1
|
Ladd SN, Daber LE, Bamberger I, Kübert A, Kreuzwieser J, Purser G, Ingrisch J, Deleeuw J, van Haren J, Meredith LK, Werner C. Leaf-level metabolic changes in response to drought affect daytime CO2 emission and isoprenoid synthesis pathways. TREE PHYSIOLOGY 2023; 43:1917-1932. [PMID: 37552065 PMCID: PMC10643046 DOI: 10.1093/treephys/tpad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
In the near future, climate change will cause enhanced frequency and/or severity of droughts in terrestrial ecosystems, including tropical forests. Drought responses by tropical trees may affect their carbon use, including production of volatile organic compounds (VOCs), with implications for carbon cycling and atmospheric chemistry that are challenging to predict. It remains unclear how metabolic adjustments by mature tropical trees in response to drought will affect their carbon fluxes associated with daytime CO2 production and VOC emission. To address this gap, we used position-specific 13C-pyruvate labeling to investigate leaf CO2 and VOC fluxes from four tropical species before and during a controlled drought in the enclosed rainforest of Biosphere 2 (B2). Overall, plants that were more drought-sensitive had greater reductions in daytime CO2 production. Although daytime CO2 production was always dominated by non-mitochondrial processes, the relative contribution of CO2 from the tricarboxylic acid cycle tended to increase under drought. A notable exception was the legume tree Clitoria fairchildiana R.A. Howard, which had less anabolic CO2 production than the other species even under pre-drought conditions, perhaps due to more efficient refixation of CO2 and anaplerotic use for amino acid synthesis. The C. fairchildiana was also the only species to allocate detectable amounts of 13C label to VOCs and was a major source of VOCs in B2. In C. fairchildiana leaves, our data indicate that intermediates from the mevalonic acid (MVA) pathway are used to produce the volatile monoterpene trans-β-ocimene, but not isoprene. This apparent crosstalk between the MVA and methylerythritol phosphate pathways for monoterpene synthesis declined with drought. Finally, although trans-β-ocimene emissions increased under drought, it was increasingly sourced from stored intermediates and not de novo synthesis. Unique metabolic responses of legumes may play a disproportionate role in the overall changes in daytime CO2 and VOC fluxes in tropical forests experiencing drought.
Collapse
Affiliation(s)
- S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, Basel 4056, Switzerland
| | - L Erik Daber
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| | - Ines Bamberger
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Atmospheric Chemistry Group, University of Bayreuth (BayCEER), Dr–Hans–Frisch–Straße 1–3, Bayreuth 95448, Germany
| | - Angelika Kübert
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Institute for Atmospheric and Earth System Research, University of Helsinki, Pietari Kalmin katu 5, Helsinki 00014, Finland
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| | - Gemma Purser
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, Innsbruck 6020, Austria
| | - Jason Deleeuw
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- Honors College, University of Arizona, 1101 E. Mabel Street, Tucson, AZ 85719, USA
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| |
Collapse
|
2
|
Bi Y, Guo P, Liu L, Chen L, Zhang W. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front Bioeng Biotechnol 2023; 11:1188461. [PMID: 37180050 PMCID: PMC10174431 DOI: 10.3389/fbioe.2023.1188461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Sterols constitute vital structural and regulatory components of eukaryotic cells. In the oleaginous microorganism Schizochytrium sp. S31, the sterol biosynthetic pathway primarily produces cholesterol, stigmasterol, lanosterol, and cycloartenol. However, the sterol biosynthesis pathway and its functional roles in Schizochytrium remain unidentified. Through Schizochytrium genomic data mining and a chemical biology approach, we first in silico elucidated the mevalonate and sterol biosynthesis pathways of Schizochytrium. The results showed that owing to the lack of plastids in Schizochytrium, it is likely to use the mevalonate pathway as the terpenoid backbone pathway to supply isopentenyl diphosphate for the synthesis of sterols, similar to that in fungi and animals. In addition, our analysis revealed a chimeric organization of the Schizochytrium sterol biosynthesis pathway, which possesses features of both algae and animal pathways. Temporal tracking of sterol profiles reveals that sterols play important roles in Schizochytrium growth, carotenoid synthesis, and fatty acid synthesis. Furthermore, the dynamics of fatty acid and transcription levels of genes involved in fatty acid upon chemical inhibitor-induced sterol inhibition reveal possible co-regulation of sterol synthesis and fatty acid synthesis, as the inhibition of sterol synthesis could promote the accumulation of fatty acid in Schizochytrium. Sterol and carotenoid metabolisms are also found possibly co-regulated, as the inhibition of sterols led to decreased carotenoid synthesis through down-regulating the gene HMGR and crtIBY in Schizochytrium. Together, elucidation of the Schizochytrium sterol biosynthesis pathway and its co-regulation with fatty acid synthesis lay the essential foundation for engineering Schizochytrium for the sustainable production of lipids and high-value chemicals.
Collapse
Affiliation(s)
- Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
- *Correspondence: Weiwen Zhang,
| |
Collapse
|
3
|
Gabed N, Verret F, Peticca A, Kryvoruchko I, Gastineau R, Bosson O, Séveno J, Davidovich O, Davidovich N, Witkowski A, Kristoffersen JB, Benali A, Ioannou E, Koutsaviti A, Roussis V, Gâteau H, Phimmaha S, Leignel V, Badawi M, Khiar F, Francezon N, Fodil M, Pasetto P, Mouget JL. What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age. Mar Drugs 2022; 20:md20040234. [PMID: 35447907 PMCID: PMC9033121 DOI: 10.3390/md20040234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities—e.g., antibacterial, antioxidant and antiproliferative—with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons—i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest).
