1
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
2
|
Sirmakesyan S, Hajj A, Hamouda A, Cammisotto P, Campeau L. Synthesis and secretion of Nerve Growth Factor is regulated by Nitric Oxide in bladder cells in vitro under a hyperglycemic environment. Nitric Oxide 2023; 140-141:30-40. [PMID: 37699453 DOI: 10.1016/j.niox.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Urine samples of female patients with overactive bladder (OAB) are characterized by low levels of nerve growth factor (NGF) and elevated concentrations of nitric oxide (NO) compared to healthy controls. We therefore examined how NO might regulate NGF synthesis using rat bladder smooth muscle (SMCs) and urothelial (UROs) cells in culture. In UROs, incubation in hyperglycemic conditions to mimic insulin insensitivity present in the OAB cohort increased secretion of NO and concomitantly decreased NGF, except when the NO synthase inhibitor, l-NAME (1 mM) was present. Sodium nitroprusside (SNP) (300 μM, 24 h), a NO generator, decreased NGF levels and decreased cyclic GMP (cGMP) content, a process validated by the cGMP synthase inhibitor ODQ (100 μM). Alternatively, SNP increased mRNA of both NGF and matrix metalloproteinase-9 (MMP-9). MMP-9 knockout of UROs by Crispr-Cas9 potently decreased the effect of SNP on NGF, implying a dependent role of NO on MMP-9. On the other hand, matrix metalloproteinase-7 (MMP-7) activity was increased by SNP, which taken together with increase in NGF mRNA, suggests a compensatory mechanism. In SMCs, hyperglycemic conditions had the same effect on extracellular content of NO and NGF than in UROs. SNP also decreased NGF secretion but increased cGMP content. Stable permeable analogs of cGMP 8-(4-Chlorophenylthio)-cGMP (1 mM) and N2,2'-O-Dibutyryl-cGMP (3 mM) inhibited NGF release. NGF and MMP-9 mRNA expression was unchanged by SNP. Deletion of MMP-9 in SMCs by Crispr-Cas9 did not alter the effect of SNP. Finally, SNP decreased MMP-7 activity, diminishing the conversion of proNGF to NGF. These results demonstrate that enhanced NO secretion triggered by high glucose decreases NGF secretion through pathways unique for each cell type that involve cGMP and proteases MMP-7 and MMP-9. These results might help to explain our observations from the urine from patients with OAB associated with metabolic syndrome.
Collapse
Affiliation(s)
| | - Aya Hajj
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Aalya Hamouda
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | - Lysanne Campeau
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Urology Department, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Role of nitric oxide in regulating epidermal permeability barrier function. Exp Dermatol 2022; 31:290-298. [PMID: 34665906 PMCID: PMC8897205 DOI: 10.1111/exd.14470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), a free radical molecule synthesized by nitric oxide synthases (NOS), regulates multiple cellular functions in a variety of cell types. These NOS, including endothelial NOS (eNOS), inducible NOS (iNOS) and neural NOS (nNOS), are expressed in keratinocytes. Expression levels of both iNOS and nNOS decrease with ageing, and insufficient NO has been linked to the development of a number of disorders such as diabetes and hypertension, and to the severity of atherosclerosis. Conversely, excessive NO levels can induce cellular oxidative stress, but physiological levels of NO are required to maintain the normal functioning of cells, including keratinocytes. NO also regulates cutaneous functions, including epidermal permeability barrier homeostasis and wound healing, through its stimulation of keratinocyte proliferation, differentiation and lipid metabolism. Topical applications of a diverse group of agents which generate nitric oxide (called NO donors) such as S-nitroso-N-acetyl-D,L-penicillamine (SNAP) can delay permeability barrier recovery in barrier-disrupted skin, but iNOS is still required for epidermal permeability barrier homeostasis. This review summarizes the regulatory role that NO plays in epidermal permeability barrier functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA,Dermatology Hospital, Southern Medical University, Guangdong 510091, China
| | - Joan S. Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| |
Collapse
|
4
|
Massa CM, Liu Z, Taylor S, Pettit AP, Stakheyeva MN, Korotkova E, Popova V, Atochina-Vasserman EN, Gow AJ. Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved? Antioxidants (Basel) 2021; 10:antiox10071111. [PMID: 34356344 PMCID: PMC8301044 DOI: 10.3390/antiox10071111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
The modification of protein cysteine residues underlies some of the diverse biological functions of nitric oxide (NO) in physiology and disease. The formation of stable nitrosothiols occurs under biologically relevant conditions and time scales. However, the factors that determine the selective nature of this modification remain poorly understood, making it difficult to predict thiol targets and thus construct informatics networks. In this review, the biological chemistry of NO will be considered within the context of nitrosothiol formation and degradation whilst considering how specificity is achieved in this important post-translational modification. Since nitrosothiol formation requires a formal one-electron oxidation, a classification of reaction mechanisms is proposed regarding which species undergoes electron abstraction: NO, thiol or S-NO radical intermediate. Relevant kinetic, thermodynamic and mechanistic considerations will be examined and the impact of sources of NO and the chemical nature of potential reaction targets is also discussed.
Collapse
Affiliation(s)
- Christopher M. Massa
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ziping Liu
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Sheryse Taylor
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ashley P. Pettit
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Marena N. Stakheyeva
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena Korotkova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Valentina Popova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Correspondence: ; Tel.: +1-848-445-4612
| |
Collapse
|
5
|
Kuschman HP, Palczewski MB, Thomas DD. Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators. Free Radic Biol Med 2021; 170:34-43. [PMID: 33482335 DOI: 10.1016/j.freeradbiomed.2021.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) were previously only known for their toxic properties. Now they are regarded as potent gaseous messenger molecules (gasotransmitters) that rapidly transverse cell membranes and transduce cellular signals through their chemical reactions and modifications to protein targets. Both are known to regulate numerous physiological functions including angiogenesis, vascular tone, and immune response, to name a few. NO and H2S often work synergistically and in competition to regulate each other's synthesis, target protein activity via posttranslational modifications (PTMs), and chemical interactions. In addition to their canonical modes of action, increasing evidence has demonstrated that NO and H2S share another signaling mechanism: epigenetic regulation. This review will compare and contrast biosynthesis and metabolism of NO and H2S, their individual and shared interactions, and the growing body of evidence for their roles as endogenous epigenetic regulatory molecules.
