1
|
Blazey T, Lee JJ, Snyder AZ, Goyal MS, Hershey T, Arbeláez AM, Raichle ME. Hyperglycemia selectively increases cerebral non-oxidative glucose consumption without affecting blood flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611035. [PMID: 39314314 PMCID: PMC11418958 DOI: 10.1101/2024.09.05.611035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multiple studies have shown that hyperglycemia increases the cerebral metabolic rate of glucose (CMRglc) in subcortical white matter. This observation remains unexplained. Using positron emission tomography (PET) and euinsulinaemic glucose clamps, we found, for the first time, that acute hyperglycemia increases non-oxidative CMRglc (i.e., aerobic glycolysis (AG)) in subcortical white mater as well as in medial temporal lobe structures, cerebellum and brainstem, all areas with low euglycemic CMRglc. Surprisingly, hyperglycemia did not change regional cerebral blood flow (CBF), the cerebral metabolic rate of oxygen (CMRO2), or the blood-oxygen-level-dependent (BOLD) response. Regional gene expression data reveal that brain regions where CMRglc increased have greater expression of hexokinase 2 (HK2). Simulations of glucose transport revealed that, unlike hexokinase 1, HK2 is not saturated at euglycemia, thus accommodating increased AG during hyperglycemia.
Collapse
Affiliation(s)
- Tyler Blazey
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neuroscience, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Ana Maria Arbeláez
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neuroscience, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
2
|
Krivosova M, Gondas E, Murin R, Dohal M, Ondrejka I, Tonhajzerova I, Hutka P, Ferencova N, Visnovcova Z, Hrtanek I, Mokry J. The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder. Diagnostics (Basel) 2022; 12:diagnostics12040813. [PMID: 35453861 PMCID: PMC9025710 DOI: 10.3390/diagnostics12040813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease with a pathophysiology that is not yet fully clarified. An increasing number of studies show an association of MDD with energy metabolism alteration and the presence of oxidative stress. We aimed to evaluate plasma levels of 3-hydroxybutyrate (3HB), NADH, myeloperoxidase, and dityrosine (di-Tyr) in adolescent and adult patients with MDD, compare them with healthy age-matched controls, and assess the effect of antidepressant treatment during hospitalisation on these levels. In our study, plasmatic levels of 3HB were elevated in both adolescents (by 55%; p = 0.0004) and adults (by 88%; p < 0.0001) with MDD compared to controls. Levels of dityrosine were increased in MDD adults (by 19%; p = 0.0092) but not adolescents. We have not found any significant effect of antidepressants on the selected parameters during the short observation period. Our study supports the findings suggesting altered energy metabolism in MDD and demonstrates its presence independently of the age of the patients.
Collapse
Affiliation(s)
- Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Eduard Gondas
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (R.M.)
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (R.M.)
| | - Matus Dohal
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Hutka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Correspondence:
| |
Collapse
|
3
|
Hydrogen Gas Inhalation Attenuates Endothelial Glycocalyx Damage and Stabilizes Hemodynamics in a Rat Hemorrhagic Shock Model. Shock 2021; 54:377-385. [PMID: 32804466 PMCID: PMC7458091 DOI: 10.1097/shk.0000000000001459] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supplemental Digital Content is available in the text Background: Hydrogen gas (H2) inhalation during hemorrhage stabilizes post-resuscitation hemodynamics, improving short-term survival in a rat hemorrhagic shock and resuscitation (HS/R) model. However, the underlying molecular mechanism of H2 in HS/R is unclear. Endothelial glycocalyx (EG) damage causes hemodynamic failure associated with HS/R. In this study, we tested the hypothesis that H2 alleviates oxidative stress by suppressing xanthine oxidoreductase (XOR) and/or preventing tumor necrosis factor-alfa (TNF-α)-mediated syndecan-1 shedding during EG damage. Methods: HS/R was induced in rats by reducing mean arterial pressure (MAP) to 35 mm Hg for 60 min followed by resuscitation. Rats inhaled oxygen or H2 + oxygen after achieving shock either in the presence or absence of an XOR inhibitor (XOR-I) for both the groups. In a second test, rats received oxygen alone or antitumor necrosis factor (TNF)-α monoclonal antibody with oxygen or H2. Two hours after resuscitation, XOR activity, purine metabolites, cytokines, syndecan-1 were measured and survival rates were assessed 6 h after resuscitation. Results: H2 and XOR-I both suppressed MAP reduction and improved survival rates. H2 did not affect XOR activity and the therapeutic effects of XOR-I and H2 were additive. H2 suppressed plasma TNF-α and syndecan-1 expression; however, no additional H2 therapeutic effect was observed in the presence of anti-TNF-α monoclonal antibody. Conclusions: H2 inhalation after shock stabilized hemodynamics and improved survival rates in an HS/R model independent of XOR. The therapeutic action of H2 was partially mediated by inhibition of TNF-α-dependent syndecan-1 shedding.
Collapse
|
4
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Fan L, Cacicedo JM, Ido Y. Impaired nicotinamide adenine dinucleotide (NAD + ) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J Diabetes Investig 2020; 11:1403-1419. [PMID: 32428995 PMCID: PMC7610120 DOI: 10.1111/jdi.13303] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
One of the biochemical abnormalities found in diabetic tissues is a decrease in the cytosolic oxidized to reduced forms of the nicotinamide adenine dinucleotide ratio (NAD+/NADH also known as pseudohypoxia) caused by oxidation of excessive substrates (glucose through the polyol pathway, free fatty acids and lactate). Subsequently, a decline in NAD+ levels as a result of the activation of poly adenine nucleotide diphosphate‐ribose polymerase (mainly in type 1 diabetes) or the inhibition of adenine nucleotide monophosphate‐activated protein kinase (in type 2 diabetes). Thus, replenishment of NAD+ levels by nicotinamide‐related compounds could be beneficial. However, these compounds also increase nicotinamide catabolites that cause oxidative stress. This is particularly troublesome for patients with diabetes, because they have impaired nicotinamide salvage pathway reactions at the level of nicotinamide phosphoribosyl transferase and phosphoribosyl pyrophosphate, which occurs by the following mechanisms. First, phosphoribosyl pyrophosphate synthesis from pentose phosphate pathway is compromised by a decrease in plasma thiamine and transketolase activity. Second, nicotinamide phosphoribosyl transferase expression is decreased because of reduced adenosine monophosphate‐activated protein kinase activity, which occurs in type 2 diabetes. The adenosine monophosphate‐activated protein kinase inhibition is caused by an activation of protein kinase C and D1 as a result of enhanced diacylglycerol synthesis caused by pseudohypoxia and increased fatty acids levels. In this regard, nicotinamide‐related compounds should be given with caution to treat diabetes. To minimize the risk and maximize the benefit, nicotinamide‐related compounds should be taken with insulin sensitizers (for type 2 diabetes), polyphenols, benfotiamine, acetyl‐L‐carnitine and aldose reductase inhibitors. The efficacy of these regimens can be monitored by measuring serum NAD+ and urinary nicotinamide catabolites.
