1
|
Feng Q, Shu X, Fang H, Shi X, Zhang Y, Zhang H. Discovery of pharmacological effects and targets of Citri Grandis Exocarpium based on SYSTCM and virtual screening. Food Nutr Res 2024; 68:10618. [PMID: 38974913 PMCID: PMC11227261 DOI: 10.29219/fnr.v68.10618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
Citri Grandis Exocarpium (Huajuhong, CGE) is the peel of the unripe fruits of Citrus grandis 'Tomentosa' and Citrus grandis (L.) Osbeck, which is commonly used in the clinic for the treatment of cough and indigestion. The pharmacological mechanism of CGE is unclear. In this study, the pharmacological effect of CGE was predicted by System Traditional Chinese Medicine (SYSTCM), which integrated the pharmacological effect prediction approach by artificial intelligence into the systemic traditional Chinese medicine (TCM) platform. The main pharmacological effect of CGE was antiallergy, promoting bile, blood lipid regulation, cardiotonics, diuresis, and antiarrhythmia by prediction of SYSTCM. In vitro cell experiments were carried out to identify the antiallergic effect of CGE. Extracts of Citri Grandis Exocarpium (ECGE) inhibited lipopolysaccharide-induced cell injury and nitric oxide release in RAW264.7 cells. ECGE and naringin-inhibited immunoglobulin E-induced cell degranulation in RBL-2H3 cells. Target profiling, protein interaction network, and molecular docking of compounds from CGE indicated that mitogen-activated protein kinase 14 (MAPK14) and matrix metalloprotease 9 (MMP9) were key potential targets of CGE with antiallergic activity. This study identified and validated the antiallergic effect of CGE by combining SYSTCM, cell experiments, and virtual screening, which provided a new paradigm and approach for studying the pharmacological effect and mechanism of TCM.
Collapse
Affiliation(s)
- Qinqi Feng
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyang Shu
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxi Shi
- Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongchun Zhang
- Department of Traditional Chinese Medicine for Pulmonar y Diseases, National Center for Respirator y Medicine, National Clinical Research Center for Respirator y Diseases, Institute of Respirator y Medicine, Center of Respirator y Medicine, China-Japan Friendship Hospital Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
3
|
Backman H, Stridsman C, Hedman L, Rönnebjerg L, Nwaru BI, Sandström T, Kankaanranta H, Lindberg A, Rönmark E. Determinants of Severe Asthma - A Long-Term Cohort Study in Northern Sweden. J Asthma Allergy 2022; 15:1429-1439. [PMID: 36248343 PMCID: PMC9562796 DOI: 10.2147/jaa.s376806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Risk factors for severe asthma are not well described. The aim was to identify clinical characteristics and risk factors at study entry that are associated with severe asthma at follow-up in a long-term prospective population-based cohort study of adults with asthma. Methods Between 1986 and 2001, 2055 adults with asthma were identified by clinical examinations of population-based samples in northern Sweden. During 2012-2014, n = 1006 (71% of invited) were still alive, residing in the study area and participated in a follow-up, of which 40 were identified as having severe asthma according to ERS/ATS, 131 according to GINA, while 875 had other asthma. The mean follow-up time was 18.7 years. Results Obesity at study entry and adult-onset asthma were associated with severe asthma at follow-up. While severe asthma was more common in those with adult-onset asthma in both men and women, the association with obesity was observed in women only. Sensitization to mites and moulds, but not to other allergens, as well as NSAID-related respiratory symptoms was more common in severe asthma than in other asthma. Participants with severe asthma at follow-up had lower FEV1, more pronounced FEV1 reversibility, and more wheeze, dyspnea and nighttime awakenings already at study entry than those with other asthma. Conclusion Adult-onset asthma is an important risk factor for development of severe asthma in adults, and obesity increased the risk among women. The high burden of respiratory symptoms already at study entry also indicate long-term associations with development of severe asthma.
Collapse
Affiliation(s)
- Helena Backman
- Department of Public Health and Clinical Medicine, Section of Sustainable Health/the OLIN unit, Umeå University, Umeå, Sweden,Correspondence: Helena Backman, Department of Public Health and Clinical Medicine, Section of Sustainable Health/the OLIN Unit, Umeå University, Umeå, Sweden, Email
| | - Caroline Stridsman
- Department of Public Health and Clinical Medicine, Section of Medicine/the OLIN unit, Umeå University, Umeå, Sweden
| | - Linnea Hedman
- Department of Public Health and Clinical Medicine, Section of Sustainable Health/the OLIN unit, Umeå University, Umeå, Sweden
| | - Lina Rönnebjerg
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Section of Medicine/the OLIN unit, Umeå University, Umeå, Sweden
| | - Hannu Kankaanranta
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden,Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Section of Medicine/the OLIN unit, Umeå University, Umeå, Sweden
| | - Eva Rönmark
- Department of Public Health and Clinical Medicine, Section of Sustainable Health/the OLIN unit, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Marshall CL, Hasani K, Mookherjee N. Immunobiology of Steroid-Unresponsive Severe Asthma. FRONTIERS IN ALLERGY 2022; 2:718267. [PMID: 35387021 PMCID: PMC8974815 DOI: 10.3389/falgy.2021.718267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by airflow obstruction, bronchial hyperresponsiveness and airway inflammation. Approximately 10% of asthma patients suffer from uncontrolled severe asthma (SA). A major difference between patients with SA from those with mild-to-moderate asthma is the resistance to common glucocorticoid treatments. Thus, steroid-unresponsive uncontrolled asthma is a hallmark of SA. An impediment in the development of new therapies for SA is a limited understanding of the range of immune responses and molecular networks that can contribute to the disease process. Typically SA is thought to be characterized by a Th2-low and Th17-high immunophenotype, accompanied by neutrophilic airway inflammation. However, Th2-mediated eosinophilic inflammation, as well as mixed Th1/Th17-mediated inflammation, is also described in SA. Thus, existing studies indicate that the immunophenotype of SA is diverse. This review attempts to summarize the interplay of different immune mediators and related mechanisms that are associated with airway inflammation and the immunobiology of SA.
Collapse
Affiliation(s)
- Courtney Lynn Marshall
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kosovare Hasani
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Department of Internal Medicine, Manitoba Center of Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
6
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
7
|
Karaguzel D, Sarac BE, Akel Bilgic H, Summak GY, Unal MA, Kalayci O, Karaaslan C. House dust mite-derived allergens effect on matrix metalloproteases in airway epithelial cells. Exp Lung Res 2021; 47:436-450. [PMID: 34739337 DOI: 10.1080/01902148.2021.1998734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim of the Study: Many allergens have protease activities. Although the immunomodulatory effects of these antigens are well known, the effects attributed to their protease activities are not thoroughly investigated. We set out to determine the effects of house dust mite (HDM) allergens with varying protease activities on bronchial epithelial cell functions. Materials and methods: BEAS-2B cells were maintained in ALI-culture and stimulated with Der p1 (cysteine protease), Der p6 (serine protease), and Der p2 (non-protease) with and without specific protease inhibitors or heat denaturation. Cell viability and epithelial permeability were measured with MTT and paracellular flux assay, respectively. The effect of heat denaturation on allergen structure was examined using in silico models. Matrix metalloproteinases (MMPs) were investigated at the transcription (qPCR), protein (ELISA), and functional (zymography) levels. Results: Epithelial permeability increased only after Der p6 but not after Der p1 or Der p2 stimulation. Der p2 increased both MMP-2 and MMP-9 expression, while Der p1 increased only MMP-9 expression. The heat-denatured form of Der p1 unexpectedly increased MMP-9 gene expression, which, through the use of in silico models, was attributed to its ability to change receptor connections by the formation of new electrostatic and hydrogen bonds. IL-8 and GM-CSF production were increased after Der p1 and Der p2 but decreased after Der p6 stimulation. IL-6 decreased after Der p1 but increased following stimulation with Der p6 and heat-denatured Der p2. Conclusion: Allergens in house dust mites are capable of inducing various changes in the epithelial cell functions by virtue of their protease activities.
Collapse
Affiliation(s)
- Dilara Karaguzel
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Hayriye Akel Bilgic
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Gokce Yagmur Summak
- Department of Physics Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Mehmet Altay Unal
- Department of Physics Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Omer Kalayci
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
9
|
Weckmann M, Bahmer T, Bülow Sand JM, Rank Rønnow S, Pech M, Vermeulen C, Faiz A, Leeming DJ, Karsdal MA, Lunding L, Oliver BGG, Wegmann M, Ulrich-Merzenich G, Juergens UR, Duhn J, Laumonnier Y, Danov O, Sewald K, Zissler U, Jonker M, König I, Hansen G, von Mutius E, Fuchs O, Dittrich AM, Schaub B, Happle C, Rabe KF, van de Berge M, Burgess JK, Kopp MV. COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy. Eur Respir J 2021; 58:13993003.03969-2020. [PMID: 34326188 DOI: 10.1183/13993003.03969-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/28/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (pediatric cases/controls: 134/35; adult cases/controls: 149/31). Exacerbation of allergic airway disease in mice was induced by sensitising to OVA, challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor, Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (CF, n=14) and CF with allergic broncho-pulmonary aspergillosis (ABPA, n=9) as well as severe allergic, uncontrolled asthmatics (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed by the Asthma Control Test. RESULTS Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in CF plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic odds ratio 31.5). CONCLUSION C4Ma3 level depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response.