Collapse
Affiliation(s)
- Noujoud Gabed
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Oran High School of Biological Sciences (ESSBO), Cellular and Molecular Biology Department, Oran 31000, Algeria
- Laboratoire d’Aquaculture et Bioremediation AquaBior, Université d’Oran 1, Oran 31000, Algeria
| | - Frédéric Verret
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Correspondence: ; Tel.: +30-2810-337-852
| | - Aurélie Peticca
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Igor Kryvoruchko
- Department of Biology, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
| | - Orlane Bosson
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Julie Séveno
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Olga Davidovich
- Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 98188 Feodosiya, Russia;
| | - Nikolai Davidovich
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
- Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 98188 Feodosiya, Russia;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
| | - Jon Bent Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
| | - Amel Benali
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Laboratoire d’Aquaculture et Bioremediation AquaBior, Université d’Oran 1, Oran 31000, Algeria
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de la Technologie d’Oran Mohamed BOUDIAF-USTO-MB, BP 1505, El M’naouer, Oran 31000, Algeria
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Hélène Gâteau
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Suliya Phimmaha
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Vincent Leignel
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Myriam Badawi
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Feriel Khiar
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Nellie Francezon
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 2085 Le Mans, France; (N.F.); (P.P.)
| | - Mostefa Fodil
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 2085 Le Mans, France; (N.F.); (P.P.)
| | - Jean-Luc Mouget
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| |
Collapse
|
4
|
Seth K, Kumar A, Rastogi RP, Meena M, Vinayak V, Harish. Bioprospecting of fucoxanthin from diatoms — Challenges and perspectives. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102475] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol Adv 2021; 53:107865. [PMID: 34763051 DOI: 10.1016/j.biotechadv.2021.107865] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Fucoxanthin, the most abundant but nearly untapped carotenoid resource, is in the spotlight in the last decade from various perspectives due to a wide range of bioactivities and healthy benefits. The exploitation of fucoxanthin for nutraceutical and pharmaceutical purposes encompasses enormous scientific and economic potentials. Traditional production of fucoxanthin from brown algae (macroalgae) is constrained by limited yield and prohibitively high cost. Microalgae, as the most diverse photoautotrophs, hold the promises as sustainable sources and ideal cell factories for commercial fucoxanthin production, owing to their rich fucoxanthin content and excellent biomass productivity. In this work, the recent progress in upstream (microalgae selection, optimization of culture conditions, trophic modes, cultivation strategies and biosynthesis pathway) as well as downstream processes (extraction) of fucoxanthin production has been comprehensively and critically reviewed. The major bottlenecks, such as screening of fucoxanthin-producers, conflict between biomass and fucoxanthin accumulation under high light condition, unclear steps in biosynthesis pathway and limited evaluation of outdoor scale-up cultivation and extraction, have been pinpointed. Most importantly, the applications of emerging and conventional techniques facilitating commercialization of microalgal fucoxanthin are highlighted. The reviewed and evaluated include breeding and high-throughput screening methods of elite strains; flashing light effect inducing concurrent biomass and fucoxanthin accumulation; fucoxanthin biosynthesis and the regulatory mechanisms associating with its accumulation elucidated with the development of genetic engineering and omics techniques; and photobioreactors, harvesting and extraction techniques suitable for scaling up fucoxanthin production. In conclusion, the prospects of microalgal fucoxanthin commercialization can be expected with the joint development of fundamental phycology and biotechnology.
Collapse
|
6
|
Voshall A, Christie NTM, Rose SL, Khasin M, Van Etten JL, Markham JE, Riekhof WR, Nickerson KW. Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point. JOURNAL OF PHYCOLOGY 2021; 57:1199-1211. [PMID: 33713347 PMCID: PMC8453531 DOI: 10.1111/jpy.13164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and β-sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis of the C. variabilis NC64A, C. sorokiniana, and C. subellipsoidea genomes identified 22 homologs of sterol biosynthetic genes from Arabidopsis thaliana, Saccharomyces cerevisiae, and C. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC for C. subellipsoidea positioned in between the higher plants and the eight other algae. With regard to why C. subellipsoidea produced phytosterols instead of ergosterol, we identified 22 differentially conserved positions where C. subellipsoidea CAS and A. thaliana CAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.
Collapse
Affiliation(s)
- Adam Voshall
- Division of Genetics and GenomicsBoston Children’s Hospital and Harvard Medical SchoolBostonMassachusetts02115USA
| | - Nakeirah T. M. Christie
- Department of Molecular Biophysics & BiochemistryYale UniversityNew Haven, Connecticut06520USA
| | - Suzanne L. Rose
- School of Biological SciencesUniversity of NebraskaLincolnNebraska68588‐0666USA
| | - Maya Khasin
- Wheat, Sorghum, and Forage Research UnitUSDALincolnNebraska68583‐0937USA
| | - James L. Van Etten
- Department of Plant Pathology, and Nebraska Center for VirologyUniversity of NebraskaLincolnNebraska68583‐0900USA
| | - Jennifer E. Markham
- Department of Biochemistry, and Center for Plant Science InnovationUniversity of NebraskaLincolnNebraska68588‐0664USA
| | - Wayne R. Riekhof
- School of Biological SciencesUniversity of NebraskaLincolnNebraska68588‐0666USA
| | | |
Collapse
|
7
|
Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in Phaeodactylum tricornutum. Pharmaceuticals (Basel) 2020; 13:ph13120481. [PMID: 33371196 PMCID: PMC7766473 DOI: 10.3390/ph13120481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.