Collapse
Affiliation(s)
- Lan Fan
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jose M Cacicedo
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Hollyer TR, Bordoni L, Kousholt BS, van Luijk J, Ritskes-Hoitinga M, Østergaard L. The evidence for the physiological effects of lactate on the cerebral microcirculation: a systematic review. J Neurochem 2019; 148:712-730. [PMID: 30472728 PMCID: PMC6590437 DOI: 10.1111/jnc.14633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Abstract Lactate's role in the brain is understood as a contributor to brain energy metabolism, but it may also regulate the cerebral microcirculation. The purpose of this systematic review was to evaluate evidence of lactate as a physiological effector within the normal cerebral microcirculation in reports ranging from in vitro experiments to in vivo studies in animals and humans. Following pre‐registration of a review protocol, we systematically searched the PubMed, EMBASE, and Cochrane databases for literature covering themes of ‘lactate’, ‘the brain’, and ‘microcirculation’. Abstracts were screened, and data extracted independently by two individuals. We excluded studies evaluating lactate in disease models. Twenty‐eight papers were identified, 18 of which were in vivo animal experiments (65%), four on human studies (14%), and six on in vitro or ex vivo experiments (21%). Approximately half of the papers identified lactate as an augmenter of the hyperemic response to functional activation by a visual stimulus or as an instigator of hyperemia in a dose‐dependent manner, without external stimulation. The mechanisms are likely to be coupled to NAD+/NADH redox state influencing the production of nitric oxide. Unfortunately, only 38% of these studies demonstrated any control for bias, which makes reliable generalizations of the conclusions insecure. This systematic review identifies that lactate may act as a dose‐dependent regulator of cerebral microcirculation by augmenting the hyperemic response to functional activation below 5 mmol/kg, and by initiating a hyperemic response above 5 mmol/kg. Open Science Badges
This article has received a badge for *Pre‐registration* because it made the data publicly available. The data can be accessed at www.radboudumc.nl/getmedia/53625326-d1df-432c-980f-27c7c80d1a90/THollyer_lactate_protocol.aspx. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. ![]()
Collapse
Affiliation(s)
- Tristan R Hollyer
- Centre for Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus C, Denmark.,Institute for Clinical Medicine, Aarhus N, Denmark
| | - Luca Bordoni
- Department of Biomedicine South, Aarhus University, Aarhus C, Denmark
| | - Birgitte S Kousholt
- Institute for Clinical Medicine, Aarhus N, Denmark.,Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark
| | - Judith van Luijk
- SYstematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel Ritskes-Hoitinga
- SYstematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leif Østergaard
- Centre for Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus C, Denmark.,Institute for Clinical Medicine, Aarhus N, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
7
|
Hosford PS, Gourine AV. What is the key mediator of the neurovascular coupling response? Neurosci Biobehav Rev 2018; 96:174-181. [PMID: 30481531 PMCID: PMC6331662 DOI: 10.1016/j.neubiorev.2018.11.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Cellular and molecular mechanisms underlying increases in regional blood flow in response to neuronal activity are not fully understood. We have compared the effects of 79 in vivo and 36 in vitro experimental attempts to inhibit the neurovascular response. Blockade of neuronal NO synthase (nNOS) has the largest effect of any individual target, reducing the neurovascular response by 64%. This points to the existence of an unknown key signalling mechanism which accounts for approximately one third of the neurovascular response.
The mechanisms of neurovascular coupling contribute to ensuring brain energy supply is sufficient to meet demand. Despite significant research interest, the mechanisms underlying increases in regional blood flow that follow heightened neuronal activity are not completely understood. This article presents a systematic review and analysis of published data reporting the effects of pharmacological or genetic blockade of all hypothesised signalling pathways of neurovascular coupling. Our primary outcome measure was the percent reduction of the neurovascular response assessed using in vivo animal models. Selection criteria were met by 50 primary sources reporting the effects of 79 treatments. Experimental conditions were grouped into categories targeting mechanisms mediated by nitric oxide (NO), prostanoids, purines, potassium, amongst others. Blockade of neuronal NO synthase was found to have the largest effect of inhibiting any individual target, reducing the neurovascular response by 64% (average of 11 studies). Inhibition of multiple targets in combination with nNOS blockade had no further effect. This analysis points to the existence of an unknown signalling mechanism accounting for approximately one third of the neurovascular response.
Collapse
Affiliation(s)
- Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, UK.
| |
Collapse
|
8
|
Köhler S, Winkler U, Sicker M, Hirrlinger J. NBCe1 mediates the regulation of the NADH/NAD + redox state in cortical astrocytes by neuronal signals. Glia 2018; 66:2233-2245. [PMID: 30208253 DOI: 10.1002/glia.23504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Astrocytes are a glial cell type, which is indispensable for brain energy metabolism. Within cells, the NADH/NAD+ redox state is a crucial node in metabolism connecting catabolic pathways to oxidative phosphorylation and ATP production in mitochondria. To characterize the dynamics of the intracellular NADH/NAD+ redox state in cortical astrocytes Peredox, a genetically encoded sensor for the NADH/NAD+ redox state, was expressed in cultured cortical astrocytes as well as in cortical astrocytes in acutely isolated brain slices. Calibration of the sensor in cultured astrocytes revealed a mean basal cytosolic NADH/NAD+ redox ratio of about 0.01; however, with a broad distribution and heterogeneity in the cell population, which was mirrored by a heterogeneous basal cellular concentration of lactate. Inhibition of glucose uptake decreased the NADH/NAD+ redox state while inhibition of lactate dehydrogenase or of lactate release resulted in an increase in the NADH/NAD+ redox ratio. Furthermore, the NADH/NAD+ redox state was regulated by the extracellular concentration of K+ , and application of the neurotransmitters ATP or glutamate increased the NADH/NAD+ redox state dependent on purinergic receptors and glutamate uptake, respectively. This regulation by K+ , ATP, and glutamate involved NBCe1 mediated sodium-bicarbonate transport. These results demonstrate that the NADH/NAD+ redox state in astrocytes is a metabolic node regulated by neuronal signals reflecting physiological activity, most likely contributing to adjust astrocytic metabolism to energy demand of the brain.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
9
|
Sun S, Li H, Chen J, Qian Q. Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology (Bethesda) 2018; 32:453-463. [PMID: 29021365 DOI: 10.1152/physiol.00016.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
For decades, lactic acid has been considered a dead-end product of glycolysis. Research in the last 20+ years has shown otherwise. Through its transporters (MCTs) and receptor (GPR81), lactic acid plays a key role in multiple cellular processes, including energy regulation, immune tolerance, memory formation, wound healing, ischemic tissue injury, and cancer growth and metastasis. We summarize key findings of lactic acid signaling, functions, and many remaining questions.