Collapse
Affiliation(s)
- Markus Weckmann
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Bahmer
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | | | - Sarah Rank Rønnow
- Nordic Bioscience A/S, Herlev, Denmark.,The Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Martin Pech
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Cornelis Vermeulen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Alen Faiz
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | | | | | - Lars Lunding
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Division of Asthma-Exacerbation & -Regulation; Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel
| | - Brian George G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Michael Wegmann
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Division of Asthma-Exacerbation & -Regulation; Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel
| | | | - Uwe R Juergens
- Department of Pneumonology, Medical Clinic II, University Hospital Bonn
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ulrich Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marnix Jonker
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Inke König
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Institute for Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Erika von Mutius
- University Children's Hospital, Ludwig Maximilian's University, Munich, Germany.,German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Oliver Fuchs
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Bianca Schaub
- University Children's Hospital, Ludwig Maximilian's University, Munich, Germany.,German Research Center for Environmental Health (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Germany
| | - Klaus F Rabe
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Maarten van de Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands
| | - Janette Kay Burgess
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, , GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.,Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | | |
Collapse
|
10
|
Zastrzeżyńska W, Bazan-Socha S, Przybyszowski M, Gawlewicz-Mroczka A, Jakieła B, Plutecka H, Zaręba L, Musiał J, Okoń K, Sładek K, Soja J. Effect of omalizumab on bronchoalveolar lavage matrix metalloproteinases in severe allergic asthma. J Asthma 2021; 59:1087-1094. [PMID: 33764254 DOI: 10.1080/02770903.2021.1903917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Airway inflammation in asthma is accompanied by reconstruction of the bronchial wall extracellular matrix that most likely occurs with a contribution of matrix metalloproteinases (MMPs). Recently we have reported that omalizumab may decrease reticular basement membrane (RBM) thickness together with fibronectin deposits in asthmatic airways, although mechanisms involved are unknown. OBJECTIVE In the present study, we have investigated the impact of omalizumab on MMPs concentrations in bronchoalveolar lavage fluid (BAL) of asthmatic subjects in relation to airway remodeling changes in histology. PATIENTS AND METHODS The study group consisted of 13 severe allergic asthmatics treated with omalizumab for at least 12 months. In each subject, clinical and laboratory parameters, bronchoscopy with BAL, and endobronchial biopsy were evaluated before and after the biologic therapy. RBM thickness, fibronectin, and collagen deposits in bronchial mucosa specimens were analyzed in histology. The investigations also included BAL cytology and BAL concentrations of MMP-2, -3, and -9. RESULTS Omalizumab was related to a decrease in all measured MMPs in BAL (p < 0.001, each), although such declines were not observed in each patient. The depletions were associated with a lower asthma exacerbation rate and better asthma control. Interestingly, patients who showed a decline in at least one MMP (n = 10, 77%) were characterized by a higher decrease in the RBM thickness (-1.61 [-2.02 to -0.6] vs. -0.06 [-0.09 to +3.3], p = 0.03). Likewise, individuals with lower concentrations of MMP-9 after omalizumab (n = 7, 58%) had a greater reduction in the RBM layer as compared to those with steady MMP-9 levels (-1.8 [-2.4 to -1.14] vs. -0.13 [-0.6 to -0.06] μm, p = 0.03). Moreover, the latter group also had unfavorable higher collagen I accumulation after biologic (42 [20 to 55] vs. 0 [-10 to 20]%, respectively, p = 0.03). Higher concentrations of MMPs in BAL at baseline were related to the lower systemic steroid dose and better omalizumab response concerning the decline in RBM thickness. CONCLUSION Our data suggest that omalizumab therapy is associated with decreased BAL MMPs concentration in the subgroup of asthma patients. The decline was linked with a reduction in the RBM thickness what might play a beneficial role in airway remodeling.
Collapse
Affiliation(s)
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Przybyszowski
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Gawlewicz-Mroczka
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Bogdan Jakieła
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Plutecka
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Lech Zaręba
- Interdisciplinary Centre for Computational Modelling, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Jacek Musiał
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to integrate recent research on the respiratory immune effects of e-cigarettes with the pathogenesis of asthma to better understand how e-cigarettes may affect asthmatics and to note critical knowledge gaps regarding the effects of e-cigarettes on asthmatics. RECENT FINDINGS Human, rodent, and cell culture studies show that key cellular functions of epithelial cells, macrophages, and neutrophils are altered by e-cigarette exposure. Because respiratory immunity is already dysregulated in asthma, further alteration of cellular function by e-cigarettes could impact asthma development, severity, and/or exacerbations. Future research is needed to more directly investigate this relationship using controlled human exposure studies and exposure of cell culture or animal models of asthma to e-cigarettes.
Collapse
|
12
|
Vieira CP, de Oliveira LP, Da Silva MB, Majolli Andre D, Tavares EBG, Pimentel ER, Antunes E. Role of metalloproteinases and TNF-α in obesity-associated asthma in mice. Life Sci 2020; 259:118191. [PMID: 32777302 DOI: 10.1016/j.lfs.2020.118191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Numerous population studies conducted worldwide indicate that the prevalence of asthma is higher in obese versus lean individuals. It has been reported that sensitized lean mice has a better recovery of lung inflammation in asthma. Extracellular matrix (ECM) plays an essential role in the structural support of the lungs regulating the airways diameter, thus preventing its collapse during expiration. ECM renewal by metalloproteinase (MMPs) enzymes is critical for pulmonary biology. There seems to be an imbalance of MMPs activity in asthma and obesity, which can impair the lung remodeling process. In this study, we characterized the pulmonary ECM of obese and lean mice, non-sensitized and sensitized with ovalbumin (OVA). Pharmacological intervention was performed by using anti-TNF-α, and MMP-8 and MMP-9 inhibitors in obese and lean sensitized mice. Activity of MMPs was assessed by gelatinase electrophorese, western blotting and zymogram in situ. Unbalance of MMP-2, MMP-8, MMP-9 and MMP-12 was detected in lung tissue of OVA-sensitized obese mice, which was accompanied by high degradation, corroborating an excessive deposition of types I and III collagen in pulmonary matrix of obese animals. Inhibitions of TNF-α and MMP-9 reduced this MMP imbalance, clearly suggesting a positive effect on pulmonary ECM. Obese and lean mice presented diverse phenotype of asthma regarding the ECM compounds and the inhibition of MMPs pathway could be a good alternative to regulate the activity in ECM lungs of asthmatic obese individuals.
Collapse
Affiliation(s)
- Cristiano Pedrozo Vieira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Leticia Prado de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-863 CP 6109, Campinas, Sao Paulo, Brazil
| | - Mariana Bombardi Da Silva
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-863 CP 6109, Campinas, Sao Paulo, Brazil
| | - Diana Majolli Andre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edith Bastos Gandra Tavares
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Rosa Pimentel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-863 CP 6109, Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs (CD11c + Siglec F + CD64 + CD45 + SSC hi) flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
14
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 02/12/2024] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
15
|
Lehman HK, Segal BH. The role of neutrophils in host defense and disease. J Allergy Clin Immunol 2020; 145:1535-1544. [PMID: 32283205 DOI: 10.1016/j.jaci.2020.02.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Neutrophils, the most abundant circulating leukocyte, are critical for host defense. Granulopoiesis is under the control of transcriptional factors and culminates in mature neutrophils with a broad armamentarium of antimicrobial pathways. These pathways include nicotinamide adenine dinucleotide phosphate oxidase, which generates microbicidal reactive oxidants, and nonoxidant pathways that target microbes through several mechanisms. Activated neutrophils can cause or worsen tissue injury, underscoring the need for calibration of activation and resolution of inflammation when infection has been cleared. Acquired neutrophil disorders are typically caused by cytotoxic chemotherapy or immunosuppressive agents. Primary neutrophil disorders typically result from disabling mutations of individual genes that result in impaired neutrophil number or function, and provide insight into basic mechanisms of neutrophil biology. Neutrophils can also be activated by noninfectious causes, including trauma and cellular injury, and can have off-target effects in which pathways that typically defend against infection exacerbate injury and disease. These off-target effects include acute organ injury, autoimmunity, and variable effects on the tumor microenvironment that can limit or worsen tumor progression. A greater understanding of neutrophil plasticity in these conditions is likely to pave the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy/Immunology & Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Brahm H Segal
- Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY.
