1
|
Su Z, Li Y, Lin Z, Huang Q, Fan X, Dong Z, Xia Q, Zhao P, Wang X. GC-MS-based metabonomic analysis of silkworm haemolymph reveals four-stage metabolic responses to nucleopolyhedrovirus infection. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39482849 DOI: 10.1111/imb.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Silkworm, Bombyx mori, an economically significant insect, plays a crucial role in silk production. However, silkworm breeding is highly susceptible to various pathogens, particularly the Bombyx mori nucleopolyhedrovirus (BmNPV), which poses a serious threat. Recent metabonomic studies have provided insights into the metabolic changes associated with BmNPV infection. BmNPV infection has obvious temporal characteristics. However, few studies have investigated the silkworms infected in different periods. This study employed gas chromatography-mass spectrometry (GC-MS) to perform a comprehensive analysis of haemolymph metabolites in silkworms at 48, 72, 96 and 120 h post-infection (h.p.i.). Through the integration of time-course analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the study revealed distinct four-stage metabolic characteristics in the silkworm's response to BmNPV infection. At Stage 1 (48 h.p.i.), silkworms activate antioxidant defence mechanisms, with significant enrichment in metabolic pathways involving key antioxidants such as glutathione, to mitigate oxidative stress induced by viral invasion. By Stage 2 (72 h.p.i.), pathways related to amino acid metabolism and protein synthesis become active, indicating an increase in protein synthesis. In Stage 3 (96 h.p.i.), energy metabolism and substance transport pathways are significantly upregulated to support the rapid viral replication and the enhanced locomotor behaviour of silkworm. Finally, at Stage 4 (120 h.p.i.), there is a further enhancement of pathways related to energy metabolism, nucleic acid synthesis, and substance transport, which align with peak viral assembly and release. These findings contribute to an in-depth understanding of the biochemical basis of silkworm resistance to NPV.
Collapse
Affiliation(s)
- Zhenyue Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Li
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Zihan Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xinyu Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Lakhova TN, Tsygichko AA, Klimenko AI, Ismailov VY, Vasiliev GV, Asaturova AM, Lashin SA. Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus ( Cydia pomonella granulovirus). Int J Mol Sci 2024; 25:7146. [PMID: 39000263 PMCID: PMC11240899 DOI: 10.3390/ijms25137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cydia pomonella granulovirus is a natural pathogen for Cydia pomonella that is used as a biocontrol agent of insect populations. The study of granulovirus virulence is of particular interest since the development of resistance in natural populations of C. pomonella has been observed during the long-term use of the Mexican isolate CpGV. In our study, we present the genomes of 18 CpGV strains endemic to southern Russia and from Kazakhstan, as well as a strain included in the commercial preparation "Madex Twin", which were sequenced and analyzed. We performed comparative genomic analysis using several tools. From comparisons at the level of genes and protein products that are involved in the infection process of virosis, synonymous and missense substitution variants have been identified. The average nucleotide identity has demonstrated a high similarity with other granulovirus genomes of different geographic origins. Whole-genome alignment of the 18 genomes relative to the reference revealed regions of low similarity. Analysis of gene repertoire variation has shown that BZR GV 4, BZR GV 6, and BZR GV L-7 strains have been the closest in gene content to the commercial "Madex Twin" strain. We have confirmed two deletions using read depth coverage data in regions lacking genes shown by homology analysis for granuloviruses BZR GV L-4 and BZR GV L-6; however, they are not related to the known genes causing viral pathogenicity. Thus, we have isolated novel CpGV strains and analyzed their potential as strains producing highly effective bioinsecticides against C. pomonella.
