1
|
Karlsen OA, Rasinger JD, Brattås M, Tollefsen KE, Goksøyr A, Nahrgang J. Quantitative analysis of the polar cod (Boreogadus saida) hepatic proteome highlights interconnected responses in cellular adaptation and defence mechanisms after dietary benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178510. [PMID: 39824120 DOI: 10.1016/j.scitotenv.2025.178510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound. Functional annotation and pathway analyses of the proteins affected by BaP revealed a concerted cellular response for handling and adopting to its exposure, involving numerous interconnected signalling pathways and metabolic processes. In accordance with BaP being a strong aryl hydrocarbon receptor (Ahr) agonist, a prominent activation of the canonical Ahr signalling pathway was observed, including upregulation of Ahr target proteins like cytochrome P450 enzymes and microsomal glutathione transferase. Furthermore, cellular pathways for handling oxidative stress, protein misfolding and degradation, as well as endoplasmic reticulum stress and calcium homeostasis, were also activated by BaP, possibly as a result of the formation of harmful and redox reactive BaP metabolites via phase I metabolism. Activation of proteins that participate in the acute-phase response was also observed, suggesting prevalent tissue- and cellular damage that triggers the immune system and inflammatory responses. Our results at the protein level aligns well with previous analyses on the effects of BaP on the polar cod liver transcriptome and support that exposure to BaP and structural similar PAHs can cause adverse effects on polar cod physiology. Although more data is required for demonstrating how these molecular responses propagate to higher levels of biological organisation, increased knowledge about the initial cellular and molecular mechanisms that induce toxicity is a key-step towards a mechanistically informed impact assessment of PAH pollutants in the Arctic.
Collapse
Affiliation(s)
- O A Karlsen
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway.
| | - J D Rasinger
- Institute of Marine Research, Nordnesgaten 50, N-5050 Bergen, Norway
| | - M Brattås
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway
| | - K E Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - A Goksøyr
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway
| | - J Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
2
|
Ghazal N, Kwong JQ. Analyzing Mitochondrial Calcium Influx in Isolated Mitochondria. Methods Mol Biol 2025; 2861:155-164. [PMID: 39395104 DOI: 10.1007/978-1-0716-4164-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Mitochondria play a crucial role in Ca2+ signaling and homeostasis and can contribute to shaping the cytosolic Ca2+ landscape as well as regulate a variety of pathways including energy production and cell death. Dysregulation of mitochondrial Ca2+ homeostasis promotes pathologies including neurodegenerative diseases, cardiovascular disorders, and metabolic syndromes. The significance of mitochondria to Ca2+ signaling and regulation underscores the value of methods to assess mitochondrial Ca2+ import. Here we present a plate reader-based method using the Ca2+-sensitive fluorescent probe calcium green-5 N to measure mitochondrial Ca2+ import in isolated cardiac mitochondria. This technique can be expanded to measure Ca2+ uptake in mitochondria isolated from other tissue types and from cultured cells.
Collapse
Affiliation(s)
- Nasab Ghazal
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Kavalenia TA, Lapshina EA, Ilyich TV, Zhao HC, Zavodnik IB. Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin. Mol Cell Biochem 2024; 479:3329-3340. [PMID: 38332449 DOI: 10.1007/s11010-024-04935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca2+ ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca2+ concentrations (40-250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca2+ ion concentrations (Ca2+ free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca2+free ions were from 150 to 750 µM). Naringin partially prevented Ca2+-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10-75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca2+-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca2+ ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.
Collapse
Affiliation(s)
- T A Kavalenia
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus
| | - E A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus
| | - T V Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - I B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus.
| |
Collapse
|
4
|
Panday N, Sigdel D, Adam I, Ramirez J, Verma A, Eranki AN, Wang W, Wang D, Ping P. Data-Driven Insights into the Association Between Oxidative Stress and Calcium-Regulating Proteins in Cardiovascular Disease. Antioxidants (Basel) 2024; 13:1420. [PMID: 39594561 PMCID: PMC11590986 DOI: 10.3390/antiox13111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
A growing body of biomedical literature suggests a bidirectional regulatory relationship between cardiac calcium (Ca2+)-regulating proteins and reactive oxygen species (ROS) that is integral to the pathogenesis of various cardiac disorders via oxidative stress (OS) signaling. To address the challenge of finding hidden connections within the growing volume of biomedical research, we developed a data science pipeline for efficient data extraction, transformation, and loading. Employing the CaseOLAP (Context-Aware Semantic Analytic Processing) algorithm, our pipeline quantifies interactions between 128 human cardiomyocyte Ca2+-regulating proteins and eight cardiovascular disease (CVD) categories. Our machine-learning analysis of CaseOLAP scores reveals that the molecular interfaces of Ca2+-regulating proteins uniquely associate with cardiac arrhythmias and diseases of the cardiac conduction system, distinguishing them from other CVDs. Additionally, a knowledge graph analysis identified 59 of the 128 Ca2+-regulating proteins as involved in OS-related cardiac diseases, with cardiomyopathy emerging as the predominant category. By leveraging a link prediction algorithm, our research illuminates the interactions between Ca2+-regulating proteins, OS, and CVDs. The insights gained from our study provide a deeper understanding of the molecular interplay between cardiac ROS and Ca2+-regulating proteins in the context of CVDs. Such an understanding is essential for the innovation and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Namuna Panday
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Dibakar Sigdel
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
| | - Irsyad Adam
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Joseph Ramirez
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Aarushi Verma
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Anirudh N. Eranki
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA;
- Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA
- Scalable Analytics Institute (ScAi), University of California, Los Angeles, CA 90095, USA
- Department of Bioinformatics and Biomedical Informatics, University of California, Los Angeles, CA 90095, USA
| | - Ding Wang
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Peipei Ping
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
- Scalable Analytics Institute (ScAi), University of California, Los Angeles, CA 90095, USA
- Department of Bioinformatics and Biomedical Informatics, University of California, Los Angeles, CA 90095, USA
- Department of Medicine/Cardiology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Baker C, Willis A, Milestone W, Baker M, Garner AL, Joshi RP. Numerical assessments of geometry, proximity and multi-electrode effects on electroporation in mitochondria and the endoplasmic reticulum to nanosecond electric pulses. Sci Rep 2024; 14:23854. [PMID: 39394381 PMCID: PMC11470013 DOI: 10.1038/s41598-024-74659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Most simulations of electric field driven bioeffects have considered spherical cellular geometries or probed symmetrical structures for simplicity. This work assesses cellular transmembrane potential build-up and electroporation in a Jurkat cell that includes the endoplasmic reticulum (ER) and mitochondria, both of which have complex shapes, in response to external nanosecond electric pulses. The simulations are based on a time-domain nodal analysis that incorporates membrane poration utilizing the Smoluchowski model with angular-dependent changes in membrane conductivity. Consistent with prior experimental reports, the simulations show that the ER requires the largest electric field for electroporation, while the inner mitochondrial membrane (IMM) is the easiest membrane to porate. Our results suggest that the experimentally observed increase in intracellular calcium could be due to a calcium induced calcium release (CICR) process that is initiated by outer cell membrane breakdown. Repeated pulsing and/or using multiple electrodes are shown to create a stronger poration. The role of mutual coupling, screening, and proximity effects in bringing about electric field modifications is also probed. Finally, while including greater geometric details might refine predictions, the qualitative trends are expected to remain.
