. We showed that ACE-tRNAs display higher potency of reading through PTCs than genetic code expansion (GCE) technology. Interestingly, ACE-tRNA has a site preference that may influence its read-through efficacy. We further attempted to use ACE-tRNAs as a novel viral vaccine platform. Using a human immunodeficiency virus type 1 (HIV-1) pseudotyped virus as an RNA virus model, we found that ACE-tRNAs display high potency for read-through viral PTCs and precisely control their production. Pseudorabies virus (PRV), a herpesvirus, was used as a DNA virus model. We found that ACE-tRNAs display high potency for reading through viral PTCs and precisely controlling PTC-containing virus replication. In addition, PTC-engineered PRV completely attenuated and lost virulence in mice in vivo, and immunization with PRV containing a PTC elicited a robust immune response and provided complete protection against wild-type PRV challenge. Overall, replication-controllable PTC-containing viruses based on ACE-tRNAs provide a new strategy to rapidly attenuate virus infection and prime robust immune responses. This technology can be used as a platform for rapidly developing viral vaccines in the future.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China
| | - Fan-Dan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China
| | - Guo-Ju Sang
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hao Zheng
- Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China,Hao Zheng Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai150001, People’s Republic of China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China,Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, People's Republic of China,Xue-Hui Cai State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, People’s Republic of China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin150001, People’s Republic of China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, People's Republic of China, Yan-Dong Tang
| |
Collapse
|
34
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Baba MM, Ahmed A, Jackson SY, Oderinde BS. Cryptic Zika virus infections unmasked from suspected malaria cases in Northeastern Nigeria. PLoS One 2023; 18:e0292350. [PMID: 37939049 PMCID: PMC10631648 DOI: 10.1371/journal.pone.0292350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Although environmental and human behavioral factors in countries with Zika virus (ZIKV) outbreaks are also common in Nigeria, such an outbreak has not yet been reported probably due to misdiagnosis. The atypical symptoms of malaria and ZIKV infections at the initial phase could leverage their misdiagnosis. This study randomly recruited 496 malaria-suspected patients who visited selected health institutions in Adamawa, Bauchi, and Borno states for malaria tests. These patients' sera were analyzed for ZIKV antibodies using ELISA and plaque reduction neutralization tests (PRNT) at 90% endpoint. About 13.8% of Zika virus-neutralizing antibodies (nAb) did not cross-react with dengue, yellow fever, and West Nile viruses suggesting possible monotypic infections. However, 86% of the sera with ZIKV nAb also neutralized other related viruses at varied degrees: dengue viruses (60.7%), West Nile viruses (23.2%), yellow fever virus (7.1%) and 39.3% were co-infections with chikungunya viruses. Notably, the cross-reactions could also reflect co-infections as these viruses are also endemic in the country. The serum dilution that neutralized 90-100% ZIKV infectivity ranged from 1:8 to 1:128. Also, our findings suggest distinct protection against the ZIKV between different collection sites studied. As indicated by nAb, acute ZIKV infection was detected in 1.7% of IgM-positive patients while past infections occurred in 8.5% of IgM-negatives in the three states. In Borno State, 9.4% of IgG neutralized ZIKV denoting past infections while 13.5% were non-neutralizing IgM and IgG indicating other related virus infections. The age, gender, and occupation of the patients and ZIKV nAb were not significantly different. ZIKV nAb from samples collected within 1-7 days after the onset of symptoms was not significantly different from those of 7-10 days. A wider interval with the same techniques in this study may probably give better diagnostic outcomes. ZIKV nAb was significantly distinct among recipients and non-recipients of antibiotic/antimalaria treatments before seeking malaria tests. The inhibiting effect of these drugs on ZIKV infection progression may probably contribute to the absence of neurological disorders associated with the virus despite being endemic in the environment for several decades. Also, protection against ZIKV as marked by the nAb was different among the vaccinated and unvaccinated YF vaccine recipients. Thus, the YF vaccine may be a good alternative to the Zika vaccine in resource-constrained countries. CONCLUSION The cryptic ZIKV infections underscore the need for differential diagnosis of malaria-suspected febrile patients for arboviruses, especially the Zika virus. The absence of systemic surveillance for the virus is worrisome because of its association with neurological disorders in newborns. Co-infections with other arboviruses may impact adversely on the management of these diseases individually.