Collapse
Affiliation(s)
- Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xian, China
| | - Heng Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
10
|
Kobzar G, Mardla V, Samel N. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway. Prostaglandins Other Lipid Mediat 2017; 131:33-40. [DOI: 10.1016/j.prostaglandins.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 06/16/2017] [Accepted: 07/26/2017] [Indexed: 01/26/2023]
|
11
|
Nippert AR, Biesecker KR, Newman EA. Mechanisms Mediating Functional Hyperemia in the Brain. Neuroscientist 2017; 24:73-83. [PMID: 28403673 DOI: 10.1177/1073858417703033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal activity within the brain evokes local increases in blood flow, a response termed functional hyperemia. This response ensures that active neurons receive sufficient oxygen and nutrients to maintain tissue function and health. In this review, we discuss the functions of functional hyperemia, the types of vessels that generate the response, and the signaling mechanisms that mediate neurovascular coupling, the communication between neurons and blood vessels. Neurovascular coupling signaling is mediated primarily by the vasoactive metabolites of arachidonic acid (AA), by nitric oxide, and by K+. While much is known about these pathways, many contentious issues remain. We highlight two controversies, the role of glial cell Ca2+ signaling in mediating neurovascular coupling and the importance of capillaries in generating functional hyperemia. We propose signaling pathways that resolve these controversies. In this scheme, capillary dilations are generated by Ca2+ increases in astrocyte endfeet, leading to production of AA metabolites. In contrast, arteriole dilations are generated by Ca2+ increases in neurons, resulting in production of nitric oxide and AA metabolites. Arachidonic acid from neurons also diffuses into astrocyte endfeet where it is converted into additional vasoactive metabolites. While this scheme resolves several discrepancies in the field, many unresolved challenges remain and are discussed in the final section of the review.
Collapse
Affiliation(s)
- Amy R Nippert
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kyle R Biesecker
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Eric A Newman
- 1 Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
12
|
Son T, Wang B, Thapa D, Lu Y, Chen Y, Cao D, Yao X. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers. BIOMEDICAL OPTICS EXPRESS 2016; 7:3151-62. [PMID: 27570706 PMCID: PMC4986822 DOI: 10.1364/boe.7.003151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 05/05/2023]
Abstract
Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis.
Collapse
Affiliation(s)
- Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Damber Thapa
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yanjun Chen
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Ido Y. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3. J Diabetes Investig 2016; 7:448-58. [PMID: 27181414 PMCID: PMC4931191 DOI: 10.1111/jdi.12485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022] Open
Abstract
Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate‐activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C‐peptide. My research and others' suggest that the SIRT1–liver kinase B1–AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. ‘Diabetic memory’ is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1–AMPK positive feedback through activating FOXO3.
Collapse
Affiliation(s)
- Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Gordon GRJ, Howarth C, MacVicar BA. Bidirectional Control of Blood Flow by Astrocytes: A Role for Tissue Oxygen and Other Metabolic Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:209-19. [PMID: 27343099 DOI: 10.1007/978-1-4899-7678-9_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altering cerebral blood flow through the control of cerebral vessel diameter is critical so that the delivery of molecules important for proper brain functioning is matched to the activity level of neurons. Although the close relationship of brain glia known as astrocytes with cerebral blood vessels has long been recognized, it is only recently that these cells have been demonstrated to translate information on the activity level and energy demands of neurons to the vasculature. In particular, astrocytes respond to elevations in extracellular glutamate as a consequence of synaptic transmission through the activation of group 1 metabotropic glutamate receptors. These Gq-protein coupled receptors elevate intracellular calcium via IP3 signaling. A close examination of astrocyte endfeet calcium signals has been shown to cause either vasoconstriction or vasodilation. Common to both vasomotor responses is the generation of arachidonic acid in astrocytes by calcium sensitive phospholipase A2. Vasoconstriction ensues from the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid, while vasodilation ensues from the production of epoxyeicosatrienoic acids or prostaglandins. Factors that determine whether constrictor or dilatory pathways predominate include brain oxygen, lactate, adenosine as well as nitric oxide. Changing the oxygen level itself leads to many downstream changes that facilitate the switch from vasoconstriction at high oxygen to vasodilation at low oxygen. These findings highlight the importance of astrocytes as sensors of neural activity and metabolism to coordinate the delivery of essential nutrients via the blood to the working cells.
Collapse
Affiliation(s)
- Grant R J Gordon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | - Clare Howarth
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Brian A MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells. Neurochem Res 2015; 40:2394-401. [PMID: 25876186 DOI: 10.1007/s11064-015-1526-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
The energy metabolism of the brain has to be precisely adjusted to activity to cope with the organ's energy demand, implying that signaling regulates metabolism and metabolic states feedback to signaling. The NAD(+)/NADH redox state constitutes a metabolic node well suited for integration of metabolic and signaling events. It is affected by flux through metabolic pathways within a cell, but also by the metabolic state of neighboring cells, for example by lactate transferred between cells. Furthermore, signaling events both in neurons and astrocytes have been reported to change the NAD(+)/NADH redox state. Vice versa, a number of signaling events like astroglial Ca(2+) signals, neuronal NMDA-receptors as well as the activity of transcription factors are modulated by the NAD(+)/NADH redox state. In this short review, this bidirectional interdependence of signaling and metabolism involving the NAD(+)/NADH redox state as well as its potential relevance for the physiology of the brain and the whole organism in respect to blood glucose regulation and body weight control are discussed.
Collapse
|
16
|
Luo X, Li R, Yan LJ. Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance in β Cell Function and Dysfunction. J Diabetes Res 2015; 2015:512618. [PMID: 26568959 PMCID: PMC4629043 DOI: 10.1155/2015/512618] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Pancreatic β cells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion. While pyruvate and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial complex I (NADH/ubiquinone oxidoreductase). It is known that normal complex I function is absolutely required for episodic insulin secretion after a meal, but the role of complex I in β cells in the diabetic pancreas remains to be investigated. In this paper, we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the pathogenesis of β cell dysfunction in the diabetic pancreas. This hypothesis is based on the establishment that chronic hyperglycemia overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic pathways are impaired in diabetes, understanding how complex I in the β cells copes with elevated levels of NADH in the diabetic pancreas may provide potential therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Rongrong Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
- *Liang-Jun Yan:
| |
Collapse
|
17
|
McGillen JB, Kelly CJ, Martínez-González A, Martin NK, Gaffney EA, Maini PK, Pérez-García VM. Glucose-lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy. J Theor Biol 2014; 361:190-203. [PMID: 25264268 DOI: 10.1016/j.jtbi.2014.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
A recent study has hypothesised a glucose-lactate metabolic symbiosis between adjacent hypoxic and oxygenated regions of a developing tumour, and proposed a treatment strategy to target this symbiosis. However, in vivo experimental support remains inconclusive. Here we develop a minimal spatial mathematical model of glucose-lactate metabolism to examine, in principle, whether metabolic symbiosis is plausible in human tumours, and to assess the potential impact of inhibiting it. We find that symbiosis is a robust feature of our model system-although on the length scale at which oxygen supply is diffusion-limited, its occurrence requires very high cellular metabolic activity-and that necrosis in the tumour core is reduced in the presence of symbiosis. Upon simulating therapeutic inhibition of lactate uptake, we predict that targeted treatment increases the extent of tissue oxygenation without increasing core necrosis. The oxygenation effect is correlated strongly with the extent of wild-type hypoxia and only weakly with wild-type symbiotic behaviour, and therefore may be promising for radiosensitisation of hypoxic, lactate-consuming tumours even if they do not exhibit a spatially well-defined symbiosis. Finally, we conduct in vitro experiments on the U87 glioblastoma cell line to facilitate preliminary speculation as to where highly malignant tumours might fall in our parameter space, and find that these experiments suggest a weakly symbiotic regime for U87 cells, thus raising the new question of what relationship might exist between symbiosis and tumour malignancy.