Collapse
Affiliation(s)
- Hannah Petraitis Kuschman
- University of Illinois at Chicago, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Marianne B Palczewski
- University of Illinois at Chicago, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Douglas D Thomas
- University of Illinois at Chicago, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| |
Collapse
|
6
|
Palmerini C, Piscitani L, Bologna G, Riganti C, Lanuti P, Mandatori D, Di Liberato L, Di Fulvio G, Sirolli V, Renda G, Pipino C, Marchisio M, Bonomini M, Pandolfi A, Di Pietro N. Predialysis and Dialysis Therapies Differently Affect Nitric Oxide Synthetic Pathway in Red Blood Cells from Uremic Patients: Focus on Peritoneal Dialysis. Int J Mol Sci 2021; 22:ijms22063049. [PMID: 33802652 PMCID: PMC8002384 DOI: 10.3390/ijms22063049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Red blood cells (RBCs) have been found to synthesize and release both nitric oxide (NO) and cyclic guanosine monophosphate (cGMP), contributing to systemic NO bioavailability. These RBC functions resulted impaired in chronic kidney disease (CKD). This study aimed to evaluate whether predialysis (conservative therapy, CT) and dialysis (peritoneal dialysis, PD; hemodialysis, HD) therapies used during CKD progression may differently affect NO-synthetic pathway in RBCs. Our data demonstrated that compared to PD, although endothelial-NO-synthase activation was similarly increased, HD and CT were associated to cGMP RBCs accumulation, caused by reduced activity of cGMP membrane transporter (MRP4). In parallel, plasma cGMP levels were increased by both CT and HD and they significantly decreased after hemodialysis, suggesting that this might be caused by reduced cGMP renal clearance. As conceivable, compared to healthy subjects, plasma nitrite levels were significantly reduced by HD and CT but not in patients on PD. Additionally, the increased carotid intima-media thickness (IMT) values did not reach the significance exclusively in patients on PD. Therefore, our results show that PD might better preserve the synthetic NO-pathway in CKD-erythrocytes. Whether this translates into a reduced development of uremic vascular complications requires further investigation.
Collapse
Affiliation(s)
- Carola Palmerini
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (C.P.); (D.M.); (C.P.); (A.P.)
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
| | - Luca Piscitani
- Nephrology and Dialysis Unit, SS. Annunziata Hospital, 66100 Chieti, Italy; (L.P.); (L.D.L.); (G.D.F.); (V.S.); (M.B.)
| | - Giuseppina Bologna
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
- Department of Medicine and Aging Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10124 Torino, Italy;
| | - Paola Lanuti
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
- Department of Medicine and Aging Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (C.P.); (D.M.); (C.P.); (A.P.)
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, SS. Annunziata Hospital, 66100 Chieti, Italy; (L.P.); (L.D.L.); (G.D.F.); (V.S.); (M.B.)
- Department of Medicine and Aging Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgia Di Fulvio
- Nephrology and Dialysis Unit, SS. Annunziata Hospital, 66100 Chieti, Italy; (L.P.); (L.D.L.); (G.D.F.); (V.S.); (M.B.)
| | - Vittorio Sirolli
- Nephrology and Dialysis Unit, SS. Annunziata Hospital, 66100 Chieti, Italy; (L.P.); (L.D.L.); (G.D.F.); (V.S.); (M.B.)
- Department of Medicine and Aging Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Renda
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
- Cardiology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (C.P.); (D.M.); (C.P.); (A.P.)
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
| | - Marco Marchisio
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
- Department of Medicine and Aging Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, SS. Annunziata Hospital, 66100 Chieti, Italy; (L.P.); (L.D.L.); (G.D.F.); (V.S.); (M.B.)
- Department of Medicine and Aging Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (C.P.); (D.M.); (C.P.); (A.P.)
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (C.P.); (D.M.); (C.P.); (A.P.)
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.L.); (M.M.)
- Correspondence:
| |
Collapse
|
7
|
Juárez-Portilla C, Olivares-Bañuelos T, Molina-Jiménez T, Sánchez-Salcedo JA, Moral DID, Meza-Menchaca T, Flores-Muñoz M, López-Franco Ó, Roldán-Roldán G, Ortega A, Zepeda RC. Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153016. [PMID: 31325683 DOI: 10.1016/j.phymed.2019.153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recently, the study of marine natural products has gained interest due to their relevant biological activities. Specially, seaweeds produce bioactive compounds that could act as modulators of cell signaling pathways involved in a plethora of diseases. Thereby, the description of the molecular mechanisms by which seaweeds elicit its biological functions will certainly pave the way to the pharmacological development of drugs. AIM This review describes the molecular mechanisms by which seaweeds act and its possible utilization in the design of new drugs. METHODS This review was conducted according to the PRISMA-P guidelines for systematic reviews. Two independent authors searched into four different databases using combinations of keywords. Two more authors selected the articles following the eligibility criteria. Information extraction was conducted by two separated authors and entered into spreadsheets. Methodological quality and risk of bias were determined applying a 12-question Risk of Bias criteria tool. RESULTS AND DISCUSSION We found 2360 articles (SCOPUS: 998; PubMed: 678; Wiley: 645 and EBSCO: 39) using the established keywords, of which 113 articles fit the inclusion criteria and were included in the review. This work comprises studies in cell lines, and animal models, any clinical trial was excluded. The articles were published from 2005 up to March 31st 2018. The biggest amount of articles was published in 2017. Furthermore, the seaweeds tested in the studies were collected in 15 countries, mainly in Eastern countries. We found that the main modulated signaling pathways by seaweeds-derivate extracts and compounds were: L-Arginine/NO, TNF-α, MAPKs, PI3K/AKT/GSK, mTOR, NF-κB, extrinsic and intrinsic apoptosis, cell cycle, MMPs and Nrf2. Finally, the articles we analyzed showed moderate risk of bias in almost all the parameters evaluated. However, the studies fail to describe the place and characteristics of sample collection, the sample size, and the blindness of the experimental design. CONCLUSION In this review we identified and summarized relevant information related to seaweed-isolated compounds and extracts having biological activity; their role in different signal pathways to better understand their potential to further development of cures for cancer, diabetes, and inflammation-related diseases.
Collapse
Affiliation(s)
- Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Km 103 autopista Tijuana-Ensenada, A.P. 453. Ensenada, Baja California, México
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México
| | - José Armando Sánchez-Salcedo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Iztapalapa, Ciudad de México
| | - Diana I Del Moral
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana. Médicos y Odontólogos s/n. Col. Unidad del Bosque, C.P. 91010, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Óscar López-Franco
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, 07300, Ciudad de México, México
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
8
|
Rotimi SO, Rotimi OA, Salako AA, Jibrin P, Oyelade J, Iweala EEJ. Gene Expression Profiling Analysis Reveals Putative Phytochemotherapeutic Target for Castration-Resistant Prostate Cancer. Front Oncol 2019; 9:714. [PMID: 31428582 PMCID: PMC6687853 DOI: 10.3389/fonc.2019.00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer is the leading cause of cancer death among men globally, with castration development resistant contributing significantly to treatment failure and death. By analyzing the differentially expressed genes between castration-induced regression nadir and castration-resistant regrowth of the prostate, we identified soluble guanylate cyclase 1 subunit alpha as biologically significant to driving castration-resistant prostate cancer. A virtual screening of the modeled protein against 242 experimentally-validated anti-prostate cancer phytochemicals revealed potential drug inhibitors. Although, the identified four non-synonymous somatic point mutations of the human soluble guanylate cyclase 1 gene could alter its form and ligand binding ability, our analysis identified compounds that could effectively inhibit the mutants together with wild-type. Of the identified phytochemicals, (8′R)-neochrome and (8′S)-neochrome derived from the Spinach (Spinacia oleracea) showed the highest binding energies against the wild and mutant proteins. Our results identified the neochromes and other phytochemicals as leads in pharmacotherapy and as nutraceuticals in management and prevention of castration-resistance prostate cancers.
