1
|
Mukherjee S, Liesen NT, Milner ST, Hall LM, DeLongchamp DM. Reconciling Chain Orientation in Polymer-Grafted Nanoparticles between Coarse-Grained Models and Resonant Soft X-ray Scattering. ACS NANO 2025. [PMID: 40245355 DOI: 10.1021/acsnano.4c18022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Polymer chain stretching enables the plastic and elastic properties that make polymers unique and valuable engineering materials. Despite its importance, polymer chain orientation in amorphous regions remains very challenging to measure by conventional techniques because it is an intrinsically molecule-scale phenomenon lacking long-range order that is frequently heterogeneous across length scales of ≈ (1 to 100) nm. Polarized resonant soft X-ray scattering (P-RSoXS) is an emerging technique that has recently achieved the measurement of amorphous chain orientation with ≈2 nm spatial resolution. The advent of this measurement capability invites comparisons with computational results for which spatial variations in chain orientation are readily accessible, providing a powerful approach to computation validation. Here we forward simulate P-RSoXS patterns for polystyrene grafted gold nanoparticles from real-space representations incorporating spatial polymer backbone orientation heterogeneity directly extracted from coarse-grained modeling results. Agreement between the computation and P-RSoXS experiment is found to depend greatly on assumptions of phenyl ring conformation relative to the polymer chain backbone, because the orientation sensitivity of P-RSoXS relies on a bond-level transition dipole moment of the phenyl ring of polystyrene to report backbone orientation. By incorporating a statistical description of phenyl ring orientation based on atomistic calculations, we report excellent agreement between P-RSoXS data and forward-simulated patterns with no fitting variables.
Collapse
Affiliation(s)
- Subhrangsu Mukherjee
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nicholas T Liesen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lisa M Hall
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43221, United States
| | - Dean M DeLongchamp
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Khan T, McAfee T, Ferron TJ, Alotaibi A, Collins BA. Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406281. [PMID: 39562171 PMCID: PMC11795723 DOI: 10.1002/adma.202406281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.
Collapse
Affiliation(s)
- Tamanna Khan
- Department of Materials EngineeringWashington State UniversityPullmanWA99164USA
| | - Terry McAfee
- Department of PhysicsWashington State UniversityPullmanWA99164USA
- Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Thomas J. Ferron
- Department of PhysicsWashington State UniversityPullmanWA99164USA
| | - Awwad Alotaibi
- Department of Materials EngineeringWashington State UniversityPullmanWA99164USA
| | - Brian A. Collins
- Department of Materials EngineeringWashington State UniversityPullmanWA99164USA
- Department of PhysicsWashington State UniversityPullmanWA99164USA
| |
Collapse
|
3
|
Chen T, Qian Y, Laine A, Kwon J, Liu L, Pal S, Gupta S, Vargo E, Su GM, Ritchie RO, Keten S, Wang R, Salmeron M, Xu T. Reversible Nanocomposite by Programming Amorphous Polymer Conformation Under Nanoconfinement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415352. [PMID: 39763396 DOI: 10.1002/adma.202415352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Indexed: 02/26/2025]
Abstract
Nanoconfinements are utilized to program how polymers entangle and disentangle as chain clusters to engineer pseudo bonds with tunable strength, multivalency, and directionality. When amorphous polymers are grafted to nanoparticles that are one magnitude larger in size than individual polymers, programming grafted chain conformations can "synthesize" high-performance nanocomposites with moduli of ≈25GPa and a circular lifecycle without forming and/or breaking chemical bonds. These nanocomposites dissipate external stresses by disentangling and stretching grafted polymers up to ≈98% of their contour length, analogous to that of folded proteins; use both polymers and nanoparticles for load bearing; and exhibit a non-linear dependence on composition throughout the microscopic, nanoscopic, and single-particle levels.
Collapse
Affiliation(s)
- Tiffany Chen
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, 94720, USA
| | - Yiwen Qian
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Material Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Antoine Laine
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junpyo Kwon
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Luofu Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Subhadeep Pal
- Department of Civil and Environmental Engineering Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Supriya Gupta
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Vargo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Material Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Gregory M Su
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Material Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sinan Keten
- Department of Civil and Environmental Engineering Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rui Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Material Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Ting Xu
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, 94720, USA
- Department of Material Science and Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Grabner D, Pickett PD, McAfee T, Collins BA. Molecular Weight-Independent "Polysoap" Nanostructure Characterized via In Situ Resonant Soft X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7444-7455. [PMID: 38552143 DOI: 10.1021/acs.langmuir.3c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Studying polymer micelle structure and loading dynamics under environmental conditions is critical for nanocarrier applications but challenging due to a lack of in situ nanoprobes. Here, the structure and loading of amphiphilic polyelectrolyte copolymer micelles, formed by 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and n-dodecyl acrylamide (DDAM), were investigated using a multimodal approach centered around in situ resonant soft X-ray scattering (RSoXS). We observe aqueous micelles formed from polymers of wide-ranging molecular weights and aqueous concentrations. Despite no measurable critical micelle concentration (CMC), structural analyses point toward multimeric structures for most molecular weights, with the lowest molecular weight micelles containing mixed coronas and forming loose micelle clusters that enhance hydrocarbon uptake. The sizes of the micelle substructures are independent of both the concentration and molecular weight. Combining these results with a measured molecular weight-invariant surface charge and zeta potential strengthens the link between the nanoparticle size and ionic charge in solution that governs the polysoap micelle structure. Such control would be critical for nanocarrier applications, such as drug delivery and water remediation.
Collapse
Affiliation(s)
- Devin Grabner
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Phillip D Pickett
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
5
|
Hu H, Liu S, Xu J, Ma R, Peng Z, Peña TAD, Cui Y, Liang W, Zhou X, Luo S, Yu H, Li M, Wu J, Chen S, Li G, Chen Y. Over 19 % Efficiency Organic Solar Cells Enabled by Manipulating the Intermolecular Interactions through Side Chain Fluorine Functionalization. Angew Chem Int Ed Engl 2024; 63:e202400086. [PMID: 38329002 DOI: 10.1002/anie.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.
Collapse
Affiliation(s)
- Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Shuai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaoyu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhengxing Peng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Top Archie Dela Peña
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoli Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Siwei Luo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Han Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
| | - Shangshang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
6
|
Wu Y, Yuan Y, Sorbelli D, Cheng C, Michalek L, Cheng HW, Jindal V, Zhang S, LeCroy G, Gomez ED, Milner ST, Salleo A, Galli G, Asbury JB, Toney MF, Bao Z. Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells. Nat Commun 2024; 15:2170. [PMID: 38461153 PMCID: PMC10924936 DOI: 10.1038/s41467-024-46493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
All-polymer solar cells (all-PSCs) offer improved morphological and mechanical stability compared with those containing small-molecule-acceptors (SMAs). They can be processed with a broader range of conditions, making them desirable for printing techniques. In this study, we report a high-performance polymer acceptor design based on bithiazole linker (PY-BTz) that are on par with SMAs. We demonstrate that bithiazole induces a more coplanar and ordered conformation compared to bithiophene due to the synergistic effect of non-covalent backbone planarization and reduced steric encumbrances. As a result, PY-BTz shows a significantly higher efficiency of 16.4% in comparison to the polymer acceptors based on commonly used thiophene-based linkers (i.e., PY-2T, 9.8%). Detailed analyses reveal that this improvement is associated with enhanced conjugation along the backbone and closer interchain π-stacking, resulting in higher charge mobilities, suppressed charge recombination, and reduced energetic disorder. Remarkably, an efficiency of 14.7% is realized for all-PSCs that are solution-sheared in ambient conditions, which is among the highest for devices prepared under conditions relevant to scalable printing techniques. This work uncovers a strategy for promoting backbone conjugation and planarization in emerging polymer acceptors that can lead to superior all-PSCs.