Collapse
Affiliation(s)
- Tatiana N. Lakhova
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra A. Tsygichko
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Alexandra I. Klimenko
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir Y. Ismailov
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Gennady V. Vasiliev
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
| | - Anzhela M. Asaturova
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Sergey A. Lashin
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Gasque SN, Han Y, van der Ham I, van Leeuwen D, van Oers MM, Haverkamp A, Ros VID. Baculovirus entry into the central nervous system of Spodoptera exigua caterpillars is independent of the viral protein tyrosine phosphatase. Open Biol 2024; 14:230278. [PMID: 38378139 PMCID: PMC10878822 DOI: 10.1098/rsob.230278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Neuroparasitism concerns the hostile take-over of a host's nervous system by a foreign invader, in order to alter the behaviour of the host in favour of the parasite. One of the most remarkable cases of parasite-induced host behavioural manipulation comprises the changes baculoviruses induce in their caterpillar hosts. Baculoviruses may manipulate caterpillar behaviour in two ways: hyperactivity (increased movement in the horizontal plane) and/or tree-top disease (movement to elevated levels in the vertical plane). Those behavioural changes are followed by liquefaction and death of the caterpillar. In Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Spodoptera exigua caterpillars, an enzymatic active form of the virally encoded protein tyrosine phosphatase (PTP) is needed for the expression of hyperactivity from 3 days post infection (dpi). Using eGFP-expressing recombinant AcMNPV strains, we show that infection of the caterpillar's central nervous system (CNS) can be observed primarily from 3 dpi onwards. In addition, we demonstrate that the structural and enzymatic function of PTP does not play a role in infection of the CNS. Instead we show that the virus entered the CNS via the trachea, progressing caudally to frontally through the CNS and that the infection progressed from the outermost cell layers towards the inner cell layers of the CNS, in a PTP independent manner. These findings help to further understand parasitic manipulation and the mechanisms by which neuroparasites infect the host nervous system to manipulate host behaviour.
Collapse
Affiliation(s)
- Simone N. Gasque
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yue Han
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Iris van der Ham
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Dorothy van Leeuwen
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera I. D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
5
|
Gasque SN, Fredensborg BL. Expression of trematode-induced zombie-ant behavior is strongly associated with temperature. Behav Ecol 2023; 34:960-968. [PMID: 37969549 PMCID: PMC10636736 DOI: 10.1093/beheco/arad064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 11/17/2023] Open
Abstract
Parasite-induced modification of host behavior increasing transmission to a next host is a common phenomenon. However, field-based studies are rare, and the role of environmental factors in eliciting host behavioral modification is often not considered. We examined the effects of temperature, relative humidity (RH), time of day, date, and an irradiation proxy on behavioral modification of the ant Formica polyctena (Förster, 1850) by the brain-encysting lancet liver fluke Dicrocoelium dendriticum (Rudolphi, 1819). This fluke induces ants to climb and bite to vegetation by the mandibles in a state of temporary tetany. A total of 1264 individual ants expressing the modified behavior were observed over 13 non-consecutive days during one year in the Bidstrup Forests, Denmark. A sub-set of those ants (N = 172) was individually marked to track the attachment and release of infected ants in relation to variation in temperature. Infected ants primarily attached to vegetation early and late in the day, corresponding to low temperature and high RH, presumably coinciding with the grazing activity of potential herbivorous definitive hosts. Temperature was the single most important determinant for the induced phenotypic change. On warm days, infected ants altered between the manipulated and non-manipulated state multiple times, while on cool days, many infected ants remained attached to the vegetation all day. Our results suggest that the temperature sensitivity of the infected ants serves the dual purpose of exposing infected ants to the next host at an opportune time, while protecting them from exposure to high temperatures, which might increase host (and parasite) mortality.