Collapse
|
8
|
Rontani JF, Smik L, Belt ST. Electron ionization mass spectrometric fragmentation and detection of autoxidation products of 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5-ene in Arctic sediments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8816. [PMID: 32315098 DOI: 10.1002/rcm.8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Some highly branched isoprenoid (HBI) alkenes are commonly used as proxies for palaeoceanographic reconstructions. However, there is a need to identify compounds that are sufficiently stable and abundant to be used as tracers of HBI oxidation in sediments. 2,6,10,14-Tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5(Z/E)-en-4-ols resulting from 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5-ene appear to be useful for this purpose. METHODS Comparison of electron ionization (EI) mass spectra and retention times with those of standards allowed formal identification of autoxidation products of 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5-ene. EI-MS fragmentations of TMS ethers of the main oxidation products (2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5(Z/E)-en-4-ols) were deduced by gas chromatography/electron ionization mass spectrometry (GC/EI-MS), low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and accurate mass measurements. These compounds were then quantified in Arctic sediment samples in MS/MS multiple reaction monitoring (MRM) mode using transitions based on the main fragmentation pathways elucidated. RESULTS 2,6,10,14-Tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5(Z/E)-en-4-ols were identified after autoxidation of the HBI alkene 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5-ene. Low-energy CID-MS/MS analyses and accurate mass measurements allowed the EI-MS fragmentation pathways of their trimethylsilyl (TMS) derivatives to be elucidated. Some specific fragment ions and chromatographic retention times were also useful for further characterization. As an application of some of the described fragmentations, TMS derivatives of these metabolites were characterized and quantified in MRM mode in Arctic sediments. CONCLUSIONS Due to their production in high proportions during autoxidation of their parent HBI diene, their apparent stability in sediments, and their specific EIMS fragmentations, (Z and E)-2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5-en-4-ol TMS derivatives appeared to be useful tracers of HBI autoxidation in sediments.
Collapse
Affiliation(s)
- Jean-François Rontani
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille France
| | - Lukas Smik
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Simon T Belt
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
9
|
Yang R, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 2020; 40:993-1009. [DOI: 10.1080/07388551.2020.1805402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Runqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Liu Y, Duan A, Chen L, Wang D, Xie Q, Xiang B, Lin Y, Hao X, Zhu X. A Fungal Diterpene Synthase Is Responsible for Sterol Biosynthesis for Growth. Front Microbiol 2020; 11:1426. [PMID: 32754124 PMCID: PMC7365874 DOI: 10.3389/fmicb.2020.01426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
A conserved open reading frame, dps, is described in Pestalotiopsis microspora, sharing a remarkable similarity with fungal diterpene synthases whose function is less studied. Loss-of-function approach manifested that dps was necessary for the growth and the development of the fungus. A deletion strain, dpsΔ, showed a fundamental retardation in growth, which could deliberately be restored by the addition of exogenous sterols to the media. Gas chromatography-mass spectrometry analysis confirmed the loss of the ability to produce certain sterols. Thus, the tolerance and the resistance of dpsΔ to several stress conditions were impaired. Secondary metabolites, such as the polyketide derivative dibenzodioxocinones, were significantly diminished. At the molecular level, the deletion of dps even affected the expression of genes in the mevalonate pathway. This report adds knowledge about fungal diterpene synthases in Pestalitiopsis microspora.
Collapse
Affiliation(s)
- Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anqing Duan
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longfei Chen
- Zhejiang Medicine Co., Ltd., Zhejiang, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiaohong Xie
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Biyun Xiang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yamin Lin
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiaoran Hao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. The unique sterol biosynthesis pathway of three model diatoms consists of a conserved core and diversified endpoints. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Fabris M, George J, Kuzhiumparambil U, Lawson CA, Jaramillo-Madrid AC, Abbriano RM, Vickers CE, Ralph P. Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids. ACS Synth Biol 2020; 9:598-612. [PMID: 32032487 DOI: 10.1021/acssynbio.9b00455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient. Hence, microbial hosts suitable to produce MIA precursors through synthetic biology and metabolic engineering are currently being sought. Here, we evaluated the suitability of a eukaryotic microalga, the marine diatom Phaeodactylum tricornutum, for the heterologous production of monoterpenoids. Profiling of endogenous metabolism revealed that P. tricornutum, unlike other microbes employed for industrial production of terpenoids, accumulates free pools of the precursor geranyl diphosphate. To evaluate the potential for larger synthetic biology applications, we engineered P. tricornutum through extrachromosomal, episome-based expression, for the heterologous biosynthesis of the MIA intermediate geraniol. By profiling the production of geraniol resulting from various genetic and cultivation arrangements, P. tricornutum reached the maximum geraniol titer of 0.309 mg/L in phototrophic conditions. This work provides (i) a detailed analysis of P. tricornutum endogenous terpenoid metabolism, (ii) a successful demonstration of extrachromosomal expression for metabolic pathway engineering with potential gene-stacking applications, and (iii) a convincing proof-of-concept of the suitability of P. tricornutum as a novel production platform for heterologous monoterpenoids, with potential for complex pathway engineering aimed at the heterologous production of MIAs.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Jestin George
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
13
|
Gallo C, Landi S, d'Ippolito G, Nuzzo G, Manzo E, Sardo A, Fontana A. Diatoms synthesize sterols by inclusion of animal and fungal genes in the plant pathway. Sci Rep 2020; 10:4204. [PMID: 32144288 PMCID: PMC7060231 DOI: 10.1038/s41598-020-60993-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Diatoms are ubiquitous microalgae that have developed remarkable metabolic plasticity and gene diversification. Here we report the first elucidation of the complete biosynthesis of sterols in the lineage. The study has been carried out on the bloom-forming species Skeletonema marinoi and Cyclotella cryptica that synthesise an ensemble of sterols with chemotypes of animals (cholesterol and desmosterol), plants (dihydrobrassicasterol and 24-methylene cholesterol), algae (fucosterol) and marine invertebrates (clionasterol). In both species, sterols derive from mevalonate through cyclization of squalene to cycloartenol by cycloartenol synthase. The pathway anticipates synthesis of cholesterol by enzymes of the phytosterol route in plants, as recently reported in Solanaceae. Major divergences stem from reduction of Δ24(28) and Δ24(25) double bonds which, in diatoms, are apparently dependent on sterol reductases of fungi, algae and animals. Phylogenetic comparison revealed a good level of similarity between the sterol biosynthetic genes of S. marinoi and C. cryptica with those in the genomes of the other diatoms sequenced so far.