Collapse
Affiliation(s)
- Solomon Oladapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | | | | | - Paul Jibrin
- Department of Pathology, National Hospital, Abuja, Nigeria
| | - Jelili Oyelade
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
| | - Emeka E J Iweala
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| |
Collapse
|
9
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
10
|
Yoo YM, Jung EM, Ahn C, Jeung EB. Nitric oxide prevents H 2O 2-induced apoptosis in SK-N-MC human neuroblastoma cells. Int J Biol Sci 2018; 14:1974-1984. [PMID: 30585261 PMCID: PMC6299366 DOI: 10.7150/ijbs.28050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is a cellular signaling molecule in many physiological and pathological processes including neuroprotector. Here we examined the antiapoptotic effect of NO in SK-N-MC cells. H2O2 treatment (10-200 μM) induced cell death in a dose-dependent manner and pretreatment of cells with 100 μM S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, attenuated the occurrence of H2O2-induced cell death. DAPI staining showed H2O2-induced nuclear fragmentation and NO treatment suppressed it. NO inhibited the proteolytic activation of caspase-3 and mitochondrial cytochrome c release. Treatment of soluble guanylyl cyclase inhibitor ODQ decreased the protective effect of SNAP on H2O2-treated cells and increased caspase 3-like enzyme activity and activation, cytochrome c release, PARP cleavage, and DNA fragmentation, indicating that cGMP is a key mediator in NO-mediated antiapoptosis. The cGMP analog 8-Br-cGMP blocked H2O2-induced apoptotic cell death; reduction of caspase-3 enzyme, cytochrome c release, and caspase-8 and -9. These preventive effects of SNAP and 8-Br-cGMP were suppressed by PKG inhibitor KT5823. Levels of PKGI, PKGII, and p-VASP proteins were increased by SNAP and 8-Br-cGMP and suppressed by KT5823 treatment. These results indicate that PKG is a downstream signal mediator in the suppression of apoptosis by NO and cGMP. Akt activation was inhibited the PI3K inhibitors LY294002 and Wortmannin, resulting in the inhibition of cell viability and increase of cytochrome c release. SNAP induced phosphorylation of Akt and Bad and then increased the interactions between 14-3-3β and p-Bad. These data suggest that the NO suppresses H2O2-induced SK-N-MC cell apoptosis by suppressing apoptosis signal mediating the interaction between 14-3-3β and Bad phosphorylation via PKG/PI3K/Akt.
Collapse
Affiliation(s)
| | | | | | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
11
|
Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide 2018; 77:65-74. [PMID: 29704567 PMCID: PMC6919197 DOI: 10.1016/j.niox.2018.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.
Collapse
Affiliation(s)
- Benjamin G Horst
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Marletta
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Sömmer A, Behrends S. Methods to investigate structure and activation dynamics of GC-1/GC-2. Nitric Oxide 2018; 78:S1089-8603(17)30348-8. [PMID: 29705716 DOI: 10.1016/j.niox.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme consisting of one α and one β subunit. The α1β1 (GC-1) and α2β1 (GC-2) heterodimers are important for NO signaling in humans and catalyse the conversion from GTP to cGMP. Each sGC subunit consists of four domains. Several crystal structures of the isolated domains are available. However, crystals of full-length sGC have failed to materialise. In consequence, the detailed three dimensional structure of sGC remains unknown to date. Different techniques including stopped-flow spectroscopy, Förster-resonance energy transfer, direct fluorescence, analytical ultracentrifugation, chemical cross-linking, small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and protein thermal shift assays, were used to collect indirect information. Taken together, this circumstantial evidence from different groups brings forth a plausible model of sGC domain arrangement, spatial orientation and dynamic rearrangement upon activation. For analysis of the active conformation the stable binding mode of sGC activators has a significant methodological advantage over the transient, elusive, complex and highly concentration dependent effects of NO in many applications. The methods used and the results obtained are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
13
|
Molehin OR, Adeyanju AA, Adefegha SA, Aina OO, Afolabi BA, Olowoyeye AO, Oyediran JA, Oladiran OR. Sildenafil, a phosphodiesterase-5 inhibitor, offers protection against carbon tetrachloride-induced hepatotoxicity in rat. J Basic Clin Physiol Pharmacol 2018; 29:29-35. [PMID: 29283882 DOI: 10.1515/jbcpp-2017-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 10/25/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Elevation of phosphodiesterase-5 (PDE5) activity converts cyclic guanosine monophosphate (cGMP) to 5'-GMP, a mechanism that could be associated with drug-mediated hepatotoxicity. This study investigated whether selective inhibition of PDE5 by sildenafil could offer protection against hepatotoxicity induced by carbon tetrachloride (CCl4). METHODS CCl4 (0.5 mL/kg) was administered intraperitoneally to induce hepatotoxicity. The control group received normal saline. Sildenafil (5 mg, 10 mg, and 20 mg/kg, p.o.) was administered to CCl4-treated rats. RESULTS CCl4 significantly increased the serum levels of gamma glutamyl transferase (γ-GT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) and reduced total protein (TP) (p<0.05). Pretreatment with sildenafil moderately reduced ALP, AST, and ALT activities with modest increase in TP level. CCl4-induced changes in the antioxidant status of the liver were significantly improved by sildenafil, especially at the lowest dose of 5 mg/kg by elevating the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) and preventing lipid peroxidation (p<0.05). Sildenafil did not significantly alter the total cholesterol and triglyceride levels. However, high-density lipoprotein (HDL) level was significantly increased by sildenafil (p<0.05). CONCLUSIONS The results from this study suggest that sildenafil, when used at low doses, may be a useful pharmacological protective agent against CCl4-induced hepatotoxicity.
Collapse
Affiliation(s)
- Olorunfemi R Molehin
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti. P.M.B.5363, Ado-Ekiti, Nigeria, Phone: +234 803 462 1267, E-mail:
| | - Anne A Adeyanju
- Department of Biological Sciences, McPherson University, Seriki Sotayo, Ajebo, Nigeria
| | - Stephen A Adefegha
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwasanmi O Aina
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | | | - Ayorinde O Olowoyeye
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti. P.M.B.5363, Ado-Ekiti, Nigeria
| | - Jesutomi A Oyediran
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti. P.M.B.5363, Ado-Ekiti, Nigeria
| | - Opeyemi R Oladiran
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti. P.M.B.5363, Ado-Ekiti, Nigeria
| |
Collapse
|
14
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
15
|
Non-uniform viscosity caused by red blood cell aggregation may affect NO concentration in the microvasculature. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Vasudevan D, Bovee RC, Thomas DD. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide 2016; 59:54-62. [PMID: 27553128 DOI: 10.1016/j.niox.2016.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule with multiple regulatory functions in physiology and disease. The most studied molecular mechanisms underlying the biological functions of NO include its reaction with heme proteins and regulation of protein activity via modification of thiol residues. A significant number of transcriptional responses and phenotypes observed in NO microenvironments, however, still lack mechanistic understanding. Recent studies shed new light on NO signaling by revealing its influence on epigenetic changes within the cell. Epigenetic alterations are important determinants of transcriptional responses and cell phenotypes, which can relay heritable information during cell division. As transcription across the genome is highly sensitive to these upstream epigenetic changes, this mode of NO signaling provides an alternate explanation for NO-mediated gene expression changes and phenotypes. This review will provide an overview of the interplay between NO and epigenetics as well as emphasize the unprecedented importance of these pathways to explain phenotypic effects associated with biological NO synthesis.