Collapse
Affiliation(s)
- Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-4125, USA
| | - Yue Yuan
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Diego Sorbelli
- Pritzker School of Molecular Engineering, University of Chicago, 5747 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Christina Cheng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-4125, USA
| | - Hao-Wen Cheng
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-4125, USA
| | - Vishal Jindal
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Song Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-4125, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Enrique D Gomez
- Department of Chemical Engineering and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, 5747 South Ellis Avenue, Chicago, IL, 60637, USA
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael F Toney
- Department of Chemical and Biological Engineering, Materials Science Program, Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-4125, USA.
| |
Collapse
|
7
|
Wang Z, Guo Y, Liu X, Shu W, Han G, Ding K, Mukherjee S, Zhang N, Yip HL, Yi Y, Ade H, Chow PCY. The role of interfacial donor-acceptor percolation in efficient and stable all-polymer solar cells. Nat Commun 2024; 15:1212. [PMID: 38331998 PMCID: PMC10853271 DOI: 10.1038/s41467-024-45455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Polymerization of Y6-type acceptor molecules leads to bulk-heterojunction organic solar cells with both high power-conversion efficiency and device stability, but the underlying mechanism remains unclear. Here we show that the exciton recombination dynamics of polymerized Y6-type acceptors (Y6-PAs) strongly depends on the degree of aggregation. While the fast exciton recombination rate in aggregated Y6-PA competes with electron-hole separation at the donor-acceptor (D-A) interface, the much-suppressed exciton recombination rate in dispersed Y6-PA is sufficient to allow efficient free charge generation. Indeed, our experimental results and theoretical simulations reveal that Y6-PAs have larger miscibility with the donor polymer than Y6-type small molecular acceptors, leading to D-A percolation that effectively prevents the formation of Y6-PA aggregates at the interface. Besides enabling high charge generation efficiency, the interfacial D-A percolation also improves the thermodynamic stability of the blend morphology, as evident by the reduced device "burn-in" loss upon solar illumination.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yu Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xianzhao Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenchao Shu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian, Beijing, 100190, China
| | - Guangchao Han
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian, Beijing, 100190, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Subhrangsu Mukherjee
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Nan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuanping Yi
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian, Beijing, 100190, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
8
|
Du Z, Luong HM, Sabury S, Therdkatanyuphong P, Chae S, Welton C, Jones AL, Zhang J, Peng Z, Zhu Z, Nanayakkara S, Coropceanu V, Choi DG, Xiao S, Yi A, Kim HJ, Bredas JL, Ade H, Reddy GNM, Marder SR, Reynolds JR, Nguyen TQ. Additive-free molecular acceptor organic solar cells processed from a biorenewable solvent approaching 15% efficiency. MATERIALS HORIZONS 2023; 10:5564-5576. [PMID: 37872787 DOI: 10.1039/d3mh01133j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report on the use of molecular acceptors (MAs) and donor polymers processed with a biomass-derived solvent (2-methyltetrahydrofuran, 2-MeTHF) to facilitate bulk heterojunction (BHJ) organic photovoltaics (OPVs) with power conversion efficiency (PCE) approaching 15%. Our approach makes use of two newly designed donor polymers with an opened ring unit in their structures along with three molecular acceptors (MAs) where the backbone and sidechain were engineered to enhance the processability of BHJ OPVs using 2-MeTHF, as evaluated by an analysis of donor-acceptor (D-A) miscibility and interaction parameters. To understand the differences in the PCE values that ranged from 9-15% as a function of composition, the surface, bulk, and interfacial BHJ morphologies were characterized at different length scales using atomic force microscopy, grazing-incidence wide-angle X-ray scattering, resonant soft X-ray scattering, X-ray photoelectron spectroscopy, and 2D solid-state nuclear magnetic resonance spectroscopy. Our results indicate that the favorable D-A intermixing that occurs in the best performing BHJ film with an average domain size of ∼25 nm, high domain purity, uniform distribution and enhanced local packing interactions - facilitates charge generation and extraction while limiting the trap-assisted recombination process in the device, leading to high effective mobility and good performance.
Collapse
Affiliation(s)
- Zhifang Du
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Hoang Mai Luong
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | - Sangmin Chae
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Austin L Jones
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Junxiang Zhang
- University of Colorado Boulder, Renewable and Sustainable Energy Institute, Boulder, CO 80303, USA.
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC 27695, USA
| | - Ziyue Zhu
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Sadisha Nanayakkara
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Dylan G Choi
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Steven Xiao
- 1-Material Inc, 2290 Chemin St-Francois, Dorval, Quebec, H9P 1K2, Canada
| | - Ahra Yi
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
- Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyo Jung Kim
- Department of Organic Material Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC 27695, USA
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Seth R Marder
- University of Colorado Boulder, Renewable and Sustainable Energy Institute, Boulder, CO 80303, USA.
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Wu J, Ling Z, Franco LR, Jeong SY, Genene Z, Mena J, Chen S, Chen C, Araujo CM, Marchiori CFN, Kimpel J, Chang X, Isikgor FH, Chen Q, Faber H, Han Y, Laquai F, Zhang M, Woo HY, Yu D, Anthopoulos TD, Wang E. On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 . Angew Chem Int Ed Engl 2023; 62:e202302888. [PMID: 37380618 DOI: 10.1002/anie.202302888] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
Collapse
Affiliation(s)
- Jingnan Wu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Leandro R Franco
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Zewdneh Genene
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Josué Mena
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Si Chen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
- Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Cleber F N Marchiori
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Xiaoming Chang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Furkan H Isikgor
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Qiaonan Chen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| |
Collapse
|
10
|
Luo S, Li C, Zhang J, Zou X, Zhao H, Ding K, Huang H, Song J, Yi J, Yu H, Wong KS, Zhang G, Ade H, Ma W, Hu H, Sun Y, Yan H. Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat Commun 2023; 14:6964. [PMID: 37907534 PMCID: PMC10618449 DOI: 10.1038/s41467-023-41978-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.
Collapse
Affiliation(s)
- Siwei Luo
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianquan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Xinhui Zou
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Jiali Song
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jicheng Yi
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, China.
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Rongpipi S, Barnes WJ, Siemianowski O, Del Mundo JT, Wang C, Freychet G, Zhernenkov M, Anderson CT, Gomez EW, Gomez ED. Measuring calcium content in plants using NEXAFS spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1212126. [PMID: 37662163 PMCID: PMC10468975 DOI: 10.3389/fpls.2023.1212126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Calcium is important for the growth and development of plants. It serves crucial functions in cell wall and cell membrane structure and serves as a secondary messenger in signaling pathways relevant to nutrient and immunity responses. Thus, measuring calcium levels in plants is important for studies of plant biology and for technology development in food, agriculture, energy, and forest industries. Often, calcium in plants has been measured through techniques such as atomic absorption spectrophotometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), and electrophysiology. These techniques, however, require large sample sizes, chemical extraction of samples or have limited spatial resolution. Here, we used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the calcium L- and K-edges to measure the calcium to carbon mass ratio with spatial resolution in plant samples without requiring chemical extraction or large sample sizes. We demonstrate that the integrated absorbance at the calcium L-edge and the edge jump in the fluorescence yield at the calcium K-edge can be used to quantify the calcium content as the calcium mass fraction, and validate this approach with onion epidermal peels and ICP-MS. We also used NEXAFS to estimate the calcium mass ratio in hypocotyls of a model plant, Arabidopsis thaliana, which has a cell wall composition that is similar to that of onion epidermal peels. These results show that NEXAFS spectroscopy performed at the calcium edge provides an approach to quantify calcium levels within plants, which is crucial for understanding plant physiology and advancing plant-based materials.
Collapse
Affiliation(s)
- Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - William J. Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Oskar Siemianowski
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Joshua T. Del Mundo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Guillaume Freychet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
12
|
Sun P, Marohn JA. mmodel: A workflow framework to accelerate the development of experimental simulations. J Chem Phys 2023; 159:044801. [PMID: 37490627 PMCID: PMC10375467 DOI: 10.1063/5.0155617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Simulation has become an essential component of designing and developing scientific experiments. The conventional procedural approach to coding simulations of complex experiments is often error-prone, hard to interpret, and inflexible, making it hard to incorporate changes such as algorithm updates, experimental protocol modifications, and looping over experimental parameters. We present mmodel, a Python framework designed to accelerate the writing of experimental simulation packages. mmodel uses a graph-theory approach to represent the experiment steps and can rewrite its own code to implement modifications, such as adding a loop to vary simulation parameters systematically. The framework aims to avoid duplication of effort, increase code readability and testability, and decrease development time.
Collapse
Affiliation(s)
- Peter Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - John A. Marohn
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
13
|
Ferron T, Fiori ME, Ediger MD, DeLongchamp DM, Sunday DF. Composition Dictates Molecular Orientation at the Heterointerfaces of Vapor-Deposited Glasses. JACS AU 2023; 3:1931-1938. [PMID: 37502150 PMCID: PMC10369407 DOI: 10.1021/jacsau.3c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Physical vapor deposition (PVD) can prepare organic glasses with a preferred molecular orientation. The relationships between deposition conditions and orientation have been extensively investigated in the film bulk. The role of interfaces on the structure is less well understood and remains a key knowledge gap, as the interfacial region can govern glass stability and optoelectronic properties. Robust experimental characterization has remained elusive due to complexities in interrogating molecular organization in amorphous, organic materials. Polarized soft X-rays are sensitive to both the composition and the orientation of transition dipole moments in the film, making them uniquely suited to probe molecular orientation in amorphous soft matter. Here, we utilize polarized resonant soft X-ray reflectivity (P-RSoXR) to simultaneously depth profile the composition and molecular orientation of a bilayer prepared through the physical vapor deposition of 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) on a film of aluminum-tris(8-hydroxyquinoline) (Alq3). The bulk orientation of the DSA-Ph layer is controlled by varying deposition conditions. Utilizing P-RSoXR to depth profile the films enables determination of both the bulk orientation of DSA-Ph and the orientation near the Alq3 interface. At the Alq3 surface, DSA-Ph always lies with its long axis parallel to the interface, before transitioning into the bulk orientation. This is likely due to the lower mobility and higher glass transition of Alq3, as the first several monolayers of DSA-Ph deposited on Alq3 appear to behave as a blend. We further show how orientation at the interface correlates with the bulk behavior of a codeposited glass of similar blend composition, demonstrating a straightforward approach to predicting molecular orientation at heterointerfaces. This work provides key insights into how molecules orient during vapor deposition and offers methods to predict this property, a critical step toward controlling interfacial behavior in soft matter.