Collapse
Affiliation(s)
- C Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A Willis
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - W Milestone
- Nanohmics, Inc, 6201 E Oltorf St, Austin, TX, 78717, USA
| | - M Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Patinho I, Antonelo DS, Delgado EF, Alessandroni L, Balieiro JCC, Contreras Castillo CJ, Gagaoua M. In-depth exploration of the high and normal pH beef proteome: First insights emphasizing the dynamic protein changes in Longissimus thoracis muscle from pasture-finished Nellore bulls over different postmortem times. Meat Sci 2024; 216:109557. [PMID: 38852285 DOI: 10.1016/j.meatsci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.
Collapse
Affiliation(s)
- Iliani Patinho
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Eduardo F Delgado
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Carmen J Contreras Castillo
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | |
Collapse
|
7
|
Hou L, Wang L, Deng C, Jin P, Wen C, Zhang W, Liang W. Sensitive Detection and Cell Imaging of Ca 2+ Based on a "Turn-On" Schiff Base Fluorescent Probe. LUMINESCENCE 2024; 39:e4914. [PMID: 39350644 DOI: 10.1002/bio.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Ca2+ ion as a second messenger in signaling pathway plays many vital roles in many biological phenomena. Thus, it is of significance for developing effective probes to detect Ca2+ ion specifically. Herein, a new Schiff base fluorescent probe FPH, fluorescein monoaldehyde (2-aminomethylpyridine) hydrazone, was designed and synthesized to identify Ca2+ in DMSO aqueous solution. The probe FPH revealed significant responses to Ca2+ with a fluorescence enhancement at 540 nm, exhibiting an evident fluorescence change from ultraweak luminescence to bright green. Otherwise, the FPH displayed a good linear range of 0.67 × 10-6 to 3.33 × 10-6 mol/L with a lower detection limit at 7.02 × 10-8 mol/L. The probe FPH were further successfully utilized to detect Ca2+ in living cells by an increased bright green fluorescence.
Collapse
Affiliation(s)
- Lingjie Hou
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, China
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Humic Acid Engineering and Technology Research Center of Shanxi Province, Jinzhong, China
| | - Linlin Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chenhua Deng
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, China
| | - Pengyue Jin
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chaochao Wen
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Wenjia Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Bastioli G, Piccirillo S, Graciotti L, Carone M, Sprega G, Taoussi O, Preziuso A, Castaldo P. Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson's Disease: Role of Calcium-Storing Organelles and Sodium-Calcium Exchanger. Cells 2024; 13:1301. [PMID: 39120330 PMCID: PMC11311461 DOI: 10.3390/cells13151301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease's pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Marianna Carone
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Giorgia Sprega
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| |
Collapse
|
9
|
Zhang P, Nde J, Eliaz Y, Jennings N, Cieplak P, Cheung MS. Chemistry-informed Machine Learning Explains Calcium-binding Proteins' Fuzzy Shape for Communicating Changes in the Atomic States of Calcium Ions. ARXIV 2024:arXiv:2407.17017v1. [PMID: 39108291 PMCID: PMC11302678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins' fuzziness are features for communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. Binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit, but it is unclear whether the limited experimental data available can be used to train models to accurately predict the charges of calcium-binding protein variants. Here, we developed a chemistry-informed, machine-learning algorithm that implements a game theoretic approach to explain the output of a machine-learning model without the prerequisite of an excessively large database for high-performance prediction of atomic charges. We used the ab initio electronic structure data representing calcium ions and the structures of the disordered segments of calcium-binding peptides with surrounding water molecules to train several explainable models. Network theory was used to extract the topological features of atomic interactions in the structurally complex data dictated by the coordination chemistry of a calcium ion, a potent indicator of its charge state in protein. With our designs, we provided a framework of explainable machine learning model to annotate atomic charges of calcium ions in calcium-binding proteins with domain knowledge in response to the chemical changes in an environment based on the limited size of scientific data in a genome space.
Collapse
Affiliation(s)
- Pengzhi Zhang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
| | - Jules Nde
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Yossi Eliaz
- Department of Physics, University of Houston, Houston, TX, USA
- Computer Science Department, HIT Holon Institute of Technology, Holon, Israel
| | | | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Margaret S Cheung
- Department of Physics, University of Washington, Seattle, WA, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
10
|
Wang X, Xiong Y, Tang X, Zhang T, Ma W, Wang Y, Li C. Genome-Wide Identification of the PIP5K Gene Family in Camellia sinensis and Their Roles in Metabolic Regulation. Genes (Basel) 2024; 15:932. [PMID: 39062711 PMCID: PMC11275303 DOI: 10.3390/genes15070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Spider mite infestation has a severe impact on tea growth and quality. In this study, we conducted a deep exploration of the functions and regulations of the CsPIP5K gene family using chromosomal localization and collinearity analysis. Additionally, we carefully examined the cis elements within these genes. To fully understand the metabolic response of CsPIP5K under spider mite infection, we integrated previously published metabolomic and transcriptomic data. Our analysis revealed that multiple CsPIP5K genes are associated with phospholipid metabolism, with CsPIP5K06 showing the strongest correlation. Therefore, we employed qPCR and subcellular localization techniques to determine the expression pattern of this gene and its functional location within the cell. Overall, this study not only comprehensively elucidated the characteristics, structure, and evolution of the CsPIP5K gene family but also identified several candidate CsPIP5K genes related to phospholipid biosynthesis and associated with spider mites based on previously published data. This research makes a significant contribution to enhancing the resistance of tea to spider mite and maintaining optimal tea quality.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.X.); (X.T.); (T.Z.); (W.M.); (Y.W.); (C.L.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Yadav RS, Kushawaha B, Dhariya R, Swain DK, Yadav B, Anand M, Kumari P, Rai PK, Singh D, Yadav S, Garg SK. Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: signaling and ultra-structural evidences. Biol Res 2024; 57:44. [PMID: 38965573 PMCID: PMC11225213 DOI: 10.1186/s40659-024-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 μg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.
Collapse
Affiliation(s)
- Rajkumar Singh Yadav
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Bhawna Kushawaha
- College of Biotechnology, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
- University of Nebraska Medical Center (UNMC), Omaha, USA.
| | - Rahul Dhariya
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Mukul Anand
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Priyambada Kumari
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | | | - Dipty Singh
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Satish Kumar Garg
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
| |
Collapse
|
12
|
Castaneda Ruan P, Benson JC, Trebak M, Kirk V, Sneyd J. A Model for the Coexistence of Competing Mechanisms for Ca 2 + Oscillations in T-lymphocytes. Bull Math Biol 2024; 86:86. [PMID: 38869652 PMCID: PMC11176111 DOI: 10.1007/s11538-024-01317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Ca 2 + is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing Ca 2 + oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular Ca 2 + influx through the Ca 2 + release-activated Ca 2 + channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.