Collapse
Affiliation(s)
- Divya Vasudevan
- Department of Urology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rhea C Bovee
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Vauquelin G, Van Liefde I, Swinney DC. On the different experimental manifestations of two-state 'induced-fit' binding of drugs to their cellular targets. Br J Pharmacol 2016; 173:1268-85. [PMID: 26808227 DOI: 10.1111/bph.13445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/03/2015] [Accepted: 01/12/2016] [Indexed: 01/17/2023] Open
Abstract
'Induced-fit' binding of drugs to a target may lead to high affinity, selectivity and a long residence time, and this mechanism has been proposed to apply to many drugs with high clinical efficacy. It is a multistep process that initially involves the binding of a drug to its target to form a loose RL complex and a subsequent isomerization/conformational change to yield a tighter binding R'L state. Equations with the same mathematical form may also describe the binding of bivalent antibodies and related synthetic drugs. Based on a selected range of 'microscopic' rate constants and variables such as the ligand concentration and incubation time, we have simulated the experimental manifestations that may go along with induced-fit binding. Overall, they validate different experimental procedures that have been used over the years to identify such binding mechanisms. However, they also reveal that each of these manifestations only becomes perceptible at particular combinations of rate constants. The simulations also show that the durable nature of R'L and the propensity of R'L to be formed repeatedly before the ligand dissociates will increase the residence time. This review may help pharmacologists and medicinal chemists obtain preliminary indications for identifying an induced-fit mechanism.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Van Liefde
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - David C Swinney
- Institute for Rare and Neglected Diseases Drug Discovery, Mountain View, CA, USA
| |
Collapse
|
18
|
Vila-Verde C, Marinho ALZ, Lisboa SF, Guimarães FS. Nitric oxide in the prelimbic medial prefrontal cortex is involved in the anxiogenic-like effect induced by acute restraint stress in rats. Neuroscience 2016; 320:30-42. [PMID: 26812037 DOI: 10.1016/j.neuroscience.2016.01.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/02/2016] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
Neurons containing the neuronal nitric oxide synthase (nNOS) enzyme are located in brain areas related to defensive behavior, such as the ventromedial prefrontal cortex (vMPFC). Rats exposed to a live predator (a cat) present anxiety-like behavior and an increased number of nNOS-positive neurons in this brain area one-week later. Moreover, stress-related behavioral changes in rodents can be prevented by systemic or local vMPFC nNOS inhibition. In the present study we investigated if acute restraint stress (RS)-induced delayed (one-week) anxiogenic-like effect was associated with increased nNOS expression or activity in the vMPFC. Furthermore, we also tested if local pharmacological nNOS inhibition would prevent stress-induced behavioral changes. Male Wistar rats were submitted to RS for 3h and tested in the elevated plus maze (EPM) 24h or 7 days later. Two hours after the EPM test, their brains were removed, processed and nNOS expression in the vMPFC was evaluated by immunohistochemistry. Another group of animals was used for measuring NO metabolites (NOx; an indirect measure of NOS activity) immediately after the EPM test, 24h after RS. Independent groups had guide cannula implanted bilaterally into the prelimbic (PL) portion of vMPFC. Five to six days after surgery, the animals were submitted to RS and 24h later received local administration of the nNOS inhibitor, N-propyl-l-arginine (NPLA; 0.04 nmol). They were tested in the EPM 10 min later. RS-induced anxiogenic-like effect was accompanied by increased nNOS expression in the PL (p<0.05), but not in the infralimbic (IL) vMPFC, both 24h and 7 days after RS. Moreover, open-arm exploration of the EPM was negatively correlated with nNOS expression (p<0.05) and NOx levels (p<0.05) in the PL. The anxiogenic-like effect observed 24h after RS was prevented by NPLA (p<0.05). Our results suggest that RS-induced anxiogenic-like effect might depend on increased nNOS-mediated signaling in the PL MPFC.
Collapse
Affiliation(s)
- C Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.
| | - A L Z Marinho
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - S F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.
| | - F S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| |
Collapse
|
19
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
20
|
Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep 2014; 11:1555-65. [PMID: 25405382 PMCID: PMC4270315 DOI: 10.3892/mmr.2014.2968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
The understanding of nitric oxide (NO) signaling has grown substantially since the identification of endothelial derived relaxing factor (EDRF). NO has emerged as a ubiquitous signaling molecule involved in diverse physiological and pathological processes. Perhaps the most significant function, independent of EDRF, is that of NO signaling mediated locally in signaling modules rather than relying upon diffusion. In this context, NO modulates protein function via direct post-translational modification of cysteine residues. This review explores NO signaling and related reactive nitrogen species involved in the regulation of the cardiovascular system. A critical concept in the understanding of NO signaling is that of the nitroso-redox balance. Reactive nitrogen species bioactivity is fundamentally linked to the production of reactive oxygen species. This interaction occurs at the chemical, enzymatic and signaling effector levels. Furthermore, the nitroso-redox equilibrium is in a delicate balance, involving the cross-talk between NO and oxygen-derived species signaling systems, including NADPH oxidases and xanthine oxidase.
Collapse
Affiliation(s)
- Adriana V Treuer
- Laboratory of Organic Synthesis, Institute of Chemistry of Natural Resources, University of Talca, Talca 3460000, Chile
| | - Daniel R Gonzalez
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
21
|
Merino JJ, Arce C, Naddaf A, Bellver-Landete V, Oset-Gasque MJ, González MP. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels. PLoS One 2014; 9:e90703. [PMID: 24598811 PMCID: PMC3944624 DOI: 10.1371/journal.pone.0090703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. FINDINGS The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. CONCLUSIONS Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Carmen Arce
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ahmad Naddaf
- Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Victor Bellver-Landete
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Maria Jesús Oset-Gasque
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Pilar González
- Departamento de Bioquímica y Biología Molecular II. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN). Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
22
|
Cazzato D, Assi E, Moscheni C, Brunelli S, De Palma C, Cervia D, Perrotta C, Clementi E. Nitric oxide drives embryonic myogenesis in chicken through the upregulation of myogenic differentiation factors. Exp Cell Res 2014; 320:269-80. [DOI: 10.1016/j.yexcr.2013.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 12/22/2022]
|
23
|
Lasker GF, Pankey EA, Kadowitz PJ. Modulation of soluble guanylate cyclase for the treatment of erectile dysfunction. Physiology (Bethesda) 2013; 28:262-9. [PMID: 23817801 DOI: 10.1152/physiol.00001.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) is the principal mediator of penile erection, and PDE-5 inhibitors are the first-line agents used to treat erectile dysfunction (ED). When NO formation or bioavailability is decreased by oxidative stress and PDE-5 inhibitors are no longer effective, a new class of agents called soluble guanylate cyclase (sGC) stimulators like BAY 41-8543 will induce erection. sGC stimulators bind to the normally reduced, NO-sensitive form of sGC to increase cGMP formation and promote erection. The sGC stimulators produce normal erectile responses when NO formation is inhibited and the nerves innervating the corpora cavernosa are damaged. However, with severe oxidative stress, the heme iron on sGC can be oxidized, rendering the enzyme unresponsive to NO or sGC stimulators. In this pathophysiological situation, another newly developed class of agents called sGC activators can increase the catalytic activity of the oxidized enzyme, increase cGMP formation, and promote erection. The use of newer agents that stimulate or activate sGC to promote erection and treat ED is discussed in this brief review article.
