1
|
Choudhary A, Senthil-Kumar M. Drought: A context-dependent damper and aggravator of plant diseases. PLANT, CELL & ENVIRONMENT 2024; 47:2109-2126. [PMID: 38409868 DOI: 10.1111/pce.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.
Collapse
|
2
|
Roussin-Léveillée C, Mackey D, Ekanayake G, Gohmann R, Moffett P. Extracellular niche establishment by plant pathogens. Nat Rev Microbiol 2024; 22:360-372. [PMID: 38191847 DOI: 10.1038/s41579-023-00999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
The plant extracellular space, referred to as the apoplast, is inhabited by a variety of microorganisms. Reflecting the crucial nature of this compartment, both plants and microorganisms seek to control, exploit and respond to its composition. Upon sensing the apoplastic environment, pathogens activate virulence programmes, including the delivery of effectors with well-established roles in suppressing plant immunity. We posit that another key and foundational role of effectors is niche establishment - specifically, the manipulation of plant physiological processes to enrich the apoplast in water and nutritive metabolites. Facets of plant immunity counteract niche establishment by restricting water, nutrients and signals for virulence activation. The complex competition to control and, in the case of pathogens, exploit the apoplast provides remarkable insights into the nature of virulence, host susceptibility, host defence and, ultimately, the origin of phytopathogenesis. This novel framework focuses on the ecology of a microbial niche and highlights areas of future research on plant-microorganism interactions.
Collapse
Affiliation(s)
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA.
| | - Gayani Ekanayake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Reid Gohmann
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
4
|
Gao YQ, Farmer EE. Osmoelectric siphon models for signal and water dispersal in wounded plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1207-1220. [PMID: 36377754 PMCID: PMC9923213 DOI: 10.1093/jxb/erac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
When attacked by herbivores, plants produce electrical signals which can activate the synthesis of the defense mediator jasmonate. These wound-induced membrane potential changes can occur in response to elicitors that are released from damaged plant cells. We list plant-derived elicitors of membrane depolarization. These compounds include the amino acid l-glutamate (Glu), a potential ligand for GLUTAMATE RECEPTOR-LIKE (GLR) proteins that play roles in herbivore-activated electrical signaling. How are membrane depolarization elicitors dispersed in wounded plants? In analogy with widespread turgor-driven cell and organ movements, we propose osmoelectric siphon mechanisms for elicitor transport. These mechanisms are based on membrane depolarization leading to cell water shedding into the apoplast followed by membrane repolarization and water uptake. We discuss two related mechanisms likely to occur in response to small wounds and large wounds that trigger leaf-to-leaf electrical signal propagation. To reduce jasmonate pathway activation, a feeding insect must cut through tissues cleanly. If their mandibles become worn, the herbivore is converted into a robust plant defense activator. Our models may therefore help to explain why numerous plants produce abrasives which can blunt herbivore mouthparts. Finally, if verified, the models we propose may be generalizable for cell to cell transport of water and pathogen-derived regulators.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Groux R, Fouillen L, Mongrand S, Reymond P. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2535-2553. [PMID: 35608326 PMCID: PMC9342989 DOI: 10.1093/plphys/kiac242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
6
|
Pal G, Bakade R, Deshpande S, Sureshkumar V, Patil SS, Dawane A, Agarwal S, Niranjan V, PrasannaKumar MK, Vemanna RS. Transcriptomic responses under combined bacterial blight and drought stress in rice reveal potential genes to improve multi-stress tolerance. BMC PLANT BIOLOGY 2022; 22:349. [PMID: 35850621 PMCID: PMC9290298 DOI: 10.1186/s12870-022-03725-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/29/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND The unprecedented drought and frequent occurrence of pathogen infection in rice is becoming more due to climate change. Simultaneous occurrence of stresses lead to more crop loss. To cope up multiple stresses, the durable resistant cultivars needs to be developed, by identifying relevant genes from combined biotic and abiotic stress exposed plants. RESULTS We studied the effect of drought stress, bacterial leaf blight disease causing Xanthomonas oryzae pv. oryzae (Xoo) pathogen infection and combined stress in contrasting BPT5204 and TN1 rice genotypes. Mild drought stress increased Xoo infection irrespective of the genotype. To identify relevant genes that could be used to develop multi-stress tolerant rice, RNA sequencing from individual drought, pathogen and combined stresses in contrasting genotypes has been developed. Many important genes are identified from resistant genotype and diverse group of genes are differentially expressed in contrasting genotypes under combined stress. Further, a meta-analysis from individual drought and Xoo pathogen stress from public domain data sets narrowed- down candidate differentially expressed genes. Many translation associated genes are differentially expressed suggesting their extra-ribosomal function in multi-stress adaptation. Overexpression of many of these genes showed their relevance in improving stress tolerance in rice by different scientific groups. In combined stress, many downregulated genes also showed their relevance in stress adaptation when they were over-expressed. CONCLUSIONS Our study identifies many important genes, which can be used as molecular markers and targets for genetic manipulation to develop durable resistant rice cultivars. Strategies should be developed to activate downregulated genes, to improve multi-stress tolerance in plants.
Collapse
Affiliation(s)
- Garima Pal
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Rahul Bakade
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - V Sureshkumar
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Swathi S Patil
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Akashata Dawane
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Subham Agarwal
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Vidya Niranjan
- Department of Biotechnology, R.V. Engineering College, Bengaluru, 560059, India
| | - M K PrasannaKumar
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
7
|
Cowles KN, Block AK, Barak JD. Xanthomonas hortorum pv. gardneri TAL effector AvrHah1 is necessary and sufficient for increased persistence of Salmonella enterica on tomato leaves. Sci Rep 2022; 12:7313. [PMID: 35508535 PMCID: PMC9068798 DOI: 10.1038/s41598-022-11456-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 01/16/2023] Open
Abstract
Salmonella enterica is ubiquitous in the plant environment, persisting in the face of UV stress, plant defense responses, desiccation, and nutrient limitation. These fluctuating conditions of the leaf surface result in S. enterica population decline. Biomultipliers, such as the phytopathogenic bacterium Xanthomonas hortorum pv. gardneri (Xhg), alter the phyllosphere to the benefit of S. enterica. Specific Xhg-dependent changes to this niche that promote S. enterica persistence remain unclear, and this work focuses on identifying factors that lead to increased S. enterica survival on leaves. Here, we show that the Xhg transcription activator-like effector AvrHah1 is both necessary and sufficient for increased survival of S. enterica on tomato leaves. An Xhg avrHah1 mutant fails to influence S. enterica survival while addition of avrHah1 to X. vesicatoria provides a gain of function. Our results indicate that although Xhg stimulates a robust immune response from the plant, AvrHah1 is not required for these effects. In addition, we demonstrate that cellular leakage that occurs during disease is independent of AvrHah1. Investigation of the interaction between S. enterica, Xhg, and the plant host provides information regarding how an inhospitable environment changes during infection and can be transformed into a habitable niche.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna K Block
- Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. Cell Host Microbe 2022; 30:502-517.e4. [PMID: 35421350 DOI: 10.1016/j.chom.2022.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Plant pathogens perturb their hosts to create environments suitable for their proliferation, including the suppression of immunity and promotion of water and nutrient availability. Although necrotrophs obtain water and nutrients by disrupting host-cell integrity, it is unknown whether hemibiotrophs, such as the bacterial pathogen Pantoea stewartii subsp. stewartii (Pnss), actively liberate water and nutrients during the early, biotrophic phase of infection. Here, we show that water and metabolite accumulation in the apoplast of Pnss-infected maize leaves precedes the disruption of host-cell integrity. Nutrient acquisition during this biotrophic phase is a dynamic process; the partitioning of metabolites into the apoplast rate limiting for their assimilation by proliferating Pnss cells. The formation of a hydrated and nutritive apoplast is driven by an AvrE-family type III effector, WtsE. Given the broad distribution of AvrE-family effectors, this work highlights the importance of actively acquiring water and nutrients for the proliferation of phytopathogenic bacteria during biotrophy.