| |
Collapse
|
16
|
Increased Ratio of Matrix Metalloproteinase-9 (MMP-9)/Tissue Inhibitor Metalloproteinase-1 from Alveolar Macrophages in Chronic Asthma with a Fast Decline in FEV 1 at 5-Year Follow-up. J Clin Med 2019; 8:jcm8091451. [PMID: 31547356 PMCID: PMC6780991 DOI: 10.3390/jcm8091451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic asthma is associated with progressive airway remodeling, which may contribute to declining lung function. An increase in matrix metalloproteinases-9 (MMP-9)/tissue inhibitor metalloproteinase-1 (TIMP-1) may indicate airway inflammation and bronchial injury. Bronchial biopsy specimens and alveolar macrophages (AMs) were obtained from patients with asthma under regular treatment with inhaled corticosteroids or combination therapy and normal subjects (n = 10). Asthmatics included those with a slow forced expiratory volume in one second (FEV1) decline (<30 mL/year, n = 13) and those with a fast FEV1 decline (≥30 mL/year, n = 8) in 5-year follow-up. Immunostaining expression of MMP-9 and TIMP-1 was detected in airway tissues. MMP-9 and TIMP-1 was measured from AMs cultured for 24 h. After the 5-year treatment, the methacholine airway hyperresponsiveness of the slow FEV1 decline group was decreased, but that of the fast FEV1 decline group was increased (PC20, provocative concentration causing a 20% decrease in FEV1, 3.12 ± 1.10 to 1.14 ± 0.34 mg/dL, p < 0.05). AMs of asthma with a fast FEV1 decline released a higher level of MMP-9 (8.52 ± 3.53 pg/mL, p < 0.05) than those of a slow FEV1 decline (0.99 ± 0.20 pg/mL). The MMP-9/TIMP ratio in the fast FEV1 decline group (0.089 ± 0.032) was higher than that of the slow FEV1 decline group (0.007 ± 0.001, p < 0.01). The annual FEV1 decline in 5 years was proportional to the level of MMP-9 (r = 57, p < 0.01) and MMP-9/TIMP-1 ratio (r = 0.58, p < 0.01). The airways of asthma with greater yearly decline in FEV1 showed an increased thickness of submucosa and strong expression of MMP-9. An increase in MMP-9 and MMP-9/TIMP-1 in airways or AMs could be indicators of chronic airway inflammation and contribute to a greater decline in lung function of patients with chronic asthma.
Collapse
|
17
|
Snelgrove RJ, Patel DF, Patel T, Lloyd CM. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin Exp Allergy 2018; 48:1275-1285. [PMID: 29900603 DOI: 10.1111/cea.13191] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whilst severe asthma has classically been categorized as a predominantly Th2-driven pathology, there has in recent years been a paradigm shift with the realization that it is a heterogeneous disease that may manifest with quite disparate underlying inflammatory and remodelling profiles. A subset of asthmatics, particularly those with a severe, corticosteroid refractory disease, present with a prominent neutrophilic component. Given the potential of neutrophils to impart extensive tissue damage and promote inflammation, it has been anticipated that these cells are closely implicated in the underlying pathophysiology of severe asthma. However, uncertainty persists as to why the neutrophil is present in the asthmatic lung and what precisely it is doing there, with evidence supporting its role as a protagonist of pathology being primarily circumstantial. Furthermore, our view of the neutrophil as a primitive, indiscriminate killer has evolved with the realization that neutrophils can exhibit a marked anti-inflammatory, pro-resolving and wound healing capacity. We suggest that the neutrophil likely exhibits pleiotropic and potentially conflicting roles in defining asthma pathophysiology-some almost certainly detrimental and some potentially beneficial-with context, timing and location all critical confounders. Accordingly, indiscriminate blockade of neutrophils with a broad sword approach is unlikely to be the answer, but rather we should first seek to understand their complex and multifaceted roles in the disease state and then target them with the same subtleties and specificity that they themselves exhibit.
Collapse
Affiliation(s)
- R J Snelgrove
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - D F Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - T Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - C M Lloyd
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
18
|
Differential Regulation of Zfp30 Expression in Murine Airway Epithelia Through Altered Binding of ZFP148 to rs51434084. G3-GENES GENOMES GENETICS 2018; 8:687-693. [PMID: 29242385 PMCID: PMC5919737 DOI: 10.1534/g3.117.300507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil chemotaxis to the airways is a key aspect of host response to microbes and a feature of multiple pulmonary diseases including asthma. Tight regulation of this recruitment is critical to prevent unwanted host tissue damage and inflammation. Using a mouse (Mus musculus) model of asthma applied to the Collaborative Cross population, we previously identified a lung gene expression quantitative trait locus (eQTL) for Zinc finger protein 30 (Zfp30) that was also a QTL for neutrophil recruitment and the hallmark neutrophil chemokine CXCL1. The Zfp30 eQTL is defined by three functionally distinct haplotypes. In this study, we searched for causal genetic variants that underlie the Zfp30 eQTL to gain a better understanding of this candidate repressor's regulation. First, we identified a putative regulatory region spanning 500 bp upstream of Zfp30, which contains 10 SNPs that form five haplotypes. In reporter gene assays in vitro, these haplotypes recapitulated the three previously identified in vivo expression patterns. Second, using site-directed mutagenesis followed by reporter gene assays, we identified a single variant, rs51434084, which explained the majority of variation in expression between two out of three haplotype groups. Finally, using a combination of in silico predictions and electrophoretic mobility shift assays, we identified ZFP148 as a transcription factor that differentially binds to the Zfp30 promoter region harboring rs51434084. In conclusion, we provide evidence in support of rs51434084 being a causal variant for the Zfp30 eQTL, and have identified a mechanism by which this variant alters Zfp30 expression, namely differential binding of ZFP148.
Collapse
|
19
|
Spann K, Snape N, Baturcam E, Fantino E. The Impact of Early-Life Exposure to Air-borne Environmental Insults on the Function of the Airway Epithelium in Asthma. Ann Glob Health 2018; 82:28-40. [PMID: 27325066 DOI: 10.1016/j.aogh.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The airway epithelium is both a physical barrier protecting the airways from environmental insults and a significant component of the innate immune response. There is growing evidence that exposure of the airway epithelium to environmental insults in early life may lead to permanent changes in structure and function that underlie the development of asthma. Here we review the current published evidence concerning the link between asthma and epithelial damage within the airways and identify gaps in knowledge for future studies.
Collapse
Affiliation(s)
- Kirsten Spann
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia.
| | - Natale Snape
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| | - Engin Baturcam
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| | - Emmanuelle Fantino
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| |
Collapse
|
20
|
Altman MC, Reeves SR, Parker AR, Whalen E, Misura KM, Barrow KA, James RG, Hallstrand TS, Ziegler SF, Debley JS. Interferon response to respiratory syncytial virus by bronchial epithelium from children with asthma is inversely correlated with pulmonary function. J Allergy Clin Immunol 2017; 142:451-459. [PMID: 29106997 DOI: 10.1016/j.jaci.2017.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/12/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Respiratory viral infection in early childhood, including that from respiratory syncytial virus (RSV), has been previously associated with the development of asthma. OBJECTIVE We aimed to determine whether ex vivo RSV infection of bronchial epithelial cells (BECs) from children with asthma would induce specific gene expression patterns and whether such patterns were associated with lung function among BEC donors. METHODS Primary BECs from carefully characterized children with asthma (n = 18) and matched healthy children without asthma (n = 8) were differentiated at an air-liquid interface for 21 days. Air-liquid interface cultures were infected with RSV for 96 hours and RNA was subsequently isolated from BECs. In each case, we analyzed gene expression using RNA sequencing and assessed differences between conditions by linear modeling of the data. BEC donors completed spirometry to measure lung function. RESULTS RSV infection of BECs from subjects with asthma, compared with uninfected BECs from subjects with asthma, led to a significant increase in expression of 6199 genes. There was significantly greater expression of 195 genes in BECs from children with asthma and airway obstruction (FEV1/forced vital capacity < 0.85 and FEV1 < 100% predicted) than in BECs from children with asthma without obstruction, or in BECs from healthy children. These specific genes were found to be highly enriched for viral response genes induced in parallel with types I and III interferons. CONCLUSIONS BECs from children with asthma and with obstructive physiology exhibit greater expression of types I and III interferons and interferon-stimulated genes than do cells from children with normal lung function, and expression of interferon-associated genes correlates with the degree of airway obstruction. These findings suggest that an exaggerated interferon response to viral infection by airway epithelial cells may be a mechanism leading to lung function decline in a subset of children with asthma.