Collapse
Affiliation(s)
- Simone Nordstrand Gasque
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Brian Lund Fredensborg
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Gao DM, Qiao JH, Gao Q, Zhang J, Zang Y, Xie L, Zhang Y, Wang Y, Fu J, Zhang H, Han C, Wang XB. A plant cytorhabdovirus modulates locomotor activity of insect vectors to enhance virus transmission. Nat Commun 2023; 14:5754. [PMID: 37717061 PMCID: PMC10505171 DOI: 10.1038/s41467-023-41503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus). Here, we show that BYSMV infects the central nervous system (CNS) of SBPHs, induces insect hyperactivity, and prolongs phloem feeding duration. The BYSMV accessory protein P6 interacts with the COP9 signalosome subunit 5 (LsCSN5) of SBPHs and suppresses LsCSN5-regulated de-neddylation from the Cullin 1 (CUL1), hereby inhibiting CUL1-based E3 ligases-mediated degradation of the circadian clock protein Timeless (TIM). Thus, virus infection or knockdown of LsCSN5 compromises TIM oscillation and induces high insect locomotor activity for transmission. Additionally, expression of BYSMV P6 in the CNS of transgenic Drosophila melanogaster disturbs circadian rhythm and induces high locomotor activity. Together, our results suggest the molecular mechanisms whereby BYSMV modulates locomotor activity of insect vectors for transmission.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiawen Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Zang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Xie
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jingyan Fu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Li Y, Wang X, Xie X, Liu Q, Dong H, Hou Y, Xia Q, Zhao P. Enhanced locomotor behaviour is mediated by activation of tyrosine hydroxylase in the silkworm brain. INSECT MOLECULAR BIOLOGY 2023; 32:251-262. [PMID: 36636859 DOI: 10.1111/imb.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 05/15/2023]
Abstract
Animal behaviour regulation is a complex process involving many factors, and the nervous system is an essential factor in this process. In many species, pathogens can alter host behaviour by affecting the host's nervous system. An interesting example is that the silkworm shows enhanced locomotor behaviour after being infected with the nucleopolyhedrosis virus. In this study, we analysed the transcriptome of the silkworm brain at different time points after infection and found that various genes related to behaviour regulation changed after infection. In-depth analysis showed that the tyrosine hydroxylase gene might be a key candidate gene, and the content of dopamine, its downstream metabolite, increased significantly in the brain of silkworms infected with the virus. After the injection of tyrosine hydroxylase inhibitor into the infected silkworm, the dopamine content in the silkworm brain decreased and the locomotor behaviour caused by the virus was blocked successfully. These results confirm that tyrosine hydroxylase is involved in regulating enhanced locomotor behaviour after virus infection in silkworms. Furthermore, the tyrosine hydroxylase gene was specifically overexpressed in the brain of the silkworm, and the transgenic silkworm was enhanced in locomotor behaviour and foraging behaviour. These results suggest that the tyrosine hydroxylase gene plays a vital role in regulating insect behaviour.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoqian Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Haonan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
9
|
Hao B, Li J, Sun C, Huang J. Label-free proteomics analysis on the envelope of budded viruses of Bombyx mori nucleopolyhedrovirus harboring differential localized GP64. Virus Genes 2023; 59:260-275. [PMID: 36512182 DOI: 10.1007/s11262-022-01961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 is the key membrane fusion protein that mediates budded virus (BV) infection. We recently reported that BmNPV GP64's n-region of signal peptide (SP) blocked the SP-cleavage and mediated GP64 localization on the plasma membrane (PM); n-region (SP∆nGP64) absence caused GP64 intracellular localization, however, SP∆nGP64 was still incorporated into virion to generate BVs with lower infectivity. To better understand the biogenesis of the envelope of BmNPV BV, we conducted a label-free ESI mass spectrometry analysis of the envelope of purified BVs harboring PM localized GP64 or intracellular localized SP∆nGP64. The results indicated that 31 viral proteins were identified on the envelope, among which 15 were reported in other viruses. The other 16 proteins were first reported in BmNPV BV, including the BmNPV-specific protein BRO-A and proteins associated with vesicle transportation. Six proteins with significant intensity differences were detected in virions with differential localized GP64, and five specific proteins were identified in virions with GP64. Meanwhile, we identified 81 host proteins on the envelope, and seven lipoproteins were first identified in baculovirus virion; other 74 proteins are involved in the cytoskeleton, DNA-binding, vesicle transport, etc. In the meantime, eight and five specific host proteins were, respectively, identified in GP64 and SP∆nGP64's virions. The two virions shared 68 common host proteins, and 8 proteins were identified on their envelopes with a significant difference. This study provides new insight into the protein composition of BmNPV BV and a clue for further investigation of the budding mechanism of BmNPV.
Collapse
Affiliation(s)
- Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People's Republic of China
| | - Jingfeng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
| | - Congcong Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China.