Collapse
Affiliation(s)
- Marycelin Mandu Baba
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Abubakar Ahmed
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria
| | - Samaila Yaga Jackson
- Department of Mathematical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Bamidele Soji Oderinde
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
36
|
Li Y, Merbah M, Wollen-Roberts S, Beckman B, Mdluli T, Curtis DJ, Currier JR, Mendez-Rivera L, Dussupt V, Krebs SJ, De La Barrera R, Michael NL, Paquin-Proulx D, Eller MA, Koren MA, Modjarrad K, Rolland M. Priming with Japanese encephalitis virus or yellow fever virus vaccination led to the recognition of multiple flaviviruses without boosting antibody responses induced by an inactivated Zika virus vaccine. EBioMedicine 2023; 97:104815. [PMID: 37793212 PMCID: PMC10562857 DOI: 10.1016/j.ebiom.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Complex patterns of cross-reactivity exist between flaviviruses, yet there is no precise understanding of how sequential exposures due to flavivirus infections or vaccinations impact subsequent antibody responses. METHODS We investigated whether B cell priming from Japanese encephalitis virus (JEV) or yellow fever virus (YFV) vaccination impacted binding and functional antibody responses to flaviviruses following vaccination with a Zika virus (ZIKV) purified inactivated virus (ZPIV) vaccine. Binding antibody responses and Fc gamma receptor engagement against 23 flavivirus antigens were characterized along with neutralization titres and Fc effector responses in 75 participants at six time points. FINDINGS We found no evidence that priming with JEV or YFV vaccines improved the magnitude of ZPIV induced antibody responses to ZIKV. Binding antibodies and Fc gamma receptor engagement to ZIKV antigens did not differ significantly across groups, while antibody-dependent cellular phagocytosis (ADCP) and neutralizing responses were higher in the naïve group than in the JEV and YFV primed groups following the second ZPIV immunization (p ≤ 0.02). After a third dose of ZPIV, ADCP responses remained higher in the naïve group than in the primed groups. However, priming affected the quality of the response following ZPIV vaccination, as primed individuals recognized a broader array of flavivirus antigens than individuals in the naïve group. INTERPRETATION While a priming vaccination to either JEV or YFV did not boost ZIKV-specific responses upon ZIKV vaccination, the qualitatively different responses elicited in the primed groups highlight the complexity in the cross-reactive antibody responses to flaviviruses. FUNDING This work was supported by a cooperative agreement between The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of the Army [W81XWH-18-2-0040]. The work was also funded in part by the National Institute of Allergy and Infectious Diseases (NIAID) R01AI155983 to SJK and KM.