Collapse
Affiliation(s)
- Carmela Gallo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Simone Landi
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.,Univeristy of Naples "Federico II", Department of Biology, Cupa Nuova Cintia 21, 80126, Napoli, Italy
| | - Giuliana d'Ippolito
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
| | - Genoveffa Nuzzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Emiliano Manzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Angela Sardo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.,Stazione Zoologica "A. Dohrn", Villa Comunale, 80121, Napoli, Italy
| | - Angelo Fontana
- National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
| |
Collapse
|
14
|
|
15
|
Athanasakoglou A, Kampranis SC. Diatom isoprenoids: Advances and biotechnological potential. Biotechnol Adv 2019; 37:107417. [PMID: 31326522 DOI: 10.1016/j.biotechadv.2019.107417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/09/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Diatoms are among the most productive and ecologically important groups of microalgae in contemporary oceans. Due to their distinctive metabolic and physiological features, they offer exciting opportunities for a broad range of commercial and industrial applications. One such feature is their ability to synthesize a wide diversity of isoprenoid compounds. However, limited understanding of how these molecules are synthesized have until recently hindered their exploitation. Following comprehensive genomic and transcriptomic analysis of various diatom species, the biosynthetic mechanisms and regulation of the different branches of the pathway are now beginning to be elucidated. In this review, we provide a summary of the recent advances in understanding diatom isoprenoid synthesis and discuss the exploitation potential of diatoms as chassis for high-value isoprenoid synthesis.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sotirios C Kampranis
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. Phytosterol biosynthesis and production by diatoms (Bacillariophyceae). PHYTOCHEMISTRY 2019; 163:46-57. [PMID: 31005802 DOI: 10.1016/j.phytochem.2019.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Diatoms are abundant unicellular marine photosynthetic algae that have genetically diversified their physiology and metabolism while adapting to numerous environments. The metabolic repertoire of diatoms presents opportunities to characterise the biosynthesis and production of new and potentially valuable microalgal compounds, including sterols. Sterols of plant origin, known as phytosterols, have been studied for health benefits including demonstrated cholesterol-lowering properties. In this review we summarise sterol diversity, the unique metabolic features of sterol biosynthesis in diatoms, and prospects for the extraction of diatom phytosterols in comparison to existing sources. We also review biotechnological efforts to manipulate diatom biosynthesis, including culture conditions and avenues for the rational engineering of metabolism and cellular regulation.
Collapse
Affiliation(s)
| | - Justin Ashworth
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia.
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia; CSIRO Synthetic Biology Future Science Platform, PO Box 2583, Brisbane, QLD, 4001, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
17
|
Athanasakoglou A, Grypioti E, Michailidou S, Ignea C, Makris AM, Kalantidis K, Massé G, Argiriou A, Verret F, Kampranis SC. Isoprenoid biosynthesis in the diatom Haslea ostrearia. THE NEW PHYTOLOGIST 2019; 222:230-243. [PMID: 30394540 DOI: 10.1111/nph.15586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Diatoms are eukaryotic, unicellular algae that are responsible for c. 20% of the Earth's primary production. Their dominance and success in contemporary oceans have prompted investigations on their distinctive metabolism and physiology. One metabolic pathway that remains largely unexplored in diatoms is isoprenoid biosynthesis, which is responsible for the production of numerous molecules with unique features. We selected the diatom species Haslea ostrearia because of its characteristic isoprenoid content and carried out a comprehensive transcriptomic analysis and functional characterization of the genes identified. We functionally characterized one farnesyl diphosphate synthase, two geranylgeranyl diphosphate synthases, one short-chain polyprenyl synthase, one bifunctional isopentenyl diphosphate isomerase - squalene synthase, and one phytoene synthase. We inferred the phylogenetic origin of these genes and used a combination of functional analysis and subcellular localization predictions to propose their physiological roles. Our results provide insight into isoprenoid biosynthesis in H. ostrearia and propose a model of the central steps of the pathway. This model will facilitate the study of metabolic pathways of important isoprenoids in diatoms, including carotenoids, sterols and highly branched isoprenoids.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, Heraklion, 71003, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences - Centre for Research and Technology Hellas (INAB-CERTH), 6th km. Charilaou - Thermi Road, PO Box 60361, Thermi, Thessaloniki, 57001, Greece
| | - Codruta Ignea
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Antonios M Makris
- Institute of Applied Biosciences - Centre for Research and Technology Hellas (INAB-CERTH), 6th km. Charilaou - Thermi Road, PO Box 60361, Thermi, Thessaloniki, 57001, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology - Foundation of Research and Technology Hellas (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, GR-70013, Greece
| | - Guillaume Massé
- UMI 3376 TAKUVIK, Centre national de la recherche scientifique (CNRS), Paris, France
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Anagnostis Argiriou
- Institute of Applied Biosciences - Centre for Research and Technology Hellas (INAB-CERTH), 6th km. Charilaou - Thermi Road, PO Box 60361, Thermi, Thessaloniki, 57001, Greece
| | - Frederic Verret
- Department of Biology, University of Crete, PO Box 2208, Heraklion, 71003, Greece
| | - Sotirios C Kampranis
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
18
|
Millerioux Y, Mazet M, Bouyssou G, Allmann S, Kiema TR, Bertiaux E, Fouillen L, Thapa C, Biran M, Plazolles N, Dittrich-Domergue F, Crouzols A, Wierenga RK, Rotureau B, Moreau P, Bringaud F. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathog 2018; 14:e1007116. [PMID: 29813135 PMCID: PMC5993337 DOI: 10.1371/journal.ppat.1007116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/08/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway.