Collapse
Affiliation(s)
- Jessica B McGillen
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom.
| | - Catherine J Kelly
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Alicia Martínez-González
- Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 13071 Ciudad Real, Spain
| | - Natasha K Martin
- School of Social and Community Medicine, Bristol University, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
| | - Eamonn A Gaffney
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Víctor M Pérez-García
- Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 13071 Ciudad Real, Spain
| |
Collapse
|
18
|
Ma H, Harris S, Rahmani R, Lacefield CO, Zhao M, Daniel AGS, Zhou Z, Bruno RM, Berwick J, Schwartz TH. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. NEUROPHOTONICS 2014; 1:015003. [PMID: 25525611 PMCID: PMC4267117 DOI: 10.1117/1.nph.1.1.015003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.
Collapse
Affiliation(s)
- Hongtao Ma
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
- Address all correspondence to: Hongtao Ma,
| | - Samuel Harris
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
- University of Sheffield, Department of Psychology, Sheffield S10 2TN, United Kingdom
| | - Redi Rahmani
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Clay O. Lacefield
- Columbia University, Department of Neuroscience, New York, New York 10032
| | - Mingrui Zhao
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| | - Andy G. S. Daniel
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| | - Zhiping Zhou
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| | - Randy M. Bruno
- Columbia University, Department of Neuroscience, New York, New York 10032
| | - Jason Berwick
- University of Sheffield, Department of Psychology, Sheffield S10 2TN, United Kingdom
| | - Theodore H. Schwartz
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| |
Collapse
|
19
|
Yu Q, Lee CF, Wang W, Karamanlidis G, Kuroda J, Matsushima S, Sadoshima J, Tian R. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc 2014; 3:e000555. [PMID: 24470522 PMCID: PMC3959718 DOI: 10.1161/jaha.113.000555] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The NADPH oxidase family (Nox) produces reactive oxygen species by adding the electron donated by NADPH to oxygen. Excessive reactive oxygen species production under a variety of pathological conditions has been attributed to increased Nox activity. Here, we aimed at investigating the role of Nox in cardiac ischemic injury through gain‐ and loss‐of‐function approaches. Methods and Results We modulated Nox activity in the heart by cardiac‐specific expression of Nox4 and dominant negative Nox4. Modulation of Nox activity drastically changes the cellular redox status. Increasing Nox activity by cardiac‐specific overexpression of Nox4 imposed oxidative stress on the myocardium [increased NAD(P)+/NAD(P)H and decreased glutathione/glutathione disulfide ratio] and worsened cardiac energetics and contractile function after ischemia‐reperfusion. Overexpression of the dominant negative Nox4 (DN), which abolished the Nox function, led to a markedly reduced state [decreased NAD(P)+/NAD(P)H and increased glutathione/glutathione disulfide ratio] at baseline and paradoxically promoted mitochondrial reactive oxygen species production during ischemia resulting in no recovery of heart function after reperfusion. Limiting the generation of reducing equivalent through modulating carbon substrates availability partially restored the NAD+/NADH ratio and protected dominant negative Nox4 hearts from ischemic injury. Conclusions This study reveals an important role of Nox in cardiac redox regulation and highlights the complexity of developing therapies that affect the intricately connected redox states.
Collapse
Affiliation(s)
- Qiujun Yu
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 2014; 19:49-57. [PMID: 24411938 PMCID: PMC4389678 DOI: 10.1016/j.cmet.2013.11.020] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/02/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
Abstract
Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth.
Collapse
Affiliation(s)
- Manu S Goyal
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| | - Michael Hawrylycz
- Allen Institute for Brain Science, 551 North 34(th) Street, Seattle, WA 98103, USA
| | - Jeremy A Miller
- Allen Institute for Brain Science, 551 North 34(th) Street, Seattle, WA 98103, USA
| | - Abraham Z Snyder
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Christensen CE, Karlsson M, Winther JR, Jensen PR, Lerche MH. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes. J Biol Chem 2013; 289:2344-52. [PMID: 24302737 DOI: 10.1074/jbc.m113.498626] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD(+)]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD(+)]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD(+)]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD(+)]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD(+)]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.
Collapse
|
22
|
Galeffi F, Turner DA. Exploiting metabolic differences in glioma therapy. Curr Drug Discov Technol 2013; 9:280-93. [PMID: 22339075 DOI: 10.2174/157016312803305906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 02/11/2012] [Indexed: 12/20/2022]
Abstract
Brain function depends upon complex metabolic interactions amongst only a few different cell types, with astrocytes providing critical support for neurons. Astrocyte functions include buffering the extracellular space, providing substrates to neurons, interchanging glutamate and glutamine for synaptic transmission with neurons, and facilitating access to blood vessels. Whereas neurons possess highly oxidative metabolism and easily succumb to ischemia, astrocytes rely more on glycolysis and metabolism associated with synthesis of critical intermediates, hence are less susceptible to lack of oxygen. Astrocytoma and higher grade glioma cells demonstrate both basic metabolic mechanisms of astrocytes as well as tumors in general, e.g. they show a high glycolytic rate, lactate extrusion, ability to proliferate even under hypoxia, and opportunistic use of mechanisms to enhance metabolism and blood vessel generation, and suppression of cell death pathways. There may be differences in metabolism between neurons, normal astrocytes and astrocytoma cells, providing therapeutic opportunities against astrocytomas, including a wide range of enzyme and transporter differences, regulation of hypoxia-inducible factor (HIF), glutamate uptake transporters and glutamine utilization, differential sensitivities of monocarboxylate transporters, presence of glycogen, high interlinking with gap junctions, use of NADPH for lipid synthesis, utilizing differential regulation of synthetic enzymes (e.g. isocitrate dehydrogenase, pyruvate carboxylase, pyruvate dehydrogenase, lactate dehydrogenase, malate-aspartate NADH shuttle) and different glucose uptake mechanisms. These unique metabolic susceptibilities may augment conventional therapeutic attacks based on cell division differences and surface receptors alone, and are starting to be implemented in clinical trials.