Collapse
Affiliation(s)
- George F Lasker
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
24
|
Lisboa S, Magesto A, Aguiar J, Resstel L, Guimarães F. Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. Neuropharmacology 2013; 75:86-94. [DOI: 10.1016/j.neuropharm.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
25
|
Park J, Lee T, Lim M. Direct Observation of the Low-Spin Fe(III)–NO(radical) Intermediate State during Rebinding of NO to Photodeligated Ferric Cytochrome c. J Phys Chem B 2013; 117:12039-50. [DOI: 10.1021/jp407733g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Taegon Lee
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
26
|
Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J, Schäfer M, Schirok H, Stasch JP, Stoll F, Straub A. The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chem Int Ed Engl 2013; 52:9442-62. [PMID: 23963798 DOI: 10.1002/anie.201302588] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 12/14/2022]
Abstract
The vasodilatory properties of nitric oxide (NO) have been utilized in pharmacotherapy for more than 130 years. Still today, NO-donor drugs are important in the management of cardiovascular diseases. However, inhaled NO or drugs releasing NO and organic nitrates are associated with noteworthy therapeutic shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and nonspecific effects, such as post-translational modification of proteins. The beneficial actions of NO are mediated by stimulation of soluble guanylate cyclase (sGC), a heme-containing enzyme which produces the intracellular signaling molecule cyclic guanosine monophosphate (cGMP). Recently, two classes of compounds have been discovered that amplify the function of sGC in a NO-independent manner, the so-called sGC stimulators and sGC activators. The most advanced drug, the sGC stimulator riociguat, has successfully undergone Phase III clinical trials for different forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Markus Follmann
- Bayer Pharma Aktiengesellschaft, Global Drug Discovery, Aprather Weg 18a, 42113 Wuppertal, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J, Schäfer M, Schirok H, Stasch JP, Stoll F, Straub A. Chemie und Biologie der Stimulatoren und Aktivatoren der löslichen Guanylatcyclase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Campos AC, Piorino EM, Ferreira FR, Guimarães FS. Increased nitric oxide-mediated neurotransmission in the medial prefrontal cortex is associated with the long lasting anxiogenic-like effect of predator exposure. Behav Brain Res 2013; 256:391-7. [PMID: 23948217 DOI: 10.1016/j.bbr.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/28/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder caused by the experience of a severe traumatic event. In rats this disorder has been modeled by exposure to a predator threat. PTSD has been associated to structural and functional changes in the medial prefrontal cortex (mPFC). Direct injections into this brain region of glutamate antagonists or inhibitors of the nitric oxide synthase (NOS) enzyme cause anxiolytic-like effects in rodents. In the present work we investigated if the behavioral changes induced by predator exposure are associated with changes in the mPFC nitrergic system. Since the hippocampus, amygdala and dorsal periaqueductal grey have also been associated to anxiety disorders, including PTSD, we also verified if this procedure would modify the nitrergic system in these regions. Male Wistar rats were exposed to a dummy or live cat for ten minutes and tested in the elevated plus maze test (EPM) seven days later. Immediately after the test their brains were removed for neuronal NOS (nNOS) immunohistochemistry detection and measurements of nitrite/nitrate (NOx) levels. Exposure to the live cat increased freezing responses. One week later the animals that froze when confronted with the cat presented a decreased percentage of entries in the open arms of the EPM and an increased number of nNOS positive neurons in the mPFC and basolateral nucleus of amygdala, but not in the hippocampus, central and medial nuclei of amygdaloid complex or dorsal-lateral periaqueductal grey. Moreover, cat exposed animals showed increased NOx levels in the mPFC but not in the hippocampus one week later. The number of nNOS neurons and NOx levels in the mPFC showed a significant correlation with freezing time during cat exposure. Our results suggest that plastic modifications of the nitrergic system in the mPFC could be related to long lasting behavioral changes induced by severe traumatic events such as predator exposure.
Collapse
Affiliation(s)
- Alline Cristina Campos
- Departament of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Infectious Diseases and Tropical Medicine Program, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | |
Collapse
|
29
|
Park J, Lee T, Lim M. Vibrational relaxation of NO stretching modes in ferrous NO and ferric NO in model heme. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Ferreira-Junior NC, Fedoce AG, Alves FHF, Resstel LBM. Medial prefrontal cortex N-methyl-D-aspartate receptor/nitric oxide/cyclic guanosine monophosphate pathway modulates both tachycardic and bradycardic baroreflex responses. J Neurosci Res 2013; 91:1338-48. [PMID: 23913674 DOI: 10.1002/jnr.23248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 11/11/2022]
Abstract
Neural reflex mechanisms, such as the baroreflex, are involved in regulating cardiovascular system activity. Previous results showed that the ventral portion of the medial prefrontal cortex (vMPFC) is involved in modulation only of the cardiac baroreflex bradycardic component. Moreover, vMPFC N-methyl-D-aspartate (NMDA) receptors modulate the bradycardia baroreflex, but the baroreflex tachycardic component has not been investigated. Furthermore, glutamatergic neurotransmission into the vMPFC is involved in activation of the cardiac sympathetic and parasympathetic nervous system. Finally, it has been demonstrated that glutamatergic neurotransmission into the vMPFC can be modulated by the endocannabinoid system and that activation of the CB1 cannabinoid receptor by anandamide, an endocannabinoid, can decrease both cardiac baroreflex bradycardic and tachycardic responses. Thus, there is the possibility that glutamatergic neurotransmission into the vMPFC does not modulate only the cardiac bradycardic component of the baroreflex. Therefore, the present study investigated whether glutamatergic neurotransmission into the vMPFC modulates both cardiac baroreflex bradycardic and tachycardic responses. We found that vMPFC bilateral microinjection of the NMDA receptor antagonist AP7 (4 nmol/200 nl), of a selective inhibitor of neuronal nitric oxide (NO) synthase N-propyl (0.08 nmol/200 nl), of the NO scavenger carboxy-PTIO (2 nmol/200 nl), or of the NO-sensitive guanylate cyclase ODQ (2 nmol/200 nl) decreased the baroreflex activity in unanesthetized rats. Therefore, our results demonstrate the participation of NMDA receptors, production of NO, and activation of guanylate cyclase in the vMPFC in the modulation of both cardiac baroreflex bradycardic and tachycardic responses.