Collapse
Affiliation(s)
- Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash
| | - Stephen R Reeves
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Andrew R Parker
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Wash
| | | | | | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Teal S Hallstrand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Wash
| | | | - Jason S Debley
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash.
| |
Collapse
|
21
|
Woodruff PG, van den Berge M, Boucher RC, Brightling C, Burchard EG, Christenson SA, Han MK, Holtzman MJ, Kraft M, Lynch DA, Martinez FD, Reddel HK, Sin DD, Washko GR, Wenzel SE, Punturieri A, Freemer MM, Wise RA. American Thoracic Society/National Heart, Lung, and Blood Institute Asthma-Chronic Obstructive Pulmonary Disease Overlap Workshop Report. Am J Respir Crit Care Med 2017. [PMID: 28636425 DOI: 10.1164/rccm.201705-0973ws] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent chronic obstructive lung diseases with an associated high burden of disease. Asthma, which is often allergic in origin, frequently begins in infancy or childhood with variable airflow obstruction and intermittent wheezing, cough, and dyspnea. Patients with COPD, in contrast, are usually current or former smokers who present after the age of 40 years with symptoms (often persistent) including dyspnea and a productive cough. On the basis of age and smoking history, it is often easy to distinguish between asthma and COPD. However, some patients have features compatible with both diseases. Because clinical studies typically exclude these patients, their underlying disease mechanisms and appropriate treatment remain largely uncertain. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the American Thoracic Society, convened a workshop of investigators in San Francisco, California on May 14, 2016. At the workshop, current understanding of asthma-COPD overlap was discussed among clinicians, pathologists, radiologists, epidemiologists, and investigators with expertise in asthma and COPD. They considered knowledge gaps in our understanding of asthma-COPD overlap and identified strategies and research priorities that will advance its understanding. This report summarizes those discussions.
Collapse
Affiliation(s)
- Prescott G Woodruff
- 1 Division of Pulmonary and Critical Care, University of California, San Francisco, California
| | - Maarten van den Berge
- 2 Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Richard C Boucher
- 3 Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - Esteban G Burchard
- 1 Division of Pulmonary and Critical Care, University of California, San Francisco, California
| | - Stephanie A Christenson
- 1 Division of Pulmonary and Critical Care, University of California, San Francisco, California
| | - MeiLan K Han
- 5 Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Michael J Holtzman
- 6 Division of Pulmonary and Critical Care, Washington University, St. Louis, Missouri
| | | | - David A Lynch
- 8 Division of Oncology, National Jewish Health, Denver, Colorado
| | - Fernando D Martinez
- 9 Division of Pulmonary and Sleep Medicine, University of Arizona, Tucson, Arizona
| | - Helen K Reddel
- 10 Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Don D Sin
- 11 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Washko
- 12 Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sally E Wenzel
- 13 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Antonello Punturieri
- 14 Division of Lung Diseases, NHLBI/National Institutes of Health, Bethesda, Maryland; and
| | - Michelle M Freemer
- 14 Division of Lung Diseases, NHLBI/National Institutes of Health, Bethesda, Maryland; and
| | - Robert A Wise
- 15 Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
22
|
Hendrix AY, Kheradmand F. The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:1-29. [PMID: 28662821 DOI: 10.1016/bs.pmbts.2017.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal gas exchange after birth requires functional lung alveolar units that are lined with epithelial cells, parts of which are intricately fused with microvascular capillaries. A significant phase of alveolar lung development occurs in the perinatal period, continues throughout early stages in life, and requires activation of matrix-remodeling enzymes. Failure to achieve an optimum number of alveoli during lung maturation can cause several untoward medical consequences including disabling obstructive and/or restrictive lung diseases that limit physiological endurance and increase mortality. Several members of the matrix metalloproteinase (MMP) family are critical in lung remodeling before and after birth; however, their resurgence in response to environmental factors, infection, and injury can also compromise lung function. Therefore, temporal expression, regulation, and function of MMPs play key roles in developing and maintaining adequate oxygenation under steady state, as well as in diseased conditions. Broadly, with the exception of MMP2 and MMP14, most deletional mutations of MMPs fail to perturb lung development; however, their individual absence can alter the pathophysiology of respiratory diseases. Specifically, under stressed conditions such as acute respiratory infection and allergic inflammation, MMP2 and MMP9 can play a protective role through bacterial clearance and production of chemotactic gradient, while loss of MMP12 can protect mice from smoke-induced lung disease. Therefore, better understanding of the expression and function of MMPs under normal lung development and their resurgence in response respiratory diseases could provide new therapeutic options in the future.
Collapse
Affiliation(s)
- Amanda Y Hendrix
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
23
|
Chauhan PS, Dash D, Singh R. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma. Inflammation 2017; 40:248-258. [PMID: 27866296 DOI: 10.1007/s10753-016-0475-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulmonary fibrosis is associated with irreversible, or partially reversible, airflow obstruction and ultimately unresponsiveness to asthma therapies such as corticosteroids. Intranasal curcumin, an anti-inflammatory molecule, has been found effective in allergic asthma. To study the effect of intranasal curcumin on airway remodeling and fibrosis in murine model of chronic asthma, BALB/c mice were sensitized to ovalbumin (OVA) and exposed to OVA aerosol (2%) from day 21 (after sensitization) for 5 weeks (twice/week). Curcumin (intranasal) was administered during the OVA aerosol challenge. Mice exposed to OVA developed inflammation dominated by eosinophils which lead to fibrosis and airway remodeling. Intranasal administration of curcumin significantly inhibited airway inflammation and pulmonary fibrosis, where MMP-9 activities were decreased along with α-smooth muscle actin (α-SMA), MMP-9, TIMP-1, and eotaxin expressions. These results suggest that intranasal curcumin regulates airway inflammation and remodeling in chronic asthma.
Collapse
Affiliation(s)
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV Unit, Varanasi, India.
| |
Collapse
|
24
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
25
|
Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma. Ann Am Thorac Soc 2017; 13 Suppl 1:S55-63. [PMID: 27027954 DOI: 10.1513/annalsats.201507-421mg] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asthma is a very common respiratory condition with a worldwide prevalence predicted to increase. There are significant differences in airway epithelial responses in asthma that are of particular interest during exacerbations. Preventing exacerbations is a primary aim when treating asthma because they often necessitate unscheduled healthcare visits and hospitalizations and are a significant cause of morbidity and mortality. The most common cause of asthma exacerbations is a respiratory virus infection, of which the most likely type is rhinovirus infection. This article focuses on the role played by the epithelium in orchestrating the innate immune responses to respiratory virus infection. Recent studies show impaired bronchial epithelial cell innate antiviral immune responses, as well as augmentation of a pro-Th2 response characterized by the epithelial-derived cytokines IL-25 and IL-33, crucial in maintaining the Th2 cytokine response to virus infection in asthma. A better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to highlight current knowledge regarding the role of viruses and immune modulation in the asthmatic epithelium and to discuss exciting areas for future research and novel treatments.
Collapse
|
26
|
Chang HS, Lee TH, Jun JA, Baek AR, Park JS, Koo SM, Kim YK, Lee HS, Park CS. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med 2016; 11:29-40. [PMID: 27918221 DOI: 10.1080/17476348.2017.1268919] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.
Collapse
Affiliation(s)
- Hun Soo Chang
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Tae-Hyeong Lee
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Ji Ae Jun
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Ae Rin Baek
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| | - Jong-Sook Park
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| | - So-My Koo
- c Division of Allergy and Respiratory Medicine , Soonchunhyang University Seoul Hospital , Seoul , Republic of Korea
| | - Yang-Ki Kim
- c Division of Allergy and Respiratory Medicine , Soonchunhyang University Seoul Hospital , Seoul , Republic of Korea
| | - Ho Sung Lee
- d Division of Respiratory Medicine , Soonchunhyang University CheonAn Hospital , Cheonan , Chungcheongnam-do , Republic of Korea
| | - Choon-Sik Park
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| |
Collapse
|
27
|
Naik SP, P A M, B S J, Madhunapantula SV, Jahromi SR, Yadav MK. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma. J Asthma 2016; 54:584-593. [PMID: 27780376 DOI: 10.1080/02770903.2016.1244828] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Even though IL-6 and MMP-9 are associated with airway inflammation in asthma, there is paucity of data in Indian population. OBJECTIVE To determine the levels of IL-6 and MMP-9 in the serum of patients suffering from asthma, and correlate with (a) disease severity, as per GINA guidelines; (b) clinical phenotypes; and (c) response to treatment. METHODOLOGY The levels of IL-6 and MMP-9 were compared between moderate persistent asthma (n = 25), severe persistent asthma (n = 25) and normal controls (n = 30). IL-6 and MMP-9 were measured by ELISA (R&D Systems Inc., USA and Canada) and compared between controls and asthmatics and between groups of different asthma severity, clinical variables, spirometry, and allergen sensitization. Spirometry was repeated after 2 months of ICS+LABA to assess response to treatment in relation to baseline IL-6 and MMP-9 levels. RESULTS We observed a significant difference in both IL-6 and MMP-9 levels among asthmatics versus controls (p < 0.001), moderate versus severe persistent asthma (p < 0.001). A significant negative correlation was observed between MMP-9 and pre-bronchodilator FEV1 and FVC, but not with IL-6. There was no association between IL-6 and MMP-9 with asthma duration, total IgE, AEC, number of allergens sensitized and degree of sensitization. No significant correlation (p > 0.5) was observed with IL-6 and MMP-9 levels and FEV1 improvement after 2 months of ICS+LABA. CONCLUSION Higher levels of IL-6 and MMP-9 were observed in asthmatics as compared to controls and in severe persistent asthma as compared to moderate persistent asthma, higher levels of MMP-9 was associated with lower lung functions.