Collapse
|
23
|
Role of hyperglycemia-mediated erythrocyte redox state alteration in the development of diabetic retinopathy. Retina 2013; 33:207-16. [PMID: 22653543 DOI: 10.1097/iae.0b013e318256202e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate erythrocyte redox state and its surrogates in patients with different stages of diabetic retinopathy and their association with cellular metabolic derangement developed in retinal microvascular cells. METHODS Sixty type 2 diabetic patients with nonproliferative diabetic retinopathy (NPDR), 85 patients with proliferative diabetic retinopathy (PDR), and 70 patients with diabetes but without retinopathy were considered as diabetic control (DC) for the study. In addition, 65 normal individuals without diabetes were enrolled as healthy control in this study. Erythrocyte oxidized nicotinamide adenine dinucleotide phosphate / reduced nicotinamide adenine dinucleotide phosphate (NADP / NADPH), oxidized nicotinamide adenine dinucleotide / reduced nicotinamide adenine dinucleotide (NAD / NADH) glutathione, plasma and vitreous lactate, and pyruvate levels were determined by enzymatic reaction-based spectrophotometric assay for the patients and individuals. RESULT Erythrocyte NADP+ to NADPH ratio to NADPH ratio was found to be significantly higher among NPDR and PDR patients compared with DC subjects (P < 0.0001). Erythrocyte-reduced glutathione was significantly decreased in patients of NPDR (P = 0.0004) and patients of PDR (P = 0.0157) compared to DC. Erythrocyte NAD to NADH ratio was also significantly decreased in patients of NPDR (P < 0.0001) and PDR (P < 0.0001) compared to DC subjects. Lactate to pyruvate ratio of plasma was elevated significantly in patients with NPDR compared with DC (P < 0.0001) and those having PDR (P = 0.0046). In the vitreous fluid, the lactate to pyruvate ratios were found to be significantly lower in normal individuals without diabetes compared with patients having PDR (P < 0.0001). CONCLUSION Hyperglycemia-mediated erythrocyte redox state alterations might be a potential risk factor for the development of NPDR in poorly controlled diabetic subjects.
Collapse
|
24
|
Moreno A, Jego P, de la Cruz F, Canals S. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals. FRONTIERS IN NEUROENERGETICS 2013; 5:3. [PMID: 23543907 PMCID: PMC3610078 DOI: 10.3389/fnene.2013.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
Abstract
Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals.
Collapse
Affiliation(s)
- Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Pierrick Jego
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Feliberto de la Cruz
- Centro de Estudios Avanzados de Cuba, Ministerio de Ciencia Tecnología y Medio AmbienteHabana, Cuba
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| |
Collapse
|
25
|
Alessandri B, Schwandt E, Kamada Y, Nagata M, Heimann A, Kempski O. The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats. J Neurotrauma 2012; 29:2181-91. [PMID: 22888957 DOI: 10.1089/neu.2011.2067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
For many years lactate was considered to be a waste product of glycolysis. Data are accumulating that suggest that lactate is an important energy substrate for neurons during activation. In severe traumatic brain injury (TBI) glutamate release and ischemic cerebral blood flow (CBF) are major factors for a mismatch between energy demand and supply and for neuronal cell death. Although ATP and behavior could be improved by lactate treatment after TBI, no histological correlate nor any linkage to better astrocytic glutamate uptake or CBF as possible mechanisms have been described. We subjected male rats to a controlled cortical impact (CCI; 5 m/sec, 2.5 mm). To study the effects of lactate treatment on lesion volume, glutamate release, and CBF, animals were infused with either NaCl or 100 mM lactate for up to 3 h. The role of endogenous lactate was investigated by inhibiting transport with α-cyano-4-hydroxy-cinnamic acid (4-CIN; 90 mg/kg). Lactate treatment 15 min post-CCI reduced lesion volume from 21.1±2.8 mm³ to 12.1±1.9 mm³ at day 2 after CCI. Contusion produced a significant three- to fourfold increase of glutamate in microdialysates, but there was no significant difference between treatments that began 30 min before CCI. In this experiment lesion volume was significantly reduced by lactate at day 7 post-CCI (23.7±4 to 9.3±1-2 mm³). CBF increased immediately after CCI and dropped thereafter below baseline in all animals. Lactate infusion 15 min post-CCI elevated CBF for 20 min in 7 of 10 animals, whereas 7 of 8 NaCl-treated animals showed a further CBF decline. Neuroprotection was achieved by lactate treatment following contusion injury, whereas blocking of endogenous lactate transport exerted no adverse effects. Neuroprotection was not achieved by improved glutamate uptake into astrocytes, but was supported by augmented CBF following CCI. Due to its neuroprotective property, lactate might be a beneficial pharmacological treatment for TBI patients.
Collapse
Affiliation(s)
- Beat Alessandri
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping: implication for a role of lactate. J Cereb Blood Flow Metab 2012; 32:1859-68. [PMID: 22781333 PMCID: PMC3463880 DOI: 10.1038/jcbfm.2012.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR(glc). To test whether the mismatch reflects a specific role of aerobic glycolysis during functional brain activation, we determined CBF and CMRO(2) with positron emission tomography (PET) when 12 healthy volunteers executed finger-to-thumb apposition of the right hand. Movements began 1, 10, or 20 minutes before administration of the radiotracers. In primary and supplementary motor cortices and cerebellum, CBF had increased at 1 minute of exercise and remained elevated for the duration of the 20-minute session. In contrast, the CMRO(2) numerically had increased insignificantly in left M1 and supplementary motor area at 1 minute, but had declined significantly at 10 minutes, returning to baseline at 20 minutes. As measures of CMR(glc) are impossible during short-term activations, we used measurements of CBF as indices of CMR(glc). The decline of CMRO(2) at 10 minutes paralleled a calculated decrease of OGI at this time. The implied generation of lactate in the tissue suggested an important hypothetical role of the metabolite as regulator of CBF during activation.
Collapse
|
27
|
Zhu D, Zhou J, Xu X. Influence of lactic acid on differential expression of vascular endothelial growth factor and pigment epithelium-derived factor in explants of rat retina. Curr Eye Res 2012; 37:1025-9. [PMID: 22906018 DOI: 10.3109/02713683.2012.695853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the influence of lactate on expression of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) in rat retina. METHODS Retinal explants from neonatal Sprague Dawley rats were incubated with media containing 10, 20, or 30 mM of lactic acid. The 10 mM group was used as a control. At 24 h after incubation, retinas were sectioned for light microscopy, and expressions of VEGF and PEDF measured by real-time polymerase chain reaction (RT-PCR) and Western blot analysis. RESULTS The architecture of cultured retinas appeared to be intact. Compared with control, both RT-PCR and Western blot analysis showed that 30 mM of lactic acid significantly increased the levels of VEGF, but not PEDF. CONCLUSIONS Stimulation of production of retinal VEGF by lactate is dependent on the concentration of lactate. Lactate has no effect on the expression of PEDF in rat retinal explants.