Collapse
Affiliation(s)
- Thomas
J. Ferron
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marie E. Fiori
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - M. D. Ediger
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dean M. DeLongchamp
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel F. Sunday
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Korpanty J, Wang C, Gianneschi NC. Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scattering. Nat Commun 2023; 14:3441. [PMID: 37301949 DOI: 10.1038/s41467-023-38781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Here, we study the upper critical solution temperature triggered phase transition of thermally responsive poly(ethylene glycol)-block-poly(ethylene glycol) methyl ether acrylate-co-poly(ethylene glycol) phenyl ether acrylate-block-polystyrene nanoassemblies in isopropanol. To gain mechanistic insight into the organic solution-phase dynamics of the upper critical solution temperature polymer, we leverage variable temperature liquid-cell transmission electron microscopy correlated with variable temperature liquid resonant soft X-ray scattering. Heating above the upper critical solution temperature triggers a reduction in particle size and a morphological transition from a spherical core shell particle with a complex, multiphase core to a micelle with a uniform core and Gaussian polymer chains attached to the surface. These correlated solution phase methods, coupled with mass spectral validation and modeling, provide unique insight into these thermoresponsive materials. Moreover, we detail a generalizable workflow for studying complex, solution-phase nanomaterials via correlative methods.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
15
|
Meshot ER, Baker A, Malone D, Hayes S, Hamza H, Wang C, Marcus MA, Lepró X. High-Resolution X-ray Spectromicroscopy Reveals Process-Structure Correlations in sub-5-μm Diameter Carbon Nanotube-Polymer Composite Dry-Spun Yarns. ACS NANO 2023. [PMID: 37186946 DOI: 10.1021/acsnano.3c01537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A persistent lack of detailed and quantitative structural analysis of these hierarchical carbon nanotube (CNT) ensembles precludes establishing processing-structure-property relationships that are essential to enhance macroscale performance (e.g., in mechanical, electrical, thermal applications). Here, we use scanning transmission X-ray microscopy (STXM) to analyze the hierarchical, twisted morphology of dry-spun CNT yarns and their composites, quantifying key structural characteristics such as density, porosity, alignment, and polymer loading. As the yarn twist density increases (15,000 to 150,000 turns per meter), the yarn diameter decreased (4.4-1.4 μm) and density increased (0.55-1.26 g·cm-3), as intuitively expected. Yarn density, ρ, ubiquitously scaled with diameter d according to ρ ∼ d-2 for all parameters studied here. Spectromicroscopy probes with 30 nm resolution and elemental specificity were employed to analyze the radial and longitudinal distribution of the oxygen-containing polymer content (∼30% weight fraction), demonstrating nearly perfect filling of the voids between CNTs with a vapor-phase polymer coating and cross-linking process. These quantitative correlations highlight the intimate connections between processing conditions and yarn structure with important implications for translating the nanoscale properties of CNTs to the macroscale.
Collapse
Affiliation(s)
- Eric R Meshot
- Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Alexander Baker
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Daniel Malone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Sean Hayes
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Haley Hamza
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Xavier Lepró
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
16
|
An K, Zhong W, Peng F, Deng W, Shang Y, Quan H, Qiu H, Wang C, Liu F, Wu H, Li N, Huang F, Ying L. Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nat Commun 2023; 14:2688. [PMID: 37164953 PMCID: PMC10172308 DOI: 10.1038/s41467-023-38306-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Despite the rapid progress of organic solar cells based on non-fullerene acceptors, simultaneously achieving high power conversion efficiency and long-term stability for commercialization requires sustainable research effort. Here, we demonstrate stable devices by integrating a wide bandgap electron-donating polymer (namely PTzBI-dF) and two acceptors (namely L8BO and Y6) that feature similar structures yet different thermal and morphological properties. The organic solar cell based on PTzBI-dF:L8BO:Y6 could achieve a promising efficiency of 18.26% in the conventional device structure. In the inverted structure, excellent long-term thermal stability over 1400 h under 85 °C continuous heating is obtained. The improved performance can be ascribed to suppressed charge recombination along with appropriate charge transport. We find that the morphological features in terms of crystalline coherence length of fresh and aged films can be gradually regulated by the weight ratio of L8BO:Y6. Additionally, the occurrence of melting point decrease and reduced enthalpy in PTzBI-dF:L8BO:Y6 films could prohibit the amorphous phase to cluster, and consequently overcome the energetic traps accumulation aroused by thermal stress, which is a critical issue in high efficiency non-fullerene acceptors-based devices. This work provides insight into understanding non-fullerene acceptors-based organic solar cells for improved efficiency and stability.
Collapse
Affiliation(s)
- Kang An
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wenkai Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Peng
- South China Institute of Collaborative Innovation, Dongguan, 523808, China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ying Shang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Pazhou Lab, Guangzhou, 510320, China
| | - Huilei Quan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Hong Qiu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Cheng Wang
- Advanced Light Source Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ning Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
- Pazhou Lab, Guangzhou, 510320, China.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
- Pazhou Lab, Guangzhou, 510320, China.
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Freychet G, Zhernenkov M. Flatfielding of hybrid pixel detectors in tender x-ray scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2888612. [PMID: 37144942 DOI: 10.1063/5.0139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
The ability of the soft matter interfaces beamline at National Synchrotron Light Source II to access x-ray energy in the tender x-ray regime, i.e., from 2.1 to 5 keV, enables new resonant x-ray scattering studies at the sulfur K-edge and others. We present a new approach to correct data acquired in the tender x-ray regime with a Pilatus3 detector in order to improve the data quality and to correct the various artifacts inherent to hybrid pixel detectors, such as variations in modules' efficiency or noisy detector module junctions. This new flatfielding significantly enhances the data quality and enables detection of weak scattering signals.
Collapse
Affiliation(s)
- Guillaume Freychet
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
- Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
| | - Mikhail Zhernenkov
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
18
|
Zhou X, Wu H, Bothra U, Chen X, Lu G, Zhao H, Zhao C, Luo Q, Lu G, Zhou K, Kabra D, Ma Z, Ma W. Over 31% efficient indoor organic photovoltaics enabled by simultaneously reduced trap-assisted recombination and non-radiative recombination voltage loss. MATERIALS HORIZONS 2023; 10:566-575. [PMID: 36458496 DOI: 10.1039/d2mh01229d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Indoor organic photovoltaics (OPVs) have shown great potential application in driving low-energy-consumption electronics for the Internet of Things. There is still great room for further improving the power conversion efficiency (PCE) of indoor OPVs, considering that the desired morphology of the active layer to reduce trap-assisted recombination and voltage losses and thus simultaneously enhance the fill factor (FF) and open-circuit voltage for efficient indoor OPVs remains obscure. Herein, by optimizing the bulk and interface morphology via a layer-by-layer (LBL) processing strategy, low leakage current and low non-radiative recombination loss can be synergistically achieved in PM6:Y6-O based devices. Detailed characterizations reveal the stronger crystallinity, purer domains and ideal interfacial contacts in the LBL devices compared to their bulk-heterojunction (BHJ) counterparts. The optimized morphology yields a reduced voltage loss and an impressive FF of 81.5%, and thus contributes to a high PCE of 31.2% under a 1000 lux light-emitting diode (LED) illumination in the LBL devices, which is the best reported efficiency for indoor OPVs. Additionally, this LBL strategy exhibits great universality in promoting the performance of indoor OPVs, as exemplified by three other non-fullerene acceptor systems. This work provides guidelines for morphology optimization and synergistically promotes the fast development of efficient indoor OPVs.