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Hu Z, Zhu F, Chen K. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:381-399. [PMID: 36689303 DOI: 10.1146/annurev-ento-120220-112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| |
Collapse
|
11
|
Gielen R, Põldmaa K, Tammaru T. In search of ecological determinants of fungal infections: A semi‐field experiment with folivorous moths. Ecol Evol 2022; 12:e8926. [PMID: 35646316 PMCID: PMC9130559 DOI: 10.1002/ece3.8926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Natural enemies shape the fate of species at both ecological and evolutionary time scales. While the effects of predators, parasitoids, and viruses on insects are well documented, much less is known about the ecological and evolutionary role of entomopathogenic fungi. In particular, it is unclear to which extent may the spatiotemporal distribution patterns of these pathogens create selective pressures on ecological traits of herbivorous insects. In the present study, we reared three lepidopteran species in semi‐natural conditions in a European hemiboreal forest habitat. We studied the probability of the insects to die from fungal infection as a function of insect species, food plant, study site, (manipulated) condition of the larvae, and the phenological phase. The prevalence of entomopathogenic fungi remained low to moderate with the value consistently below 10% across the subsets of the data while as many as 23 fungal species, primarily belonging to the families Cordycipitaceae, Aspergillaceae, and Nectriaceae, were recorded. There were no major differences among the insect species in prevalence of the infections or in the structure of associated fungal assemblages. The family Cordycipitaceae, comprising mainly obligatory entomopathogens, dominated among the pathogens of pupae but not among the pathogens of larvae. Overall, there was evidence for a relatively weak impact of the studied ecological factors on the probability to be infected by a fungal pathogen; there were no effects of food plant, study site, or phenology which would be consistent over the study species and developmental stages of the insects. Nevertheless, when the prevalence of particular fungal taxa was studied, Akanthomyces muscarius was found infecting insects fed with leaves of only one of the food plant, Betula spp. Feeding on a particular plant taxon can thus have specific fitness costs. This demonstrates that fungus‐mediated effects on insect life history traits are possible and deserve attention.
Collapse
Affiliation(s)
- Robin Gielen
- Entomology Unit Department of Zoology Institute of Ecology and Earth Sciences Faculty of Science and Technology University of Tartu Tartu Estonia
| | - Kadri Põldmaa
- Mycology Unit Department of Botany Faculty of Science and Technology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Natural History Museum and Botanical Garden University of Tartu Tartu Estonia
| | - Toomas Tammaru
- Entomology Unit Department of Zoology Institute of Ecology and Earth Sciences Faculty of Science and Technology University of Tartu Tartu Estonia
| |
Collapse
|
12
|
Liu X, Tian Z, Cai L, Shen Z, Michaud JP, Zhu L, Yan S, Ros VID, Hoover K, Li Z, Zhang S, Liu X. Baculoviruses hijack the visual perception of their caterpillar hosts to induce climbing behavior, thus promoting virus dispersal. Mol Ecol 2022; 31:2752-2765. [PMID: 35258140 DOI: 10.1111/mec.16425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Baculoviruses can induce climbing behavior in their caterpillar hosts to ensure they die at elevated positions to enhance virus transmission, providing an excellent model to study parasitic manipulation of host behavior. Here, we demonstrate that climbing behavior occurred mostly during daylight hours, and that the height at death of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV)-infected larvae increases with the height of the light source. Phototaxic and electroretinogram (ERG) responses were enhanced after HearNPV-infection in host larvae, and ablation of stemmata in infected larvae prevented both phototaxis and climbing behavior. Through transcriptome and quantitative PCR, we confirmed that two opsin genes (a blue light-sensitive gene, HaBL; and a long wave-sensitive gene, HaLW) as well as the TRPL (transient receptor potential-like channel protein) gene, all integral to the host's visual perception pathway, were significantly up-regulated after HearNPV infection. Knockout of HaBL, HaLW, or TRPL genes using the CRISPR/Cas9 system resulted in significantly reduced ERG responses, phototaxis, and climbing behavior in HearNPV-infected larvae. These results reveal that HearNPV alters the expression of specific genes to hijack host visual perception at fundamental levels - photoreception and phototransduction - in order to induce climbing behavior in host larvae.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China.,College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS, 67601, USA
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Shuo Yan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA16802, USA
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
13
|
Poelman EH, Cusumano A. Impact of parasitoid-associated polydnaviruses on plant-mediated herbivore interactions. CURRENT OPINION IN INSECT SCIENCE 2022; 49:56-62. [PMID: 34839032 DOI: 10.1016/j.cois.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Insect herbivores interact via plant-mediated interactions in which one herbivore species induces changes in plant quality that affects the performance of a second phytophagous insect that shares the food plant. These interactions are often asymmetric due to specificity in induced plant responses to herbivore attack, amount of plant damage, elicitors in herbivore saliva and plant organ damaged by herbivores. Parasitoids and their symbiotic polydnaviruses alter herbivore physiology and behaviour and may influence how plants respond to parasitized herbivores. We argue that these phenomena affect plant-mediated interactions between herbivores. We identify that the extended phenotype of parasitoid polydnaviruses is an important knowledge gap in interaction networks of insect communities.