Collapse
Affiliation(s)
- Paco Castaneda Ruan
- Department of Mathematics, University of Auckland, Auckland Central, 1142, Auckland, New Zealand.
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 1526, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 1526, USA
- Graduate Program in Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 1526, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 1526, USA
| | - Vivien Kirk
- Department of Mathematics, University of Auckland, Auckland Central, 1142, Auckland, New Zealand
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland Central, 1142, Auckland, New Zealand
| |
Collapse
|
13
|
Xiong T, Zhang Z, Fan T, Ye F, Ye Z. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals. BMC Genomics 2024; 25:350. [PMID: 38589807 PMCID: PMC11000326 DOI: 10.1186/s12864-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.
Collapse
Affiliation(s)
- Tao Xiong
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Fan Ye
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ziyi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
14
|
Ramazanov BR, Parchure A, Di Martino R, Kumar A, Chung M, Kim Y, Griesbeck O, Schwartz MA, Luini A, von Blume J. Calcium flow at ER-TGN contact sites facilitates secretory cargo export. Mol Biol Cell 2024; 35:ar50. [PMID: 38294859 PMCID: PMC11064664 DOI: 10.1091/mbc.e23-03-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
Ca2+ influx into the trans-Golgi Network (TGN) promotes secretory cargo sorting by the Ca2+-ATPase SPCA1 and the luminal Ca2+ binding protein Cab45. Cab45 oligomerizes upon local Ca2+ influx, and Cab45 oligomers sequester and separate soluble secretory cargo from the bulk flow of proteins in the TGN. However, how this Ca2+ flux into the lumen of the TGN is achieved remains mysterious, as the cytosol has a nanomolar steady-state Ca2+ concentration. The TGN forms membrane contact sites (MCS) with the Endoplasmic Reticulum (ER), allowing protein-mediated exchange of molecular species such as lipids. Here, we show that the TGN export of secretory proteins requires the integrity of ER-TGN MCS and inositol 3 phosphate receptor (IP3R)-dependent Ca2+ fluxes in the MCS, suggesting Ca2+ transfer between these organelles. Using an MCS-targeted Ca2+ FRET sensor module, we measure the Ca2+ flow in these sites in real time. These data show that ER-TGN MCS facilitates the Ca2+ transfer required for Ca2+-dependent cargo sorting and export from the TGN, thus solving a fundamental question in cell biology.
Collapse
Affiliation(s)
- Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Rosaria Di Martino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples 80131, Italy
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510
| | - Yeongho Kim
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Martin A. Schwartz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council, Naples 80131, Italy
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
15
|
Iacobucci GJ, Popescu GK. Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophys J 2024; 123:277-293. [PMID: 38140727 PMCID: PMC10870176 DOI: 10.1016/j.bpj.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Calcium ions (Ca2+) reduce NMDA receptor currents through several distinct mechanisms. Among these, calmodulin (CaM)-dependent inhibition (CDI) accomplishes rapid, reversible, and incomplete reduction of the NMDA receptor currents in response to elevations in intracellular Ca2+. Quantitative and mechanistic descriptions of CDI of NMDA receptor-mediated signals have been marred by variability originating, in part, from differences in the conditions and metrics used to evaluate this process across laboratories. Recent ratiometric approaches to measure the magnitude and kinetics of NMDA receptor CDI have facilitated rapid insights into this phenomenon. Notably, the kinetics and magnitude of NMDA receptor CDI depend on the degree of saturation of its CaM binding sites, which represent the bona fide calcium sensor for this type of inhibition, the kinetics and magnitude of the Ca2+ signal, which depends on the biophysical properties of the NMDA receptor or of adjacent Ca2+ sources, and on the relative distribution of Ca2+ sources and CaM molecules. Given that all these factors vary widely during development, across cell types, and with physiological and pathological states, it is important to understand how NMDA receptor CDI develops and how it contributes to signaling in the central nervous system. Here, we review briefly these recent advances and highlight remaining questions about the structural and kinetic mechanisms of NMDA receptor CDI. Given that pathologies can arise from several sources, including mutations in the NMDA receptor and in CaM, understanding how CaM responds to intracellular Ca2+ signals to initiate conformational changes in NMDA receptors, and mapping the structural domains responsible will help to envision novel therapeutic strategies to neuropsychiatric diseases, which presently have limited available treatments.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
| |
Collapse
|
16
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
17
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
18
|
Gorniak L, Bechwar J, Westermann M, Steiniger F, Wegner CE. Different lanthanide elements induce strong gene expression changes in a lanthanide-accumulating methylotroph. Microbiol Spectr 2023; 11:e0086723. [PMID: 37909735 PMCID: PMC10848612 DOI: 10.1128/spectrum.00867-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | | | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
19
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. ARXIV 2023:arXiv:2309.06907v3. [PMID: 37744466 PMCID: PMC10516112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium-release activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, Texas, USA, 77030
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| |
Collapse
|
20
|
Kscheschinski B, Kramar M, Alim K. Calcium regulates cortex contraction in Physarum polycephalum. Phys Biol 2023; 21:016001. [PMID: 37975194 DOI: 10.1088/1478-3975/ad0a9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The tubular network-forming slime moldPhysarum polycephalumis able to maintain long-scale contraction patterns driven by an actomyosin cortex. The resulting shuttle streaming in the network is crucial for the organism to respond to external stimuli and reorganize its body mass giving rise to complex behaviors. However, the chemical basis of the self-organized flow pattern is not fully understood. Here, we present ratiometric measurements of free intracellular calcium in simple morphologies ofPhysarumnetworks. The spatiotemporal patterns of the free calcium concentration reveal a nearly anti-correlated relation to the tube radius, suggesting that calcium is indeed a key regulator of the actomyosin activity. We compare the experimentally observed phase relation between the radius and the calcium concentration to the predictions of a theoretical model including calcium as an inhibitor. Numerical simulations of the model suggest that calcium indeed inhibits the contractions inPhysarum, although a quantitative difference to the experimentally measured phase relation remains. Unraveling the mechanism underlying the contraction patterns is a key step in gaining further insight into the principles ofPhysarum's complex behavior.