Collapse
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hongbo Wu
- Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Urvashi Bothra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India.
| | - Xingze Chen
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guanyu Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qun Luo
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India.
| | - Zaifei Ma
- Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
19
|
Wang Y, Price MB, Bobba RS, Lu H, Xue J, Wang Y, Li M, Ilina A, Hume PA, Jia B, Li T, Zhang Y, Davis NJLK, Tang Z, Ma W, Qiao Q, Hodgkiss JM, Zhan X. Quasi-Homojunction Organic Nonfullerene Photovoltaics Featuring Fundamentals Distinct from Bulk Heterojunctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206717. [PMID: 36189867 DOI: 10.1002/adma.202206717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In contrast to classical bulk heterojunction (BHJ) in organic solar cells (OSCs), the quasi-homojunction (QHJ) with extremely low donor content (≤10 wt.%) is unusual and generally yields much lower device efficiency. Here, representative polymer donors and nonfullerene acceptors are selected to fabricate QHJ OSCs, and a complete picture for the operation mechanisms of high-efficiency QHJ devices is illustrated. PTB7-Th:Y6 QHJ devices at donor:acceptor (D:A) ratios of 1:8 or 1:20 can achieve 95% or 64% of the efficiency obtained from its BHJ counterpart at the optimal D:A ratio of 1:1.2, respectively, whereas QHJ devices with other donors or acceptors suffer from rapid roll-off of efficiency when the donors are diluted. Through device physics and photophysics analyses, it is observed that a large portion of free charges can be intrinsically generated in the neat Y6 domains rather than at the D/A interface. Y6 also serves as an ambipolar transport channel, so that hole transport as also mainly through Y6 phase. The key role of PTB7-Th is primarily to reduce charge recombination, likely assisted by enhancing quadrupolar fields within Y6 itself, rather than the previously thought principal roles of light absorption, exciton splitting, and hole transport.
Collapse
Affiliation(s)
- Yifan Wang
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Michael B Price
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Raja Sekhar Bobba
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Heng Lu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yilin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyang Li
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Aleksandra Ilina
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Paul A Hume
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Boyu Jia
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tengfei Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuchen Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Nathaniel J L K Davis
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Quinn Qiao
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Xiaowei Zhan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
20
|
Liu Y, Zhang Q, Guan J, Xue J, Yu X, Wu F, Ma W, Han Y. Improving the Molecular Packing Order and Vertical Phase Separation of the P3HT:O-IDTBR Blend by Extending the Crystallization Period of O-IDTBR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44685-44696. [PMID: 36153967 DOI: 10.1021/acsami.2c12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The morphology with strong molecular packing order and gradient vertical composition distribution associated with efficient charge transport and collection is critical to achieve high performance in nonfullerene solar cells. However, the rapid solidification process of the active layer upon the fast removal of solvent usually results in a kinetically trapped state with undesired morphology. Herein, we proposed a strategy to extend the crystal growth time of the acceptor via a high-boiling-point additive that selectively dissolved the acceptor. This was enabled by adding dibenzyl ether (DBE) to the poly(3-hexylthiophene) (P3HT):O-IDTBR blend in chlorobenzene (CB) solution. The combination of the kinetic study by time-resolved ultraviolet-visible (UV-vis) absorption spectra and detailed morphological characterization allows us to correlate the crystallization kinetics with the microstructural transition. The results show that the crystal growth time of O-IDTBR increases from 3 to 60 s upon the addition of 0.75% DBE, leading to further evolution of the molecular order of O-IDTBR during the DBE-dominated drying period. Meanwhile, O-IDTBR has more time to migrate toward the substrate owing to the larger surface energy. In addition, the onset of the crystallization process of P3HT is brought forward from 8 to 6 s due to the reduced solvent quality, which favors P3HT to crystallize into a fibril network. As a result, an optimized morphology that features the enhanced molecular packing order of P3HT and O-IDTBR as well as the vertical compositional gradient of O-IDTBR is obtained. Devices based on the optimized blend show more balanced charge transport and suppressed bimolecular recombination, giving rise to an improved power conversion efficiency (PCE) from 4.29 ± 0.04 to 7.30 ± 0.12%.
Collapse
Affiliation(s)
- Yadi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jian Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
21
|
Wang Q, Hou Y, Shi S, Yang T, Huang C, Yao S, Zhang Z, Zhao C, Liu Y, Huang H, Wang L, Zhao C, Hao M, Tian Y, Zou B, Zhang G. Multicomponent Solar Cells with High Fill Factors and Efficiencies Based on Non-Fullerene Acceptor Isomers. Molecules 2022; 27:molecules27185802. [PMID: 36144539 PMCID: PMC9504682 DOI: 10.3390/molecules27185802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.
Collapse
Affiliation(s)
- Qiuning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yiwen Hou
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Shasha Shi
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Ciyuan Huang
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shangfei Yao
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Ziyang Zhang
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Chenfu Zhao
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yudie Liu
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Lihong Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Minghui Hao
- Suzhou Key Laboratory of Advanced Lighting and Display Technologies, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Ye Tian
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Bingsuo Zou
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| |
Collapse
|
22
|
Fu H, Peng Z, Fan Q, Lin FR, Qi F, Ran Y, Wu Z, Fan B, Jiang K, Woo HY, Lu G, Ade H, Jen AKY. A Top-Down Strategy to Engineer ActiveLayer Morphology for Highly Efficient and Stable All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202608. [PMID: 35748129 DOI: 10.1002/adma.202202608] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
A major challenge hindering the further development of all-polymer solar cells (all-PSCs) employing polymerized small-molecule acceptors is the relatively low fill factor (FF) due to the difficulty in controlling the active-layer morphology. The issues typically arise from oversized phase separation resulting from the thermodynamically unfavorable mixing between two macromolecular species, and disordered molecular orientation/packing of highly anisotropic polymer chains. Herein, a facile top-down controlling strategy to engineer the morphology of all-polymer blends is developed by leveraging the layer-by-layer (LBL) deposition. Optimal intermixing of polymer components can be achieved in the two-step process by tuning the bottom-layer polymer swelling during top-layer deposition. Consequently, both the molecular orientation/packing of the bottom layer and the molecular ordering of the top layer can be optimized with a suitable top-layer processing solvent. A favorable morphology with gradient vertical composition distribution for efficient charge transport and extraction is therefore realized, affording a high all-PSC efficiency of 17.0% with a FF of 76.1%. The derived devices also possess excellent long-term thermal stability and can retain >90% of their initial efficiencies after being annealed at 65 °C for 1300 h. These results validate the distinct advantages of employing an LBL processing protocol to fabricate high-performance all-PSCs.
Collapse
Affiliation(s)
- Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qunping Fan
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Francis R Lin
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Feng Qi
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yixin Ran
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Baobing Fan
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| |
Collapse
|
23
|
Xue J, Zhao H, Lin B, Wang Y, Zhu Q, Lu G, Wu B, Bi Z, Zhou X, Zhao C, Lu G, Zhou K, Ma W. Nonhalogenated Dual-Slot-Die Processing Enables High-Efficiency Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202659. [PMID: 35698785 DOI: 10.1002/adma.202202659] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Organic solar cells (OSCs) are promising candidates for next-generation photovoltaic technologies, with their power conversion efficiencies (PCEs) reaching 19%. However, the typically used spin-coating method, toxic halogenated processing solvents, and the conventional bulk-heterojunction (BHJ), which causes excessive charge recombination, hamper the commercialization and further efficiency promotion of OSCs. Here, a simple but effective dual-slot-die sequential processing (DSDS) strategy is proposed to address the above issues by achieving a continuous solution supply, avoiding the solubility limit of the nonhalogen solvents, and creating a graded-BHJ morphology. As a result, an excellent PCE of 17.07% is obtained with the device processed with o-xylene in an open-air environment with no post-treatment required, while a PCE of over 14% is preserved in a wide range of active-layer thickness. The unique film-formation mechanism is further identified during the DSDS processing, which suggests the formation of the graded-BHJ morphology by the mutual diffusion between the donor and acceptor and the subsequent progressive aggregation. The graded-BHJ structure leads to improved charge transport, inhibited charge recombination, and thus an excellent PCE. Therefore, the newly developed DSDS approach can effectively contribute to the realm of high-efficiency and eco-friendly OSCs, which can also possibly be generalized to other organic photoelectric devices.