Collapse
Affiliation(s)
- Erik H Poelman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Antonino Cusumano
- University of Palermo, Department of Agricultural, Food And Forest Sciences (SAAF), Viale delle Scienze, 90128, Palermo, Italy.
| |
Collapse
|
14
|
de Bekker C, Das B. Hijacking time: How Ophiocordyceps fungi could be using ant host clocks to manipulate behavior. Parasite Immunol 2022; 44:e12909. [PMID: 35103986 PMCID: PMC9287076 DOI: 10.1111/pim.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Ophiocordyceps fungi manipulate ant behaviour as a transmission strategy. Conspicuous changes in the daily timing of disease phenotypes suggest that Ophiocordyceps and other manipulators could be hijacking the host clock. We discuss the available data that support the notion that Ophiocordyceps fungi could be hijacking ant host clocks and consider how altering daily behavioural rhythms could benefit the fungal infection cycle. By reviewing time‐course transcriptomics data for the parasite and the host, we argue that Ophiocordyceps has a light‐entrainable clock that might drive daily expression of candidate manipulation genes. Moreover, ant rhythms are seemingly highly plastic and involved in behavioural division of labour, which could make them susceptible to parasite hijacking. To provisionally test whether the expression of ant behavioural plasticity and rhythmicity genes could be affected by fungal manipulation, we performed a gene co‐expression network analysis on ant time‐course data and linked it to available behavioural manipulation data. We found that behavioural plasticity genes reside in the same modules as those affected during fungal manipulation. These modules showed significant connectivity with rhythmic gene modules, suggesting that Ophiocordyceps could be indirectly affecting the expression of those genes as well.
Collapse
Affiliation(s)
- Charissa de Bekker
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Biplabendu Das
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
15
|
Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S. A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. INSECT SCIENCE 2022; 29:230-244. [PMID: 33783135 DOI: 10.1111/1744-7917.12913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Baculoviruses constitute a large group of invertebrate DNA viruses, predominantly infecting larvae of the insect order Lepidoptera. During a baculovirus infection, the virus spreads throughout the insect body producing a systemic infection in multiple larval tissues, included the central nervous system (CNS). As a main component of the CNS, neuropeptides are small protein-like molecules functioning as neurohormones, neurotransmitters, or neuromodulators. These peptides are involved in regulating animal physiology and behavior and could be altered after baculovirus infection. In this study, we have investigated the effect of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection on expression of Spodoptera exigua neuropeptides and neuropeptide-like genes. Expression of the gene encoding a polypeptide that resembles the well-known insect neuropeptide proctolin and named as proctolin-like peptide (PLP), was downregulated in the larval brain following infection and was chosen for further analysis. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) overexpressing the C-terminal part of the PLP was generated and used in bioassays using S. exigua larvae to study its influence on the viral infection and insect behavior. AcMNPV-PLP-infected larvae showed less locomotion activity and a reduction in growth compared to larvae infected with wild type AcMNPV or mock-infected larvae. These results are indicative of this new peptide as a neuromodulator that regulates visceral and skeletal muscle contractions and offers a novel effector involved in the behavioral changes during baculovirus infection.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Stefano Parenti
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yue Han
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- Current address. Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
16
|