Collapse
Affiliation(s)
- Dongqing Zhu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai, China
| | | | | |
Collapse
|
28
|
Gupte SA, Wolin MS. Relationships between vascular oxygen sensing mechanisms and hypertensive disease processes. Hypertension 2012; 60:269-75. [PMID: 22710643 DOI: 10.1161/hypertensionaha.112.190702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sachin A Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | | |
Collapse
|
29
|
Sun F, Dai C, Xie J, Hu X. Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS One 2012; 7:e34525. [PMID: 22570687 PMCID: PMC3343042 DOI: 10.1371/journal.pone.0034525] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 03/06/2012] [Indexed: 12/02/2022] Open
Abstract
Cytosolic free NAD/NADH ratio is fundamentally important in maintaining cellular redox homeostasis but current techniques cannot distinguish between protein-bound and free NAD/NADH. Williamson et al reported a method to estimate this ratio by cytosolic lactate/pyruvate (L/P) based on the principle of chemical equilibrium. Numerous studies used L/P ratio to estimate the cytosolic free NAD/NADH ratio by assuming that the conversion in cells was at near-equilibrium but not verifying how near it was. In addition, it seems accepted that cytosolic free NAD/NADH ratio was a dependent variable responding to the change of L/P ratio. In this study, we show (1) that the change of lactate/glucose (percentage of glucose that converts to lactate by cells) and L/P ratio could measure the status of conversion between pyruvate + NADH and lactate + NAD that tends to or gets away from equilibrium; (2) that cytosolic free NAD/NADH could be accurately estimated by L/P only when the conversion is at or very close to equilibrium otherwise a calculation error by one order of magnitude could be introduced; (3) that cytosolic free NAD/NADH is stable and L/P is highly labile, that the highly labile L/P is crucial to maintain the homeostasis of NAD/NADH; (4) that cytosolic free NAD/NADH is dependent on oxygen levels. Our study resolved the key issues regarding accurate estimation of cytosolic free NAD/NADH ratio and the relationship between NAD/NADH and L/P.
Collapse
Affiliation(s)
- Feifei Sun
- Key Laboratory for Cancer Intervention and Prevention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences, China National Ministry of Education, Cancer Institute, School of Medicine, Zhejiang University, The Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Chunyan Dai
- Key Laboratory for Cancer Intervention and Prevention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences, China National Ministry of Education, Cancer Institute, School of Medicine, Zhejiang University, The Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Key Laboratory for Cancer Intervention and Prevention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences, China National Ministry of Education, Cancer Institute, School of Medicine, Zhejiang University, The Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Xun Hu
- Key Laboratory for Cancer Intervention and Prevention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences, China National Ministry of Education, Cancer Institute, School of Medicine, Zhejiang University, The Second Affiliated Hospital, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
30
|
von Pföstl V, Li J, Zaldivar D, Goense J, Zhang X, Serr N, Logothetis NK, Rauch A. Effects of lactate on the early visual cortex of non-human primates, investigated by pharmaco-MRI and neurochemical analysis. Neuroimage 2012; 61:98-105. [DOI: 10.1016/j.neuroimage.2012.02.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/08/2012] [Accepted: 02/29/2012] [Indexed: 11/26/2022] Open
|
31
|
Shetty PK, Galeffi F, Turner DA. Cellular Links between Neuronal Activity and Energy Homeostasis. Front Pharmacol 2012; 3:43. [PMID: 22470340 PMCID: PMC3308331 DOI: 10.3389/fphar.2012.00043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/24/2012] [Indexed: 12/20/2022] Open
Abstract
Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.
Collapse
Affiliation(s)
- Pavan K Shetty
- Neurosurgery and Neurobiology, Research and Surgery Services, Durham VA Medical Center, Duke University Durham, NC, USA
| | | | | |
Collapse
|
32
|
Bergersen LH, Gjedde A. Is lactate a volume transmitter of metabolic states of the brain? FRONTIERS IN NEUROENERGETICS 2012; 4:5. [PMID: 22457647 PMCID: PMC3307048 DOI: 10.3389/fnene.2012.00005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/01/2012] [Indexed: 11/13/2022]
Abstract
We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD(+) redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator of metabolic information rather than metabolic substrate answers a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function.
Collapse
Affiliation(s)
- Linda H Bergersen
- The Brain and Muscle Energy Group, Centre for Molecular Biology and Neuroscience, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
33
|
Hein TW, Ren Y, Potts LB, Yuan Z, Kuo E, Rosa RH, Kuo L. Acute retinal ischemia inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest Ophthalmol Vis Sci 2012; 53:30-6. [PMID: 22110081 DOI: 10.1167/iovs.11-8753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed. METHODS IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10-20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles. RESULTS Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation. CONCLUSIONS Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide.
Collapse
Affiliation(s)
- Travis W Hein
- Department of Ophthalmology, Scott &White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Devor A, Boas DA, Einevoll GT, Buxton RB, Dale AM. Neuronal Basis of Non-Invasive Functional Imaging: From Microscopic Neurovascular Dynamics to BOLD fMRI. NEURAL METABOLISM IN VIVO 2012. [DOI: 10.1007/978-1-4614-1788-0_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Seifert T, Secher NH. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 2011; 95:406-26. [PMID: 21963551 DOI: 10.1016/j.pneurobio.2011.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
Abstract
This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip, but increases during cycling exercise. The increase in CMRO(2) is unaffected by beta-adrenergic blockade even though CBF is reduced suggesting that cerebral oxygenation becomes critical and a limited cerebral mitochondrial oxygen tension may induce fatigue. Also, sympathetic activity may drive cerebral non-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade, but not by beta1-adrenergic blockade. Furthermore, endurance training appears to lower the cerebral non-oxidative carbohydrate uptake and preserve cerebral oxygenation during submaximal exercise. This is possibly related to an attenuated catecholamine response. Finally, exercise promotes brain health as evidenced by increased release of brain-derived neurotrophic factor (BDNF) from the brain.
Collapse
Affiliation(s)
- Thomas Seifert
- Department of Anaesthesia and The Copenhagen Muscle Research Centre, Rigshospitalet 2041, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
36
|
Dai M, Yang Y, Shi X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am J Physiol Heart Circ Physiol 2011; 301:H1248-54. [PMID: 21856924 DOI: 10.1152/ajpheart.00315.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transduction of sound in the inner ear demands tight control over delivery of oxygen and glucose. However, the mechanisms underlying the control of regional blood flow are not yet fully understood. In this study, we report a novel local control mechanism that regulates cochlear blood flow to the stria vascularis, a high energy-consuming region of the inner ear. We found that extracellular lactate had a vasodilatory effect on the capillaries of the spiral ligament under both in vitro and in vivo conditions. The lactate, acting through monocarboxylate transporter 1 (MCT1), initiated neuronal nitric oxide (NO) synthase (nNOS) and catalyzed production of NO for the vasodilation. Blocking MCT1 with the MCT blocker, α-cyano-4-hydroxycinnamate (CHC), or a suppressing NO production with either the nonspecific inhibitor of NO synthase, N(G)-nitro-L-arginine methyl ester (L-NAME), or either of two selective nNOS inhibitors, 3-bromo-7-nitroindazole or (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine (TFA), totally abolished the lactate-induced vasodilation. Pretreatment with the selective endothelial NO synthase inhibitor, L-N(5)-(1-iminoethyl)ornithine (L-NIO), eliminated the inhibition of lactate-induced vessel dilation. With immunohistochemical labeling, we found the expression of MCT1 and nNOS in capillary-coupled type V fibrocytes. The data suggest that type V fibrocytes are the source of the lactate-induced NO. Cochlear microvessel tone, regulated by lactate, is mediated by an NO-signaled coupling of fibrocytes and capillaries.