Collapse
Affiliation(s)
- Bjoern Kscheschinski
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Mirna Kramar
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
21
|
Alamdari-Palangi V, Jaberi KR, Shahverdi M, Naeimzadeh Y, Tajbakhsh A, Khajeh S, Razban V, Fallahi J. Recent advances and applications of peptide-agent conjugates for targeting tumor cells. J Cancer Res Clin Oncol 2023; 149:15249-15273. [PMID: 37581648 DOI: 10.1007/s00432-023-05144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/08/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Shahverdi
- Medical Biotechnology Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
22
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
23
|
Wang J, Wong CH, Zhu Y, Yao X, Ng KKC, Zhou C, To KF, Chen Y. Identification of GRIN2D as a novel therapeutic target in pancreatic ductal adenocarcinoma. Biomark Res 2023; 11:74. [PMID: 37553583 PMCID: PMC10410818 DOI: 10.1186/s40364-023-00514-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jiatong Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Yinxin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
24
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Kokkaliari S, Luo D, Paul VJ, Luesch H. Isolation and Biological Activity of Iezoside and Iezoside B, SERCA Inhibitors from Floridian Marine Cyanobacteria. Mar Drugs 2023; 21:378. [PMID: 37504909 PMCID: PMC10381893 DOI: 10.3390/md21070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Marine cyanobacteria are a rich source of bioactive natural products. Here, we report the isolation and structure elucidation of the previously reported iezoside (1) and its C-31 O-demethyl analogue, iezoside B (2), from a cyanobacterial assemblage collected at Loggerhead Key in the Dry Tortugas, Florida. The two compounds have a unique skeleton comprised of a peptide, a polyketide and a modified sugar unit. The compounds were tested for cytotoxicity and effects on intracellular calcium. Both compounds exhibited cytotoxic activity with an IC50 of 1.5 and 3.0 μΜ, respectively, against A549 lung carcinoma epithelial cells and 1.0 and 2.4 μΜ against HeLa cervical cancer cells, respectively. In the same cell lines, compounds 1 and 2 show an increase in cytosolic calcium with approximate EC50 values of 0.3 and 0.6 μΜ in A549 cells and 0.1 and 0.5 μΜ, respectively, in HeLa cells, near the IC50 for cell viability, suggesting that the increase in cytosolic calcium is functionally related to the cytotoxicity of the compounds and consistent with their activity as SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) inhibitors. The structure-activity relationship provides evidence that structural changes in the sugar unit may be tolerated, and the activity is tunable. This finding has implications for future analogue synthesis and target interaction studies.
Collapse
Affiliation(s)
- Sofia Kokkaliari
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Fort Pierce, FL 34949, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Lingamgunta LK, Aloor BP, Dasari S, Ramakrishnan R, Botlagunta M, Madikonda AK, Gopal S, Sade A. Identification of prognostic hub genes and therapeutic targets for selenium deficiency in chicks model through transcriptome profiling. Sci Rep 2023; 13:8695. [PMID: 37248251 DOI: 10.1038/s41598-023-34955-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Selenium deficiency is a prevalent micronutrient deficiency that poses a major health concern worldwide. This study aimed to shed light on the molecular mechanisms underlying selenium deficiency using a chick model. Chickens were divided into control and selenium deficient groups. Plasma samples were collected to measure selenium concentration and transcriptome analyse were performed on oviduct samples. The results showed that selenium deficiency led to a significant reduction in plasma selenium levels and altered the expression of 10,266 differentially expressed genes (DEGs). These DEGs primarily regulated signal transduction and cell motility. The molecular function includes GTPase regulatory activity, and KEGG pathway analysis showed that they were mainly involved in the signal transduction. By using Cytoscape and CancerGeneNet tool, we identified 8 modules and 10 hub genes (FRK, JUN, PTPRC, ACTA2, MST1R, SDC4, SDC1, CXCL12, MX1 and EZR) associated with receptor tyrosine kinase pathway, Wnt and mTOR signaling pathways that may be closely related to cancer. These hub genes could be served as precise diagnostic and prognostic candidate biomarkers of selenium deficiency and potential targets for treatment strategies in both animals and humans. This study sheds light on the molecular basis of selenium deficiency and its potential impact on public health.
Collapse
Affiliation(s)
| | - Bindu Prasuna Aloor
- Department of Botany, Rayalaseema University, Kurnool, 518002, Andhra Pradesh, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Mahendran Botlagunta
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology (VIT), Bhopal, 466114, Madhya Pradesh, India
| | - Ashok Kumar Madikonda
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Periye, 671316, Kerala, India
| | - Shankar Gopal
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| |
Collapse
|
28
|
Sánchez-Tecuatl M, Moccia F, Martínez-Carballido JF, Berra-Romani R. An automated method to discover true events and classification of intracellular Ca 2+ profiles for endothelium in situ injury assay. Front Physiol 2023; 14:1161023. [PMID: 37250125 PMCID: PMC10213911 DOI: 10.3389/fphys.2023.1161023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Endothelial cells (ECs), being located at the interface between flowing blood and vessel wall, maintain cardiovascular homeostasis by virtue of their ability to integrate chemical and physical cues through a spatio-temporally coordinated increase in their intracellular Ca2+ concentration ([Ca2+]i). Endothelial heterogeneity suggests the existence of spatially distributed functional clusters of ECs that display different patterns of intracellular Ca2+ response to extracellular inputs. Characterizing the overall Ca2+ activity of the endothelial monolayer in situ requires the meticulous analysis of hundreds of ECs. This complex analysis consists in detecting and quantifying the true Ca2+ events associated to extracellular stimulation and classifying their intracellular Ca2+ profiles (ICPs). The injury assay technique allows exploring the Ca2+-dependent molecular mechanisms involved in angiogenesis and endothelial regeneration. However, there are true Ca2+ events of nearly undetectable magnitude that are almost comparable with inherent instrumental noise. Moreover, undesirable artifacts added to the signal by mechanical injury stimulation complicate the analysis of intracellular Ca2+ activity. In general, the study of ICPs lacks uniform criteria and reliable approaches for assessing these highly heterogeneous spatial and temporal events. Methods: Herein, we present an approach to classify ICPs that consists in three stages: 1) identification of Ca2+ candidate events through thresholding of a feature termed left-prominence; 2) identification of non-true events, known as artifacts; and 3) ICP classification based upon event temporal location. Results: The performance assessment of true-events identification showed competitive sensitivity = [0.9995, 0.9831], specificity = [0.9946, 0.7818] and accuracy = [0.9978, 0.9579] improvements of 2x and 14x, respectively, compared with other methods. The ICP classifier enhanced by artifact detection showed 0.9252 average accuracy with the ground-truth sets provided for validation. Discussion: Results indicate that our approach ensures sturdiness to experimental protocol maneuvers, besides it is effective, simple, and configurable for different studies that use unidimensional time dependent signals as data. Furthermore, our approach would also be effective to analyze the ICPs generated by other cell types, other dyes, chemical stimulation or even signals recorded at higher frequency.