Collapse
Affiliation(s)
- Srilata Puru Naik
- a Department of Pulmonary Medicine , B.G.S Global Institute of Medical Sciences, BGS Health & Education City , Bengaluru , Karnataka , India
| | - Mahesh P A
- b Department of Pulmonary Medicine , JSS Medical College, JSS University , Mysuru , India
| | - Jayaraj B S
- b Department of Pulmonary Medicine , JSS Medical College, JSS University , Mysuru , India
| | - SubbaRao V Madhunapantula
- c Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, J.S.S Medical College, JSS University , Mysuru , Karnataka , India
| | - Sarah Raeiszadeh Jahromi
- d Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore , Mysuru , Karnataka , India
| | - Manish Kumar Yadav
- c Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, J.S.S Medical College, JSS University , Mysuru , Karnataka , India.,e Department of Biochemistry , JSS Medical College, JSS University , Mysore , Karnataka , India
| |
Collapse
|
28
|
Homma T, Kato A, Sakashita M, Norton JE, Suh LA, Carter RG, Schleimer RP. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors. Am J Respir Cell Mol Biol 2016; 52:471-81. [PMID: 25180535 DOI: 10.1165/rcmb.2014-0240oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Tetsuya Homma
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | | | |
Collapse
|
29
|
Abe K, Sugiura H, Hashimoto Y, Ichikawa T, Koarai A, Yamada M, Numakura T, Onodera K, Tanaka R, Sato K, Yanagisawa S, Okazaki T, Tamada T, Kikuchi T, Ichinose M. Possible role of Krüppel-like factor 5 in the remodeling of small airways and pulmonary vessels in chronic obstructive pulmonary disease. Respir Res 2016; 17:7. [PMID: 26792671 PMCID: PMC4719583 DOI: 10.1186/s12931-016-0322-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 12/30/2022] Open
Abstract
Background Small airway remodeling is an important cause of the airflow limitation in chronic obstructive pulmonary disease (COPD). A large population of patients with COPD also have pulmonary hypertension. Krüppel-like factor 5 (KLF5) is a zinc-finger transcription factor that contributes to tissue remodeling in cardiovascular diseases. Here, we evaluate the possible involvement of KLF5 in the remodeling of small airways and pulmonary vessels in COPD. Methods Lung tissues were obtained from 23 control never-smokers, 17 control ex-smokers and 24 ex-smokers with COPD. The expression of KLF5 in the lung tissues was investigated by immunohistochemistry. We investigated whether oxidative/nitrosative stress, which is a major cause of the pathogenesis in COPD, could augment the production of KLF5. We examined the role of KLF5 in the stress-mediated tissue remodeling responses. We also investigated the susceptibility of KLF5 expression to nitrosative stress using bronchial fibroblasts isolated from the lung tissues. Results The expression of KLF5 was up-regulated in the small airways and pulmonary vessels of the COPD patients and it was mainly expressed in bronchial fibroblasts and cells of the pulmonary vessels. The extent of the KLF5 expression in the small airway of the COPD group had a significant correlation with the severity of the airflow limitation. Oxidative/nitrosative stress augmented the production of KLF5 in lung fibroblasts as well as the translocation of KLF5 into the nuclei. Silencing of KLF5 suppressed the stress-augmented differentiation into myofibroblasts, the release of collagens and metalloproteinases. Bronchial fibroblasts from the patients with COPD highly expressed KLF5 compared to those from the control subjects under basal condition and were more susceptible to the induction of KLF5 expression by nitrosative stress compared to those from the control subjects. Conclusion We provide the first evidence that the expression of KLF5 is up-regulated in small airways and pulmonary vessels of patients with COPD and may be involved in the tissue remodeling of COPD.
Collapse
Affiliation(s)
- Kyoko Abe
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Katsuhiro Onodera
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Rie Tanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kei Sato
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Satoru Yanagisawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
30
|
Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma. Mediators Inflamm 2015; 2015:219374. [PMID: 26663987 PMCID: PMC4667029 DOI: 10.1155/2015/219374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood) and suboptimal (ASubopt) asthma symptom control. METHODS Peripheral blood neutrophils from AGood (ACQ < 0.75, n = 11), ASubopt (ACQ > 0.75, n = 7), and healthy controls (HC) (n = 9) were stimulated with bacterial (LPS (1 μg/mL), fMLF (100 nM)), and viral (imiquimod (3 μg/mL), R848 (1.5 μg/mL), and poly I:C (10 μg/mL)) surrogates or live rhinovirus (RV) 16 (MOI1). Cell-free supernatant was collected after 1 h for neutrophil elastase (NE) and matrix metalloproteinase- (MMP-) 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. CONCLUSIONS Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.
Collapse
|
31
|
Nagato AC, Bezerra FS, Talvani A, Aarestrup BJ, Aarestrup FM. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype. Immun Inflamm Dis 2015; 3:321-37. [PMID: 26417446 PMCID: PMC4578530 DOI: 10.1002/iid3.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or treating asthmatic patients that require oxygen supplementation to reverse the hypoxemia.
Collapse
Affiliation(s)
- Akinori C Nagato
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | | | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP) Ouro Preto, Minas Gerais, Brazil
| | - Beatriz J Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | - Fernando M Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
32
|
Beppu L, Yang T, Luk M, Newbury RO, Palmquist J, Dohil R, Kurten RC, Broide DH, Aceves SS. MMPs-2 and -14 Are Elevated in Eosinophilic Esophagitis and Reduced Following Topical Corticosteroid Therapy. J Pediatr Gastroenterol Nutr 2015; 61:194-9. [PMID: 25539192 PMCID: PMC4478274 DOI: 10.1097/mpg.0000000000000668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE) is a chronic, antigen-mediated disease in children and adults associated with substantial esophageal remodeling and fibrosis. The expression of the remodeling-associated matrix metalloproteinases (MMPs) has not been previously detailed in EoE. METHODS MMP-2 and -14 expression and cellular localization were assessed using real-time quantitative polymerase chain reaction and immunohistochemistry/immunofluorescence in EoE fibroblasts, active and inactive pediatric EoE biopsies, and nondiseased control biopsies. The effect of transforming growth factor (TGF)-β1 treatment on MMP-2 expression in cultured esophageal epithelial (HET1A) cells was analyzed. RESULTS MMP-2 and -14 mRNA were expressed in EoE fibroblasts and biopsies. Proliferating epithelial cells produced MMP-14 more abundantly in EoE than in controls (P < 0.001) and the degree of epithelial MMP-14 expression correlated positively with basal zone hyperplasia (r = 0.65, P = 0.002). EoE lamina propria had higher numbers of MMP-2- and -14-positive cells (906 ± 167 and 701 ± 93 cells/mm²) as compared with controls (258 ± 93 cells/mm², P < 0.01 and 232 ± 54 cells/mm², P < 0.01), and MMP-14 expression correlated with the severity of fibrosis. Following therapy with topical corticosteroids, MMP-14 and -2 were significantly diminished (P < 0.01). TGF-β1 increased the expression and secretion of MMP-2 from esophageal epithelial HET1A cells. CONCLUSIONS MMP-2 and -14 are elevated in pediatric patients with EoE and significantly decrease following topical corticosteroid therapy. TGF-β1 increases MMP-2 in esophageal epithelial cells. This alludes to previously unappreciated role for MMPs in EoE-associated esophageal remodeling and a potential positive feedback loop via TGF-β1.