Collapse
Affiliation(s)
- Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
31
|
|
32
|
The ventral hippocampus NMDA receptor/nitric oxide/guanylate cyclase pathway modulates cardiovascular responses in rats. Auton Neurosci 2013; 177:244-52. [PMID: 23735844 DOI: 10.1016/j.autneu.2013.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022]
Abstract
The hippocampus is a limbic structure that is involved in the expression of defensive reactions and autonomic changes in rats. The injection of L-glutamate (L-glu) into the ventral hippocampus (VH) decreases blood pressure and heart rate in anesthetized rats. Activation of NMDA receptors in the VH increases the production of nitric oxide (NO), leading to guanylate cyclase activation. The hypothesis of the present study was that a local NMDA receptor-NO-guanylate cyclase interaction mediates the cardiovascular effects of microinjection of L-glu into the VH. Microinjection of increasing doses of L-glu (30, 60 and 200 nmol/200 nL) into the VH of conscious rats caused dose-related pressor and tachycardiac responses. The cardiovascular effects of L-glu were abolished by local pretreatment with: the glutamate receptor antagonist AP-7 (0.4 nmol); the selective neuronal NO synthase (nNOS) inhibitor N(ω)-Propyl-L-arginine (0.04 nmol); the NO scavenger C-PTIO (2 nmol) or the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolol [4,3-a]quinoxalin-1-one (2 nmol). Moreover, these cardiovascular responses were blocked by intravenous pretreatment with: the ganglionic blocker mecamylamine (2mg/Kg); the nonselective β-adrenergic receptor antagonist propranolol (2mg/Kg); the β1-adrenergic receptor selective antagonist atenolol (1mg/kg). However, pretreatment with the selective α1-adrenergic receptor antagonist prazosin (0,5mg/kg) caused only a small reduction in the pressor response, without affecting the L-glu evoked tachycardia. In conclusion, our results suggest that cardiovascular responses caused by L-glu microinjection into the VH are mediated by NMDA glutamate receptors and involve local nNOS and guanylate cyclase activation. Moreover, these cardiovascular responses are mainly mediated by cardiac sympathetic nervous system activation, with a small involvement of the vascular sympathetic nervous system.
Collapse
|
33
|
Pal B, Tanaka K, Takenaka S, Shaik TB, Kitagawa T. Structural characterization of nitric oxide-bound soluble Guanylate Cyclase using resonance Raman spectroscopy. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mammalian soluble Guanylate Cyclase (sGC), working as a physiological NO receptor, is investigated using resonance Raman spectroscopy for NO bound states with different saturation levels in the presence and absence of effectors. The Fe–NO (νFe–NO) and N–O (νN-O) stretching bands appeared at 521 and 1681 cm-1, respectively, without effectors, but νN-O was split into 1681 and 1699 cm-1 in the presence of GTP and shifted to 1687 cm-1 in the presence of YC-1 or BAY 41-2272, while νFe-NO remained unaltered. The split two νN-O bands were independent of NO saturation levels. GTP or YC-1/BAY 41-2272 altered the vinyl and propionate bending modes from 423 to 399 cm-1 and 376 to 367 cm-1, respectively. Based on these observations, allosteric effects on NO …protein interactions are discussed.
Collapse
Affiliation(s)
- Biswajit Pal
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Katsuhiro Tanaka
- Department of Veterinary Science, Osaka Prefecture University, Sakai, Osaka 593-8531, Japan
| | - Shigeo Takenaka
- Department of Veterinary Science, Osaka Prefecture University, Sakai, Osaka 593-8531, Japan
| | - Tajith B. Shaik
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
34
|
Park J, Lee T, Park J, Lim M. Photoexcitation Dynamics of NO-Bound Ferric Myoglobin Investigated by Femtosecond Vibrational Spectroscopy. J Phys Chem B 2013; 117:2850-63. [DOI: 10.1021/jp400055d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Taegon Lee
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Jaehun Park
- Pohang Accelerator Laboratory, Pohang 790-784, Korea
| | - Manho Lim
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
35
|
Homem RA, Loake GJ. Orchestrating plant development, metabolism and plant-microbe interactions--NO problem! 4th plant nitric oxide meeting, in Edinburgh, UK, July 2012. THE NEW PHYTOLOGIST 2013; 197:1035-1038. [PMID: 23373861 DOI: 10.1111/nph.12152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Rafael A Homem
- Institute for Molecular Plant Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Gary J Loake
- Institute for Molecular Plant Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| |
Collapse
|
36
|
Hickok JR, Vasudevan D, Jablonski K, Thomas DD. Oxygen dependence of nitric oxide-mediated signaling. Redox Biol 2013; 1:203-9. [PMID: 24024154 PMCID: PMC3757674 DOI: 10.1016/j.redox.2012.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022] Open
Abstract
Nitric oxide (•NO) is a biologically important short-lived free radical signaling molecule. Both the enzymatic synthesis and the predominant forms of cellular metabolism of •NO are oxygen-dependent. For these reasons, changes in local oxygen concentrations can have a profound influence on steady-state •NO concentrations. Many proteins are regulated by •NO in a concentration-dependent manner, but their responses are elicited at different thresholds. Using soluble guanylyl cyclase (sGC) and p53 as model •NO-sensitive proteins, we demonstrate that their concentration-dependent responses to •NO are a function of the O2 concentration. p53 requires relatively high steady-state •NO concentrations (>600 nM) to induce its phosphorylation (P-ser-15), whereas sGC responds to low •NO concentrations (<100 nM). At a constant rate of •NO production (liberation from •NO-donors), decreasing the O2 concentration (1%) lowers the rate of •NO metabolism. This raises steady-state •NO concentrations and allows p53 activation at lower doses of the •NO donor. Enzymatic •NO production, however, requires O2 as a substrate such that decreasing the O2 concentration below the K m for O2 for nitric oxide synthase (NOS) will decrease the production of •NO. We demonstrate that the amount of •NO produced by RAW 264.7 macrophages is a function of the O2 concentration. Differences in rates of •NO production and •NO metabolism result in differential sGC activation that is not linear with respect to O2. There is an optimal O2 concentration (≈5-8%) where a balance between the synthesis and metabolism of •NO is established such that both the •NO concentration and sGC activation are maximal.
Collapse
Key Words
- Autooxidation
- BH4, tetrahydrobiopterin
- DETA/NO, (Z)-1-[N-(2-aminoethyl)–N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate
- FAD, flavin adenine dinucleotide
- FMN, flavin mononucleotide
- Km, Michaelis constant
- LPS, lipopolysaccharide
- NADPH, nicotinamide adenine dinucleotide phosphate, reduced
- NO2−, nitrite
- NO3−, nitrate
- Nitric oxide
- Nitric oxide synthase
- O2, oxygen
- ODQ, 1H-[1,2,4]Oxadiazolo[4,3–a]quinoxalin-1-one
- Oxygen
- P-Ser-15, phospho-serine 15
- Sper/NO, (Z)-1-[N-[3–aminopropyl]–N-[4-(3-aminopropylammonio)butyl]-amino]diazen-1-ium-1,2-diolate
- cGMP, cyclic guanosine monophosphate
- eNOS, endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
- nNOS, neuronal nitric oxide synthase
- p53
- sGC
- sGC, soluble guanylyl cyclase
- •NO, nitric oxide
Collapse
Affiliation(s)
- Jason R Hickok
- Departments of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612-7231, United States
| | | | | | | |
Collapse
|
37
|
Neubauer B, Machura K, Kettl R, Lopez MLSS, Friebe A, Kurtz A. Endothelium-derived nitric oxide supports renin cell recruitment through the nitric oxide-sensitive guanylate cyclase pathway. Hypertension 2013; 61:400-7. [PMID: 23297374 DOI: 10.1161/hypertensionaha.111.00221] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic challenge of renin-angiotensin causes recruitment of renin-producing cells in the kidney along the media layer of afferent arterioles and hypertrophy of cells in the juxtaglomerular apparatus. This study aimed to define the role of nitric oxide (NO) with regard to the recruitment pattern of renin-producing cells and to the possible pathways along which NO could act. We considered the hypothesis that endothelium-derived NO acts via NO-sensitive guanylate cyclase. Mice were treated with low-salt diet in combination with the angiotensin I-converting enzyme inhibitor enalapril for 3 weeks, which led to a 13-fold increase in renin expression associated with marked recruitment of renin cells in afferent arterioles and hypertrophy of the juxtaglomerular apparatus in wild-type mice. In wild-type mice additionally treated with the nonselective NO synthase inhibitor L-NAME, the recruitment of renin-expressing cells along the afferent arterioles was absent and juxtaglomerular hypertrophy was diminished. An almost identical attenuation of renin cell recruitment as with L-NAME treatment in wild-type mice was found in mice lacking the endothelial isoform of NO synthase. Treatment of mice lacking NO-sensitive guanylate cyclase in renin-expressing cells and preglomerular smooth muscle cells with low-salt diet in combination with the angiotensin I-converting enzyme inhibitor enalapril for 3 weeks produced juxtaglomerular hypertrophy like in wild-type mice, but no recruitment in afferent arterioles. These findings suggest that endothelium-derived NO and concomitant formation of cGMP in preglomerular renin cell precursors supports recruitment of renin-expressing cells along preglomerular vessels, but not in the juxtaglomerular apparatus.