Collapse
Affiliation(s)
- Marcial Sánchez-Tecuatl
- Electronics Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
29
|
Ives CM, Thomson NJ, Zachariae U. A cooperative knock-on mechanism underpins Ca2+-selective cation permeation in TRPV channels. J Gen Physiol 2023; 155:213957. [PMID: 36943243 PMCID: PMC10038842 DOI: 10.1085/jgp.202213226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/15/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The selective exchange of ions across cellular membranes is a vital biological process. Ca2+-mediated signaling is implicated in a broad array of physiological processes in cells, while elevated intracellular concentrations of Ca2+ are cytotoxic. Due to the significance of this cation, strict Ca2+ concentration gradients are maintained across the plasma and organelle membranes. Therefore, Ca2+ signaling relies on permeation through selective ion channels that control the flux of Ca2+ ions. A key family of Ca2+-permeable membrane channels is the polymodal signal-detecting transient receptor potential (TRP) ion channels. TRP channels are activated by a wide variety of cues including temperature, small molecules, transmembrane voltage, and mechanical stimuli. While most members of this family permeate a broad range of cations non-selectively, TRPV5 and TRPV6 are unique due to their strong Ca2+ selectivity. Here, we address the question of how some members of the TRPV subfamily show a high degree of Ca2+ selectivity while others conduct a wider spectrum of cations. We present results from all-atom molecular dynamics simulations of ion permeation through two Ca2+-selective and two non-selective TRPV channels. Using a new method to quantify permeation cooperativity based on mutual information, we show that Ca2+-selective TRPV channel permeation occurs by a three-binding site knock-on mechanism, whereas a two-binding site knock-on mechanism is observed in non-selective TRPV channels. Each of the ion binding sites involved displayed greater affinity for Ca2+ over Na+. As such, our results suggest that coupling to an extra binding site in the Ca2+-selective TRPV channels underpins their increased selectivity for Ca2+ over Na+ ions. Furthermore, analysis of all available TRPV channel structures shows that the selectivity filter entrance region is wider for the non-selective TRPV channels, slightly destabilizing ion binding at this site, which is likely to underlie mechanistic decoupling.
Collapse
Affiliation(s)
- Callum M Ives
- Computational Biology, School of Life Sciences, University of Dundee , Dundee, UK
| | - Neil J Thomson
- Computational Biology, School of Life Sciences, University of Dundee , Dundee, UK
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee , Dundee, UK
- Biochemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dundee, UK
| |
Collapse
|
30
|
Tomar D, Thomas M, Garbincius JF, Kolmetzky DW, Salik O, Jadiya P, Joseph SK, Carpenter AC, Hajnóczky G, Elrod JW. MICU1 regulates mitochondrial cristae structure and function independently of the mitochondrial Ca 2+ uniporter channel. Sci Signal 2023; 16:eabi8948. [PMID: 37098122 PMCID: PMC10388395 DOI: 10.1126/scisignal.abi8948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
MICU1 is a calcium (Ca2+)-binding protein that regulates the mitochondrial Ca2+ uniporter channel complex (mtCU) and mitochondrial Ca2+ uptake. MICU1 knockout mice display disorganized mitochondrial architecture, a phenotype that is distinct from that of mice with deficiencies in other mtCU subunits and, thus, is likely not explained by changes in mitochondrial matrix Ca2+ content. Using proteomic and cellular imaging techniques, we found that MICU1 localized to the mitochondrial contact site and cristae organizing system (MICOS) and directly interacted with the MICOS components MIC60 and CHCHD2 independently of the mtCU. We demonstrated that MICU1 was essential for MICOS complex formation and that MICU1 ablation resulted in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, and cell death signaling. Together, our results suggest that MICU1 is an intermembrane space Ca2+ sensor that modulates mitochondrial membrane dynamics independently of matrix Ca2+ uptake. This system enables distinct Ca2+ signaling in the mitochondrial matrix and at the intermembrane space to modulate cellular energetics and cell death in a concerted manner.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Manfred Thomas
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Joanne F. Garbincius
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Oniel Salik
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - April C. Carpenter
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
31
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Pregnancy-Specific Glycoprotein 9 Enhances Store-Operated Calcium Entry and Nitric Oxide Release in Human Umbilical Vein Endothelial Cells. Diagnostics (Basel) 2023; 13:diagnostics13061134. [PMID: 36980442 PMCID: PMC10047280 DOI: 10.3390/diagnostics13061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
We explored changes in pregnancy-specific glycoprotein 9 (PSG9) levels in the serum of patients with preeclampsia and the effects and underlying mechanisms of PSG9 effects on calcium (Ca2+) homeostasis and nitric oxide (NO) release in human umbilical vein endothelial cells (HUVECs). Western blotting was used to detect protein expression levels, and an NO fluorescence probe was used to examine NO production. Intracellular Ca2+ concentrations were measured using a Ca2+-sensitive fluorescent dye under a fluorescence microscope. Compared with those in healthy pregnant women, serum PSG9 levels were significantly decreased in patients with preeclampsia. PSG9 (0.1 μg/mL) treatment of HUVECs significantly enhanced the expression levels of store-operated calcium entry (SOCE) channel proteins Orai1 and Orai2, but not Orai3, and of endothelial nitric oxide synthase (eNOS) and NO production. Pretreatment with an inhibitor of SOCE (BTP2) abolished PSG9-enhanced Orai1, Orai2, and eNOS expression levels and NO production in HUVECs. The mechanisms underlying SOCE that were PSG9 enhanced in HUVECs appear to involve the Ca2+/eNOS/NO signaling pathway. These findings suggest that serum PSG9 levels may be a potential biomarker for monitoring the occurrence or development of preeclampsia in pregnancy and that PSG9 may be a potential therapeutic target for the treatment of preeclampsia.
Collapse
|
33
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
34
|
Pro-Apoptotic and Anti-Cancer Activity of the Vernonanthura Nudiflora Hydroethanolic Extract. Cancers (Basel) 2023; 15:cancers15051627. [PMID: 36900417 PMCID: PMC10000589 DOI: 10.3390/cancers15051627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The mitochondrial voltage-dependent anion channel 1 (VDAC1) protein is involved in several essential cancer hallmarks, including energy and metabolism reprogramming and apoptotic cell death evasion. In this study, we demonstrated the ability of hydroethanolic extracts from three different plants, Vernonanthura nudiflora (Vern), Baccharis trimera (Bac), and Plantago major (Pla), to induce cell death. We focused on the most active Vern extract. We demonstrated that it activates multiple pathways that lead to impaired cell energy and metabolism homeostasis, elevated ROS production, increased intracellular Ca2+, and mitochondria-mediated apoptosis. The massive cell death generated by this plant extract's active compounds involves the induction of VDAC1 overexpression and oligomerization and, thereby, apoptosis. Gas chromatography of the hydroethanolic plant extract identified dozens of compounds, including phytol and ethyl linoleate, with the former producing similar effects as the Vern hydroethanolic extract but at 10-fold higher concentrations than those found in the extract. In a xenograft glioblastoma mouse model, both the Vern extract and phytol strongly inhibited tumor growth and cell proliferation and induced massive tumor cell death, including of cancer stem cells, inhibiting angiogenesis and modulating the tumor microenvironment. Taken together, the multiple effects of Vern extract make it a promising potential cancer therapeutic.