Collapse
Affiliation(s)
- Min Dai
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
37
|
Rasmussen P, Wyss MT, Lundby C. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J 2011; 25:2865-73. [DOI: 10.1096/fj.11-183822] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peter Rasmussen
- Zurich Centre for Integrative Human PhysiologyDepartment of PhysiologyUniversity of ZurichSwitzerland
| | - Matthias T. Wyss
- Institute of Pharmacology and ToxicologyUniversity of ZurichSwitzerland
| | - Carsten Lundby
- Zurich Centre for Integrative Human PhysiologyDepartment of PhysiologyUniversity of ZurichSwitzerland
- Institute of Pharmacology and ToxicologyUniversity of ZurichSwitzerland
| |
Collapse
|
38
|
Abstract
Astrocytes are the most numerous cells in the CNS. It is a defining feature of brain anatomy that every astrocyte has at least one contact with the vasculature, termed an endfoot. Collectively, all endfeet completely circumscribe all vessels in the brain. This unique anatomical feature has profound functional significance, as astrocyte endfeet have been discovered to release diffusible messengers that communicate directly with underlying smooth muscle cells to change arterial diameter and thereby regulate cerebral blood flow. A growing body of data now demonstrates that astrocytes serve as a bridge, relaying information on the level of neural activity to blood vessels in order to co-ordinate oxygen and glucose delivery with the energy demands of the tissue. In particular, astrocytes respond to elevations in extracellular glutamate as a consequence of synaptic transmission through the activation of group 1 metabotropic glutamate receptors. These Gq-coupled receptors elevate intracellular calcium via IP(3) signalling, which activates phospholipase A2 and generates arachidonic acid. Arachidonic acid acts as a signalling molecule or is converted to several lipid derivates, including prostaglandin E(2) and epoxyeicosatrienoic acids. Each of these lipids acts on vascular smooth muscle cells via different mechanisms to affect vessel diameter. Arachidonic acid initiates the production of 20-hydroxyeicosatetraenoic acid to cause vasoconstriction, whereas prostaglandin E(2) and epoxyeicosatrienoic acids cause vasodilatation. Factors that determine whether constrictor or dilatory pathways predominate involve nitric oxide and brain metabolic elements, such as oxygen, lactate and adenosine. Thus, astrocytes are thought to be capable of bidirectional control of arterial diameter, and the type of influence depends on the state of brain activity.
Collapse
Affiliation(s)
- Grant R J Gordon
- University of British Columbia, Department of Psychiatry, Vancouver, BC, Canada
| | | | | |
Collapse
|
39
|
|
40
|
Kasischke KA, Lambert EM, Panepento B, Sun A, Gelbard HA, Burgess RW, Foster TH, Nedergaard M. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab 2011; 31:68-81. [PMID: 20859293 PMCID: PMC3049466 DOI: 10.1038/jcbfm.2010.158] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/06/2010] [Accepted: 08/17/2010] [Indexed: 11/27/2022]
Abstract
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.
Collapse
Affiliation(s)
- Karl A Kasischke
- Department of Neurology, Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease.
Collapse
|
42
|
|
43
|
Leach L, Taylor A, Sciota F. Vascular dysfunction in the diabetic placenta: causes and consequences. J Anat 2010; 215:69-76. [PMID: 19563553 DOI: 10.1111/j.1469-7580.2009.01098.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The development and functioning of the human fetoplacental vascular system are vulnerable to the maternal diabetic milieu. These vessels are in direct continuum with the fetal vascular system and are therefore also vulnerable to fetal endocrine derangements. Increased angiogenesis, altered junctional maturity and molecular occupancy, together with increased leakiness, constitute a well-described phenotype of vessels in the Type 1 diabetic human placenta and can be related to increased levels of placental vascular endothelial growth factor. The causes of these observed changes, whether maternal hyperglycaemia or fetal hyperinsulinaemia, still remain to be shown in the human placenta. Mechanistic studies using different vascular systems have shown high glucose and insulin to have profound vascular effects, with elevations in vascular endothelial growth factor, nitric oxide and protein kinase C being behind alterations in junctional adhesion molecules such as occludin and vascular endothelial-cadherin and vascular leakage of albumin. The role of advanced glycation products and oxidative stress in this vascular pathology is also discussed. The altered molecular mechanisms underlying the vascular changes in the diabetic human placenta may reflect similar consequences of high glucose and hyperinsulinaemia.
Collapse
Affiliation(s)
- Lopa Leach
- School of Biomedical Sciences, Centre for Integrated Systems Biology and Medicine, Institute of Clinical Research, Faculty of Medicine and Health Sciences, University of Nottingham, UK.
| | | | | |
Collapse
|
44
|
Carmignoto G, Gómez-Gonzalo M. The contribution of astrocyte signalling to neurovascular coupling. ACTA ACUST UNITED AC 2010; 63:138-48. [DOI: 10.1016/j.brainresrev.2009.11.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 12/24/2022]
|
45
|
Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A 2010; 107:8446-51. [PMID: 20404151 DOI: 10.1073/pnas.0909711107] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate activation-induced hypermetabolism and hyperemia by using a multifrequency (4, 8, and 16 Hz) reversing-checkerboard visual stimulation paradigm. Specifically, we sought to (i) quantify the relative contributions of the oxidative and nonoxidative metabolic pathways in meeting the increased energy demands [i.e., ATP production (J(ATP))] of task-induced neuronal activation and (ii) determine whether task-induced cerebral blood flow (CBF) augmentation was driven by oxidative or nonoxidative metabolic pathways. Focal increases in CBF, cerebral metabolic rate of oxygen (CMRO(2); i.e., index of aerobic metabolism), and lactate production (J(Lac); i.e., index of anaerobic metabolism) were measured by using physiologically quantitative MRI and spectroscopy methods. Task-induced increases in J(ATP) were small (12.2-16.7%) at all stimulation frequencies and were generated by aerobic metabolism (approximately 98%), with %DeltaJ(ATP) being linearly correlated with the percentage change in CMRO(2) (r = 1.00, P < 0.001). In contrast, task-induced increases in CBF were large (51.7-65.1%) and negatively correlated with the percentage change in CMRO(2) (r = -0.64, P = 0.024), but positively correlated with %DeltaJ(Lac) (r = 0.91, P < 0.001). These results indicate that (i) the energy demand of task-induced brain activation is small (approximately 15%) relative to the hyperemic response (approximately 60%), (ii) this energy demand is met through oxidative metabolism, and (iii) the CBF response is mediated by factors other than oxygen demand.
Collapse
|
46
|
Two views of brain function. Trends Cogn Sci 2010; 14:180-90. [PMID: 20206576 DOI: 10.1016/j.tics.2010.01.008] [Citation(s) in RCA: 613] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/20/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023]
Abstract
Traditionally studies of brain function have focused on task-evoked responses. By their very nature, such experiments tacitly encourage a reflexive view of brain function. Although such an approach has been remarkably productive, it ignores the alternative possibility that brain functions are mainly intrinsic, involving information processing for interpreting, responding to and predicting environmental demands. Here I argue that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources. Recognizing the importance of intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux.