Collapse
Affiliation(s)
- Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Suzanne Wollen-Roberts
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Bradley Beckman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Thembi Mdluli
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Daniel J Curtis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rafael De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michael A Koren
- Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| |
Collapse
|
37
|
Song GY, Huang XY, He MJ, Zhou HY, Li RT, Tian Y, Wang Y, Cheng ML, Chen X, Zhang RR, Zhou C, Zhou J, Fang XY, Li XF, Qin CF. A single amino acid substitution in the capsid protein of Zika virus contributes to a neurovirulent phenotype. Nat Commun 2023; 14:6832. [PMID: 37884553 PMCID: PMC10603150 DOI: 10.1038/s41467-023-42676-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increasing evidence shows the African lineage Zika virus (ZIKV) displays a more severe neurovirulence compared to the Asian ZIKV. However, viral determinants and the underlying mechanisms of enhanced virulence phenotype remain largely unknown. Herein, we identify a panel of amino acid substitutions that are unique to the African lineage of ZIKVs compared to the Asian lineage by phylogenetic analysis and sequence alignment. We then utilize reverse genetic technology to generate recombinant ZIKVs incorporating these lineage-specific substitutions based on an infectious cDNA clone of Asian ZIKV. Through in vitro characterization, we discover a mutant virus with a lysine to arginine substitution at position 101 of capsid (C) protein (termed K101R) displays a larger plaque phenotype, and replicates more efficiently in various cell lines. Moreover, K101R replicates more efficiently in mouse brains and induces stronger inflammatory responses than the wild type (WT) virus in neonatal mice. Finally, a combined analysis reveals the K101R substitution promotes the production of mature C protein without affecting its binding to viral RNA. Our study identifies the role of K101R substitution in the C protein in contributing to the enhanced virulent phenotype of the African lineage ZIKV, which expands our understanding of the complexity of ZIKV proteins.
Collapse
Affiliation(s)
- Guang-Yuan Song
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xing-Yao Huang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Hang-Yu Zhou
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Ying Tian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Meng-Li Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Chao Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Jia Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xian-Yang Fang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Cheng-Feng Qin
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
38
|
McMahon DE, Schuetz AN, Kovarik CL. Emerging infectious diseases of the skin: a review of clinical and histologic findings. Hum Pathol 2023; 140:196-213. [PMID: 37454994 DOI: 10.1016/j.humpath.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Emerging infectious diseases are of great importance to public health and clinical practice. This review aims to characterize the clinical and histopathologic features of emerging infectious diseases with cutaneous manifestations in order to increase awareness of these entities among dermatologists, pathologists, and dermatopathologists.
Collapse
Affiliation(s)
- Devon E McMahon
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey N Schuetz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Carrie L Kovarik
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Shariff S, Kantawala B, Hamiidah N, Yadav T, Nazir A, Uwishema O. Zika virus disease: an alarming situation resurfacing on the radar - a short communication. Ann Med Surg (Lond) 2023; 85:5294-5296. [PMID: 37811053 PMCID: PMC10553178 DOI: 10.1097/ms9.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background/introduction On the 13th of December 2022, a 5-year-old girl from Karnataka, India, tested positive for Zika virus. The first Zika virus was isolated from the serum of a rhesus monkey in the Zika Forest of Uganda in 1947. Zika virus was largely dormant for about 70 years before suddenly resurfacing across all of America, from Brazil to the Pacific Islands and is connected to a grouping of microcephaly phenotypes based on a complete virus genome analysis. All of the aforementioned research provides an overview of the migration of this virus from the Americas to continental Africa via mosquitoes. The current study, therefore, aims to evaluate the virologic characteristics, prophylaxis, transmitting mechanisms, diagnosis, clinical manifestations, and treatment of ZIKV infection in light of the virus's widespread dissemination and deadly nature. Aim The investigation's findings aim to demonstrate that in order to prevent further outbreaks, there is a national requirement for active epidemiological and entomological observation of Zika. Materials and methods Data were extracted from academic journals of medicine published in MEDLINE, PubMed, ScienceDirect, Ovid, and Embase inventory databases with a