The PI3K/AKT Pathway and PTEN Gene Are Involved in “Tree-Top Disease” of Lymantria dispar. Genes (Basel) 2022; 13:genes13020247. [PMID: 35205292 PMCID: PMC8871656 DOI: 10.3390/genes13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Nucleopolyhedrovirus (NPV) can alter its host behaviour such that infected larvae hang at the top of trees before their death. This phenomenon was firstly described by Hofmann in 1891 and named as “tree-top disease”. Subsequent studies have described effects during the infection proceedings as NPVs manipulate the host to avoid the immune response, cross defensive barriers and regulate hormones. In this study, we demonstrate that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway is involved in host manipulation by Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Particularly at the late stage of infection, a multifunctional dephosphorylase in the PI3K/AKT signaling pathway is dynamically upregulated, namely, the phosphatidylinositol-3, 4, 5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase (PTEN) gene. The biological assays of PTEN gene knockdown showed that an increase in PTEN gene expression was necessary for the infected Lymantria dispar larvae’s terminal climbing behavior, death postponement and virion production. The results imply that the PI3K/AKT signaling pathway and PTEN gene might play an essential role in “tree-top disease” induced by LdMNPV.
Collapse
|
17
|
Williams T, López-Ferber M, Caballero P. Nucleopolyhedrovirus Coocclusion Technology: A New Concept in the Development of Biological Insecticides. Front Microbiol 2022; 12:810026. [PMID: 35145496 PMCID: PMC8822060 DOI: 10.3389/fmicb.2021.810026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023] Open
Abstract
Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.
Collapse
Affiliation(s)
| | - Miguel López-Ferber
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Alès, IRD, CNRS, Alès, France
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
- Bioinsectis SL, Noain, Spain
| |
Collapse
|
18
|
Llopis-Giménez A, Caballero-Vidal G, Jacquin-Joly E, Crava CM, Herrero S. Baculovirus infection affects caterpillar chemoperception. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103648. [PMID: 34536505 DOI: 10.1016/j.ibmb.2021.103648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Baculoviruses are double-stranded DNA entomopathogenic viruses that infect predominantly insects of the order Lepidoptera. Research in the last decade has started to disentangle the mechanisms underlying the insect-virus interaction, particularly focusing on the effects of the baculovirus infection in the host's physiology. Among crucial physiological functions, olfaction has a key role in reproductive tasks, food source detection and enemy avoidance. In this work, we describe that Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces expression changes in some odorant receptors (ORs) - the centrepiece of insect's olfaction - when infecting larvae from its natural host Spodoptera exigua (Lepidoptera: Noctuidae). Different ORs are up-regulated in larvae after SeMNPV infection, and two of them, SexiOR35 and SexiOR23, were selected for further functional characterization by heterologous expression in empty neurons of Drosophila melanogaster coupled to single-sensillum recordings. SexiOR35 appears to be a broadly tuned receptor able to recognise multiple and different chemical compounds. SexiOR23, although correctly expressed in Drosophila neurons, did not display any significant response to a panel of 58 stimuli. Behavioural experiments revealed that larvae infected by SeMNPV exhibit altered olfactory-driven behaviour to diet when it is supplemented with the plant volatiles linalool or estragole, two of the main SexiOR35 ligands, supporting the hypothesis that viral infection triggers changes in host perception through changes in the expression level of specific ORs.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain
| | - Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, F78026, Versailles Cedex, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, F78026, Versailles Cedex, France
| | - Cristina Maria Crava
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain.
| | - Salvador Herrero
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain.