Collapse
|
9
|
Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Xie Q, Yan J, Chu J, Ling HQ, Li Q, Miao J, Zhao B. Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5562-5576. [PMID: 32453812 DOI: 10.1093/jxb/eraa255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.
Collapse
Affiliation(s)
- Yi Liu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunru Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qiang Cheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Danyu Kong
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qian Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jiamin Miao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- College of Grassland, Gansu Agricultural University, Lanzhou, China
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Barcarolo MV, Gottig N, Ottado J, Garavaglia BS. Participation of two general stress response proteins from Xanthomonas citri subsp. citri in environmental stress adaptation and virulence. FEMS Microbiol Ecol 2020; 96:5868764. [PMID: 32639549 DOI: 10.1093/femsec/fiaa138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/06/2020] [Indexed: 11/14/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is the bacteria responsible for citrus canker. During its life cycle Xcc is found on leaves as epiphyte, where desiccation conditions may occur. In this work, two Xcc genes, XAC0100 and XAC4007, predicted in silico to be involved in general stress response, were studied under salt, osmotic, desiccation, oxidative and freezing stress, and during plant-pathogen interaction. Expression of XAC0100 and XAC4007 genes was induced under these stress conditions. Disruption of both genes in Xcc caused decreased bacterial culturability under desiccation, freezing, osmotic and oxidative stress. Importantly, the lack of these genes impaired Xcc epiphytic fitness. Both Xac0100 and Xac4007 recombinant proteins showed protective effects on Xanthomonas cells subjected to drought stress. Also, Escherichia coli overexpressing Xac4007 showed a better performance under standard culture, saline and osmotic stress and were more tolerant to freezing and oxidative stress than wild type E. coli. Moreover, both Xac0100 and Xac4007 recombinant proteins were able to prevent the freeze-thaw-induced inactivation of L-Lactate dehydrogenase. In conclusion, Xac0100 and Xac4007 have a relevant role as bacteria and protein protectors; and these proteins are crucial to bacterial pathogens that must face environmental stressful conditions that compromise the accomplishment of the complete virulence process.
Collapse
Affiliation(s)
- María Victoria Barcarolo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Betiana S Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| |
Collapse
|
11
|
Chen Y, Bendix C, Lewis JD. Comparative Genomics Screen Identifies Microbe-Associated Molecular Patterns from ' Candidatus Liberibacter' spp. That Elicit Immune Responses in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:539-552. [PMID: 31790346 DOI: 10.1094/mpmi-11-19-0309-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Claire Bendix
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Jennifer D Lewis
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| |
Collapse
|
12
|
Saijo Y, Loo EPI. Plant immunity in signal integration between biotic and abiotic stress responses. THE NEW PHYTOLOGIST 2020; 225:87-104. [PMID: 31209880 DOI: 10.1111/nph.15989] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Plants constantly monitor and cope with the fluctuating environment while hosting a diversity of plant-inhabiting microbes. The mode and outcome of plant-microbe interactions, including plant disease epidemics, are dynamically and profoundly influenced by abiotic factors, such as light, temperature, water and nutrients. Plants also utilize associations with beneficial microbes during adaptation to adverse conditions. Elucidation of the molecular bases for the plant-microbe-environment interactions is therefore of fundamental importance in the plant sciences. Following advances into individual stress signaling pathways, recent studies are beginning to reveal molecular intersections between biotic and abiotic stress responses and regulatory principles in combined stress responses. We outline mechanisms underlying environmental modulation of plant immunity and emerging roles for immune regulators in abiotic stress tolerance. Furthermore, we discuss how plants coordinate conflicting demands when exposed to combinations of different stresses, with attention to a possible determinant that links initial stress response to broad-spectrum stress tolerance or prioritization of specific stress tolerance.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
13
|
Abstract
In the past four decades, tremendous progress has been made in understanding how plants respond to microbial colonization and how microbial pathogens and symbionts reprogram plant cellular processes. In contrast, our knowledge of how environmental conditions impact plant-microbe interactions is less understood at the mechanistic level, as most molecular studies are performed under simple and static laboratory conditions. In this review, we highlight research that begins to shed light on the mechanisms by which environmental conditions influence diverse plant-pathogen, plant-symbiont, and plant-microbiota interactions. There is a great need to increase efforts in this important area of research in order to reach a systems-level understanding of plant-microbe interactions that are more reflective of what occurs in nature.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Li Zhang
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Sheng Yang He
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilient Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Yan J, Yu H, Li B, Fan A, Melkonian J, Wang X, Zhou T, Hua J. Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense. PLoS Pathog 2019; 15:e1008094. [PMID: 31652291 PMCID: PMC6834285 DOI: 10.1371/journal.ppat.1008094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/06/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
Stomatal closure defense and apoplastic defense are two major immunity mechanisms restricting the entry and propagation of microbe pathogens in plants. Surprisingly, activation of plant intracellular immune receptor NLR genes, while enhancing whole plant disease resistance, was sometimes linked to a defective stomatal defense in autoimmune mutants. Here we report the use of high temperature and genetic chimera to investigate the inter-dependence of stomatal and apoplastic defenses in autoimmunity. High temperature inhibits both stomatal and apoplastic defenses in the wild type, suppresses constitutive apoplastic defense responses and rescues the deficiency of stomatal closure response in autoimmune mutants. Chimeric plants have been generated to activate NLR only in guard cells or the non-guard cells. NLR activation in guard cells inhibits stomatal closure defense response in a cell autonomous manner likely through repressing ABA responses. At the same time, it leads to increased whole plant resistance accompanied by a slight increase in apoplastic defense. In addition, NLR activation in both guard and non-guard cells affects stomatal aperture and water potential. This study thus reveals that NLR activation has a differential effect on immunity in a cell type specific matter, which adds another layer of immune regulation with spatial information.