predetermined search strategy. Articles considering the Zika virus and its clinical manifestations, especially neurological, were included. Results The Zika virus has been declared a public health emergency of global significance by the World Health Organization (WHO). It is of alarming concern that it is now one of the most prevalent infectious diseases associated with birth abnormalities discovered in the past five decades. The onset and accelerated spread of disease to other parts of the world is attributed to the migration of infected hosts and climate change. Rapid laboratory diagnosis, evaluation of serological techniques, and virus isolation are urgently needed, along with newer modalities such as mathematical modeling as prediction devices to curb this issue. Due to its grave neurological manifestations, it is mandated to engineer peptide therapies and a virus-specific vaccination to treat this neurotropic virus. Conclusion There is currently no vaccination against Zika virus infection. If societies are not adequately prepared, the epidemiological wave will have an impact on the workforce and could pose a serious threat. To alleviate the significant cost on health systems and manage its promotion globally, improved investigation and response activities are needed.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Burhan Kantawala
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Nakyanzi Hamiidah
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Nursing and Midwifery, Lira University, Lira, Uganda
| | - Tularam Yadav
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, Jinnah Postgraduate Medical Centre (JPMC), Karachi
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- King Edward Medical University, Lahore, Pakistan
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
40
|
Ding J, Cui C, Wang G, Wei G, Bai L, Li Y, Sun P, Dong L, Liu Z, Yun J, Li F, Li K, He L, Wang S. Engineered Gut Symbiotic Bacterium-Mediated RNAi for Effective Control of Anopheles Mosquito Larvae. Microbiol Spectr 2023; 11:e0166623. [PMID: 37458601 PMCID: PMC10433860 DOI: 10.1128/spectrum.01666-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/25/2023] [Indexed: 08/19/2023] Open
Abstract
Anopheles mosquitoes are the primary vectors for the transmission of malaria parasites, which poses a devastating burden on global public health and welfare. The recent invasion of Anopheles stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. To address this issue, we developed a new approach for mosquito larvae control using gut microbiota-mediated RNA interference (RNAi). We engineered a mosquito symbiotic gut bacterium, Serratia fonticola, by deleting its RNase III gene to produce double-stranded RNAs (dsRNAs) in the mosquito larval gut. We found that the engineered S. fonticola strains can stably colonize mosquito larval guts and produce dsRNAs dsMet or dsEcR to activate RNAi and effectively suppress the expression of methoprene-tolerant gene Met and ecdysone receptor gene EcR, which encode receptors for juvenile hormone and ecdysone pathways in mosquitoes, respectively. Importantly, the engineered S. fonticola strains markedly inhibit the development of A. stephensi larvae and leads to a high mortality, providing an effective dsRNA delivery system for silencing genes in insects and a novel RNAi-mediated pest control strategy. Collectively, our symbiont-mediated RNAi (smRNAi) approach offers an innovative and sustainable method for controlling mosquito larvae and provides a promising strategy for combating malaria. IMPORTANCE Mosquitoes are vectors for various diseases, imposing a significant threat to public health globally. The recent invasion of A. stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. RNA interference (RNAi) is a promising approach that uses dsRNA to silence specific genes in pests. This study presents the use of a gut symbiotic bacterium, Serratia fonticola, as an efficient delivery system of dsRNA for RNAi-mediated pest control. The knockout of RNase III, a dsRNA-specific endonuclease gene, in S. fonticola using CRISPR-Cas9 led to efficient dsRNA production. Engineered strains of S. fonticola can colonize the mosquito larval gut and effectively suppress the expression of two critical genes, Met and EcR, which inhibit mosquito development and cause high mortality in mosquito larvae. This study highlights the potential of exploring the mosquito microbiota as a source of dsRNA for RNAi-based pest control.
Collapse
Affiliation(s)
- Jinjin Ding
- School of Life Science, East China Normal University, Shanghai, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ge Wei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Bai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Peilu Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zicheng Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Yun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Yen LC, Chen HW, Ho CL, Lin CC, Lin YL, Yang QW, Chiu KC, Lien SP, Lin RJ, Liao CL. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J Biomed Sci 2023; 30:41. [PMID: 37316861 DOI: 10.1186/s12929-023-00938-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.