Collapse
|
35
|
Gao X, Di X, Li J, Kang Y, Xie W, Sun L, Zhang J. Extracellular Calcium-Induced Calcium Transient Regulating the Proliferation of Osteoblasts through Glycolysis Metabolism Pathways. Int J Mol Sci 2023; 24:4991. [PMID: 36902420 PMCID: PMC10003245 DOI: 10.3390/ijms24054991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
During bone remodeling, high extracellular calcium levels accumulated around the resorbing bone tissue as soon as the activation of osteoclasts. However, if and how calcium is involved in the regulation of bone remodeling remains unclear. In this study, the effect of high extracellular calcium concentrations on osteoblast proliferation and differentiation, intracellular calcium ([Ca2+]i) levels, metabolomics, and the expression of proteins related to energy metabolism were investigated. Our results showed that high extracellular calcium levels initiated a [Ca2+]i transient via the calcium-sensing receptor (CaSR) and promoted the proliferation of MC3T3-E1 cells. Metabolomics analysis showed that the proliferation of MC3T3-E1 cells was dependent on aerobic glycolysis, but not the tricarboxylic acid cycle. Moreover, the proliferation and glycolysis of MC3T3-E1 cells were suppressed following the inhibition of AKT. These results indicate that calcium transient triggered by high extracellular calcium levels activated glycolysis via AKT-related signaling pathways and ultimately promoted the proliferation of osteoblasts.
Collapse
Affiliation(s)
- Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Jingjing Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Wenjun Xie
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi’an 710119, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| |
Collapse
|
36
|
Wu KX, Yogarajah T, Choy Loe MW, Kaur P, Hua Lee RC, Mok CK, Wong YH, Phuektes P, Yeo LS, Chow VT, Tan YW, Hann Chu JJ. The host-targeting compound peruvoside has a broad-spectrum antiviral activity against positive-sense RNA viruses. Acta Pharm Sin B 2023; 13:2039-2055. [DOI: 10.1016/j.apsb.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
|
37
|
Lu W, Hou Q, Zhang J, Zhang W. Targeted energy metabolomics analysis of postmortem pork in an in vitro model as influenced by protein S-nitrosylation. Meat Sci 2023; 197:109073. [PMID: 36525918 DOI: 10.1016/j.meatsci.2022.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
For exploring the effect of protein S-nitrosylation on the energy metabolism of early postmortem pork (within 24 h postmortem), the six Longissimus thoracis (LT) muscle homogenates were treated with nitric oxide donor (NOR-3, (±)-(E)-4-Ethyl-2-(E)-hydroxyimino-5-nitro-3-hexenamide), nitric oxide synthase (NOS) inhibitor (L-NAME, Nω-nitro-L-arginine methyl ester hydrochloride) and control (0.1 M K2HPO4, pH 7.4) in the in vitro buffer system for 24 h, respectively. The western blotting result showed that NOR-3 treatment led to a greater level of protein S-nitrosylation (p < 0.05). However, S-nitrosylation levels had no significant difference between L-NAME and control groups (p > 0.05). In addition, results showed that 16 significantly differential energy metabolites were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and clearly separated among three groups in the principal component analysis. Four pathways (glycolysis, tricarboxylic acid cycle, purine metabolism and pentose phosphate pathway) related to energy metabolism were significantly influenced by different levels of protein S-nitrosylation. Furthermore, the correlation analysis of metabolites demonstrated that metabolites were in dynamic equilibrium with each other. These results indicate that protein S-nitrosylation can participate in and regulate energy metabolism postmortem pork through glycolysis and tricarboxylic acid (TCA) cycle.
Collapse
Affiliation(s)
- Wenwei Lu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Hou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Liu X, Yan Z, Cai J, Wang D, Yang Y, Ding Y, Shao X, Hao X, Luo E, Guo XE, Luo P, Shen L, Jing D. Glucose- and glutamine-dependent bioenergetics sensitize bone mechanoresponse after unloading by modulating osteocyte calcium dynamics. J Clin Invest 2023; 133:164508. [PMID: 36512405 PMCID: PMC9888392 DOI: 10.1172/jci164508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Wang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xiaoxia Hao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital
| | - Liangliang Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, and,Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
39
|
Dal Cortivo G, Marino V, Bianconi S, Dell'Orco D. Calmodulin variants associated with congenital arrhythmia impair selectivity for ryanodine receptors. Front Mol Biosci 2023; 9:1100992. [PMID: 36685279 PMCID: PMC9849693 DOI: 10.3389/fmolb.2022.1100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Among its many molecular targets, the ubiquitous calcium sensor protein calmodulin (CaM) recognizes and regulates the activity of ryanodine receptors type 1 (RyR1) and 2 (RyR2), mainly expressed in skeletal and cardiac muscle, respectively. Such regulation is essential to achieve controlled contraction of muscle cells. To unravel the molecular mechanisms underlying the target recognition process, we conducted a comprehensive biophysical investigation of the interaction between two calmodulin variants associated with congenital arrhythmia, namely N97I and Q135P, and a highly conserved calmodulin-binding region in RyR1 and RyR2. The structural, thermodynamic, and kinetic properties of protein-peptide interactions were assessed together with an in-depth structural and topological investigation based on molecular dynamics simulations. This integrated approach allowed us to identify amino acids that are crucial in mediating allosteric processes, which enable high selectivity in molecular target recognition. Our results suggest that the ability of calmodulin to discriminate between RyR1 an RyR2 targets depends on kinetic discrimination and robust allosteric communication between Ca2+-binding sites (EF1-EF3 and EF3-EF4 pairs), which is perturbed in both N97I and Q135P arrhythmia-associated variants.
Collapse
|
40
|
Ramis R, Ballesteros ÓR, Muguruza-Montero A, M-Alicante S, Núñez E, Villarroel Á, Leonardo A, Bergara A. Molecular dynamics simulations of the calmodulin-induced α-helix in the SK2 calcium-gated potassium ion channel. J Biol Chem 2022; 299:102850. [PMID: 36587765 PMCID: PMC9874072 DOI: 10.1016/j.jbc.2022.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The family of small-conductance Ca2+-activated potassium ion channels (SK channels) is composed of four members (SK1, SK2, SK3, and SK4) involved in neuron-firing regulation. The gating of these channels depends on the intracellular Ca2+ concentration, and their sensitivity to this ion is provided by calmodulin (CaM). This protein binds to a specific region in SK channels known as the calmodulin-binding domain (CaMBD), an event which is essential for their gating. While CaMBDs are typically disordered in the absence of CaM, the SK2 channel subtype displays a small prefolded α-helical region in its CaMBD even if CaM is not present. This small helix is known to turn into a full α-helix upon CaM binding, although the molecular-level details for this conversion are not fully understood yet. In this work, we offer new insights on this physiologically relevant process by means of enhanced sampling, atomistic Hamiltonian replica exchange molecular dynamics simulations, providing a more detailed understanding of CaM binding to this target. Our results show that CaM is necessary for inducing a full α-helix along the SK2 CaMBD through hydrophobic interactions with V426 and L427. However, it is also necessary that W431 does not compete for these interactions; the role of the small prefolded α-helix in the SK2 CaMBD would be to stabilize W431 so that this is the case. In conclusion, our findings provide further insight into a key interaction between CaM and SK channels that is important for channel sensitivity to Ca2+.