| |
Collapse
|
19
|
de Bekker C, Beckerson WC, Elya C. Mechanisms behind the Madness: How Do Zombie-Making Fungal Entomopathogens Affect Host Behavior To Increase Transmission? mBio 2021; 12:e0187221. [PMID: 34607463 PMCID: PMC8546595 DOI: 10.1128/mbio.01872-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transmission is a crucial step in all pathogen life cycles. As such, certain species have evolved complex traits that increase their chances to find and invade new hosts. Fungal species that hijack insect behaviors are evident examples. Many of these "zombie-making" entomopathogens cause their hosts to exhibit heightened activity, seek out elevated positions, and display body postures that promote spore dispersal, all with specific circadian timing. Answering how fungal entomopathogens manipulate their hosts will increase our understanding of molecular aspects underlying fungus-insect interactions, pathogen-host coevolution, and the regulation of animal behavior. It may also lead to the discovery of novel bioactive compounds, given that the fungi involved have traditionally been understudied. This minireview summarizes and discusses recent work on zombie-making fungi of the orders Hypocreales and Entomophthorales that has resulted in hypotheses regarding the mechanisms that drive fungal manipulation of insect behavior. We discuss mechanical processes, host chemical signaling pathways, and fungal secreted effectors proposed to be involved in establishing pathogen-adaptive behaviors. Additionally, we touch on effectors' possible modes of action and how the convergent evolution of host manipulation could have given rise to the many parallels in observed behaviors across fungus-insect systems and beyond. However, the hypothesized mechanisms of behavior manipulation have yet to be proven. We, therefore, also suggest avenues of research that would move the field toward a more quantitative future.
Collapse
Affiliation(s)
- Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, Florida, USA
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, USA
| | - William C. Beckerson
- Department of Biology, College of Sciences, University of Central Florida, Orlando, Florida, USA
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, USA
| | - Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
21
|
Li Y, Zhang J, Zhao S, Wu X. BmNPV-induced hormone metabolic disorder in silkworm leads to enhanced locomotory behavior. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104036. [PMID: 33545211 DOI: 10.1016/j.dci.2021.104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Many parasites alter the host locomotory behaviors in a way that increases their fitness and progeny transmission. Baculoviruses can manipulate host physiology and alter the locomotory behavior by inducing 'hyperactivity' (increased locomotion) or 'tree-top disease' (climbing high up to the top before dying). However, the detailed molecular mechanism underlying virus-induced this hyperactive behavior remains elusive. In the present study, we showed that BmNPV invaded into silkworm brain tissue, resulting in severe brain damage. Moreover, BmNPV infection disturbed the insect hormone balance. The content of 20-hydroxyecdysone (20E) in hemolymph was much lower during the hyperactive stage, while the dopamine (DA) titer was higher than mock infection. Exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced ELA (enhanced locomotory activity), while dopamine stimulates this behavior. More specificity, injection of dopamine or its agonist promote this hyperactive behavior in BmNPV-infected larvae. Taking together, our findings revealed the important role of hormone metabolism in BmNPV-induced ELA.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Stilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Stilization and Innovation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
22
|
Kokusho R, Katsuma S. Bombyx mori nucleopolyhedrovirus ptp and egt genes are dispensable for triggering enhanced locomotory activity and climbing behavior in Bombyx mandarina larvae. J Invertebr Pathol 2021; 183:107604. [PMID: 33971220 DOI: 10.1016/j.jip.2021.107604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
Baculoviruses are classic pathogens that alter host behavior to enhance their dispersal and transmission. While viral protein tyrosine phosphatase (ptp) has been considered as a critical factor for inducing enhanced locomotory activity, preceding investigations have reported that viral ecdysteroid UDP-glucosyltransferase (egt) contributes to triggering climbing behavior in some virus and host species. Here we found that both egt and ptp were dispensable for these abnormal behaviors in Bombyx mandarina larvae induced by Bombyx mori nucleopolyhedrovirus, thus implying that there is an unknown core mechanism of baculovirus-induced alteration of host behaviors.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Kokusho R, Katsuma S. Loss of p24 from the Bombyx mori nucleopolyhedrovirus genome results in the formation of cuboidal occlusion bodies. Virology 2021; 559:173-181. [PMID: 33930820 DOI: 10.1016/j.virol.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