Collapse
Affiliation(s)
- Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Lo Ho
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Qiao-Wen Yang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Chou Chiu
- Department of Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Pei Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
42
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
43
|
Habibi MA, Nezhad Shamohammadi F, Rajaei T, Namdari H, Pashaei MR, Farajifard H, Ahmadpour S. Immunopathogenesis of viral infections in neurological autoimmune disease. BMC Neurol 2023; 23:201. [PMID: 37221459 DOI: 10.1186/s12883-023-03239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data on the immunopathogenesis of viruses in autoimmunity of the nervous system.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Multiple Sclerosis Research Center, Neuroscience Institut, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran
| | | | - Taraneh Rajaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
44
|
Huang Z, Zhang Y, Li H, Zhu J, Song W, Chen K, Zhang Y, Lou Y. Vaccine development for mosquito-borne viral diseases. Front Immunol 2023; 14:1161149. [PMID: 37251387 PMCID: PMC10213220 DOI: 10.3389/fimmu.2023.1161149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Gallichotte EN, Samaras D, Murrieta RA, Sexton NR, Robison A, Young MC, Byas AD, Ebel GD, Rückert C. The Incompetence of Mosquitoes-Can Zika Virus Be Adapted To Infect Culex tarsalis Cells? mSphere 2023; 8:e0001523. [PMID: 36794947 PMCID: PMC10117059 DOI: 10.1128/msphere.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
The molecular evolutionary mechanisms underpinning virus-host interactions are increasingly recognized as key drivers of virus emergence, host specificity, and the likelihood that viruses can undergo a host shift that alters epidemiology and transmission biology. Zika virus (ZIKV) is mainly transmitted between humans by Aedes aegypti mosquitoes. However, the 2015 to 2017 outbreak stimulated discussion regarding the role of Culex spp. mosquitoes in transmission. Reports of ZIKV-infected Culex mosquitoes, in nature and under laboratory conditions, resulted in public and scientific confusion. We previously found that Puerto Rican ZIKV does not infect colonized Culex quinquefasciatus, Culex pipiens, or Culex tarsalis, but some studies suggest they may be competent ZIKV vectors. Therefore, we attempted to adapt ZIKV to Cx. tarsalis by serially passaging virus on cocultured Ae. aegypti (Aag2) and Cx. tarsalis (CT) cells to identify viral determinants of species specificity. Increasing fractions of CT cells resulted in decreased overall virus titer and no enhancement of Culex cell or mosquito infection. Next-generation sequencing of cocultured virus passages revealed synonymous and nonsynonymous variants throughout the genome that arose as CT cell fractions increased. We generated nine recombinant ZIKVs containing combinations of the variants of interest. None of these viruses showed increased infection of Culex cells or mosquitoes, demonstrating that variants associated with passaging were not specific to increased Culex infection. These results reveal the challenge of a virus adapting to a new host, even when pushed to adapt artificially. Importantly, they also demonstrate that while ZIKV may occasionally infect Culex mosquitoes, Aedes mosquitoes likely drive transmission and human risk. IMPORTANCE ZIKV is mainly transmitted between humans by Aedes mosquitoes. In nature, ZIKV-infected Culex mosquitoes have been found, and ZIKV infrequently infects Culex mosquitoes under laboratory conditions. Yet, most studies show that Culex mosquitoes are not competent vectors for ZIKV. We attempted to adapt ZIKV to Culex cells to identify viral determinants of species specificity. We sequenced ZIKV after it was passaged on a mixture of Aedes and Culex cells and found that it acquired many variants. We generated recombinant viruses containing combinations of the variants of interest to determine if any of these changes enhance infection in Culex cells or mosquitoes. Recombinant viruses did not show increased infection in Culex cells or mosquitoes, but some variants increased infection in Aedes cells, suggesting adaptation to those cells instead. These results reveal that arbovirus species specificity is complex, and that virus adaptation to a new genus of mosquito vectors likely requires multiple genetic changes.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Demetrios Samaras
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes A. Murrieta
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicole R. Sexton
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexis Robison
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| | - Michael C. Young