Collapse
Affiliation(s)
- Yoann Millerioux
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Guillaume Bouyssou
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Tiila-Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Eloïse Bertiaux
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Laetitia Fouillen
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux, Functional Genomics Center, Villenave d'Ornon
| | - Chandan Thapa
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Nicolas Plazolles
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Franziska Dittrich-Domergue
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Patrick Moreau
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
- * E-mail:
| |
Collapse
|
19
|
Ferriols VMEN, Yaginuma-Suzuki R, Fukunaga K, Kadono T, Adachi M, Matsunaga S, Okada S. An exception among diatoms: unique organization of genes involved in isoprenoid biosynthesis in Rhizosolenia setigera CCMP 1694. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:822-833. [PMID: 28921701 DOI: 10.1111/tpj.13719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/27/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The marine diatom Rhizosolenia setigera is unique among this group of microalgae given that it is only one of a handful of diatom species that can produce highly branched isoprenoid (HBI) hydrocarbons. In our efforts to determine distinguishing molecular characteristics in R. setigera CCMP 1694 that could help elucidate the underlying mechanisms for its ability to biosynthesize HBIs, we discovered the occurrence of independent genes encoding for two isopentenyl diphosphate isomerases (RsIDI1 and RsIDI2) and one squalene synthase (RsSQS), enzymes that catalyze non-consecutive steps in isoprenoid biosynthesis. These genes are peculiarly fused in all other genome-sequenced diatoms to date, making their organization in R. setigera CCMP 1694 a clear distinguishing molecular feature. Phylogenetic and sequence analysis of RsIDI1, RsIDI2, and RsSQS revealed that such an arrangement of individually transcribed genes involved in isoprenoid biosynthesis could have arisen through a secondary gene fission event. We further demonstrate that inhibition of squalene synthase (SQS) shifts the flux of exogenous isoprenoid precursors towards HBI biosynthesis suggesting the competition for isoprenoid substrates in the form of farnesyl diphosphate between the sterol and HBI biosynthetic pathways in this diatom.
Collapse
Affiliation(s)
- Victor Marco Emmanuel N Ferriols
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Aquaculture, University of the Philippines Visayas, Iloilo, Philippines
| | - Ryoko Yaginuma-Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Masao Adachi
- Faculty of Agriculture, Kochi University, Kochi, Japan
| | - Shigeki Matsunaga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
21
|
Dahlin P, Srivastava V, Ekengren S, McKee LS, Bulone V. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans. PLoS One 2017; 12:e0170873. [PMID: 28152045 PMCID: PMC5289490 DOI: 10.1371/journal.pone.0170873] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets.
Collapse
Affiliation(s)
- Paul Dahlin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University (SU), Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Sophia Ekengren
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University (SU), Stockholm, Sweden
| | - Lauren S. McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
- * E-mail:
| |
Collapse
|
22
|
Calegario G, Pollier J, Arendt P, de Oliveira LS, Thompson C, Soares AR, Pereira RC, Goossens A, Thompson FL. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PLoS One 2016; 11:e0165954. [PMID: 27832119 PMCID: PMC5104453 DOI: 10.1371/journal.pone.0165954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
The red seaweed Laurencia dendroidea belongs to the Rhodophyta, a phylum of eukaryotic algae that is widely distributed across the oceans and that constitute an important source of bioactive specialized metabolites. Laurencia species have been studied since 1950 and were found to contain a plethora of specialized metabolites, mainly halogenated sesquiterpenes, diterpenes and triterpenes that possess a broad spectrum of pharmacological and ecological activities. The first committed step in the biosynthesis of triterpenes is the cyclization of 2,3-oxidosqualene, an enzymatic reaction carried out by oxidosqualene cyclases (OSCs), giving rise to a broad range of different compounds, such as the sterol precursors cycloartenol and lanosterol, or triterpene precursors such as cucurbitadienol and β-amyrin. Here, we cloned and characterized the first OSC from a red seaweed. The OSC gene was identified through mining of a L. dendroidea transcriptome dataset and subsequently cloned and heterologously expressed in yeast for functional characterization, which indicated that the corresponding enzyme cyclizes 2,3-oxidosqualene to the sterol precursor cycloartenol. Accordingly, the gene was named L. dendroidea cycloartenol synthase (LdCAS). A phylogenetic analysis using OSCs genes from plants, fungi and algae revealed that LdCAS grouped together with OSCs from other red algae, suggesting that cycloartenol could be the common product of the OSC in red seaweeds. Furthermore, profiling of L. dendroidea revealed cholesterol as the major sterol accumulating in this species, implicating red seaweeds contain a ‘hybrid’ sterol synthesis pathway in which the phytosterol precursor cycloartenol is converted into the major animal sterol cholesterol.
Collapse
Affiliation(s)
- Gabriela Calegario
- Departament of Marine Biology, Federal Fluminense University (UFF), Niterói, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Philipp Arendt
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Louisi Souza de Oliveira
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos Em Ecologia e Desenvolvimento Sócioambiental de Macaé, Federal University of Rio de Janeiro (UFRJ), Macaé, Brazil
| | | | - Alain Goossens
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Fabiano L. Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
23
|
Hehenberger E, Burki F, Kolisko M, Keeling PJ. Functional Relationship between a Dinoflagellate Host and Its Diatom Endosymbiont. Mol Biol Evol 2016; 33:2376-90. [DOI: 10.1093/molbev/msw109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Liu Y, Luo SH, Schmidt A, Wang GD, Sun GL, Grant M, Kuang C, Yang MJ, Jing SX, Li CH, Schneider B, Gershenzon J, Li SH. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum. THE PLANT CELL 2016; 28:804-22. [PMID: 26941091 PMCID: PMC4826006 DOI: 10.1105/tpc.15.00715] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 05/19/2023]
Abstract
Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Guo-Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Gui-Ling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Marcus Grant
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ce Kuang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Min-Jie Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| |
Collapse
|
25
|
Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis. Mar Drugs 2015; 13:3672-709. [PMID: 26065408 PMCID: PMC4483651 DOI: 10.3390/md13063672] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel), valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.