Collapse
Affiliation(s)
- Björn Neubauer
- Institute of Physiology, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Yardimci S, Bostanci EB, Ozer I, Dalgic T, Surmelioglu A, Aydog G, Akoglu M. Sildenafil accelerates liver regeneration after partial hepatectomy in rats. Transplant Proc 2013; 44:1747-50. [PMID: 22841261 DOI: 10.1016/j.transproceed.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The regeneration process causes the liver to achieve an adequate volume and function after major hepatectomy or living donor liver transplantation. Sildenafil, a selective phosphodiesterase-5 inhibitor used for erectile dysfunction, impacts the liver by enhancing the effects of nitric oxide. The aim of this study was to investigate the influence of sildenafil on liver regeneration in rats after partial hepatectomy. METHODS Sixty young female Wistar Albino rats were randomly divided into three equal groups before 70% hepatectomy. Thereafter, we administered intraperitoneal saline to the control group (G1); 10 μg/kg sildenafil to the low-dose group (G2) and 100 μg/kg to the high-dose sildenafil group (G3). Half of the rats per group were sacrificed on the first and the other half on the fifth postoperative day after partial hepatectomy. Regeneration was assessed using three methods: (1) the formula described by Kwon et al formula, (2) the average number of mitotic figures in 10 microscopic fields, and (3) the average of Ki-67-positive nuclei in 1000 cells using immunohistochemistry. RESULTS Although, the hepatic regeneration and mitosis rates were similar in all three groups, Ki-67 levels were significantly higher in both G2 and G3 than the control group on the first postoperative day. Hepatic regeneration was significantly greater in G2 and G3 than the control group as was the mitosis rate in the G2 group versus the two groups. By the 5th postoperative day Ki-67 levels were similar in the three groups. CONCLUSION Sildenafil treatment accelerated hepatic regeneration after partial hepatectomy in rats.
Collapse
Affiliation(s)
- S Yardimci
- Department of Gastrointestinal Surgery, Turkiye Yuksek Ihtisas Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
39
|
He C, Wang C, Zhou Y, Li J, Zuo Z. Embryonic exposure to benzo(a)pyrene influences neural development and function in rockfish (Sebastiscus marmoratus). Neurotoxicology 2012; 33:758-62. [DOI: 10.1016/j.neuro.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/20/2011] [Accepted: 01/06/2012] [Indexed: 12/27/2022]
|
40
|
He C, Wang C, Li B, Wu M, Geng H, Chen Y, Zuo Z. Exposure of Sebastiscus marmoratus embryos to pyrene results in neurodevelopmental defects and disturbs related mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 116-117:109-115. [PMID: 22487263 DOI: 10.1016/j.aquatox.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 05/31/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which are known to be carcinogenic and teratogenic. These compounds cause a range of macroscopic malformations, particularly to the craniofacial apparatus and cardiovascular system during vertebrate development. However, little is known concerning microscopic effects, especially on the sensitive early life stages or on the molecular basis of developmental neurotoxicity. Using the rockfish (Sebastiscus marmoratus), we explored the neurodevelopmental defects caused by early-life exposure to environmentally relevant concentrations of pyrene, a 4-ring PAH. The results showed that pyrene substantially disrupted the cranial innervation pattern and caused deficiency of motor nerves. The expression of a protein associated with axon growth, growth associated protein 43, was decreased in the central nervous system after treatment with pyrene. N-methyl-D-aspartate receptor (NMDAR) plays a vital role in a variety of processes, including neuronal development, synaptic plasticity, and neuronal survival and death. Our results showed that the expression of Ca²⁺/calmodulin dependent kinase II and cAMP-response element-binding, which belong to the NMDAR pathway, were increased in a dose-dependent manner after exposure to pyrene. Acetylcholine, an important neurotransmitter which is known to suppress retinal cells neurite outgrowth, was increased by pyrene exposure. Nitric oxide (NO) acts as an activity-dependent retrograde signal that can coordinate axonal targeting and synaptogenesis during development. The level of NO was decreased in a dose-dependent manner following exposure to pyrene. Taken together, the defects in neurodevelopment and the damage to related mechanisms provided the basis for a better understanding of the neurotoxic effects of pyrene.
Collapse
Affiliation(s)
- Chengyong He
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α1 and β1 subunits in the ovary of fetal, neonatal and immature pigs. Anim Reprod Sci 2012; 131:172-80. [PMID: 22498451 DOI: 10.1016/j.anireprosci.2012.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/16/2012] [Accepted: 02/28/2012] [Indexed: 11/22/2022]
Abstract
The present study is designed to investigate the cellular expression and immunolocalization of three different nitric oxide synthase (NOS) isoforms and soluble guanylyl cyclase (sGC) subunits in the porcine ovary. Our results showed that in the fetal and neonatal pigs, all three isoforms of NOS were mainly localized in the oocyte and showed the expression of gradual increase in the granulosa cell and theca cell with the growing follicle. In addition, subunits of the sGC, sGC α1 and β1 were mainly expressed in the granulosa cell in precious studies. The bioactivity of total NOS, eNOS, iNOS and nNOS was detected in the ovary and were higher at prenatal stages compared to postnatal stages. However, the activities of nNOS were no different between prenatal stages and postnatal stages. Taken together, our findings suggested that the NOS/sGC pathway may be involved in the follicular formation and development in the porcine ovary.
Collapse
|
42
|
Tsai AL, Berka V, Sharina I, Martin E. Dynamic ligand exchange in soluble guanylyl cyclase (sGC): implications for sGC regulation and desensitization. J Biol Chem 2011; 286:43182-92. [PMID: 22009742 DOI: 10.1074/jbc.m111.290304] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the binding of NO but also by the NO:sGC ratio and a number of cellular factors, including GTP. In this study, we monitored the time-resolved transformations of sGC and sGC-NO complexes generated with stoichiometric or excess NO in the presence and absence of GTP. We demonstrate that the initial five-coordinate sGC-NO complex is highly activated by stoichiometric NO but is unstable and transforms into a five-coordinate sGC-2 state. This sGC-2 rebinds NO to form a low activity sGC-NO complex. The stability of the initial complex is greatly enhanced by GTP binding, binding of an additional NO molecule, or substitution of βHis-107. We propose that the transient nature of the sGC-NO complex, the formation of a desensitized sGC-2 state, and its transformation into a low activity sGC-NO adduct require βHis-107. We conclude that conformational changes leading to sGC desensitization may be prevented by GTP binding to the catalytic site or by binding of an additional NO molecule to the proximal side of the heme. The implications of these observations for cellular NO/cGMP signaling and the process of rapid desensitization of sGC are discussed in the context of the proposed model of sGC/NO interactions and dynamic transformations.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Divisions of Hematology, University of Texas Health Science Center in Houston, Medical School, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
43
|
Hartung H, Threlfell S, Cragg SJ. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011; 36:1811-22. [PMID: 21508928 PMCID: PMC3154099 DOI: 10.1038/npp.2011.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.