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alex D. Byas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia Rückert
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
46
|
Saivish MV, Menezes GDL, da Silva RA, Fontoura MA, Shimizu JF, da Silva GCD, Teixeira IDS, Mistrão NFB, Hernandes VM, Rahal P, Sacchetto L, Pacca CC, Marques RE, Nogueira ML. Antiviral Activity of Quercetin Hydrate against Zika Virus. Int J Mol Sci 2023; 24:7504. [PMID: 37108665 PMCID: PMC10144977 DOI: 10.3390/ijms24087504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Departamento de Microbiologia, Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
47
|
Wanzeller ALM, da Silva FS, Hernández LHA, Barros LJL, Freitas MNO, Santos MM, Gonçalves EDJ, Pantoja JAS, Lima CDS, Lima MF, Costa LRO, das Chagas LL, Silva IF, da Cunha TCADS, do Nascimento BLS, Vasconcelos HB, da Rosa EST, Rodrigues SG, Azevedo RDSDS, Martins LC, Casseb LMN, Chiang JO, Nunes Neto JP, Cruz ACR, Carvalho VL, Vasconcelos PFDC, da Silva EVP. Isolation of Flaviviruses and Alphaviruses with Encephalitogenic Potential Diagnosed by Evandro Chagas Institute (Pará, Brazil) in the Period of 1954-2022: Six Decades of Discoveries. Viruses 2023; 15:v15040935. [PMID: 37112917 PMCID: PMC10146763 DOI: 10.3390/v15040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses with encephalitogenic potential can cause neurological conditions of clinical and epidemiological importance, such as Saint Louis encephalitis virus, Venezuelan equine encephalitis virus, Eastern equine encephalitis virus, Western equine encephalitis virus, Dengue virus, Zika virus, Chikungunya virus, Mayaro virus and West Nile virus. The objective of the present study was to determine the number of arboviruses with neuroinvasive potential isolated in Brazil that corresponds to the collection of viral samples belonging to the Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute (SAARB/IEC) of the Laboratory Network of National Reference for Arbovirus Diagnosis from 1954 to 2022. In the analyzed period, a total of 1,347 arbovirus samples with encephalitogenic potential were isolated from mice; 5,065 human samples were isolated exclusively by cell culture; and 676 viruses were isolated from mosquitoes. The emergence of new arboviruses may be responsible for diseases still unknown to humans, making the Amazon region a hotspot for infectious diseases due to its fauna and flora species characteristics. The detection of circulating arboviruses with the potential to cause neuroinvasive diseases is constant, which justifies the continuation of active epidemiological surveillance work that offers adequate support to the public health system regarding the virological diagnosis of circulating arboviruses in Brazil.
Collapse
Affiliation(s)
- Ana Lucia Monteiro Wanzeller
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Fabio Silva da Silva
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Leonardo Henrique Almeida Hernández
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Landerson Junior Leopoldino Barros
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Maria Nazaré Oliveira Freitas
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Maissa Maia Santos
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Ercília de Jesus Gonçalves
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Jamilla Augusta Sousa Pantoja
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Creuza de Sousa Lima
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Maxwell Furtado Lima
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Luiz Roberto Oliveira Costa
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Liliane Leal das Chagas
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Iveraldo Ferreira Silva
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Tania Cristina Alves da Silveira da Cunha
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Bruna Lais Sena do Nascimento
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Helena Baldez Vasconcelos
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Elizabeth Salbe Travassos da Rosa
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Sueli Guerreiro Rodrigues
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Raimunda do Socorro da Silva Azevedo
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Lívia Carício Martins
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Lívia Medeiros Neves Casseb
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Joaquim Pinto Nunes Neto
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Ana Cecília Ribeiro Cruz
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Valéria Lima Carvalho
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Eliana Vieira Pinto da Silva
- Viral Isolation Laboratory, Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health, Ananindeua 67030-000, Brazil