Collapse
Affiliation(s)
- Rafael Ramis
- Donostia International Physics Center, Donostia, Spain; Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain.
| | - Óscar R. Ballesteros
- Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Centro de Física de Materiales CFM, CSIC-UPV/EHU, Donostia, Spain
| | | | - Sara M-Alicante
- Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | - Eider Núñez
- Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | | | - Aritz Leonardo
- Donostia International Physics Center, Donostia, Spain,Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain
| | - Aitor Bergara
- Donostia International Physics Center, Donostia, Spain,Departamento de Física, Universidad del País Vasco, UPV/EHU, Leioa, Spain,Centro de Física de Materiales CFM, CSIC-UPV/EHU, Donostia, Spain
| |
Collapse
|
41
|
Kopeina GS, Zhivotovsky B. Programmed cell death: Past, present and future. Biochem Biophys Res Commun 2022; 633:55-58. [DOI: 10.1016/j.bbrc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
|
42
|
Wei P, Yu X, Yang Y, Chen Z, Zhao S, Li X, Zhang W, Liu C, Li X, Liu X. Biased gene expression reveals the contribution of subgenome to altitude adaptation in allopolyploid Isoetes sinensis. Ecol Evol 2022; 12:e9677. [PMID: 36619709 PMCID: PMC9797765 DOI: 10.1002/ece3.9677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Allopolyploids are believed to inherit the genetic characteristics of its progenitors and exhibit stronger adaptability and vigor. The allotetraploid Isoetes sinensis was formed by the natural hybridization and polyploidization of two diploid progenitors, Isoetes taiwanensis and Isoetes yunguiensis, and was believed to have the potential to adapt to plateau environments. To explore the expression pattern of homoeologous genes and their contributions to altitude adaptation, we transplanted natural allotetraploid I. sinensis (TnTnYnYn) along the altitude gradient for a long-term, and harvested them in summer and winter, respectively. One year after transplanting, it still lived well, even in the extreme environment of the Qinghai-Tibet Plateau. Then, we performed high-throughput RNA sequencing to measure their gene expression level. A total of 7801 homoeologous genes were expressed, among which 5786 were identified as shared expression in different altitudes and seasons. We further found that altitude variations could change the subgenome bias trend of I. sinensis, but season could not. Moreover, the functions of uniquely expressed genes indicated that temperature might be an important restrictive factor during the adaptation process. Through the analysis of DEGs and uniquely expressed genes, we found that Y subgenome provided more contributions to high altitude adaptation than T subgenome. These adaptive traits to high altitude may be inherited from its plateau progenitor I. yunguiensis. Through weighted gene co-expression network analysis, pentatricopeptide repeats gene family and glycerophospholipid metabolism pathway were considered to play important roles in high-altitude adaptation. Totally, this study will enrich our understanding of allopolyploid in environmental adaptation.
Collapse
Affiliation(s)
- Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐lei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu‐jiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhu‐yifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Shu‐qi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xin‐zhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Wen‐cai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Chen‐lai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐yan Li
- Biology Experimental Teaching Center, School of Life ScienceWuhan UniversityWuhanChina
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| |
Collapse
|
43
|
Gehlert FO, Sauerwein T, Weidenbach K, Repnik U, Hallack D, Förstner KU, Schmitz RA. Dual-RNAseq Analysis Unravels Virus-Host Interactions of MetSV and Methanosarcina mazei. Viruses 2022; 14:2585. [PMID: 36423194 PMCID: PMC9694453 DOI: 10.3390/v14112585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Methanosarcina spherical virus (MetSV), infecting Methanosarcina species, encodes 22 genes, but their role in the infection process in combination with host genes has remained unknown. To study the infection process in detail, infected and uninfected M. mazei cultures were compared using dual-RNAseq, qRT-PCRs, and transmission electron microscopy (TEM). The transcriptome analysis strongly indicates a combined role of virus and host genes in replication, virus assembly, and lysis. Thereby, 285 host and virus genes were significantly regulated. Within these 285 regulated genes, a network of the viral polymerase, MetSVORF6, MetSVORF5, MetSVORF2, and the host genes encoding NrdD, NrdG, a CDC48 family protein, and a SSB protein with a role in viral replication was postulated. Ultrastructural analysis at 180 min p.i. revealed many infected cells with virus particles randomly scattered throughout the cytoplasm or attached at the cell surface, and membrane fragments indicating cell lysis. Dual-RNAseq and qRT-PCR analyses suggested a multifactorial lysis reaction in potential connection to the regulation of a cysteine proteinase, a pirin-like protein and a HicB-solo protein. Our study's results led to the first preliminary infection model of MetSV infecting M. mazei, summarizing the key infection steps as follows: replication, assembly, and host cell lysis.
Collapse
Affiliation(s)
- Finn O. Gehlert
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Till Sauerwein
- ZB MED, Information Centre for Life Sciences, 50931 Cologne, Germany
| | - Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Urska Repnik
- Central Microscopy, Christian Albrechts University, 24118 Kiel, Germany
| | - Daniela Hallack
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| |
Collapse
|
44
|
Najih M, Nguyen HT, Martin LJ. Involvement of calmodulin-dependent protein kinase I in the regulation of the expression of connexin 43 in MA-10 tumor Leydig cells. Mol Cell Biochem 2022; 478:791-805. [PMID: 36094721 DOI: 10.1007/s11010-022-04553-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Connexin 43 (Cx43, also known as Gja1) is the most abundant testicular gap junction protein. It has a crucial role in the support of spermatogenesis by Sertoli cells in the seminiferous tubules as well as in androgen synthesis by Leydig cells. The multifunctional family of Ca2+/calmodulin-dependent protein kinases (CaMK) is composed of CaMK I, II, and IV and each can serve as a mediator of nuclear Ca2+ signals. These kinases can control gene expression by phosphorylation of key regulatory sites on transcription factors. Among these, AP-1 members cFos and cJun are interesting candidates that seem to cooperate with CaMKs to regulate Cx43 expression in Leydig cells. In this study, the Cx43 promoter region important for CaMK-dependent activation is characterized using co-transfection of plasmid reporter-constructs with different plasmids coding for CaMKs and/or AP-1 members in MA-10 Leydig cells. Here we report that the activation of Cx43 expression by cFos and cJun is increased by CaMKI. Furthermore, results from chromatin immunoprecipitation suggest that the recruitment of AP-1 family members to the proximal region of the Cx43 promoter may involve another uncharacterized AP-1 DNA regulatory element and/or protein-protein interactions with other partners. Thus, our data provide new insights into the molecular regulatory mechanisms that control mouse Cx43 transcription in testicular Leydig cells.