Collapse
Affiliation(s)
- Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America
| | - Huiyun Yu
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America.,Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Li
- School of Applied Physics and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Anqi Fan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America.,State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey Melkonian
- School of Integrative Plant Science, Crop and Soil Sciences, Cornell University, Ithaca, NY, United States of America
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
15
|
Hernandez MN, Lindow SE. Pseudomonas syringae Increases Water Availability in Leaf Microenvironments via Production of Hygroscopic Syringafactin. Appl Environ Microbiol 2019; 85:e01014-19. [PMID: 31285194 PMCID: PMC6715840 DOI: 10.1128/aem.01014-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 01/26/2023] Open
Abstract
The epiphytic bacterium Pseudomonas syringae strain B728a produces the biosurfactant syringafactin, which is hygroscopic. The water-absorbing potential of syringafactin is high. Syringafactin attracts 250% of its weight in water at high relative humidities but is less hygroscopic at lower relative humidities. This finding suggests that the benefit of syringafactin to the producing cells is strongly context dependent. The contribution of syringafactin to the water availability around cells on different matrices was assessed by examining the water stress exhibited by biosensor strains expressing gfp via the water-stress-activated proU promoter. Wild-type cells exhibited significantly less green fluorescent protein (GFP) fluorescence than a syringafactin-deficient strain on dry filters in atmospheres of high water saturation, as well as on leaf surfaces, indicating greater water availability. When infiltrated into the leaf apoplast, wild-type cells also subsequently exhibited less GFP fluorescence than the syringafactin-deficient strain. These results suggest that the apoplast is a dry but humid environment and that, just as on dry but humid leaf surfaces, syringafactin increases liquid water availability and reduces the water stress experienced by P. syringaeIMPORTANCE Many microorganisms, including the plant pathogen Pseudomonas syringae, produce amphiphilic compounds known as biosurfactants. While biosurfactants are known to disperse hydrophobic compounds and to reduce water tension, they have other properties that can benefit the cells that produce them. Leaf-colonizing bacteria experience frequent water stress, since liquid water is present only transiently on or in leaf sites that they colonize. The demonstration that syringafactin, a biosurfactant produced by P. syringae, is sufficiently hygroscopic to increase water availability to cells, thus relieving water stress, reveals that P. syringae can modify its local habitat both on leaf surfaces and in the leaf apoplast. Such habitat modification may be a common role for biosurfactants produced by other bacterial species that colonize habitats (such as soil) that are not always water saturated.
Collapse
Affiliation(s)
- Monica N Hernandez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Yan Q, Rogan CJ, Anderson JC. Development of a Pseudomonas syringae- Arabidopsis Suspension Cell Infection System for Investigating Host Metabolite-Dependent Regulation of Type III Secretion and Pattern-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:527-539. [PMID: 30431399 DOI: 10.1094/mpmi-10-18-0295-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The importance of pattern-triggered immunity (PTI) in plant defense has been clearly established through genetic studies of mutants lacking functional pattern recognition receptors (PRRs) and signaling components downstream of PRR activation. Despite extensive knowledge of PRR-mediated signaling responses to pathogen-associated molecular patterns (PAMPs), little is known about which of these responses, if any, are directly responsible for limiting bacterial growth. In this work, we established a protocol for coculturing the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and Arabidopsis suspension cells. The system closely mirrors infection processes that occur in leaves, with bacteria relying on the type III secretion system (T3SS) for maximal growth and PAMP-induced plant defenses effectively limiting bacterial growth. To demonstrate the utility of this system, we investigated the molecular basis of PAMP-induced growth inhibition and discovered that T3SS-associated genes are inhibited when DC3000 is cocultured with PAMP-treated plant suspension cells. To determine the underlying mechanism of decreased T3SS gene expression, we performed metabolomics and biochemical analyses of suspension cell exudates and identified 14 metabolites that significantly increased or decreased following PAMP treatment. Citric acid, a known inducer of T3SS gene expression in DC3000, was among several organic acids decreased in exudates from PAMP-treated plant cells. Exogenous addition of citric acid increased T3SS gene expression and partially recovered growth of DC3000 in the presence of PAMP-treated cells, indicating that a portion of PAMP-induced defense in this system is decreased extracellular release of this metabolite. We envision that the well-defined infection conditions of this coculture system will be valuable for quantitative studies of type III effector delivery by P. syringae. Furthermore, this system provides a unique 'top-down' approach to unravel the molecular basis of PTI against P. syringae.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| |
Collapse
|
17
|
Gentzel I, Giese L, Zhao W, Alonso AP, Mackey D. A Simple Method for Measuring Apoplast Hydration and Collecting Apoplast Contents. PLANT PHYSIOLOGY 2019; 179:1265-1272. [PMID: 30824565 PMCID: PMC6446764 DOI: 10.1104/pp.18.01076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/21/2019] [Indexed: 05/23/2023]
Abstract
The plant leaf apoplast is a dynamic environment subject to a variety of both internal and external stimuli. In addition to being a conduit for water vapor and gas exchange involved in transpiration and photosynthesis, the apoplast also accumulates many nutrients transported from the soil as well as those produced through photosynthesis. The internal leaf also provides a protective environment for endophytic and pathogenic microbes alike. Given the diverse array of physiological processes occurring in the apoplast, it is expedient to develop methods to study its contents. Many established methods rely on vacuum infiltration of an apoplast wash solution followed by centrifugation. In this study, we describe a refined method optimized for maize (Zea mays) seedling leaves, which not only provides a simple procedure for obtaining apoplast fluid, but also allows direct calculation of apoplast hydration at the time of harvest for every sample. In addition, we describe an abbreviated method for estimating apoplast hydration if the full apoplast extraction is not necessary. Finally, we show the applicability of this optimized apoplast extraction procedure for plants infected with the maize pathogen Pantoea stewartii ssp stewartii, including the efficient isolation of bacteria previously residing in the apoplast. The approaches to establishing this method should make it generally applicable to other types of plants.
Collapse
Affiliation(s)
- Irene Gentzel
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Laura Giese
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Wanying Zhao
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Ana Paula Alonso
- BioDiscovery Institute, University of North Texas, Denton, Texas 76201
- Department of Biological Sciences, University of North Texas, Denton, Texas 76201
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
18
|
Mata-Pérez C, Spoel SH. Thioredoxin-mediated redox signalling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:27-33. [PMID: 30709489 DOI: 10.1016/j.plantsci.2018.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 05/26/2023]
Abstract
Activation of plant immune responses is associated with rapid production of vast amounts of reactive oxygen and nitrogen species (ROS/RNS) that dramatically alter cellular redox homeostasis. Even though excessive ROS/RNS accumulation can cause widespread cellular damage and thus constitute a major risk, plant cells have evolved to utilise these molecules as important signalling cues. Particularly their ability to modify redox-sensitive cysteine residues has emerged as a key mechanism to control the activity, conformation, protein-protein interaction and localisation of a growing number of immune signalling proteins. Regulated reversal of cysteine oxidation is dependent on activities of the conserved superfamily of Thioredoxin (TRX) enzymes that function as cysteine reductases. The plant immune system recruits specific TRX enzymes that have the potential to functionally regulate numerous immune signalling proteins. Although our knowledge of different TRX immune targets is now expanding, little remains known about how these enzymes select their substrates, what range of oxidized residues they target, and if they function selectively in different redox-mediated immune signalling pathways. In this review we discuss these questions by examining evidence showing TRX enzymes exhibit novel activities that play important roles in diverse aspects of plant immune signalling.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
19
|
Zhang D, Tian C, Yin K, Wang W, Qiu JL. Postinvasive Bacterial Resistance Conferred by Open Stomata in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:255-266. [PMID: 30124364 DOI: 10.1094/mpmi-06-18-0162-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stomata are leaf pores that regulate gas exchange and water transpiration in response to environmental cues. They also function in innate immunity by limiting pathogen entry through actively closing in so-called stomatal defense. However, roles of stomata in plant disease resistance are not fully elucidated, especially in monocots. Here, we report that non-race specific resistance of the rice abscisic acid-deficient mutant Osaba1 to Xanthomonas oryzae pv. oryzae is due to increased stomatal conductance. Reducing stomatal conductance in the Osaba1 mutant increases its susceptibility to X. oryzae pv. oryzae. Artificial opening of stomata in wild-type plants leads to enhanced resistance to X. oryzae pv. oryzae. The rice mutant es1-1 with constitutively higher stomatal conductance exhibits strong resistance to X. oryzae pv. oryzae. Additionally, Osaba1 and es1-1 are resistant to X. oryzae pv. oryzicola. The data support that open stomata confer postinvasive resistance against bacterial pathogens in rice, and such resistance probably results from decreased leaf water potential. Our findings reveal a novel role of stomata in plant immunity through modulation of leaf water status, which provides physiological insight into the interactions between plant, pathogen, and environment.