Collapse
|
47
|
Ido Y, Nyengaard JR, Chang K, Tilton RG, Kilo C, Mylari BL, Oates PJ, Williamson JR. Early neural and vascular dysfunctions in diabetic rats are largely sequelae of increased sorbitol oxidation. Antioxid Redox Signal 2010; 12:39-51. [PMID: 19624259 PMCID: PMC2821145 DOI: 10.1089/ars.2009.2502] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
These experiments were undertaken to assess the importance of cytoplasmic (c) sorbitol oxidation versus mitochondrial (m) pyruvate oxidation in mediating neural and vascular dysfunction attributable to hyperglycemia in diabetic rats. Increased oxidation of sorbitol is coupled to enzymatic reduction of free oxidized NAD(+)c to reduced NADHc, manifested by an increased ratio of NADH to NAD(+)c. Likewise, increased oxidation of pyruvate is coupled to reduction of NAD(+)m to NADHm, which increases the NADH/NAD(+)m ratio. Specific inhibitors of sorbitol production or sorbitol oxidation normalized: increased diabetic nerve NADH/NAD(+)c, impaired nerve-conduction velocity, and vascular dysfunction in sciatic nerve, retina, and aorta; however, they had little or no impact on increased NADH/NAD(+)m. These observations provide, for the first time, strong in vivo evidence for the primacy of sorbitol oxidation versus. pyruvate oxidation in mediating the metabolic imbalances, impaired nerve conduction, and vascular dysfunction evoked by diabetes. These findings are consistent with (a) the fact that oxidation of sorbitol produces "prooxidant" NADHc uncoupled from subsequent production of "antioxidant" pyruvate required for reoxidation of NADHc to NAD(+)c by lactate dehydrogenase, and (b) the hypothesis that neural and vascular dysfunction in early diabetes are caused primarily by increased NADHc, which fuels superoxide production by NADH-driven oxidases.
Collapse
Affiliation(s)
- Yasuo Ido
- Boston Medical Center, EBRC 820, Diabetes & Metabolism Unit, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rasmussen P, Madsen CA, Nielsen HB, Zaar M, Gjedde A, Secher NH, Quistorff B. Coupling between the blood lactate-to-pyruvate ratio and MCA Vmean at the onset of exercise in humans. J Appl Physiol (1985) 2009; 107:1799-805. [DOI: 10.1152/japplphysiol.00468.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation-induced increase in cerebral blood flow is coupled to enhanced metabolic activity, maybe with brain tissue redox state and oxygen tension as key modulators. To evaluate this hypothesis at the onset of exercise in humans, blood was sampled at 0.1 to 0.2 Hz from the radial artery and right internal jugular vein, while middle cerebral artery mean flow velocity (MCA Vmean) was recorded. Both the arterial and venous lactate-to-pyruvate ratio increased after 10 s ( P < 0.05), and the arterial ratio remained slightly higher than the venous ( P < 0.05). The calculated average cerebral capillary oxygen tension decreased by 2.7 mmHg after 5 s ( P < 0.05), while MCA Vmean increased only after 30 s. Furthermore, there was an unaccounted cerebral carbohydrate uptake relative to the uptake of oxygen that became significant 50 s after the onset of exercise. These findings support brain tissue redox state and oxygenation as potential modulators of an increase in cerebral blood flow at the onset of exercise.
Collapse
Affiliation(s)
- Peter Rasmussen
- Department of Anesthesia, Copenhagen Muscle Research Center, Rigshospitalet,
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen; and
| | | | - Henning B. Nielsen
- Department of Anesthesia, Copenhagen Muscle Research Center, Rigshospitalet,
| | - Morten Zaar
- Department of Anesthesia, Copenhagen Muscle Research Center, Rigshospitalet,
| | - Albert Gjedde
- Center of Functionally Integrative Neuroscience, Aarhus University Hospitals, Aarhus, Denmark
| | - Niels H. Secher
- Department of Anesthesia, Copenhagen Muscle Research Center, Rigshospitalet,
| | - Bjørn Quistorff
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen; and
| |
Collapse
|
49
|
Pouliot M, Deschênes MC, Hétu S, Chemtob S, Lesk MR, Couture R, Vaucher E. Quantitative and regional measurement of retinal blood flow in rats using N-isopropyl-p-[14C]-iodoamphetamine ([14C]-IMP). Exp Eye Res 2009; 89:960-6. [PMID: 19698709 DOI: 10.1016/j.exer.2009.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/24/2009] [Accepted: 08/12/2009] [Indexed: 11/26/2022]
Abstract
Quantitative and regional measurement of retinal blood flow in rodents is of prime interest for the investigation of regulatory mechanisms of ocular circulation in physiological and pathological conditions. In this study, a quantitative autoradiographic method using N-isopropyl-p-(14)C-iodoamphetamine ([(14)C]-IMP), a diffusible radioactive tracer, was evaluated for its ability to detect changes in retinal blood perfusion during hypercapnia. Findings were compared to cerebral blood flow values measured simultaneously. Hypercapnia was induced in awaken Wistar rats by inhalation of 5% or 8% CO(2) in medical air for 5 min. [(14)C]-IMP (100 microCi/kg) was injected in the femoral vein over a 30 s period and the rats were sacrificed 2 min later. Blood flow was calculated from whole-mount retinae and 20 microm thick brain sections in discrete regions of interest by quantitative autoradiography or from digested samples of retina and brain by liquid scintillation counting. Retinal blood flow values measured with quantitative and regional autoradiography were higher in the central (108 +/- 20 ml/100 g/min) than in peripheral (84 +/- 15 ml/100 g/min) retina. These values were within the same range as cortical blood flow values (97 +/- 4 ml/100 g/min). The retinal blood flow values obtained on whole-mount retinae were validated by the sampling method. Hypercapnia significantly increased overall blood flow in the retina (24-53%) with a maximal augmentation in the peripheral region and in the brain (22-142%). The changes were stronger in the brain compared to retina (p = 0.016). These results demonstrate that retinal blood flow can be quantified using [(14)C]-IMP and compared with cerebral blood flow. This technique is a powerful tool to study how retinal blood flow is regulated in different regions of the rat retina.
Collapse
Affiliation(s)
- Mylène Pouliot
- School of Optometry, University of Montreal, C.P. 6128, succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 2009; 28:14347-57. [PMID: 19118167 DOI: 10.1523/jneurosci.4307-08.2008] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present study addresses the relationship between blood flow and glucose consumption in rat primary somatosensory cortex (SI) in vivo. We examined bilateral neuronal and hemodynamic changes and 2-deoxyglucose (2DG) uptake, as measured by autoradiography, in response to unilateral forepaw stimulation. In contrast to the contralateral forepaw area, where neuronal activity, blood oxygenation/flow and 2DG uptake increased in unison, we observed, in the ipsilateral SI, a blood oxygenation/flow decrease and arteriolar vasoconstriction in the presence of increased 2DG uptake. Laminar electrophysiological recordings revealed an increase in ipsilateral spiking consistent with the observed increase in 2DG uptake. The vasoconstriction and the decrease in blood flow in the presence of an increase in 2DG uptake in the ipsilateral SI contradict the prominent metabolic hypothesis regarding the regulation of cerebral blood flow, which postulates that the state of neuroglial energy consumption determines the regional blood flow through the production of vasoactive metabolites. We propose that other factors, such as neuronal (and glial) release of messenger molecules, might play a dominant role in the regulation of blood flow in vivo in response to a physiological stimulus.
Collapse
|