Collapse
Affiliation(s)
- Lisa Beppu
- *Division of Allergy, Immunology, Center for Immunity, Infection, and Inflammation †Department of Pediatrics, University of California ‡Department of Physiology and Biophysics, University of Arkansas Medical Center, Little Rock
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of severe asthma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:511-45. [PMID: 25423350 DOI: 10.1146/annurev-pathol-012414-040343] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe asthma (SA) afflicts a heterogeneous group of asthma patients who exhibit poor responses to traditional asthma medications. SA patients likely represent 5-10% of all asthma patients; however, they have a higher economic burden when compared with milder asthmatics. Considerable research has been performed on pathological pathways and structural changes associated with SA. Although limitations of the pathological approaches, ranging from sampling, to quantitative assessments, to heterogeneity of disease, have prevented a more definitive understanding of the underlying pathobiology, studies linking pathology to molecular markers to targeted therapies are beginning to solidify the identification of select molecular phenotypes. This review addresses the pathobiology of SA and discusses the current limitations of studies, the inflammatory cells and pathways linked to emerging phenotypes, and the structural and remodeling changes associated with severe disease. In all cases, an effort is made to link pathological findings to specific clinical/molecular phenotypes.
Collapse
|
34
|
T C, Chandran P A, Kurup G M. Omega-3 fatty acid concentrate fromDunaliella salinapossesses anti-inflammatory properties including blockade of NF-κB nuclear translocation. Immunopharmacol Immunotoxicol 2014; 37:81-9. [DOI: 10.3109/08923973.2014.981639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: a perfect storm. Respir Med 2014; 108:1409-23. [PMID: 25240764 DOI: 10.1016/j.rmed.2014.08.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory airway disease involving complex interplay between resident and infiltrative cells, which in turn are regulated by a wide range of host mediators. Identifying useful biomarkers correlating with clinical symptoms and degree of airway obstruction remain important to effective future asthma treatments. Transforming growth factor β (TGF-β) is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling within the asthmatic lung. Its role however, as a therapeutic target remains controversial. The aim of this review is to highlight its role in severe asthma including interactions with adaptive T-helper cells, cytokines and differentiation through regulatory T-cells. Associations between TGF-β and eosinophils will be addressed and the effects of genetic polymorphisms of the TGF-β1 gene explored in the context of asthma. We highlight TGF-β1 as a potential future therapeutic target in severe asthma including its importance in identifying emerging clinical phenotypes in asthmatic subjects who may be suitable for individualized therapy through TGF-β modulation.
Collapse
Affiliation(s)
- Mazen Al-Alawi
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Tidi Hassan
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
36
|
Manni ML, Trudeau JB, Scheller EV, Mandalapu S, Elloso MM, Kolls JK, Wenzel SE, Alcorn JF. The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol 2014; 7:1186-98. [PMID: 24549277 PMCID: PMC4138304 DOI: 10.1038/mi.2014.8] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/16/2013] [Indexed: 02/04/2023]
Abstract
Asthma is a common respiratory disease affecting ∼300 million people worldwide. Airway inflammation is thought to contribute to asthma pathogenesis, but the direct relationship between inflammation and airway hyperresponsiveness (AHR) remains unclear. This study investigates the role of inflammation in a steroid-insensitive, severe allergic airway disease model and in severe asthmatics stratified by inflammatory profile. First, we used the T-helper (T(H))-17 cells adoptive transfer mouse model of asthma to induce pulmonary inflammation, which was lessened by tumor necrosis factor (TNF)-α neutralization or neutrophil depletion. Although decreased airspace inflammation following TNFα neutralization and neutrophil depletion rescued lung compliance, neither intervention improved AHR to methacholine, and tissue inflammation remained elevated when compared with control. Further, sputum samples were collected and analyzed from 41 severe asthmatics. In severe asthmatics with elevated levels of sputum neutrophils, but low levels of eosinophils, increased inflammatory markers did not correlate with worsened lung function. This subset of asthmatics also had significantly higher levels of T(H)17-related cytokines in their sputum compared with severe asthmatics with other inflammatory phenotypes. Overall, this work suggests that lung compliance may be linked with cellular inflammation in the airspace, whereas T-cell-driven AHR may be associated with tissue inflammation and other pulmonary factors.
Collapse
Affiliation(s)
- Michelle L. Manni
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - John B. Trudeau
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Erich V. Scheller
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | | | - M. Merle Elloso
- Janssen Research & Development, Immunology Discovery Research, Spring House, PA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Sally E. Wenzel
- University of Pittsburgh Asthma Institute at UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John F. Alcorn
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| |
Collapse
|
37
|
Cho SH, Oh SY, Lane AP, Lee J, Oh MH, Lee S, Zheng T, Zhu Z. Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways. PLoS One 2014; 9:e103685. [PMID: 25090641 PMCID: PMC4121172 DOI: 10.1371/journal.pone.0103685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 07/04/2014] [Indexed: 12/20/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease orchestrated by Th2 lymphocytes. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 is known to be a negative regulator in the IL-4α/STAT-6 signaling pathway of the lung. However, the role of SHP-1 enzyme and its functional relationship with Th2 and Th1 cytokines are not known in the nasal airway. In this study, we aimed to study the nasal inflammation as a result of SHP-1 deficiency in viable motheaten (mev) mice and to investigate the molecular mechanisms involved. Cytology, histology, and expression of cytokines and chemokines were analyzed to define the nature of the nasal inflammation. Targeted gene depletion of Th1 (IFN-γ) and Th2 (IL-4 and IL-13) cytokines was used to identify the critical pathways involved. Matrix metalloproteinases (MMPs) were studied to demonstrate the clearance mechanism of recruited inflammatory cells into the nasal airway. We showed here that mev mice had a spontaneous allergic rhinitis-like inflammation with eosinophilia, mucus metaplasia, up-regulation of Th2 cytokines (IL-4 and IL-13), chemokines (eotaxin), and MMPs. All of these inflammatory mediators were clearly counter-regulated by Th2 and Th1 cytokines. Deletion of IFN-γ gene induced a strong Th2-skewed inflammation with transepithelial migration of the inflammatory cells. These findings suggest that SHP-1 enzyme and Th2/Th1 paradigm may play a critical role in the maintenance of nasal immune homeostasis and in the regulation of allergic rhinitis.
Collapse
Affiliation(s)
- Seok Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | - Sun Young Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew P. Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joan Lee
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Min-Hee Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seakwoo Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tao Zheng
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhou Zhu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chaudhuri R, McSharry C, Brady J, Grierson C, Messow CM, Spears M, Miele G, Nocka K, MacNee W, Connell M, Murchison JT, Sproule M, Hilmi OJ, Miller DK, Thomson NC. Low sputum MMP-9/TIMP ratio is associated with airway narrowing in smokers with asthma. Eur Respir J 2014; 44:895-904. [PMID: 24993912 DOI: 10.1183/09031936.00047014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthmatic smokers have poor symptom control and accelerated decline in lung function. A reduced ratio of matrix metalloproteinase (MMP)-9/tissue inhibitors of metalloproteinases (TIMPs) in nonsmokers with asthma has been implicated in airway remodelling. We tested the hypothesis that sputum MMP-9 activity/TIMPs ratios are reduced in smokers compared with never-smokers with asthma and are associated with reduced lung function and altered computed tomography (CT) measures of airway wall dimensions. Lung function, airway dimensions by CT, and induced sputum concentrations (and activity) of MMP-9 and TIMP-1 and -2 were measured in 81 asthmatics and 43 healthy subjects (smokers and never-smokers). Respiratory epithelial MMP9 and TIMP mRNA was quantified in 31 severe asthmatics and 32 healthy controls. Sputum MMP-9 activity/TIMP-1 and TIMP-2 ratios, and nasal epithelial MMP9/TIMP1 and MMP9/TIMP2 expression ratios were reduced in smokers with asthma compared with never-smokers with asthma. Low sputum ratios in asthmatic smokers were associated with reduced post-bronchodilator forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity ratio and segmental airway lumen area. The association of a low sputum MMP-9 activity/TIMP-1 ratio with persistent airflow obstruction and reduced CT airway lumen area in smokers with asthma may indicate that an imbalance of MMP-9 and TIMPs contributes to structural changes to the airways in this group.