Collapse
Affiliation(s)
- Dandan Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
- 2 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caijuan Tian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Kangquan Yin
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Wenyi Wang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jin-Long Qiu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
20
|
Vemanna RS, Bakade R, Bharti P, Kumar MKP, Sreeman SM, Senthil-Kumar M, Makarla U. Cross-Talk Signaling in Rice During Combined Drought and Bacterial Blight Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:193. [PMID: 30894866 PMCID: PMC6415615 DOI: 10.3389/fpls.2019.00193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/05/2019] [Indexed: 05/22/2023]
Abstract
Due to climatic changes, rice crop is affected by moisture deficit stress and pathogens. Tissue water limitation besides reducing growth rates, also renders the crop susceptible to the infection by Xanthomonas oryzae pv. oryzae (Xoo) that causes bacterial leaf blight. Independently, both drought adaptation and Xoo resistance have been extensively studied. Though the cross-talk between drought and Xoo stress responses have been explored from individual stress studies, examining the combinatorial stress response is limited in rice. Recently published combined stress studies showed that under the combined stress, maintenance of carbon assimilation is hindered and such response is regulated by overlapping cellular mechanisms that are different from either of the individual stresses. Several receptors, MAP kinases, transcription factors, and ribosomal proteins, are predicted for playing a role in cellular homeostasis and protects cells from combined stress effects. Here we provide a critical analysis of these aspects using information from the recently published combined stress literature. This review is useful for researchers to comprehend combinatorial stress response of rice plants to drought and Xoo.
Collapse
Affiliation(s)
- Ramu S. Vemanna
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
- Regional Center for Biotechnology, Faridabad, India
- *Correspondence: Ramu S. Vemanna, ;
| | - Rahul Bakade
- Department of Plant Pathology, University of Agriculture Sciences, Bengaluru, India
| | - Pooja Bharti
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agriculture Sciences, Bengaluru, India
| | | | | | - Udayakumar Makarla
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
| |
Collapse
|
21
|
Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL. Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2019; 10:1314. [PMID: 31681392 PMCID: PMC6813280 DOI: 10.3389/fpls.2019.01314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/20/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is an unusual pathogen which has the broad host range, diverse infection modes, and potential double feeding lifestyles of both biotroph and necrotroph. It is capable of infecting over 400 plant species found worldwide and more than 60 names have agriculturally been used to refer to diseases caused by this pathogen. Plant defense to S. sclerotiorum is a complex biological process and exhibits a typical quantitative disease resistance (QDR) response. Recent studies using Arabidopsis thaliana and crop plants have obtained new advances in mechanisms used by plants to cope with S. sclerotiorum infection. In this review, we focused on our current understanding on plant defense mechanisms against this pathogen, and set up a model for the defense process including three stages: recognition of this pathogen, signal transduction and defense response. We also have a particular interest in defense signaling mediated by diverse signaling molecules. We highlight the current challenges and unanswered questions in both the defense process and defense signaling. Essentially, we discussed candidate resistance genes newly mapped by using high-throughput experiments in important crops, and classified these potential gene targets into different stages of the defense process, which will broaden our understanding of the genetic architecture underlying quantitative resistance to S. sclerotiorum. We proposed that more powerful mapping population(s) will be required for accurate and reliable QDR gene identification.
Collapse
|
22
|
Wilhelm MB, Davila AF, Parenteau MN, Jahnke LL, Abate M, Cooper G, Kelly ET, Parro García V, Villadangos MG, Blanco Y, Glass B, Wray JJ, Eigenbrode JL, Summons RE, Warren-Rhodes K. Constraints on the Metabolic Activity of Microorganisms in Atacama Surface Soils Inferred from Refractory Biomarkers: Implications for Martian Habitability and Biomarker Detection. ASTROBIOLOGY 2018; 18:955-966. [PMID: 30035640 DOI: 10.1089/ast.2017.1705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dryness is one of the main environmental challenges to microbial survival. Understanding the threshold of microbial tolerance to extreme dryness is relevant to better constrain the environmental limits of life on Earth and critically evaluate long-term habitability models of Mars. Biomolecular proxies for microbial adaptation and growth were measured in Mars-like hyperarid surface soils in the Atacama Desert that experience only a few millimeters of precipitation per decade, and in biologically active soils a few hundred kilometers away that experience two- to fivefold more precipitation. Diversity and abundance of lipids and other biomolecules decreased with increasing dryness. Cyclopropane fatty acids (CFAs), which are indicative of adaptive response to environmental stress and growth in bacteria, were only detected in the wetter surface soils. The ratio of trans to cis isomers of an unsaturated fatty acid, another bacterial stress indicator, decreased with increasingly dry conditions. Aspartic acid racemization ratios increased from 0.01 in the wetter soils to 0.1 in the driest soils, which is indicative of racemization rates comparable to de novo biosynthesis over long timescales (∼10,000 years). The content and integrity of stress proteins profiled by immunoassays were additional indicators that biomass in the driest soils is not recycled at significant levels. Together, our results point to minimal or no in situ microbial growth in the driest surface soils of the Atacama, and any metabolic activity is likely to be basal for cellular repair and maintenance only. Our data add to a growing body of evidence that the driest Atacama surface soils represent a threshold for long-term habitability (i.e., growth and reproduction). These results place constraints on the potential for extant life on the surface of Mars, which is 100-1000 times drier than the driest regions in the Atacama. Key Words: Atacama Desert-Dryness-Growth-Habitability-Biomarker-Mars. Astrobiology 18, 955-966.