Collapse
Affiliation(s)
- Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanyu Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Baohua Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
24
|
Alqahtani O, Lv J, Xu T, Murcia V, Ferron T, McAfee T, Grabner D, Duan T, Collins BA. High Sensitivity of Non-Fullerene Organic Solar Cells Morphology and Performance to a Processing Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202411. [PMID: 35559598 DOI: 10.1002/smll.202202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Although solvent additives are used to optimize device performance in many novel non-fullerene acceptor (NFA) organic solar cells (OSCs), the effect of processing additives on OSC structures and functionalities can be difficult to predict. Here, two polymer-NFA OSCs with highly sensitive device performance and morphology to the most prevalent solvent additive chloronaphthalene (CN) are presented. Devices with 1% CN additive are found to nearly double device efficiencies to 10%. However, additive concentrations even slightly above optimum significantly hinder device performance due to formation of undesirable morphologies. A comprehensive analysis of device nanostructure shows that CN is critical to increasing crystallinity and optimizing phase separation up to the optimal concentration for suppressing charge recombination and maximizing performance. Here, domain purity and crystallinity are highly correlated with photocurrent and fill factors. However, this effect is in competition with uncontrolled crystallization of NFAs that occur at CN concentrations slightly above optimal. This study highlights how slight variations of solvent additives can impart detrimental effects to morphology and device performance of NFA OSCs. Therefore, successful scale-up processing of NFA-based OSCs will require extreme formulation control, a tuned NFA structure that resists runaway crystallization, or alternative methods such as additive-free fabrication.
Collapse
Affiliation(s)
- Obaid Alqahtani
- Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
- Department of Physics, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tongle Xu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Victor Murcia
- Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Ferron
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Devin Grabner
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Brian A Collins
- Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
25
|
Yang Y, Roh I, Louisia S, Chen C, Jin J, Yu S, Salmeron MB, Wang C, Yang P. Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreduction. J Am Chem Soc 2022; 144:8927-8931. [PMID: 35575474 DOI: 10.1021/jacs.2c03662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the chemical environment and interparticle dynamics of nanoparticle electrocatalysts under operating conditions offers valuable insights into tuning their activity and selectivity. This is particularly important to the design of Cu nanocatalysts for CO2 electroreduction due to their dynamic nature under bias. Here, we have developed operando electrochemical resonant soft X-ray scattering (EC-RSoXS) to probe the chemical identity of active sites during the dynamic structural transformation of Cu nanoparticle (NP) ensembles through 1 μm thick electrolyte. Operando scattering-enhanced X-ray absorption spectroscopy (XAS) serves as a powerful technique to investigate the size-dependent catalyst stability under beam exposure while monitoring the potential-dependent surface structural changes. Small NPs (7 nm) in aqueous electrolyte were found to experience a predominant soft X-ray beam-induced oxidation to CuO despite only sub-second X-ray exposure. In comparison, large NPs (18 nm) showed improved resistivity to beam damage, which allowed the reliable observation of surface Cu2O electroreduction to metallic Cu. Small-angle X-ray scattering (SAXS) statistically probes the particle-particle interactions of large ensembles of NPs. This study points out the need for rigorous examination of beam effects for operando X-ray studies on electrocatalysts. The strategy of using EC-RSoXS that combines soft XAS and SAXS can serve as a general approach to simultaneously investigate the chemical environment and interparticle information on nanocatalysts.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sunmoon Yu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Miquel B Salmeron
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Zhang Z, Wang W, Jiang Y, Wang YX, Wu Y, Lai JC, Niu S, Xu C, Shih CC, Wang C, Yan H, Galuska L, Prine N, Wu HC, Zhong D, Chen G, Matsuhisa N, Zheng Y, Yu Z, Wang Y, Dauskardt R, Gu X, Tok JBH, Bao Z. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022; 603:624-630. [PMID: 35322250 DOI: 10.1038/s41586-022-04400-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Next-generation light-emitting displays on skin should be soft, stretchable and bright1-7. Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites6-11. They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance12,13. However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays.
Collapse
Affiliation(s)
- Zhitao Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Weichen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yi-Xuan Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Chien-Chung Shih
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Luke Galuska
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Nathaniel Prine
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Hung-Chin Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Gan Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Naoji Matsuhisa
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Zhiao Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Yang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Reinhold Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Zhong W, Zhang M, Freychet G, Su GM, Ying L, Huang F, Cao Y, Zhang Y, Wang C, Liu F. Decoupling Complex Multi-Length-Scale Morphology in Non-Fullerene Photovoltaics with Nitrogen K-Edge Resonant Soft X-ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107316. [PMID: 34750871 DOI: 10.1002/adma.202107316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Complex morphology in organic photovoltaics (OPVs) and other functional soft materials commonly dictates performance. Such complexity in OPVs originates from the mesoscale kinetically trapped non-equilibrium state, which governs device charge generation and transport. Resonant soft X-ray scattering (RSoXS) has been revolutionary in the exploration of OPV morphology in the past decade due to its chemical and orientation sensitivity. However, for non-fullerene OPVs, RSoXS analysis near the carbon K-edge is challenging, due to the chemical similarity of the materials used in active layers. An innovative approach is provided by nitrogen K-edge RSoXS (NK-RSoXS), utilizing the spatial and orientational contrasts from the cyano groups in the acceptor materials, which allows for determination of phase separation. NK-RSoXS clearly visualizes the combined feature sizes in PM6:Y6 blends from crystallization and liquid-liquid demixing, while PM6:Y6:Y6-BO ternary blends with reduced phase-separation size and enhanced material crystallization can lead to current amplification in devices. Nitrogen is common in organic semiconductors and other soft materials, and the strong and directional N 1s → π* resonances make NK-RSoXS a powerful tool to uncover the mesoscale complexity and open opportunities to understand heterogeneous systems.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Gregory M Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Ferron TJ, Thelen JL, Bagchi K, Deng C, Gann E, de Pablo JJ, Ediger MD, Sunday DF, DeLongchamp DM. Characterization of the Interfacial Orientation and Molecular Conformation in a Glass-Forming Organic Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3455-3466. [PMID: 34982543 DOI: 10.1021/acsami.1c19948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability to control structure in molecular glasses has enabled them to play a key role in modern technology; in particular, they are ubiquitous in organic light-emitting diodes. While the interplay between bulk structure and optoelectronic properties has been extensively investigated, few studies have examined molecular orientation near buried interfaces despite its critical role in emergent functionality. Direct, quantitative measurements of buried molecular orientation are inherently challenging, and many methods are insensitive to orientation in amorphous soft matter or lack the necessary spatial resolution. To overcome these challenges, we use polarized resonant soft X-ray reflectivity (p-RSoXR) to measure nanometer-resolved, molecular orientation depth profiles of vapor-deposited thin films of an organic semiconductor Tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Our depth profiling approach characterizes the vertical distribution of molecular orientation and reveals that molecules near the inorganic substrate and free surface have a different, nearly isotropic orientation compared to those of the anisotropic bulk. Comparison of p-RSoXR results with near-edge X-ray absorption fine structure spectroscopy and optical spectroscopies reveals that TCTA molecules away from the interfaces are predominantly planar, which may contribute to their attractive charge transport qualities. Buried interfaces are further investigated in a TCTA bilayer (each layer deposited under separate conditions resulting in different orientations) in which we find a narrow interface between orientationally distinct layers extending across ≈1 nm. Coupling this result with molecular dynamics simulations provides additional insight into the formation of interfacial structure. This study characterizes the local molecular orientation at various types of buried interfaces in vapor-deposited glasses and provides a foundation for future studies to develop critical structure-function relationships.
Collapse
Affiliation(s)
- Thomas J Ferron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jacob L Thelen
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chuting Deng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Eliot Gann
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel F Sunday
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Dean M DeLongchamp
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
29
|
Del Mundo JT, Rongpipi S, Gomez ED, Gomez EW. Characterization of biological materials with soft X-ray scattering. Methods Enzymol 2022; 677:357-383. [DOI: 10.1016/bs.mie.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Alqahtani O, Hosseini SM, Ferron T, Murcia V, McAfee T, Vixie K, Huang F, Armin A, Shoaee S, Collins BA. Evidence That Sharp Interfaces Suppress Recombination in Thick Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56394-56403. [PMID: 34787408 DOI: 10.1021/acsami.1c15570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Commercialization and scale-up of organic solar cells (OSCs) using industrial solution printing require maintaining maximum performance at active-layer thicknesses >400 nm─a characteristic still not generally achieved in non-fullerene acceptor OSCs. NT812/PC71BM is a rare system, whose performance increases up to these thicknesses due to highly suppressed charge recombination relative to the classic Langevin model. The suppression in this system, however, uniquely depends on device processing, pointing toward the role of nanomorphology. We investigate the morphological origins of this suppressed recombination by combining results from a suite of X-ray techniques. We are surprised to find that while all investigated devices are composed of pure, similarly aggregated nanodomains, Langevin reduction factors can still be tuned from ∼2 to >1000. This indicates that pure aggregated phases are insufficient for non-Langevin (reduced) recombination. Instead, we find that large well-ordered conduits and, in particular, sharp interfaces between domains appear to help to keep opposite charges separated and percolation pathways clear for enhanced charge collection in thick active layers. To our knowledge, this is the first quantitative study to isolate the donor/acceptor interfacial width correlated with non-Langevin charge recombination. This new structure-property relationship will be key to successful commercialization of printed OSCs at scale.