Collapse
|
26
|
Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera. Sci Rep 2015; 5:10246. [PMID: 25996801 PMCID: PMC4440519 DOI: 10.1038/srep10246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom.
Collapse
|
27
|
Fabris M, Matthijs M, Carbonelle S, Moses T, Pollier J, Dasseville R, Baart GJE, Vyverman W, Goossens A. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2014; 204:521-535. [PMID: 24996048 DOI: 10.1111/nph.12917] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/02/2014] [Indexed: 05/03/2023]
Abstract
Diatoms are unicellular photosynthetic microalgae that play a major role in global primary production and aquatic biogeochemical cycling. Endosymbiotic events and recurrent gene transfers uniquely shaped the genome of diatoms, which contains features from several domains of life. The biosynthesis pathways of sterols, essential compounds in all eukaryotic cells, and many of the enzymes involved are evolutionarily conserved in eukaryotes. Although well characterized in most eukaryotes, the pathway leading to sterol biosynthesis in diatoms has remained hitherto unidentified. Through the DiatomCyc database we reconstructed the mevalonate and sterol biosynthetic pathways of the model diatom Phaeodactylum tricornutum in silico. We experimentally verified the predicted pathways using enzyme inhibitor, gene silencing and heterologous gene expression approaches. Our analysis revealed a peculiar, chimeric organization of the diatom sterol biosynthesis pathway, which possesses features of both plant and fungal pathways. Strikingly, it lacks a conventional squalene epoxidase and utilizes an extended oxidosqualene cyclase and a multifunctional isopentenyl diphosphate isomerase/squalene synthase enzyme. The reconstruction of the P. tricornutum sterol pathway underscores the metabolic plasticity of diatoms and offers important insights for the engineering of diatoms for sustainable production of biofuels and high-value chemicals.
Collapse
Affiliation(s)
- Michele Fabris
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 (S8), B-9000, Gent, Belgium
| | - Michiel Matthijs
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 (S8), B-9000, Gent, Belgium
| | - Sophie Carbonelle
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Tessa Moses
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Renaat Dasseville
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 (S8), B-9000, Gent, Belgium
| | - Gino J E Baart
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 (S8), B-9000, Gent, Belgium
| | - Wim Vyverman
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 (S8), B-9000, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
28
|
Brown TA, Belt ST, Tatarek A, Mundy CJ. Source identification of the Arctic sea ice proxy IP25. Nat Commun 2014; 5:4197. [PMID: 24939562 DOI: 10.1038/ncomms5197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022] Open
Abstract
Analysis of the organic geochemical biomarker IP25 in marine sediments is an established method for carrying out palaeo sea ice reconstructions for the Arctic. Such reconstructions cover timescales from decades back to the early Pleistocene, and are critical for understanding past climate conditions on Earth and for informing climate prediction models. Key attributes of IP25 include its strict association with Arctic sea ice together with its ubiquity and stability in underlying marine sediments; however, the sources of IP25 have remained undetermined. Here we report the identification of IP25 in three (or four) relatively minor (<5%) sea ice diatoms isolated from mixed assemblages collected from the Canadian Arctic. In contrast, IP25 was absent in the dominant taxa. Chemical and taxonomical investigations suggest that the IP25-containing taxa represent the majority of producers and are distributed pan-Arctic, thus establishing the widespread applicability of the IP25 proxy for palaeo Arctic sea ice reconstruction.
Collapse
Affiliation(s)
- T A Brown
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - S T Belt
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - A Tatarek
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - C J Mundy
- Centre for Earth Observation Science, University of Manitoba, 535 Wallace Building, 125 Dysart Road, Winnipeg, Canada R3T 2N2
| |
Collapse
|
29
|
Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. PLANT CELL REPORTS 2014; 33:393-400. [PMID: 24258243 DOI: 10.1007/s00299-013-1538-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE When one of them was inhibited, the two pathways could compensate with each other to guarantee normal growth. Moreover, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside level. ABSTRACT Ginsenosides, a kind of triterpenoid saponins derived from isopentenyl pyrophosphate (IPP), represent the main pharmacologically active constituents of ginseng. In plants, two pathways contribute to IPP biosynthesis, namely, the mevalonate pathway in cytosol and the non-mevalonate pathway in plastids. This motivates biologists to clarify the roles of the two pathways in biosynthesis of IPP-derived compounds. Here, we demonstrated that both pathways are involved in ginsenoside biosynthesis, based on the analysis of the effects from suppressing either or both of the pathways on ginsenoside accumulation in Panax ginseng hairy roots with mevinolin and fosmidomycin as specific inhibitors for the mevalonate and the non-mevalonate pathways, respectively. Furthermore, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside levels in the hairy roots. These results shed some light on the way toward better understanding of ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Shoujing Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | | | | | | | | | | |
Collapse
|
30
|
Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 2012; 36:761-85. [DOI: 10.1111/j.1574-6976.2011.00304.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/29/2011] [Indexed: 01/20/2023] Open
|
31
|
Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJE. The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1004-14. [PMID: 22332784 DOI: 10.1111/j.1365-313x.2012.04941.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Diatoms are one of the most successful groups of unicellular eukaryotic algae. Successive endosymbiotic events contributed to their flexible metabolism, making them competitive in variable aquatic habitats. Although the recently sequenced genomes of the model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana have provided the first insights into their metabolic organization, the current knowledge on diatom biochemistry remains fragmentary. By means of a genome-wide approach, we developed DiatomCyc, a detailed pathway/genome database of P. tricornutum. DiatomCyc contains 286 pathways with 1719 metabolic reactions and 1613 assigned enzymes, spanning both the central and parts of the secondary metabolism of P. tricornutum. Central metabolic pathways, such as those of carbohydrates, amino acids and fatty acids, were covered. Furthermore, our understanding of the carbohydrate model in P. tricornutum was extended. In particular we highlight the discovery of a functional Entner-Doudoroff pathway, an ancient alternative for the glycolytic Embden-Meyerhof-Parnas pathway, and a putative phosphoketolase pathway, both uncommon in eukaryotes. DiatomCyc is accessible online (http://www.diatomcyc.org), and offers a range of software tools for the visualization and analysis of metabolic networks and 'omics' data. We anticipate that DiatomCyc will be key to gaining further understanding of diatom metabolism and, ultimately, will feed metabolic engineering strategies for the industrial valorization of diatoms.