Collapse
Affiliation(s)
- Mary Beth Wilhelm
- 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Alfonso F Davila
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Mary N Parenteau
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Linda L Jahnke
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Mastewal Abate
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - George Cooper
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | | | - Victor Parro García
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Miriam G Villadangos
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Yolanda Blanco
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Brian Glass
- 5 Intelligent Systems Division, NASA Ames Research Center , Moffett Field, California
| | - James J Wray
- 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Jennifer L Eigenbrode
- 6 Planetary Environments Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland
| | - Roger E Summons
- 7 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | |
Collapse
|
23
|
Wei H, Collmer A. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. MOLECULAR PLANT PATHOLOGY 2018; 19:1779-1794. [PMID: 29277959 PMCID: PMC6638048 DOI: 10.1111/mpp.12655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 05/22/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.
Collapse
Affiliation(s)
- Hai‐Lei Wei
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of AgricultureInstitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Alan Collmer
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
| |
Collapse
|
24
|
Deb D, Mackey D, Opiyo SO, McDowell JM. Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein. PLoS One 2018; 13:e0195559. [PMID: 29641586 PMCID: PMC5895030 DOI: 10.1371/journal.pone.0195559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/23/2018] [Indexed: 11/23/2022] Open
Abstract
Diverse plant pathogens export effector proteins to reprogram host cells. One of the most challenging goals in the molecular plant-microbe field is to functionally characterize the complex repertoires of effectors secreted by these pathogens. For bacterial pathogens, the predominant class of effectors is delivered to host cells by Type III secretion. For oomycetes, the predominant class of effectors is defined by a signal peptide that mediates secretion from the oomycete and a conserved RxLR motif. Downy mildew pathogens and Phytophthora species maintain hundreds of candidate RxLR effector genes in their genomes. Although no primary sequence similarity is evident between bacterial Type III effectors (T3Es) and oomycete RXLR effectors, some bacterial and oomycete effectors have convergently evolved to target the same host proteins. Such effectors might have evolved domains that are functionally similar but sequence-unrelated. We reasoned that alignment-free bioinformatics approaches could be useful to identify structural similarities between bacterial and oomycete effectors. To test this approach, we used partial least squares regression, alignment-free bioinformatics methods to identify effector proteins from the genome of the oomycete Hyaloperonospora arabidopsidis that are similar to the well-studied AvrE1 effector from Pseudomonas syringae. This approach identified five RxLR proteins with putative structural similarity to AvrE1. We focused on one, HaRxL23, because it is an experimentally validated effector and it is conserved between distantly related oomycetes. Several experiments indicate that HaRxL23 is functionally similar to AvrE1, including the ability to partially rescue an AvrE1 loss-of-function mutant. This study provides an example of how an alignment-free bioinformatics approach can identify functionally similar effector proteins in the absence of primary sequence similarity. This approach could be useful to identify effectors that have convergently evolved regardless of whether the shared host target is known.
Collapse
Affiliation(s)
- Devdutta Deb
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David Mackey
- Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
| | - Stephen O. Opiyo
- Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SOO); (JMM)
| | - John M. McDowell
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (SOO); (JMM)
| |
Collapse
|
25
|
Abstract
Pseudomonas syringae is one of the best-studied plant pathogens and serves as a model for understanding host-microorganism interactions, bacterial virulence mechanisms and host adaptation of pathogens as well as microbial evolution, ecology and epidemiology. Comparative genomic studies have identified key genomic features that contribute to P. syringae virulence. P. syringae has evolved two main virulence strategies: suppression of host immunity and creation of an aqueous apoplast to form its niche in the phyllosphere. In addition, external environmental conditions such as humidity profoundly influence infection. P. syringae may serve as an excellent model to understand virulence and also of how pathogenic microorganisms integrate environmental conditions and plant microbiota to become ecologically robust and diverse pathogens of the plant kingdom.
Collapse
|
26
|
Aung K, Jiang Y, He SY. The role of water in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:771-780. [PMID: 29205604 PMCID: PMC5849256 DOI: 10.1111/tpj.13795] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 05/20/2023]
Abstract
Throughout their life plants are associated with various microorganisms, including commensal, symbiotic and pathogenic microorganisms. Pathogens are genetically adapted to aggressively colonize and proliferate in host plants to cause disease. However, disease outbreaks occur only under permissive environmental conditions. The interplay between host, pathogen and environment is famously known as the 'disease triangle'. Among the environmental factors, rainfall events, which often create a period of high atmospheric humidity, have repeatedly been shown to promote disease outbreaks in plants, suggesting that the availability of water is crucial for pathogenesis. During pathogen infection, water-soaking spots are frequently observed on infected leaves as an early symptom of disease. Recent studies have shown that pathogenic bacteria dedicate specialized virulence proteins to create an aqueous habitat inside the leaf apoplast under high humidity. Water availability in the apoplastic environment, and probably other associated changes, can determine the success of potentially pathogenic microbes. These new findings reinforce the notion that the fight over water may be a major battleground between plants and pathogens. In this article, we will discuss the role of water availability in host-microbe interactions, with a focus on plant-bacterial interactions.
Collapse
Affiliation(s)
- Kyaw Aung
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- For correspondence (; )
| | - Yanjuan Jiang
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- For correspondence (; )
| |
Collapse
|
27
|
Scott RA, Thilmony R, Harden LA, Zhou Y, Brandl MT. Escherichia coli O157:H7 Converts Plant-Derived Choline to Glycine Betaine for Osmoprotection during Pre- and Post-harvest Colonization of Injured Lettuce Leaves. Front Microbiol 2017; 8:2436. [PMID: 29276506 PMCID: PMC5727454 DOI: 10.3389/fmicb.2017.02436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022] Open
Abstract
Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157) responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05) over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP). The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01) when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9) choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and MAP cut lettuce. However, its competitive fitness followed a different time-dependent trend in MAP lettuce, likely due to differences in O2 content, which modulates betTIBA expression. Our study demonstrates that damaged lettuce leaf tissue does not merely supply EcO157 with substrates for proliferation, but also provides the pathogen with choline for its survival to osmotic stress experienced at the site of injury.
Collapse
Affiliation(s)
- Russell A. Scott
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Roger Thilmony
- Crop Improvement and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Yaguang Zhou
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
28
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
29
|
|
30
|
McCraw SL, Park DH, Jones R, Bentley MA, Rico A, Ratcliffe RG, Kruger NJ, Collmer A, Preston GM. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:938-949. [PMID: 28001093 DOI: 10.1094/mpmi-08-16-0172-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- S L McCraw
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - D H Park
- 2 Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - R Jones
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - M A Bentley
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - A Rico
- 3 Departamento de Didáctica de la 9 Matemática y de las Ciencias Experimentales, Faculty of Education and Sport, University of the Basque Country UPV/EHU, Juan Ibañez de Sto. Domingo 1, 01006 Vitoria-Gasteiz, Spain; and
| | - R G Ratcliffe
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - N J Kruger
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - A Collmer
- 4 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - G M Preston
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| |
Collapse
|
31
|
Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. PLANT MOLECULAR BIOLOGY 2016; 91:713-25. [PMID: 26879412 PMCID: PMC4932134 DOI: 10.1007/s11103-016-0452-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Plants are constantly threatened by potential pathogens. In order to optimize the output of defense against pathogens with distinct lifestyles, plants depend on hormonal networks to fine-tune specific responses and regulate growth-defense tradeoffs. To counteract, pathogens have evolved various strategies to disturb hormonal homeostasis and facilitate infection. Many pathogens synthesize plant hormones; more importantly, toxins and effectors are produced to manipulate hormonal crosstalk. Accumulating evidence has shown that pathogens exert extensive effects on plant hormone pathways not only to defeat immunity, but also modify habitat structure, optimize nutrient acquisition, and facilitate pathogen dissemination. In this review, we summarize mechanisms by which a wide array of pathogens gain benefits from manipulating plant hormone pathways.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
32
|
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Genetics 2016; 204:337-53. [PMID: 27412712 PMCID: PMC5012398 DOI: 10.1534/genetics.116.190678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.