Collapse
Affiliation(s)
- Obaid Alqahtani
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Department of Physics, Prince Sattam Bin Abdulaziz University, Alkharj 11942, KSA
| | - Seyed Mehrdad Hosseini
- Optoelectronics of Organic Semiconductors Institute, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Thomas Ferron
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Victor Murcia
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Vixie
- Department of Mathematics, Washington State University, Pullman, Washington 99164, United States
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ardalan Armin
- Department of Physics, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, U.K
| | - Safa Shoaee
- Optoelectronics of Organic Semiconductors Institute, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Brian A Collins
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
31
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
32
|
Zhou X, Wu H, Lin B, Naveed HB, Xin J, Bi Z, Zhou K, Ma Y, Tang Z, Zhao C, Zheng Q, Ma Z, Ma W. Different Morphology Dependence for Efficient Indoor Organic Photovoltaics: The Role of the Leakage Current and Recombination Losses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44604-44614. [PMID: 34499484 DOI: 10.1021/acsami.1c09600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient indoor organic photovoltaics (OPVs) have attracted strong attention for their application in indoor electronic devices. However, the route to optimal photoactive film morphology toward high-performance indoor devices has remained obscure. The leakage current dominated by morphology exerts distinguishing influence on the performance under different illuminations. We have demonstrated that morphology reoptimization plays an important role in indoor OPVs, and their optimal structural features are different from what we laid out for outdoor devices. For indoor OPVs, in order to facilitate low leakage current, it is essential to enhance the crystallinity, phase separation, and domain purity, as well as keeping small surface roughness of the active layer. Furthermore, considering the reduced bimolecular recombination at low light intensity, we have shown that PM6:M36-based indoor devices can work effectively with a large ratio of the donor and acceptor. Our work correlating structure-performance relation and the route to optimal morphology outlines the control over device leakage current and recombination losses boosting the progress of efficient indoor OPVs.
Collapse
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbo Wu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hafiz Bilal Naveed
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingming Xin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunlong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingdong Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
33
|
Li Y, Huang X, Ding K, Sheriff HKM, Ye L, Liu H, Li CZ, Ade H, Forrest SR. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat Commun 2021; 12:5419. [PMID: 34521842 PMCID: PMC8440764 DOI: 10.1038/s41467-021-25718-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.
Collapse
Affiliation(s)
- Yongxi Li
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaheng Huang
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kan Ding
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hafiz K M Sheriff
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Long Ye
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China
| | - Haoran Liu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Stephen R Forrest
- Departments of Electrical Engineering, Material Science and Engineering, and Physics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
34
|
Mukherjee S, Streit JK, Gann E, Saurabh K, Sunday DF, Krishnamurthy A, Ganapathysubramanian B, Richter LJ, Vaia RA, DeLongchamp DM. Polarized X-ray scattering measures molecular orientation in polymer-grafted nanoparticles. Nat Commun 2021; 12:4896. [PMID: 34385430 PMCID: PMC8361200 DOI: 10.1038/s41467-021-25176-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
Polymer chains are attached to nanoparticle surfaces for many purposes, including altering solubility, influencing aggregation, dispersion, and even tailoring immune responses in drug delivery. The most unique structural motif of polymer-grafted nanoparticles (PGNs) is the high-density region in the corona where polymer chains are stretched under significant confinement, but orientation of these chains has never been measured because conventional nanoscale-resolved measurements lack sensitivity to polymer orientation in amorphous regions. Here, we directly measure local chain orientation in polystyrene grafted gold nanoparticles using polarized resonant soft X-ray scattering (P-RSoXS). Using a computational scattering pattern simulation approach, we measure the thickness of the anisotropic region of the corona and extent of chain orientation within it. These results demonstrate the power of P-RSoXS to discover and quantify orientational aspects of structure in amorphous soft materials and provide a framework for applying this emerging technique to more complex, chemically heterogeneous systems in the future.
Collapse
Affiliation(s)
- Subhrangsu Mukherjee
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jason K Streit
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA
- UES, Inc., Dayton, OH, USA
| | - Eliot Gann
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Kumar Saurabh
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Daniel F Sunday
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | - Lee J Richter
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA
| | - Dean M DeLongchamp
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| |
Collapse
|
35
|
Zhong W, Liu F, Wang C. Probing morphology and chemistry in complex soft materials with in situresonant soft x-ray scattering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:313001. [PMID: 34140434 DOI: 10.1088/1361-648x/ac0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Small angle scattering methodologies have been evolving at fast pace over the past few decades due to the ever-increasing demands for more details on the complex nanostructures of multiphase and multicomponent soft materials like polymer assemblies and biomaterials. Currently, element-specific and contrast variation techniques such as resonant (elastic) soft/tender x-ray scattering, anomalous small angle x-ray scattering, and contrast-matching small angle neutron scattering, or combinations of above are routinely used to extract the chemical composition and spatial arrangement of constituent elements at multiple length scales and examine electronic ordering phenomena. Here we present some recent advances in selectively characterizing structural architectures of complex soft materials, which often contain multi-components with a wide range of length scales and multiple functionalities, where novel resonant scattering approaches have been demonstrated to decipher a higher level of structural complexity that correlates to functionality. With the advancement of machine learning and artificial intelligence assisted correlative analysis, high-throughput and autonomous experiments would open a new paradigm of material research. Further development of resonant x-ray scattering instrumentation with crossplatform sample environments will enable multimodalin situ/operando characterization of the system dynamics with much improved spatial and temporal resolution.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
36
|
Liu Q, Fang J, Wu J, Zhu L, Guo X, Liu F, Zhang M. Tuning Aggregation Behavior of Polymer Donor
via
Molecular‐Weight
Control for Achieving 17.1% Efficiency Inverted Polymer Solar Cells. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi Liu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jin Fang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jingnan Wu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lei Zhu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Feng Liu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou, Jiangsu 215123, China Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
37
|
McAfee T, Ferron T, Cordova IA, Pickett PD, McCormick CL, Wang C, Collins BA. Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration. Nat Commun 2021; 12:3123. [PMID: 34035289 PMCID: PMC8149835 DOI: 10.1038/s41467-021-23382-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Self-assembled molecular nanostructures embody an enormous potential for new technologies, therapeutics, and understanding of molecular biofunctions. Their structure and function are dependent on local environments, necessitating in-situ/operando investigations for the biggest leaps in discovery and design. However, the most advanced of such investigations involve laborious labeling methods that can disrupt behavior or are not fast enough to capture stimuli-responsive phenomena. We utilize X-rays resonant with molecular bonds to demonstrate an in-situ nanoprobe that eliminates the need for labels and enables data collection times within seconds. Our analytical spectral model quantifies the structure, molecular composition, and dynamics of a copolymer micelle drug delivery platform using resonant soft X-rays. We additionally apply this technique to a hydrocarbon sequestrating polysoap micelle and discover that the critical organic-capturing domain does not coalesce upon aggregation but retains distinct single-molecule cores. This characteristic promotes its efficiency of hydrocarbon sequestration for applications like oil spill remediation and drug delivery. Such a technique enables operando, chemically sensitive investigations of any aqueous molecular nanostructure, label-free.
Collapse
Affiliation(s)
- Terry McAfee
- grid.30064.310000 0001 2157 6568Department of Physics and Astronomy, Washington State University, Pullman, WA USA ,grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, NC USA
| | - Thomas Ferron
- grid.30064.310000 0001 2157 6568Department of Physics and Astronomy, Washington State University, Pullman, WA USA
| | - Isvar A. Cordova
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, NC USA
| | - Phillip D. Pickett
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS USA
| | - Charles L. McCormick
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS USA
| | - Cheng Wang
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, NC USA
| | - Brian A. Collins
- grid.30064.310000 0001 2157 6568Department of Physics and Astronomy, Washington State University, Pullman, WA USA
| |
Collapse
|
38
|
Gann E, Crofts T, Holland G, Beaucage P, McAfee T, Kline RJ, Collins BA, McNeill CR, Fischer DA, DeLongchamp DM. A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-II. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:164001. [PMID: 33498032 DOI: 10.1088/1361-648x/abdffb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
We present the design and performance of a polarized resonant soft x-ray scattering (RSoXS) station for soft matter characterization built by the national institute of standards and technology at the national synchrotron light source-II (NSLS-II). The RSoXS station is located within the spectroscopy soft and tender beamline suite at NSLS-II located in Brookhaven national laboratory, New York. Numerous elements of the RSoXS station were designed for optimal performance for measurements on soft matter systems, where it is of critical importance to minimize beam damage and maximize collection efficiency of polarized x-rays. These elements include a novel optical design, sample manipulator and sample environments, as well as detector setups. Finally, we will report the performance of the measurement station, including energy resolution, higher harmonic content and suppression methods, the extent and mitigation of the carbon absorption dip on optics, and the range of polarizations available from the elliptically polarized undulator source.