Collapse
Affiliation(s)
- Michele Fabris
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms. Biochem J 2012; 443:267-77. [PMID: 22176028 DOI: 10.1042/bj20111849] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate-mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control<[2-(13)C]leucine<[2-(13)C]acetate<[1-(13)C]glucose) and corresponding depletion of cholesta-5,7,24-trienol. We conclude that anabolic fluxes originating in mitochondrial metabolism constitute a flexible part of sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth.
Collapse
|
33
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
34
|
Paniagua-Michel J, Olmos-Soto J, Ruiz MA. Pathways of carotenoid biosynthesis in bacteria and microalgae. Methods Mol Biol 2012; 892:1-12. [PMID: 22623294 DOI: 10.1007/978-1-61779-879-5_1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The carotenoids, a subfamily of the isoprenoids, are among the most widespread, ancient, diverse, and rich class of all natural products and biomolecules. Microorganisms, as well as microalgae and bacteria synthesize isoprenoids from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). For long time, mevalonic acid was assumed to be the only natural precursor for IPP and DMAPP in the cytosolic acetate/mevalonate pathway for the biosynthesis of sterols, sesquiterpenes, triterpenoids, and carotenoids. At present, it is accepted that the relatively new route, the methylerythritol 4-phosphate (MEP), or 1-deoxy-D: -xylulose-5-phosphate (DOXP) is the main pathway for the biosynthesis of plastidic isoprenoids, such as carotenoids, phytol (a side chain of chlorophylls), plastoquinone-9, isoprene, mono-, and diterpenes. Cytosolic isoprenoids (sterols) biosynthesized by MEP have been reported in eubacteria and algae (Chlorella, Chlamydomonas, Scenedesmus, and Dunaliella). This review summarizes current knowledge of the biosynthetic pathways leading to the formation of different isoprenoids and carotenoids in bacteria and microalgae. Particular attention was given to the last early steps of the biosynthesis of the key C(5)-precursor and the final steps of the biosynthesis of carotenoids including selected examples in microalgae and bacteria as well as the recent advances in genomics and metabolic engineering.
Collapse
Affiliation(s)
- J Paniagua-Michel
- Department of Marine Biotechnology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, BC, Mexico.
| | | | | |
Collapse
|
35
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
37
|
|
38
|
Piepho M, Martin-Creuzburg D, Wacker A. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton. PLoS One 2010; 5:e15828. [PMID: 21209879 PMCID: PMC3013121 DOI: 10.1371/journal.pone.0015828] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/27/2010] [Indexed: 11/19/2022] Open
Abstract
Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.
Collapse
Affiliation(s)
- Maike Piepho
- Institute of Biochemistry and Biology, Theoretical Aquatic Ecology, University of Potsdam, Potsdam, Germany.
| | | | | |
Collapse
|
39
|
Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice. Polar Biol 2010. [DOI: 10.1007/s00300-010-0942-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Bertrand M. Carotenoid biosynthesis in diatoms. PHOTOSYNTHESIS RESEARCH 2010; 106:89-102. [PMID: 20734232 DOI: 10.1007/s11120-010-9589-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/24/2010] [Indexed: 05/20/2023]
Abstract
Diatoms are ubiquitous and constitute an important group of the phytoplankton community having a major contribution to the total marine primary production. These microalgae exhibit a characteristic golden-brown colour due to a high amount of the xanthophyll fucoxanthin that plays a major role in the light-harvesting complex of photosystems. In the water column, diatoms are exposed to light intensities that vary quickly from lower to higher values. Xanthophyll cycles prevent photodestruction of the cells in excessive light intensities. In diatoms, the diadinoxanthin-diatoxanthin cycle is the most important short-term photoprotective mechanism. If the biosynthetic pathways of chloroplast pigments have been extensively studied in higher plants and green algae, the research on carotenoid biosynthesis in diatoms is still in its infancy. In this study, the data on the biosynthetic pathway of diatom carotenoids are reviewed. The early steps occur through the 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathway. Then a hypothetical pathway is suggested from dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most of the enzymes of the pathway have not been so far isolated from diatoms, but candidate genes for each of them were identified using protein similarity searches of genomic data.
Collapse
Affiliation(s)
- Martine Bertrand
- MiMeTox, National Institute for Marine Sciences and Techniques, CNAM, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| |
Collapse
|
41
|
Ginger ML, McFadden GI, Michels PAM. Rewiring and regulation of cross-compartmentalized metabolism in protists. Philos Trans R Soc Lond B Biol Sci 2010; 365:831-45. [PMID: 20124348 DOI: 10.1098/rstb.2009.0259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid acquisition, endosymbiotic associations, lateral gene transfer, organelle degeneracy or even organelle loss influence metabolic capabilities in many different protists. Thus, metabolic diversity is sculpted through the gain of new metabolic functions and moderation or loss of pathways that are often essential in the majority of eukaryotes. What is perhaps less apparent to the casual observer is that the sub-compartmentalization of ubiquitous pathways has been repeatedly remodelled during eukaryotic evolution, and the textbook pictures of intermediary metabolism established for animals, yeast and plants are not conserved in many protists. Moreover, metabolic remodelling can strongly influence the regulatory mechanisms that control carbon flux through the major metabolic pathways. Here, we provide an overview of how core metabolism has been reorganized in various unicellular eukaryotes, focusing in particular on one near universal catabolic pathway (glycolysis) and one ancient anabolic pathway (isoprenoid biosynthesis). For the example of isoprenoid biosynthesis, the compartmentalization of this process in protists often appears to have been influenced by plastid acquisition and loss, whereas for glycolysis several unexpected modes of compartmentalization have emerged. Significantly, the example of trypanosomatid glycolysis illustrates nicely how mathematical modelling and systems biology can be used to uncover or understand novel modes of pathway regulation.