Collapse
|
33
|
Gupta A, Dixit SK, Senthil-Kumar M. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:808. [PMID: 27375661 PMCID: PMC4894909 DOI: 10.3389/fpls.2016.00808] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by drought stress in combined stressed plants. Combined stressed plants also displayed reduced ROS generation and declined cell death which could be attributed to activation of effective basal defense responses. We hypothesize a model on ABA mediated gene regulation to partly explain the possible mechanistic basis for reduced in planta bacterial numbers under combined stress over individual pathogen stress.
Collapse
|
34
|
Jiang X, Zghidi-Abouzid O, Oger-Desfeux C, Hommais F, Greliche N, Muskhelishvili G, Nasser W, Reverchon S. Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. Environ Microbiol 2016; 18:3651-3672. [PMID: 26940633 DOI: 10.1111/1462-2920.13267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/14/2016] [Indexed: 11/28/2022]
Abstract
Dickeya species are soft rot disease-causing bacterial plant pathogens and an emerging agricultural threat in Europe. Environmental modulation of gene expression is critical for Dickeya dadantii pathogenesis. While the bacterium uses various environmental cues to distinguish between its habitats, an intricate transcriptional control system coordinating the expression of virulence genes ensures efficient infection. Understanding of this behaviour requires a detailed knowledge of expression patterns under a wide range of environmental conditions, which is currently lacking. To obtain a comprehensive picture of this adaptive response, we devised a strategy to examine the D. dadantii transcriptome in a series of 32 infection-relevant conditions encountered in the hosts. We propose a temporal map of the bacterial response to various stress conditions and show that D. dadantii elicits complex genetic behaviour combining common stress-response genes with distinct sets of genes specifically induced under each particular stress. Comparison of our dataset with an in planta expression profile reveals the combined impact of stress factors and enables us to predict the major stress confronting D. dadantii at a particular stage of infection. We provide a comprehensive catalog of D. dadantii genomic responses to environmentally relevant stimuli, thus facilitating future studies of this important plant pathogen.
Collapse
Affiliation(s)
- Xuejiao Jiang
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Ouafa Zghidi-Abouzid
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Christine Oger-Desfeux
- Univ Lyon, Université Lyon 1, Pôle Rhône-Alpes de Bioinformatique, Département Biologie, F-69622, Villeurbanne, France
| | - Florence Hommais
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Nicolas Greliche
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Georgi Muskhelishvili
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| |
Collapse
|
35
|
Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res 2016; 185:13-21. [DOI: 10.1016/j.micres.2016.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/14/2015] [Accepted: 01/20/2016] [Indexed: 11/17/2022]
|
36
|
Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection. PLoS One 2016; 11:e0148453. [PMID: 26840746 PMCID: PMC4739524 DOI: 10.1371/journal.pone.0148453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Dharmendra Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Jyoti Pathak
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Supriya Kumari
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Puspendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
37
|
Fatima U, Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. FRONTIERS IN PLANT SCIENCE 2015; 6:750. [PMID: 26442063 PMCID: PMC4585253 DOI: 10.3389/fpls.2015.00750] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/02/2015] [Indexed: 05/20/2023]
Abstract
Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant's growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant-pathogen interaction in nutrient perspective.
Collapse
|
38
|
Arnaud D, Hwang I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. MOLECULAR PLANT 2015; 8:566-81. [PMID: 25661059 DOI: 10.1016/j.molp.2014.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/25/2014] [Accepted: 10/26/2014] [Indexed: 05/03/2023]
Abstract
Guard cells are specialized cells forming stomatal pores at the leaf surface for gas exchanges between the plant and the atmosphere. Stomata have been shown to play an important role in plant defense as a part of the innate immune response. Plants actively close their stomata upon contact with microbes, thereby preventing pathogen entry into the leaves and the subsequent colonization of host tissues. In this review, we present current knowledge of molecular mechanisms and signaling pathways implicated in stomatal defenses, with particular emphasis on plant-bacteria interactions. Stomatal defense responses begin from the perception of pathogen-associated molecular patterns (PAMPs) and activate a signaling cascade involving the production of secondary messengers such as reactive oxygen species, nitric oxide, and calcium for the regulation of plasma membrane ion channels. The analyses on downstream molecular mechanisms implicated in PAMP-triggered stomatal closure have revealed extensive interplays among the components regulating hormonal signaling pathways. We also discuss the strategies deployed by pathogenic bacteria to counteract stomatal immunity through the example of the phytotoxin coronatine.
Collapse
Affiliation(s)
- Dominique Arnaud
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
39
|
Mitchell K, Brown I, Knox P, Mansfield J. The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in Arabidopsis. PHYTOCHEMISTRY 2015; 112:139-150. [PMID: 25108744 DOI: 10.1016/j.phytochem.2014.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
We have investigated the cause of the restricted multiplication of hrp mutant bacteria in leaves of Arabidopsis. Our focus was on early interactions leading to differentiation between virulent wild-type and non-pathogenic hrpA mutant strains of Pseudomonas syringae pv. tomato. An initial drop in recoverable bacteria detected 0-4 h after inoculation with either strain was dependent on a functional FLS2 receptor and H2O2 accumulation in challenged leaves. Wild-type bacteria subsequently multiplied rapidly whereas the hrpA mutant was restricted within 6 h. Despite the early restriction, the hrpA mutant was still viable several days after inoculation. Analysis of intercellular washing fluids (IWFs), showed that high levels of nutrients were readily available to bacteria in the apoplast and that no diffusible inhibitors were produced in response to bacterial challenge. Histochemical and immunocytochemical methods were used to detect changes in polysaccharides (callose, two forms of cellulose, and pectin), arabinogalactan proteins (AGPs), H2O2 and peroxidase. Quantitative analysis showed very similar changes in localisation of AGPs, cellulose epitopes and callose 2 and 4 h after inoculation with either strain. However from 6 to 12 h after inoculation papillae expanded only next to the hrp mutant. In contrast to the similar patterns of secretory activity recorded from mesophyll cells, accumulation of H2O2 and peroxidase was significantly greater around the hrpA mutant within the first 4h after inoculation. A striking differential accumulation of H2O2 was also found in chloroplasts in cells next to the mutant. Ascorbate levels were lower in the IWFs recovered from sites inoculated with the hrp mutant than with wild-type bacteria. The critical response, observed at the right time and place to explain the observed differential behaviour of wild-type and hrpA mutant bacteria was the accumulation of H2O2, probably generated through Type III peroxidase activity and in chloroplasts. It is proposed that H2O2 and apoplastic peroxidase cross-link secreted glycoproteins and polysaccharides to agglutinate the hrp mutant. Generation of H2O2 has been identified as a likely target for effector proteins injected into plant cells by the wild-type bacteria.