Collapse
Affiliation(s)
- Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jeffrey Brady
- Pfizer Research/Translational Medicine Research Collaboration, Dundee, UK
| | - Christal Grierson
- Pfizer Research/Translational Medicine Research Collaboration, Dundee, UK
| | - C Martina Messow
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Mark Spears
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gino Miele
- Pfizer Research/Translational Medicine Research Collaboration, Dundee, UK
| | - Karl Nocka
- Pfizer Research/Translational Medicine Research Collaboration, Cambridge MA, USA
| | - William MacNee
- University of Edinburgh/Medical Research Council Centre for Inflammation Research, Medical Physics and Clinical Radiology, University of Edinburgh, UK
| | - Martin Connell
- University of Edinburgh/Medical Research Council Centre for Inflammation Research, Medical Physics and Clinical Radiology, University of Edinburgh, UK
| | - John T Murchison
- University of Edinburgh/Medical Research Council Centre for Inflammation Research, Medical Physics and Clinical Radiology, University of Edinburgh, UK
| | | | - Omar J Hilmi
- Ear Nose and Throat Dept, Gartnavel General Hospital, Glasgow, UK
| | - Douglas K Miller
- Pfizer Research/Translational Medicine Research Collaboration, Collegeville, PA, USA
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
Ichikawa T, Sugiura H, Koarai A, Minakata Y, Kikuchi T, Morishita Y, Oka A, Kanai K, Kawabata H, Hiramatsu M, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Yamamoto N, Ichinose M. TLR3 activation augments matrix metalloproteinase production through reactive nitrogen species generation in human lung fibroblasts. THE JOURNAL OF IMMUNOLOGY 2014; 192:4977-88. [PMID: 24760149 DOI: 10.4049/jimmunol.1302919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viral infection often triggers asthma exacerbation and contributes to airway remodeling. Cell signaling in viral infection is mainly mediated through TLR3. Many mediators are involved in airway remodeling, but matrix metalloproteinases (MMPs) are key players in this process in asthma. However, the role of TLR3 activation in production of MMPs is unknown. In this study, we examined the effects of polyinosinic-polycytidylic acid [poly(I:C)], a ligand for TLR3, on production of MMPs in human lung fibroblasts, with a focus on nitrosative stress in TLR3 modulation of MMP production. After lung fibroblasts were treated with poly(I:C), production of MMP-1, -2, and -9 and inducible NO synthase (iNOS) was assessed. The roles of NF-κB and IFN regulatory factor-3 (IRF-3) in the poly(I:C)-mediated production of MMPs and the responsiveness to poly(I:C) of normal lung fibroblasts and asthmatic lung fibroblasts were also investigated. Poly(I:C) augmented production of MMPs and iNOS in fibroblasts, and an iNOS inhibitor diminished this production of MMPs. Poly(I:C) stimulated translocation of NF-κB and IRF-3 into the nucleus in fibroblasts and inhibition of NF-κB or IRF-3 abrogated the poly(I:C)-induced increase in both iNOS expression and release of MMPs. Poly(I:C)-induced production of iNOS and MMPs was greater in asthmatic fibroblasts than in normal fibroblasts. We conclude that viral infection may induce nitrosative stress and subsequent MMP production via NF-κB- and IRF-3-dependent pathways, thus potentiating viral-induced airway remodeling in asthmatic airways.
Collapse
Affiliation(s)
- Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yoshiaki Minakata
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Takashi Kikuchi
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Yukiko Morishita
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Asako Oka
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Kuninobu Kanai
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Hiroki Kawabata
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Masataka Hiramatsu
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Tsunahiko Hirano
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Nobuyuki Yamamoto
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama 641-8509, Japan; and
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
40
|
Abstract
The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | - Keven M Robinson
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
41
|
Barbaro MPF, Spanevello A, Palladino GP, Salerno FG, Lacedonia D, Carpagnano GE. Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma. Eur J Intern Med 2014; 25:92-6. [PMID: 24070522 DOI: 10.1016/j.ejim.2013.08.705] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/09/2013] [Accepted: 08/24/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Airway remodeling is a main feature of asthma. Different biological phenotypes of severe asthma have been recently recognized by the ENFUMOSA study group and among these one is characterized by neutrophilic airway inflammation. Concentrations of MMP-9 in airways have been suggested as a marker to monitor airway remodeling in asthma. OBJECTIVE The aim of the present study was to explore airway remodeling in different biological phenotypes of asthma by measuring MMP-9 in EBC and correlating these with other variables. METHODS Sixty consecutive subjects with asthma and 20 healthy controls were enrolled in the study. Exhaled MMP-9, pH and NO levels and inflammatory cells in sputum were measured in all subjects enrolled. RESULTS We observed an increase of exhaled MMP-9 in asthmatic subjects compared to controls. Higher exhaled MMP-9 concentrations were described in severe asthmatics compared to mild to moderate especially in those with neutrophilic airway inflammation. We further found a correlation between exhaled MMP-9 and percentage of neutrophils in sputum, FEV1, exhaled NO and pH. CONCLUSION Our results seem to substantiate the feasibility of measuring exhaled MMP-9 in the breath of asthmatic patients. MMP-9 may be considered a proxy of the amount of the ongoing airway remodeling in asthma. MMP-9 has been shown to be differentially released in different phenotypes of asthma. The measure of exhaled MMP-9 could help to monitor the ongoing airway remodeling, recognize severe stages of asthma, and possibly help determine the appropriate choice of therapy.
Collapse
Affiliation(s)
- Maria P Foschino Barbaro
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| | - Antonio Spanevello
- Institute of Respiratory Disease, University of Insubria, Varese, Italy; Fondazione Salvatore Maugeri, IRCCS, Tradate, Italy.
| | - Grazia P Palladino
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| | | | - Donato Lacedonia
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| | - Giovanna E Carpagnano
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| |
Collapse
|
42
|
Bissonnette ÉY, Madore AM, Chakir J, Laviolette M, Boulet LP, Hamid Q, Bergeron C, Maghni K, Laprise C. Fibroblast growth factor-2 is a sputum remodeling biomarker of severe asthma. J Asthma 2013; 51:119-26. [PMID: 24188024 DOI: 10.3109/02770903.2013.860164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Given the large phenotypic diversity of asthma, our aim was to characterize molecular profiles related to asthma severity using selected remodeling biomarkers in induced sputum. METHODS Induced sputum from healthy controls, patients with mild to moderate asthma and severe asthma were collected. Twelve selected biomarkers previously associated to airway remodeling such as connective tissue growth factor (CTGF), fibroblast growth factor (FGF)-2, matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, procollagen type 1 and tissue inhibitor of metalloproteinase (TIMP)-1 were measured in sputum samples using ELISA or Luminex technology. FGF-2 level was also evaluated in bronchial biopsies using immunohistochemistry. RESULTS Sputum of severe asthma was characterized by reduced percentage of macrophages and increased percentage of neutrophils and eosinophils. FGF-2, MMP-1 and TIMP-1 levels increased with asthma severity. Interestingly, only FGF-2 level inversely correlated with FEV1/FVC ratio. Although percentage of eosinophils correlated with asthma severity, it did not correlate with FGF-2 levels. Increased levels of FGF-2 with asthma severity were confirmed in bronchial biopsies by immunohistochemistry. CONCLUSIONS Level of FGF-2 in induced sputum represents a relevant remodeling biomarker of asthma severity and significantly correlates with pulmonary function. FGF-2 sputum biomarker is proposed to reveal the phenotype of asthma characterized by fixed airflow obstruction.
Collapse
Affiliation(s)
- Élyse Y Bissonnette
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval , Quebec City, QC , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee TH, Jang AS, Park JS, Kim TH, Choi YS, Shin HR, Park SW, Uh ST, Choi JS, Kim YH, Kim Y, Kim S, Chung IY, Jeong SH, Park CS. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol 2013; 111:268-275.e1. [DOI: 10.1016/j.anai.2013.06.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/16/2022]
|
44
|
Abstract
INTRODUCTION For decades glucocorticoids have been considered as the gold standard for the treatment of asthma. We present a case report of typical glucocorticoid-resistant asthma and current consensus in definitions of "severe refractory", "difficult" and "glucocorticoid-resistant" asthma. METHODS Full-text papers and abstracts were identified on the basis of a comprehensive literature search primarily in MEDLINE (1966 to June 2012) but also in the Cochrane Central Register of Controlled Trials database. RESULTS Glucocorticoid-resistant asthmatics are a small subset of patients who pose noteworthy diagnostic challenges while contributing disproportionately to health care costs. Recognition of various asthma phenotypes has aided in characterizing groups with severe asthma and given a better understanding of its pathophysiological process. The molecular mechanism of glucocorticoid action is complicated and several pathways have been identified to explain drug resistance, which in turn is crucial for drug development. Tobacco smoking appears to be the single most important contributor of glucocorticoid resistance. We present the emerging and promising concepts in the management of glucocorticoid-resistant asthma, which mainly include drugs targeting specific molecules, receptors, inflammatory cells or immune processes. CONCLUSION The challenges in making a diagnosis of glucocorticoid-resistant asthma may contribute to underestimating its prevalence and impact on patient care. Considerable progress has been made in identifying distinct phenotypes and mechanisms of glucocorticoid resistance; therefore the future of new drug development in management of asthma is promising.