Collapse
Affiliation(s)
- Michael L Ginger
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
42
|
Kalinovsky AI, Gorshkov AG, Ponomarenko LP, Stonik VA, Dmitrenok PS, Grachev MA. Preparation of 13C-24-methylcholesta-5,24(28)-dien-3β-ol by cultivation of the Baikal diatom Synedra acus in NaH13CO3. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Capa-Robles W, Paniagua-Michel J, Soto JO. The biosynthesis and accumulation of β-carotene inDunaliella salinaproceed via the glyceraldehyde 3-phosphate/pyruvate pathway. Nat Prod Res 2009; 23:1021-8. [DOI: 10.1080/14786410802689689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Madoui MA, Bertrand-Michel J, Gaulin E, Dumas B. Sterol metabolism in the oomycete Aphanomyces euteiches, a legume root pathogen. THE NEW PHYTOLOGIST 2009; 183:291-300. [PMID: 19496952 DOI: 10.1111/j.1469-8137.2009.02895.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sterols are isoprenoid-derived molecules that have essential functions in eukaryotes but whose metabolism remains largely unknown in a large number of organisms. Oomycetes are fungus-like microorganisms that are evolutionarily related to stramenopile algae, a large group of organisms for which no sterol metabolic pathway has been reported. Here, we present data that support a model of sterol biosynthesis in Aphanomyces euteiches, an oomycete species causing devastating diseases in legume crops. In silico analyses were performed to identify genes encoding enzymes involved in the conversion of the isoprenoid precursor 3-hydroxy-3-methylglutaryl coenzyme A to isoprenoids. Several metabolic intermediates and two major sterol end-products were identified by gas chromatography-mass spectroscopy. We show that A. euteiches is able to produce fucosterol (a sterol initially identified in brown algae) and cholesterol (the major animal sterol). Mycelium development is inhibited by two sterol demethylase inhibitors used as fungicides, namely tebuconazole and epoxiconazole. We propose the first sterol biosynthetic pathway identified in a stramenopile species. Phylogenetic analyses revealed close relationships between A. euteiches enzyme sequences and those found in stramenopile algae, suggesting that part of this pathway could be conserved in the Stramenopila kingdom.
Collapse
Affiliation(s)
- Mohammed-Amine Madoui
- Université de Toulouse, UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Justine Bertrand-Michel
- INSERM, Institut Claude de Préval, IFR30, Plateau technique de Lipidomique, Toulouse, F-31300, France
| | - Elodie Gaulin
- Université de Toulouse, UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Bernard Dumas
- Université de Toulouse, UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| |
Collapse
|
45
|
Ramachandra TV, Mahapatra DM, B K, Gordon R. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind Eng Chem Res 2009. [DOI: 10.1021/ie900044j] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T. V. Ramachandra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Durga Madhab Mahapatra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Karthick B
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Richard Gordon
- Department of Radiology, University of Manitoba, Room GA216, HSC, 820 Sherbrook Street, Winnipeg MB R3A 1R9, Canada
| |
Collapse
|
46
|
Jones MB, Rosenberg JN, Betenbaugh MJ, Krag SS. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochim Biophys Acta Gen Subj 2009; 1790:485-94. [PMID: 19348869 DOI: 10.1016/j.bbagen.2009.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 01/11/2023]
Abstract
N-linked protein glycosylation was originally thought to be specific to eukaryotes, but evidence of this post-translational modification has now been discovered across all domains of life: Eucarya, Bacteria, and Archaea. In all cases, the glycans are first assembled in a step-wise manner on a polyisoprenoid carrier lipid. At some stage of lipid-linked oligosaccharide synthesis, the glycan is flipped across a membrane. Subsequently, the completed glycan is transferred to specific asparagine residues on the protein of interest. Interestingly, though the N-glycosylation pathway seems to be conserved, the biosynthetic pathways of the polyisoprenoid carriers, the specific structures of the carriers, and the glycan residues added to the carriers vary widely. In this review we will elucidate how organisms in each basic domain of life synthesize the polyisoprenoids that they utilize for N-linked glycosylation and briefly discuss the subsequent modifications of the lipid to generate a lipid-linked oligosaccharide.
Collapse
Affiliation(s)
- Meredith B Jones
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
47
|
Rattray JE, Geenevasen JA, van Niftrik L, Rijpstra WIC, Hopmans EC, Strous M, Schouten S, Jetten MS, Sinninghe Damsté JS. Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway. FEMS Microbiol Lett 2009; 292:115-22. [DOI: 10.1111/j.1574-6968.2008.01483.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Chapter Four Proxies Used for Palaeoenvironmental Reconstructions in the Arctic Ocean. ARCTIC OCEAN SEDIMENTS: PROCESSES, PROXIES, AND PALEOENVIRONMENT 2008. [DOI: 10.1016/s1572-5480(08)00004-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
49
|
|
50
|
Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, Laroche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 2006; 157:91-124. [PMID: 16621693 DOI: 10.1016/j.protis.2006.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christian Wilhelm
- Department of Plant Physiology, Institute of Biology I, University of Leipzig, Johannisallee 23, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|