Collapse
Affiliation(s)
- Kathy Mitchell
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ian Brown
- School of Biological Sciences, University of Kent, Canterbury CT127NZ, UK
| | - Paul Knox
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John Mansfield
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
40
|
Sarma RK, Gogoi A, Dehury B, Debnath R, Bora TC, Saikia R. Community profiling of culturable fluorescent pseudomonads in the rhizosphere of green gram (Vigna radiata L.). PLoS One 2014; 9:e108378. [PMID: 25279790 PMCID: PMC4184808 DOI: 10.1371/journal.pone.0108378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19%) showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA) and pyoluteorin (PLT). Production efficiency of inherent level of plant growth promoting (PGP) traits among the 120 isolates demonstrated that 10 (8%) solubilised inorganic phosphates, 25 (20%) produced indoles and 5 (4%) retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP) traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28-93% (p = 0.05). Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator.
Collapse
Affiliation(s)
- Rupak K Sarma
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Animesh Gogoi
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Budheswar Dehury
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Rajal Debnath
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Tarun C Bora
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Ratul Saikia
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
41
|
Kessens R, Ashfield T, Kim SH, Innes RW. Determining the GmRIN4 requirements of the soybean disease resistance proteins Rpg1b and Rpg1r using a nicotiana glutinosa-based agroinfiltration system. PLoS One 2014; 9:e108159. [PMID: 25244054 PMCID: PMC4171518 DOI: 10.1371/journal.pone.0108159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
Rpg1b and Rpg1r are soybean disease resistance (R) genes responsible for conferring resistance to Pseudomonas syringae strains expressing the effectors AvrB and AvrRpm1, respectively. The study of these cloned genes would be greatly facilitated by the availability of a suitable transient expression system. The commonly used Niciotiana benthamiana-based system is not suitable for studying Rpg1b and Rpg1r function, however, because expression of AvrB or AvrRpm1 alone induces a hypersensitive response (HR), indicating that N. benthamiana contains endogenous R genes that recognize these effectors. To identify a suitable alternative host for transient expression assays, we screened 13 species of Nicotiana along with 11 accessions of N. tabacum for lack of response to transient expression of AvrB and AvrRpm1. We found that N. glutinosa did not respond to either effector and was readily transformable as determined by transient expression of β-glucuronidase. Using this system, we determined that Rpg1b-mediated HR in N. glutinosa required co-expression of avrB and a soybean ortholog of the Arabidopsis RIN4 gene. All four soybean RIN4 orthologs tested worked in the assay. In contrast, Rpg1r did not require co-expression of a soybean RIN4 ortholog to recognize AvrRpm1, but recognition was suppressed by co-expression with AvrRpt2. These observations suggest that an endogenous RIN4 gene in N. glutinosa can substitute for the soybean RIN4 ortholog in the recognition of AvrRpm1 by Rpg1r.
Collapse
Affiliation(s)
- Ryan Kessens
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Sang Hee Kim
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
42
|
Stockwell VO, Davis EW, Carey A, Shaffer BT, Mavrodi DV, Hassan KA, Hockett K, Thomashow LS, Paulsen IT, Loper JE. pA506, a conjugative plasmid of the plant epiphyte Pseudomonas fluorescens A506. Appl Environ Microbiol 2013; 79:5272-82. [PMID: 23811504 PMCID: PMC3753976 DOI: 10.1128/aem.01354-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/21/2013] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.
Collapse
Affiliation(s)
- Virginia O. Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Alyssa Carey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Brenda T. Shaffer
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Dmitri V. Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Kevin Hockett
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Linda S. Thomashow
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
- Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, USA
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| |
Collapse
|
43
|
Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol 2013; 195:4742-52. [PMID: 23955010 DOI: 10.1128/jb.00787-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The foliar pathogen Pseudomonas syringae is a useful model for understanding the role of stress adaptation in leaf colonization. We investigated the mechanistic basis of differences in the osmotolerance of two P. syringae strains, B728a and DC3000. Consistent with its higher survival rates following inoculation onto leaves, B728a exhibited superior osmotolerance over DC3000 and higher rates of uptake of plant-derived osmoprotective compounds. A global transcriptome analysis of B728a and DC3000 following an osmotic upshift demonstrated markedly distinct responses between the strains; B728a showed primarily upregulation of genes, including components of the type VI secretion system (T6SS) and alginate biosynthetic pathways, whereas DC3000 showed no change or repression of orthologous genes, including downregulation of the T3SS. DC3000 uniquely exhibited improved growth upon deletion of the biosynthetic genes for the compatible solute N-acetylglutaminylglutamine amide (NAGGN) in a minimal medium, due possibly to NAGGN synthesis depleting the cellular glutamine pool. Both strains showed osmoreduction of glnA1 expression, suggesting that decreased glutamine synthetase activity contributes to glutamate accumulation as a compatible solute, and both strains showed osmoinduction of 5 of 12 predicted hydrophilins. Collectively, our results demonstrate that the superior epiphytic competence of B728a is consistent with its strong osmotolerance, a proactive response to an osmotic upshift, osmoinduction of alginate synthesis and the T6SS, and resiliency of the T3SS to water limitation, suggesting sustained T3SS expression under the water-limited conditions encountered during leaf colonization.
Collapse
|
44
|
Diverse microhabitats experienced by Halomonas variabilis on salt-secreting leaves. Appl Environ Microbiol 2012; 79:845-52. [PMID: 23160133 DOI: 10.1128/aem.02791-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leaf surfaces of the salt-excreting tree Tamarix aphylla harbor a wide diversity of halophilic microorganisms, including Halomonas sp., but little is known of the factors that shape community composition in this extreme habitat. We isolated a strain of Halomonas variabilis from the leaf surface of T. aphylla and used it to determine the heterogeneity of salt concentrations experienced by bacteria in this environment. This halophilic strain was transformed with a proU::gfp reporter gene fusion, the fluorescence of which was responsive to NaCl concentrations up to 200 g liter(-1). These bioreporting cells were applied to T. aphylla leaves and were subsequently recovered from dew droplets adhering to the leaf surface. Although cells from within a given dew droplet exhibited similar green fluorescent protein fluorescence, the fluorescence intensity varied between droplets and was correlated with the salt concentration measured in each drop. Growth of H. variabilis was observed in all droplets, regardless of the salt concentration. However, cells found in desiccated microniches between dew drops were low in abundance and generally dead. Other bacteria recovered from T. aphylla displayed higher desiccation tolerance than H. variabilis, both in culture and on inoculated plants, despite having lower osmotic tolerance. Thus, the Tamarix leaf surface can be described as a salty desert with occasional oases where water droplets form under humid conditions. While halotolerant bacteria such as Halomonas grow in high concentrations of salt in such wet microniches, other organisms are better suited to survive desiccation in sites that are not wetted.