Collapse
Affiliation(s)
- Henrike Hartung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [2] Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK [3] Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Sarah Threlfell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Kellogg DL, Zhao JL, Wu Y, Johnson JM. Antagonism of soluble guanylyl cyclase attenuates cutaneous vasodilation during whole body heat stress and local warming in humans. J Appl Physiol (1985) 2011; 110:1406-13. [PMID: 21292837 DOI: 10.1152/japplphysiol.00702.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.
Collapse
Affiliation(s)
- Dean L Kellogg
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, Audie L. Murphy Memorial Veterans Hospital Division, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
45
|
Pal B, Kitagawa T. Binding of YC-1/BAY 41-2272 to soluble guanylate cyclase: A new perspective to the mechanism of activation. Biochem Biophys Res Commun 2010; 397:375-9. [DOI: 10.1016/j.bbrc.2010.05.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 01/15/2023]
|
46
|
Efficient expression of human soluble guanylate cyclase in Escherichia coli and its signaling-related interaction with nitric oxide. Amino Acids 2010; 39:399-408. [DOI: 10.1007/s00726-009-0453-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023]
|
47
|
Wyman IW, Macartney DH. Cucurbit[7]urilhost–guest complexes of cholines and phosphonium cholines in aqueous solution. Org Biomol Chem 2010; 8:253-60. [DOI: 10.1039/b917610a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Woldman YY, Sun J, Zweier JL, Khramtsov VV. Direct chemiluminescence detection of nitric oxide in aqueous solutions using the natural nitric oxide target soluble guanylyl cyclase. Free Radic Biol Med 2009; 47:1339-45. [PMID: 19751819 PMCID: PMC2784612 DOI: 10.1016/j.freeradbiomed.2009.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/30/2009] [Accepted: 09/06/2009] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is a free radical involved in many physiological processes including regulation of blood pressure, immune response, and neurotransmission. However, the measurement of extremely low, in some cases subnanomolar, physiological concentrations of nitric oxide presents an analytical challenge. The purpose of this methods article is to introduce a new highly sensitive chemiluminescence approach to direct NO detection in aqueous solutions using a natural nitric oxide target, soluble guanylyl cyclase (sGC), which catalyzes the conversion of guanosine triphosphate to guanosine 3',5'-cyclic monophosphate and inorganic pyrophosphate. The suggested enzymatic assay uses the fact that the rate of the reaction increases by about 200 times when NO binds with sGC and, in so doing, provides a sensor for nitric oxide. Luminescence detection of the above reaction is accomplished by converting inorganic pyrophosphate into ATP with the help of ATP sulfurylase followed by light emission from the ATP-dependent luciferin-luciferase reaction. Detailed protocols for NO quantification in aqueous samples are provided. The examples of applications include measurement of NO generated by a nitric oxide donor (PAPA-NONOate), nitric oxide synthase, and NO gas dissolved in buffer. The method allows for the measurement of NO concentrations in the nanomolar range and NO generation rates as low as 100 pM/min.
Collapse
Affiliation(s)
- Yakov Y. Woldman
- Valdosta State University, Valdosta, GA 31698
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210
| | - Jian Sun
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210
| | - Jay L. Zweier
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210
| | - Valery V. Khramtsov
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210
- Corresponding author: Valery V. Khramtsov, Dorothy M. Davis Heart & Lung Research Institute, 201 HLRI, 473 W 12th Ave, The Ohio State University, Columbus, OH 43210; tel. (614)-688-3664; fax (614)-293-4799;
| |
Collapse
|
49
|
Pilgram GSK, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol 2009; 41:1-21. [PMID: 19899002 PMCID: PMC2840664 DOI: 10.1007/s12035-009-8089-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/15/2009] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. A number of Duchenne patients also present with mental retardation. The dystrophin protein is part of the highly conserved dystrophin-associated glycoprotein complex (DGC) which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems. Many years of research into the roles of the DGC in muscle have revealed its structural function in stabilizing the sarcolemma. In addition, the DGC also acts as a scaffold for various signaling pathways. Here, we discuss recent advances in understanding DGC roles in the nervous system, gained from studies in both vertebrate and invertebrate model systems. From these studies, it has become clear that the DGC is important for the maturation of neurotransmitter receptor complexes and for the regulation of neurotransmitter release at the NMJ and central synapses. Furthermore, roles for the DGC have been established in consolidation of long-term spatial and recognition memory. The challenges ahead include the integration of the behavioral and mechanistic studies and the use of this information to identify therapeutic targets.
Collapse
Affiliation(s)
- Gonneke S K Pilgram
- Department of Molecular and Cell Biology, Leiden University Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Halverscheid L, Deibert P, Schmidt R, Blum HE, Dunkern T, Pannen BHJ, Kreisel W. Phosphodiesterase-5 inhibitors have distinct effects on the hemodynamics of the liver. BMC Gastroenterol 2009; 9:69. [PMID: 19765284 PMCID: PMC2753560 DOI: 10.1186/1471-230x-9-69] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 09/18/2009] [Indexed: 12/28/2022] Open
Abstract
Background The NO - cGMP system plays a key role in the regulation of sinusoidal tonus and liver blood flow with phosphodiesterase-5 (PDE-5) terminating the dilatory action of cGMP. We, therefore, investigated the effects of PDE-5 inhibitors on hepatic and systemic hemodynamics in rats. Methods Hemodynamic parameters were monitored for 60 min. after intravenous injection of sildenafil and vardenafil [1, 10 and 100 μg/kg (sil1, sil10, sil100, var1, var10, var100)] in anesthetized rats. Results Cardiac output and heart rate remained constant. After a short dip, mean arterial blood pressure again increased. Systemic vascular resistance transiently decreased slightly. Changes in hepatic hemodynamic parameters started after few minutes and continued for at least 60 min. Portal (var10 -31%, sil10 -34%) and hepatic arterial resistance (var10 -30%, sil10 -32%) decreased significantly (p < 0.05). At the same time portal venous (var10 +29%, sil10 +24%), hepatic arterial (var10 +34%, sil10 +48%), and hepatic parenchymal blood flow (var10 +15%, sil10 +15%) increased significantly (p < 0.05). The fractional liver blood flow (total liver flow/cardiac output) increased significantly (var10 26%, sil10 23%). Portal pressure remained constant or tended to decrease. 10 μg/kg was the most effective dose for both PDE-5 inhibitors. Conclusion Low doses of phosphodiesterase-5 inhibitors have distinct effects on hepatic hemodynamic parameters. Their therapeutic use in portal hypertension should therefore be evaluated.
Collapse
|