Collapse
Affiliation(s)
- Divya Reddy
- Department of Pulmonary, Allergy, Sleep and Critical Care Medicine, Pulmonary Center, Boston University School of Medicine , Boston, MA , USA
| | | |
Collapse
|
45
|
Bell MC, Busse WW. Severe asthma: an expanding and mounting clinical challenge. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:110-21; quiz 122. [PMID: 24565450 DOI: 10.1016/j.jaip.2013.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/29/2022]
Abstract
Although all patients with asthma have variable airflow obstruction, airway inflammation, and bronchial hyperresponsiveness, some have disease that is severe in many aspects: persistent airflow obstruction, ongoing symptoms, increased frequency of exacerbations, and, most importantly, a diminished response to medications. A number of definitions have emerged to characterize the clinical features of severe asthma, but a central feature of this phenotype is the need for high doses of medications, especially corticosteroids, in attempts to achieve disease control. The prevalence of severe asthma is also undergoing reevaluation from the usual estimate of 10% to larger numbers on the basis of medication needs and the lack of disease control achieved. At present, the underlying mechanisms of severe asthma are not established but likely reflect a heterogeneous pattern, rather than a single unifying process. Guideline-directed treatment for severe asthma has limits with usual approaches centered on high doses of inhaled corticosteroids, long-acting β-agonists, and trials with omalizumab, the monoclonal antibody to IgE. With the development of approaches to recognize asthma phenotypes with distinct pathogenesis and hence unique therapeutic targets, it is hoped that a personalized strategy in treatment directed toward disease-specific features will improve outcomes for this high-risk, severely affected population of patients.
Collapse
Affiliation(s)
- Matthew C Bell
- Department of Medicine, Section of Allergy Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - William W Busse
- Department of Medicine, Section of Allergy Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
46
|
Abstract
Proteases are enzymes that have the capacity to hydrolyze peptide bonds and degrade other proteins. Proteases can promote inflammation by regulating expression and activity of different pro-inflammatory cytokines, chemokines and other immune components in the lung compartment. They are categorized in three major subcategories: serine proteases, metalloproteases and cysteine proteases especially in case of lung diseases. Neutrophil-derived serine proteases (NSPs), metalloproteases and some mast cell-derived proteases are mainly focused here. Their modes of actions are different in different diseases for e.g. NE induces the release of IL-8 from lung epithelial cells through a MyD88/IRAK/TRAF-6-dependent pathway and also through EGFR MAPK pathway. NSPs contribute to immune regulation during inflammation through the cleavage and activation of specific cellular receptors. MMPs can also influence the progression of various inflammatory processes and there are many non-matrix substrates for MMPs, such as chemokines, growth factors and receptors. During lung inflammation interplay between NE and MMP is an important significant phenomenon. They have been evaluated as therapeutic targets in several inflammatory lung diseases. Here we review the role of proteases in various lung inflammatory diseases with emphasis on their mode of action and contribution to immune regulation during inflammation.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba Canada
| |
Collapse
|
47
|
Xu ZP, Huo JM, Sang YL, Kang J, Li X. Effects of arsenic trioxide (As(2)O(3)) on airway remodeling in a murine model of bronchial asthma. Can J Physiol Pharmacol 2012; 90:1576-84. [PMID: 23210436 DOI: 10.1139/y2012-127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the effects of arsenic trioxide (As(2)O(3)) as a possible approach for preventing airway remodeling in a murine model of bronchial asthma induced by ovalbumin (OVA) challenge. Forty Balb/c mice were randomly assigned to 1 of 4 groups (10 mice/group) as follows: controls (challenged with sterile saline inhalation only); OVA-challenged, no treatment; OVA-challenged, treated with dexamethasone; and OVA-challenged, treated with As(2)O(3). All mice were sensitized by intraperitoneal injection with 10% OVA at 2 weeks prior to saline or OVA inhalation challenge. Challenges were for 8 weeks. After OVA challenge, typical asthma-like morphology changes in the bronchi and lung tissues were observed by hematoxylin-eosin staining and pulmonary function indices were reduced compared with controls. Changes in pulmonary indices and lung tissues were similar in the dexamethasone and As(2)O(3) groups and were in between those of the untreated and control groups. Compared with the untreated group, transforming growth factor β1, vascular endothelial growth factor, and matrix metalloproteinase-9 protein levels and mRNA expression were decreased in lung tissues of the dexamethasone and As(2)O(3) groups. Our results suggest that steroids and As(2)O(3) can inhibit airway remodeling in chronic asthma by mechanisms related to inhibiting the expression of the 3 aforementioned mediators.
Collapse
Affiliation(s)
- Zi-ping Xu
- Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China
| | | | | | | | | |
Collapse
|
48
|
Wang LF, Chien CY, Chiang FY, Chai CY, Tai CF. Corelationship between matrix metalloproteinase 2 and 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Am J Rhinol Allergy 2012; 26:e1-4. [PMID: 22391064 DOI: 10.2500/ajra.2012.26.3724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Matrix metalloproteinase (MMP) is involved in the remodeling process of inflammatory airway diseases and is correlated with the severity of asthma. We hypothesized that MMP was associated with the severity of chronic rhinosinusitis with nasal polyps (CRSwNPs). We also investigated the effect of allergy on the expression of MMP in the polyp. METHODS The expression of MMP-2 and -9 was investigated in recurrent nasal polyps of 30 patients and in nonrecurrent nasal polyps of 31 patients undergoing endoscopic sinus surgery. These expressions were then compared with those in control nasal mucosal samples obtained from 32 patients with chronic hypertrophic rhinitis. Demographic data, Lund-Mackay (LM) score, polyp grade, and allergy status were obtained for all patients. Tissue samples were assessed via immunohistochemistry. RESULTS MMP-2 and -9 were constantly expressed in recurrent NPs, primary NPs, and control nasal mucosa. The expression of MMP-9 was significantly enhanced in glands and MMP-2 positivity was significantly increased in surface epithelium for patients with NPs when compared with control nasal mucosa. The expression of MMP-9 and -2 was not correlated with polyp grade and LM score. Allergic status is an independent factor in the expression of MMP-2 and -9. CONCLUSION These results suggested up-regulation of MMP-9, and MMP-2 in gland and surface epithelium, respectively, were characteristic of NPs. Therefore, patients with allergy will exhibit greater MMP-2 and -9 positivity. However, the MMP-2 and -9 expression intensity was not correlated with the severity of CRS with nasal polyposis.
Collapse
Affiliation(s)
- Ling-Feng Wang
- Department of Otolaryngology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
49
|
Wenzel SE. Tissue-based and bronchoalveolar lavage-based biomarkers in asthma. Immunol Allergy Clin North Am 2012; 32:401-11. [PMID: 22877618 DOI: 10.1016/j.iac.2012.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this article, tissue and bronchoalveolar lavage biomarkers of asthma are evaluated for their use in asthma and evaluated in the context of the phenotype that they may best represent. It is hoped that studies that better link biomarkers to specific phenotypes will eventually improve the ability to evaluate genetic features, diagnose, measure progression, and tailor treatments. Although some biomarkers may only be associated with disease, it is also likely that some may be mechanistically involved. Some of these biomarkers may then also become targets for specific treatment.
Collapse
Affiliation(s)
- Sally E Wenzel
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, Asthma Institute, University of Pittsburgh Medical Center, Montefiore Hospital, PA 15213, USA.
| |
Collapse
|
50
|
Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, Hunt JF, Kita H, Liu AH, Panettieri RA, Schleimer RP, Minnicozzi M. Asthma outcomes: biomarkers. J Allergy Clin Immunol 2012; 129:S9-23. [PMID: 22386512 DOI: 10.1016/j.jaci.2011.12.979] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/23/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Measurement of biomarkers has been incorporated within clinical research studies of asthma to characterize the population and associate the disease with environmental and therapeutic effects. OBJECTIVE National Institutes of Health institutes and federal agencies convened an expert group to propose which biomarkers should be assessed as standardized asthma outcomes in future clinical research studies. METHODS We conducted a comprehensive search of the literature to identify studies that developed and/or tested asthma biomarkers. We identified biomarkers relevant to the underlying disease process progression and response to treatment. We classified the biomarkers as either core (required in future studies), supplemental (used according to study aims and standardized), or emerging (requiring validation and standardization). This work was discussed at an National Institutes of Health-organized workshop convened in March 2010 and finalized in September 2011. RESULTS Ten measures were identified; only 1, multiallergen screening to define atopy, is recommended as a core asthma outcome. Complete blood counts to measure total eosinophils, fractional exhaled nitric oxide (Feno), sputum eosinophils, urinary leukotrienes, and total and allergen-specific IgE are recommended as supplemental measures. Measurement of sputum polymorphonuclear leukocytes and other analytes, cortisol measures, airway imaging, breath markers, and system-wide studies (eg, genomics, proteomics) are considered as emerging outcome measures. CONCLUSION The working group participants propose the use of multiallergen screening in all asthma clinical trials to characterize study populations with respect to atopic status. Blood, sputum, and urine specimens should be stored in biobanks, and standard procedures should be developed to harmonize sample collection for clinical trial biorepositories.
Collapse
|