| |
Collapse
|
48
|
Quincozes-Santos A, Bobermin LD, Costa NLF, Thomaz NK, Almeida RRDS, Beys-da-Silva WO, Santi L, Rosa RL, Capra D, Coelho-Aguiar JM, DosSantos MF, Heringer M, Cirne-Lima EO, Guimarães JA, Schuler-Faccini L, Gonçalves CA, Moura-Neto V, Souza DO. The role of glial cells in Zika virus-induced neurodegeneration. Glia 2023. [PMID: 36866453 DOI: 10.1002/glia.24353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael L Rosa
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniela Capra
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoela Heringer
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
49
|
Zhou J, Guan MY, Li RT, Qi YN, Yang G, Deng YQ, Li XF, Li L, Yang X, Liu JF, Qin CF. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine 2023; 89:104457. [PMID: 36739631 PMCID: PMC9931927 DOI: 10.1016/j.ebiom.2023.104457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging arbovirus of the genus flavivirus that is associated with congenital Zika syndrome (CZS) in newborns. A wide range of clinical symptoms including intellectual disability, speech delay, coordination or movement problems, and hearing and vision loss, have been well documented in children with CZS. However, whether ZIKV can invade the olfactory system and lead to post-viral olfactory dysfunction (PVOD) remains unknown. METHODS We investigated the susceptibility and biological responses of the olfactory system to ZIKV infection using mouse models and human olfactory organoids derived from patient olfactory mucosa. FINDINGS We demonstrate that neonatal mice infected with ZIKV suffer from transient olfactory dysfunction when they reach to puberty. Moreover, ZIKV mainly targets olfactory ensheathing cells (OECs) and exhibits broad cellular tropism colocalizing with small populations of mature/immature olfactory sensory neurons (mOSNs/iOSNs), sustentacular cells and horizontal basal cells in the olfactory mucosa (OM) of immunodeficient AG6 mice. ZIKV infection induces strong antiviral immune responses in both the olfactory mucosa and olfactory bulb tissues, resulting in the upregulation of proinflammatory cytokines/chemokines and genes related to the antiviral response. Histopathology and transcriptomic analysis showed typical tissue damage in the olfactory system. Finally, by using an air-liquid culture system, we showed that ZIKV mainly targets sustentacular cells and OECs and support robust ZIKV replication. INTERPRETATION Our results demonstrate that olfactory system represents as significant target for ZIKV infection, and that PVOD may be neglected in CZS patients. FUNDING Stated in the acknowledgment.
Collapse
Affiliation(s)
- Jia Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng-Yue Guan
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 10010, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yi-Ni Qi
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guan Yang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian-Feng Liu
- Department of Otorhinolaryngology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
50
|
Wright ML, Drake D, Link DG, Berg JA. Climate change and the adverse impact on the health and well-being of women and girls from the Women's Health Expert Panel of the American Academy of Nursing. Nurs Outlook 2023; 71:101919. [PMID: 36801608 DOI: 10.1016/j.outlook.2023.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 01/21/2023] [Indexed: 02/18/2023]
Abstract
Climate change has measurable adverse impact on the general and reproductive health of women and girls. Multinational government organizations, private foundations, and consumer groups identify anthropogenic disruptions in social and ecological environments as the primary threats to human health this century. Drought, micronutrient shortage, famine, mass migration, conflict over resources, and effects on mental health resulting from displacement and war are challenging effects to manage. The most severe effects will be felt by those with the least resources to prepare for and adapt to changes. Climate change is a phenomenon of interest to women's health professionals because women and girls are more vulnerable to the effects due to a combination of physiologic, biologic, cultural, and socioeconomic risk factors. Nurses, with our scientific foundation, human-centered approach, and position of trust in societies can be leaders in efforts at mitigation, adaptation, and building resilience in response to changes in our planetary health.
Collapse
Affiliation(s)
| | - Diana Drake
- School of Nursing, University of Minnesota, Minneapolis, MN
| | - Denise G Link
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Judith A Berg
- College of Nursing, The University of Arizona, Tucson, AZ
| |
Collapse
|