Collapse
|
45
|
Pham J, Desikan R. Modulation of ROS production and hormone levels by AHK5 during abiotic and biotic stress signaling. PLANT SIGNALING & BEHAVIOR 2012; 7:893-7. [PMID: 22827948 PMCID: PMC3474678 DOI: 10.4161/psb.20692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Histidine kinases have been shown to mediate responses to endogenous and exogenous stimuli in organisms such as yeast, bacteria and plants. In the model plant Arabidopsis, histidine kinases have been shown to function in hormone signaling, and abiotic and biotic stress responses. More recently, the least characterized of the Arabidopsis histidine kinases, AHK5, was demonstrated to function in resistance toward the virulent bacterium Pseudomonas syringae pv tomato DC3000 (PstDC3000) and the necrotrophic fungus Botrytis cinerea, and as a negative regulator of tolerance toward salinity. Here, we present data which indicate that AHK5 also impacts on drought stress resistance and on the outcome of an incompatible interaction with avrRpm1-expressing PstDC3000 (PstDC3000 (avrRpm1)). We present a model which proposes a role for reactive oxygen species (ROS) and hormones in integrating abiotic and biotic stress responses via AHK5.
Collapse
Affiliation(s)
- Jasmine Pham
- Department of Life Sciences; Imperial College London; London, UK
| | - Radhika Desikan
- Department of Life Sciences; Imperial College London; London, UK
| |
Collapse
|
46
|
Sade N, Gebremedhin A, Moshelion M. Risk-taking plants: anisohydric behavior as a stress-resistance trait. PLANT SIGNALING & BEHAVIOR 2012; 7:767-70. [PMID: 22751307 PMCID: PMC3583960 DOI: 10.4161/psb.20505] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water scarcity is a critical limitation for agricultural systems. Two different water management strategies have evolved in plants: an isohydric strategy and an anisohydric strategy. Isohydric plants maintain a constant midday leaf water potential (Ψleaf) when water is abundant, as well as under drought conditions, by reducing stomatal conductance as necessary to limit transpiration. Anisohydric plants have more variable Ψleaf and keep their stomata open and photosynthetic rates high for longer periods, even in the presence of decreasing leaf water potential. This risk-taking behavior of anisohydric plants might be beneficial when water is abundant, as well as under moderately stressful conditions. However, under conditions of intense drought, this behavior might endanger the plant. We will discuss the advantages and disadvantages of these two water-usage strategies and their effects on the plant's ability to tolerate abiotic and biotic stress. The involvement of plant tonoplast AQPs in this process will also be discussed.
Collapse
Affiliation(s)
- Nir Sade
- Faculty of Agriculture; Food and Environment; The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture; The Hebrew University of Jerusalem; Rehovot, Israel
| | - Alem Gebremedhin
- Faculty of Agriculture; Food and Environment; The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture; The Hebrew University of Jerusalem; Rehovot, Israel
| | - Menachem Moshelion
- Faculty of Agriculture; Food and Environment; The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture; The Hebrew University of Jerusalem; Rehovot, Israel
| |
Collapse
|
47
|
Ederli L, Madeo L, Calderini O, Gehring C, Moretti C, Buonaurio R, Paolocci F, Pasqualini S. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1784-94. [PMID: 21742407 DOI: 10.1016/j.jplph.2011.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/31/2011] [Accepted: 05/03/2011] [Indexed: 05/23/2023]
Abstract
In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O(3)). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O(3) and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O(3) sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H(2)O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Applied Biology, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Knepper C, Savory EA, Day B. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. PLANT PHYSIOLOGY 2011; 156:286-300. [PMID: 21398259 PMCID: PMC3091050 DOI: 10.1104/pp.110.169656] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/10/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a plasma membrane-localized protein, plays an essential role in resistance mediated by the coiled-coil-nucleotide-binding site-leucine-rich repeat class of resistance (R) proteins, which includes RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2), RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA1, and RPS5. Infection with Pseudomonas syringae pv tomato DC3000 expressing the bacterial effector proteins AvrRpt2, AvrB, and AvrPphB activates resistance by the aforementioned R proteins. Whereas the genetic requirement for NDR1 in plant disease resistance signaling has been detailed, our study focuses on determining a global, physiological role for NDR1. Through the use of homology modeling and structure threading, NDR1 was predicted to have a high degree of structural similarity to Arabidopsis LATE EMBRYOGENESIS ABUNDANT14, a protein implicated in abiotic stress responses. Specific protein motifs also point to a degree of homology with mammalian integrins, well-characterized proteins involved in adhesion and signaling. This structural homology led us to examine a physiological role for NDR1 in preventing fluid loss and maintaining cell integrity through plasma membrane-cell wall adhesions. Our results show a substantial alteration in induced (i.e. pathogen-inoculated) electrolyte leakage and a compromised pathogen-associated molecular pattern-triggered immune response in ndr1-1 mutant plants. As an extension of these analyses, using a combination of genetic and cell biology-based approaches, we have identified a role for NDR1 in mediating plasma membrane-cell wall adhesions. Taken together, our data point to a broad role for NDR1 both in mediating primary cellular functions in Arabidopsis through maintaining the integrity of the cell wall-plasma membrane connection and as a key signaling component of these responses during pathogen infection.
Collapse
|
49
|
Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:143-60. [PMID: 21443629 DOI: 10.1111/j.1365-313x.2011.04512.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants, the superfamily of carboxyl-CoA ligases and related proteins, collectively called acyl activating enzymes (AAEs), has evolved to provide enzymes for many pathways of primary and secondary metabolism and for the conjugation of hormones to amino acids. Across the superfamily there is only limited sequence similarity, but a series of highly conserved motifs, including the AMP-binding domain, make it easy to identify members. These conserved motifs are best understood in terms of the unique domain-rotation architecture that allows AAE enzymes to catalyze the two distinct steps of the CoA ligase reaction. Arabidopsis AAE sequences were used to identify the AAE gene families in the sequenced genomes of green algae, mosses, and trees; the size of the respective families increased with increasing degree of organismal cellular complexity, size, and generation time. Large-scale genome duplications and small-scale tandem gene duplications have contributed to AAE gene family complexity to differing extents in each of the multicellular species analyzed. Gene duplication and evolution of novel functions in Arabidopsis appears to have occurred rapidly, because acquisition of new substrate specificity is relatively easy in this class of proteins. Convergent evolution has also occurred between members of distantly related clades. These features of the AAE superfamily make it difficult to use homology searches and other genomics tools to predict enzyme function.
Collapse
Affiliation(s)
- Jay Shockey
- USDA-ARS, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA 70124, USA.
| | | |
Collapse
|
50
|
Beattie GA. Water relations in the interaction of foliar bacterial pathogens with plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:533-55. [PMID: 21438680 DOI: 10.1146/annurev-phyto-073009-114436] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011-3211, USA.
| |
Collapse
|