Collapse
Affiliation(s)
- Eliot Gann
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| | - Thomas Crofts
- FMB-Oxford, Osney Mead, Oxford OX2 0ES, United Kingdom
| | - Glenn Holland
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| | - Peter Beaucage
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, United States of America
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - R Joseph Kline
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, United States of America
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel A Fischer
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| | - Dean M DeLongchamp
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| |
Collapse
|
39
|
Dhakal P, Ferron T, Alotaibi A, Murcia V, Alqahtani O, Collins BA. Evidence for Field-Dependent Charge Separation Caused by Mixed Phases in Polymer-Fullerene Organic Solar Cells. J Phys Chem Lett 2021; 12:1847-1853. [PMID: 33577332 DOI: 10.1021/acs.jpclett.0c03863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As organic photovoltaic performance approaches 20% efficiencies, causal structure-performance relationships must be established for devices to realize theoretical limits and become commercially competitive. Here, we reveal evidence of a causal relationship between mixed donor-acceptor interfaces and charge generation in polymer-fullerene solar cells. To do this, we combine a holistic loss analysis of device performance with quantitative synchrotron X-ray nanocharacterization to identify a >98% anticorrelation between field-dependent geminate recombination and nanodomain purity. Importantly, our analysis eliminates other possible explanations of the performance trends, a requirement to establish causality. The unprecedented granular level of our analysis also separates field-dependent and field-independent recombination at the interface, where we find for the first time that this system is free of field-independent recombination, a loss channel that plagues high-performance systems, including those with non-fullerene acceptors. This result broadens the case that minimizing mixed phases to promote sharp interfaces between pure aggregated domains is the ideal nanostructure for realizing theoretical efficiency limits of organic photovoltaics.
Collapse
Affiliation(s)
- Prabodh Dhakal
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Thomas Ferron
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Awwad Alotaibi
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Victor Murcia
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Obaid Alqahtani
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Department of Physics, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
40
|
Jiang K, Zhang J, Peng Z, Lin F, Wu S, Li Z, Chen Y, Yan H, Ade H, Zhu Z, Jen AKY. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat Commun 2021; 12:468. [PMID: 33473135 PMCID: PMC7817662 DOI: 10.1038/s41467-020-20791-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
Solution-processed organic solar cells (OSCs) are a promising candidate for next-generation photovoltaic technologies. However, the short exciton diffusion length of the bulk heterojunction active layer in OSCs strongly hampers the full potential to be realized in these bulk heterojunction OSCs. Herein, we report high-performance OSCs with a pseudo-bilayer architecture, which possesses longer exciton diffusion length benefited from higher film crystallinity. This feature ensures the synergistic advantages of efficient exciton dissociation and charge transport in OSCs with pseudo-bilayer architecture, enabling a higher power conversion efficiency (17.42%) to be achieved compared to those with bulk heterojunction architecture (16.44%) due to higher short-circuit current density and fill factor. A certified efficiency of 16.31% is also achieved for the ternary OSC with a pseudo-bilayer active layer. Our results demonstrate the excellent potential for pseudo-bilayer architecture to be used for future OSC applications.
Collapse
Affiliation(s)
- Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Jie Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Shengfan Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Zhen Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Yuzhong Chen
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong.
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| | - Zonglong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong. .,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong.
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong. .,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong.
| |
Collapse
|
41
|
Guo X, Fan Q, Wu J, Li G, Peng Z, Su W, Lin J, Hou L, Qin Y, Ade H, Ye L, Zhang M, Li Y. Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xia Guo
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Qunping Fan
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jingnan Wu
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Guangwei Li
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhongxiang Peng
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300350 China
| | - Wenyan Su
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Ji Lin
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Yunpeng Qin
- Department of Physics Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Harald Ade
- Department of Physics Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300350 China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
42
|
Liang J, Pan M, Chai G, Peng Z, Zhang J, Luo S, Han Q, Chen Y, Shang A, Bai F, Xu Y, Yu H, Lai JYL, Chen Q, Zhang M, Ade H, Yan H. Random Polymerization Strategy Leads to a Family of Donor Polymers Enabling Well-Controlled Morphology and Multiple Cases of High-Performance Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003500. [PMID: 33185952 DOI: 10.1002/adma.202003500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Developing high-performance donor polymers is important for nonfullerene organic solar cells (NF-OSCs), as state-of-the-art nonfullerene acceptors can only perform well if they are coupled with a matching donor with suitable energy levels. However, there are very limited choices of donor polymers for NF-OSCs, and the most commonly used ones are polymers named PM6 and PM7, which suffer from several problems. First, the performance of these polymers (particularly PM7) relies on precise control of their molecular weights. Also, their optimal morphology is extremely sensitive to any structural modification. In this work, a family of donor polymers is developed based on a random polymerization strategy. These polymers can achieve well-controlled morphology and high-performance with a variety of chemical structures and molecular weights. The polymer donors are D-A1-D-A2-type random copolymers in which the D and A1 units are monomers originating from PM6 or PM7, while the A2 unit comprises an electron-deficient core flanked by two thiophene rings with branched alkyl chains. Consequently, multiple cases of highly efficient NF-OSCs are achieved with efficiencies between 16.0% and 17.1%. As the electron-deficient cores can be changed to many other structural units, the strategy can easily expand the choices of high-performance donor polymers for NF-OSCs.
Collapse
Affiliation(s)
- Jiaen Liang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Mingao Pan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Gaoda Chai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianquan Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Siwei Luo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Qi Han
- eFlexPV Limited, Jinxiu Science Park, Shenzhen, 518000, China
| | - Yuzhong Chen
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Ao Shang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Fujin Bai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Yuan Xu
- HKUST Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, SAR, Kowloon, 999077, China
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Joshua Yuk Lin Lai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Qing Chen
- HKUST Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, SAR, Kowloon, 999077, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
- eFlexPV Limited, Jinxiu Science Park, Shenzhen, 518000, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
43
|
Guo X, Fan Q, Wu J, Li G, Peng Z, Su W, Lin J, Hou L, Qin Y, Ade H, Ye L, Zhang M, Li Y. Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angew Chem Int Ed Engl 2020; 60:2322-2329. [PMID: 33058442 DOI: 10.1002/anie.202010596] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Regulating molecular structure to optimize the active layer morphology is of considerable significance for improving the power conversion efficiencies (PCEs) in organic solar cells (OSCs). Herein, we demonstrated a simple ternary copolymerization approach to develop a terpolymer donor PM6-Tz20 by incorporating the 5,5'-dithienyl-2,2'-bithiazole (DTBTz, 20 mol%) unit into the backbone of PM6 (PM6-Tz00). This method can effectively tailor the molecular orientation and aggregation of the polymer, and then optimize the active layer morphology and the corresponding physical processes of devices, ultimately boosting FF and then PCE. Hence, the PM6-Tz20: Y6-based OSCs achieved a PCE of up to 17.1% with a significantly enhanced FF of 0.77. Using Ag (220 nm) instead of Al (100 nm) as cathode, the champion PCE was further improved to 17.6%. This work provides a simple and effective molecular design strategy to optimize the active layer morphology of OSCs for improving photovoltaic performance.
Collapse
Affiliation(s)
- Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qunping Fan
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jingnan Wu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangwei Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Wenyan Su
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Ji Lin
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Yunpeng Qin
- Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Harald Ade
- Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
44
|
Kim JH, Kim MK, Gadisa A, Stuard SJ, Nahid MM, Kwon S, Bae S, Kim B, Park GS, Won DH, Lee DK, Kim DW, Shin TJ, Do YR, Kim J, Choi WJ, Ade H, Min BK. Morphological-Electrical Property Relation in Cu(In,Ga)(S,Se) 2 Solar Cells: Significance of Crystal Grain Growth and Band Grading by Potassium Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003865. [PMID: 33150725 DOI: 10.1002/smll.202003865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Solution-processed Cu(In,Ga)(S,Se)2 (CIGS) has a great potential for the production of large-area photovoltaic devices at low cost. However, CIGS solar cells processed from solution exhibit relatively lower performance compared to vacuum-processed devices because of a lack of proper composition distribution, which is mainly instigated by the limited Se uptake during chalcogenization. In this work, a unique potassium treatment method is utilized to improve the selenium uptake judiciously, enhancing grain sizes and forming a wider bandgap minimum region. Careful engineering of the bandgap grading structure also results in an enlarged space charge region, which is favorable for electron-hole separation and efficient charge carrier collection. Besides, this device processing approach has led to a linearly increasing electron diffusion length and carrier lifetime with increasing the grain size of the CIGS film, which is a critical achievement for enhancing photocurrent yield. Overall, 15% of power conversion efficiency is achieved in solar cells processed from environmentally benign solutions. This approach offers critical insights for precise device design and processing rules for solution-processed CIGS solar cells.