Collapse
Affiliation(s)
- Mustapha Najih
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Ha Tuyen Nguyen
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
45
|
Karschin N, Becker S, Griesinger C. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. J Am Chem Soc 2022; 144:17041-17053. [PMID: 36082939 PMCID: PMC9501808 DOI: 10.1021/jacs.2c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Collapse
Affiliation(s)
- Niels Karschin
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen D-37075, Germany
| |
Collapse
|
46
|
Barak P, Kaur S, Scappini E, Tucker CJ, Parekh AB. Plasma Membrane Ca 2+ ATPase Activity Enables Sustained Store-operated Ca 2+ Entry in the Absence of a Bulk Cytosolic Ca 2+ Rise. FUNCTION 2022; 3:zqac040. [PMID: 38989036 PMCID: PMC11234650 DOI: 10.1093/function/zqac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 07/12/2024] Open
Abstract
In many cell types, the rise in cytosolic Ca2+ due to opening of Ca2+ release-activated Ca2+ (CRAC) channels drives a plethora of responses, including secretion, motility, energy production, and gene expression. The amplitude and time course of the cytosolic Ca2+ rise is shaped by the rates of Ca2+ entry into and removal from the cytosol. However, an extended bulk Ca2+ rise is toxic to cells. Here, we show that the plasma membrane Ca2+ ATPase (PMCA) pump plays a major role in preventing a prolonged cytosolic Ca2+ signal following CRAC channel activation. Ca2+ entry through CRAC channels leads to a sustained sub-plasmalemmal Ca2+ rise but bulk Ca2+ is kept low by the activity of PMCA4b. Despite the low cytosolic Ca2+, membrane permeability to Ca2+ is still elevated and Ca2+ continues to enter through CRAC channels. Ca2+-dependent NFAT activation, driven by Ca2+ nanodomains near the open channels, is maintained despite the return of bulk Ca2+ to near pre-stimulation levels. Our data reveal a central role for PMCA4b in determining the pattern of a functional Ca2+ signal and in sharpening local Ca2+ gradients near CRAC channels, whilst protecting cells from a toxic Ca2+ overload.
Collapse
Affiliation(s)
- Pradeep Barak
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK
- Oxford Nanoimaging, Linacre House, Jordan Hill Business Park Banbury Road, Oxford OX2 8TA, UK
| | - Suneet Kaur
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| | - Erica Scappini
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| | - Charles J Tucker
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| |
Collapse
|
47
|
Kim AA, Nguyen A, Marchetti M, Du X, Montell DJ, Pruitt BL, O'Brien LE. Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ. J Cell Sci 2022; 135:jcs260249. [PMID: 35722729 PMCID: PMC9450890 DOI: 10.1242/jcs.260249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types - even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.
Collapse
Affiliation(s)
- Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Amanda Nguyen
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - XinXin Du
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Denise J Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
48
|
Humer C, Berlansky S, Grabmayr H, Sallinger M, Bernhard A, Fahrner M, Frischauf I. Science CommuniCa 2+tion Developing Scientific Literacy on Calcium: The Involvement of CRAC Currents in Human Health and Disease. Cells 2022; 11:1849. [PMID: 35681544 PMCID: PMC9179999 DOI: 10.3390/cells11111849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Frischauf
- Life Science Center, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (S.B.); (H.G.); (M.S.); (A.B.); (M.F.)
| |
Collapse
|
49
|
Yu S, Wang Y, Tang B, Liu X, Song L, Xu G, Zhu H, Sun H. Four calcium signaling pathway-related genes were upregulated in microcystic adnexal carcinoma: transcriptome analysis and immunohistochemical validation. World J Surg Oncol 2022; 20:142. [PMID: 35509066 PMCID: PMC9066904 DOI: 10.1186/s12957-022-02601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microcystic adnexal carcinoma (MAC) is a skin cancer with challenges in diagnosis and management. This study was aimed to detect molecular alterations of MAC and guide its pathologic diagnosis and treatment. METHODS We performed transcriptome analysis on 5 MAC and 5 normal skin tissues, identified the differentially expressed genes, and verified them by immunohistochemistry. RESULTS Three hundred four differentially expressed genes (DEGs) in MAC were identified by next-generation transcriptome sequencing, among which 225 genes were upregulated and 79 genes were downregulated. Four genes of the calcium signaling pathway, including calcium voltage-gated channel subunit alpha 1 S (CACNA1S), ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 (ATP2A1), ryanodine receptor 1 (RYR1), and myosin light chain kinase 3 (MYLK3), were upregulated and then been verified by immunohistochemistry. The expression of CACNA1S, ATP2A1, RYR1, and MYLK3 was upregulated in MAC compared with normal sweat glands and syringoma tumor cells and was generally negative in trichoepithelioma and infundibulocystic type basal cell carcinoma. CONCLUSIONS The four genes of the calcium signaling pathway were upregulated in MAC at both RNA and protein levels. CACNA1S, ATP2A1, RYR1, and MYLK3 may be new diagnostic molecular markers and therapeutic targets for MAC.
Collapse
Affiliation(s)
- Shuaixia Yu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Baijie Tang
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiang Liu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Linhong Song
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Gang Xu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong Zhu
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China. .,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Huajun Sun
- Department of Pathology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China. .,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
50
|
Song HJ, Jeon IS, Kim SR, Park KS, Soh JW, Lee KY, Shin JC, Lee HK, Choi JK. PKC-β modulates Ca 2+ mobilization through Stim1 phosphorylation. Genes Genomics 2022; 44:571-582. [PMID: 35254656 PMCID: PMC9042968 DOI: 10.1007/s13258-022-01230-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Calcium ions play a pivotal role in cell proliferation, differentiation, and migration. Under basal conditions, the calcium level is tightly regulated; however, cellular activation by growth factors increase the ion level through calcium pumps in the plasma membrane and endoplasmic reticulum for calcium signaling. Orai1 is a major calcium channel in the cell membrane of non-excitable cells, and its activity depends on the stromal interaction molecule 1 (Stim1). Several groups reported that the store-operated calcium entry (SOCE) can be modulated through phosphorylation of Stim1 by protein kinases such as extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and p21-activated kinase (PAK). PKC is a protein kinase that is activated by calcium and diacylglycerol (DAG), but it remains unclear what role activated PKC plays in controlling the intracellular calcium pool. OBJECTIVES Here, we investigated whether PKC-β controls intracellular calcium dynamics through Stim1. METHODS Several biochemical methods such as immune-precipitation, site directed mutagenesis, in vitro kinase assay were employed to investigate PKC interaction with and phosphorylation of Stim1. Intracellular calcium mobilization, via Stim1 mediated SOCE channel, were studied using in the presence of PKC activator or inhibitor under a confocal microscope. RESULTS Our data demonstrate that PKC interacts with and phosphorylates Stim1 in vitro. phosphorylation of Stim1 at its C-terminal end appears to be important in the regulation of SOCE activity in HEK293 and HeLa cells. Additionally, transient intracellular calcium mobilization assays demonstrate that the SOCE activity was inhibited by PKC activators or activated by PKC inhibitors. CONCLUSION In sum, our data suggest a repressive role of PKC in regulating calcium entry through SOCE.
Collapse
Affiliation(s)
- Hye-Jin Song
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - In-Sook Jeon
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - Seung Ryul Kim
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - Kwan Sik Park
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea
| | - Jae-Won Soh
- Biomedical Research Center for Signal Transduction Networks, Department of Chemistry, Inha University, Incheon, 402-751, Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 500-757, Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, 394, Jigok-ro, Nam-gu, Pohang, Gyeongbuk, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Chonju, 54896, Jeollabuk-do, Korea.
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Ch'ongju, 28644, Korea.
| |
Collapse
|