Collapse
Affiliation(s)
- Joo-Hyun Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Min Kyu Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Abay Gadisa
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 851 Main Campus Dr., Raleigh, NC, 27695, USA
| | - Samuel J Stuard
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 851 Main Campus Dr., Raleigh, NC, 27695, USA
| | - Masrur Morshed Nahid
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 851 Main Campus Dr., Raleigh, NC, 27695, USA
| | - Soyeong Kwon
- Department of Physics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soohyun Bae
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byoungwoo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gi Soon Park
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Da Hye Won
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Wook Kim
- Department of Physics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young Rag Do
- Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Jihyun Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Jun Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 851 Main Campus Dr., Raleigh, NC, 27695, USA
| | - Byoung Koun Min
- Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
45
|
Rakita Y, O'Nolan D, McAuliffe RD, Veith GM, Chupas PJ, Billinge SJL, Chapman KW. Active Reaction Control of Cu Redox State Based on Real-Time Feedback from In Situ Synchrotron Measurements. J Am Chem Soc 2020; 142:18758-18762. [PMID: 33090780 DOI: 10.1021/jacs.0c09418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We achieve a target material state by using a recursive algorithm to control the material reaction based on real-time feedback on the system chemistry from in situ X-ray absorption spectroscopy. Without human intervention, the algorithm controlled O2:H2 gas partial pressures to approach a target average Cu oxidation state of 1+ for γ-Al2O3-supported Cu. This approach represents a new paradigm in autonomation for materials discovery and synthesis optimization; instead of iterating the parameters following the conclusion of each of a series of reactions, the iteration cycle has been scaled down to time points during an individual reaction. Application of the proof-of-concept illustrated here, using a feedback loop to couple in situ material characterization and the reaction conditions via a decision-making algorithm, can be readily envisaged in optimizing and understanding a broad range of systems including catalysis.
Collapse
Affiliation(s)
- Yevgeny Rakita
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Daniel O'Nolan
- Department of Chemistry, Stony Brook University, 100 Nicholls Road, Stony Brook, New York 11794, United States
| | - Rebecca D McAuliffe
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gabriel M Veith
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter J Chupas
- Department of Chemistry, Stony Brook University, 100 Nicholls Road, Stony Brook, New York 11794, United States
| | - Simon J L Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States.,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, 100 Nicholls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
46
|
Ferron T, Grabner D, McAfee T, Collins B. Absolute intensity calibration for carbon-edge soft X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1601-1608. [PMID: 33147184 DOI: 10.1107/s1600577520011066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Resonant soft X-ray scattering (RSOXS) has become a premier probe to study complex three-dimensional nanostructures in soft matter through combining the robust structural characterization of small-angle scattering with the chemical sensitivity of spectroscopy. This technique borrows many of its analysis methods from alternative small-angle scattering measurements that utilize contrast variation, but thus far RSOXS has been unable to reliably achieve an absolute scattering intensity required for quantitative analysis of domain compositions, volume fraction, or interfacial structure. Here, a novel technique to calibrate RSOXS to an absolute intensity at the carbon absorption edge is introduced. It is shown that the X-ray fluorescence from a thin polymer film can be utilized as an angle-independent scattering standard. Verification of absolute intensity is then accomplished through measuring the Flory-Huggins interaction parameter in a phase-mixed polymer melt. The necessary steps for users to reproduce this intensity calibration in their own experiments to improve the scientific output from RSOXS measurements are discussed.
Collapse
Affiliation(s)
- Thomas Ferron
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, USA
| | - Devin Grabner
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, USA
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, USA
| | - Brian Collins
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
47
|
Li Q, Qiao R, Mehta A, Lü W, Zhou T, Arenholz E, Wang C, Chen Y, Li L, Tian Y, Bai L, Hussain Z, Zheng R, Yang W, Yan S. Amorphous nonstoichiometric oxides with tunable room-temperature ferromagnetism and electrical transport. Sci Bull (Beijing) 2020; 65:1718-1725. [PMID: 36659244 DOI: 10.1016/j.scib.2020.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023]
Abstract
Material functionalities strongly depend on the stoichiometry, crystal structure, and homogeneity. Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature. In order to verify the origin of the ferromagnetism, we employed a series of structural, chemical, and electronic state characterizations. Combined with electron microscopy and transport measurements, synchrotron-based grazing incident wide angle X-ray scattering, soft X-ray absorption and circular dichroism clearly reveal that the room-temperature ferromagnetism originates from the In0.23Co0.77O1-v amorphous phase with a large tunable range of oxygen vacancies. The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3, with the evolving electrical resistivity from 5 × 103 μΩ cm to above 2.5 × 105 μΩ cm. Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies, driving the system towards non-ferromagnetism and insulating regime. Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides, which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.
Collapse
Affiliation(s)
- Qinghao Li
- Spintronics Institute, University of Jinan, Jinan 250022, China; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Apurva Mehta
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Weiming Lü
- Spintronics Institute, University of Jinan, Jinan 250022, China
| | - Tie Zhou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanxue Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Li Li
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yufeng Tian
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lihui Bai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rongkun Zheng
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Shishen Yan
- Spintronics Institute, University of Jinan, Jinan 250022, China.
| |
Collapse
|
48
|
Zhang C, Jiang P, Zhou X, Feng S, Bi Z, Xu X, Li C, Tang Z, Ma W, Bo Z. Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40590-40598. [PMID: 32805919 DOI: 10.1021/acsami.0c11128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, a ternary blend strategy based on PBDB-T and two small molecular acceptors (IDTT-OB and IDT-PDOT-C6) is demonstrated to simultaneously improve the photocurrent and reduce the voltage loss in organic solar cells (OSCs). The improved photocurrent is partially due to a broad absorption spectrum of the active layer. In addition, we find that the ternary system possesses a higher degree of crystallinity, smaller domain size, higher domain purity, and higher and more balanced charge-carrier mobilities in comparison with the two corresponding binary systems. The reduced voltage loss in the ternary device is mainly due to a lower energy loss (Eloss) of charge carriers. We achieve a Eloss of only 0.50 eV, which is one of the lowest values reported for the ternary nonfullerene OSCs. Our results have demonstrated that all photovoltaic parameters of ternary OSCs can be simultaneously improved by elaborately selecting the three active layer components.
Collapse
Affiliation(s)
- Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengcheng Jiang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shiyu Feng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cuihong Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
49
|
Su GM, Cordova IA, Wang C. New Insights into Water Treatment Materials with Chemically Sensitive Soft and Tender X-rays. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/08940886.2020.1784695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gregory M. Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Isvar A. Cordova
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
50
|
Feng K, Huang J, Zhang X, Wu Z, Shi S, Thomsen L, Tian Y, Woo HY, McNeill CR, Guo X. High-Performance All-Polymer Solar Cells Enabled by n-Type Polymers with an Ultranarrow Bandgap Down to 1.28 eV. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001476. [PMID: 32519429 DOI: 10.1002/adma.202001476] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Compared to organic solar cells based on narrow-bandgap nonfullerene small-molecule acceptors, the performance of all-polymer solar cells (all-PSCs) lags much behind due to the lack of high-performance n-type polymers, which should have low-aligned frontier molecular orbital levels and narrow bandgap with broad and intense absorption extended to the near-infrared region. Herein, two novel polymer acceptors, DCNBT-TPC and DCNBT-TPIC, are synthesized with ultranarrow bandgaps (ultra-NBG) of 1.38 and 1.28 eV, respectively. When applied in transistors, both polymers show efficient charge transport with a highest electron mobility of 1.72 cm2 V-1 s-1 obtained for DCNBT-TPC. Blended with a polymer donor, PBDTTT-E-T, the resultant all-PSCs based on DCNBT-TPC and DCNBT-TPIC achieve remarkable power conversion efficiencies (PCEs) of 9.26% and 10.22% with short-circuit currents up to 19.44 and 22.52 mA cm-2 , respectively. This is the first example that a PCE of over 10% can be achieved using ultra-NBG polymer acceptors with a photoresponse reaching 950 nm in all-PSCs. These results demonstrate that ultra-NBG polymer acceptors, in line with nonfullerene small-molecule acceptors, are also available as a highly promising class of electron acceptors for maximizing device performance in all-PSCs.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jiachen Huang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Xianhe Zhang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Ziang Wu
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Shengbin Shi
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Lars Thomsen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Yanqing Tian
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|