Some insect viruses produce the occlusion body (OB), a large crystalline particle comprising a viral protein that occludes virions to protect them from harsh environments. The shapes and sizes of OBs are diverse depending on baculovirus species, but the detailed molecular mechanism determining them has yet to be totally clarified yet. Here we generated Bombyx mori nucleopolyhedrovirus (BmNPV) mutants of the p24 gene that encodes a viral capsid protein and found that p24-mutated BmNPVs produced cuboidal OBs with a slightly larger size than typical truncated octahedral OBs produced by wild-type BmNPVs. Meanwhile, p24 disruption has no significant impact on progeny virus production and viral pathogenicity. In addition, we experimentally demonstrated that a single amino acid substitution found in the P24 protein of the BmNPV Cubic isolate caused cuboidal OB production. These results suggest that p24 has a crucial role in generating the typical shape of OBs.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
24
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
25
|
Wang M, Lin Y, Zhou S, Cui Y, Feng Q, Yan W, Xiang H. Genetic Mapping of Climbing and Mimicry: Two Behavioral Traits Degraded During Silkworm Domestication. Front Genet 2020; 11:566961. [PMID: 33391338 PMCID: PMC7773896 DOI: 10.3389/fgene.2020.566961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Behavioral changes caused by domestication in animals are an important issue in evolutionary biology. The silkworm, Bombyx mori, is an ideal fully domesticated insect model for studying both convergent domestication and behavior evolution. We explored the genetic basis of climbing for foraging and mimicry, two degraded behaviors during silkworm domestication, in combination of bulked segregant analysis (BSA) and selection sweep screening. One candidate gene, ASNA1, located in the 3-5 Mb on chromosome 19, harboring a specific non-synonymous mutation in domestic silkworm, might be involved in climbing ability. This mutation was under positive selection in Lepidoptera, strongly suggesting its potential function in silkworm domestication. Nine candidate domesticated genes related to mimicry were identified on chromosomes 13, 21, and 27. Most of the candidate domesticated genes were generally expressed at higher levels in the brain of the wild silkworm. This study provides valuable information for deciphering the molecular basis of behavioral changes associated with silkworm domestication.
Collapse
Affiliation(s)
- Man Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongjian Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shiyi Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
26
|
Abstract
Many parasites manipulate host behaviour to enhance their transmission. Baculoviruses induce enhanced locomotory activity (ELA) combined with subsequent climbing behaviour in lepidopteran larvae, which facilitates viral dispersal. However, the mechanisms underlying host manipulation system are largely unknown. Previously, larval locomotion during ELA was summarized as the distance travelled for a few minutes at several time points, which are unlikely to characterize ELA precisely, as ELA typically persists for several hours. In this study, we modified a recently developed method using time-lapse recording to characterize locomotion of Bombyx mori larvae infected with B. mori nucleopolyhedrovirus (BmNPV) for 24 h at 3 s resolution. Our data showed that the locomotion of the mock-infected larvae was restricted to a small area, whereas the BmNPV-infected larvae exhibited a large locomotory area. These results indicate that BmNPV dysregulates the locomotory pattern of host larvae. Furthermore, both the mock- and BmNPV-infected larvae showed periodic cycles of movement and stationary behaviour with a similar frequency, suggesting the physiological mechanisms that induce locomotion are unaffected by BmNPV infection. In contrast, the BmNPV-infected larvae exhibited fast and long-lasting locomotion compared with mock-infected larvae, which indicates that locomotory speed and duration are manipulated by BmNPV.
Collapse
|
27
|
Wang G, Na S, Qin L. Screening of Bombyx mori brain proteins interacting with protein tyrosine phosphatase of BmNPV. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21732. [PMID: 32783274 DOI: 10.1002/arch.21732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, glutathione-S-transferase pull-down combined with mass spectrometry techniques were used to identify the candidate proteins interacting with protein tyrosine phosphatase of the Bombyx Mori nucleopolyhedrovirus in the B. mori (BmNPV-PTP) brain. A total of 36 proteins were identified from BmNPV-PTP coprecipitate samples by searching the NCBI_Bombyx Mori database with the original mass spectrum data. Among those proteins, the interaction between BmNPV-PTP and B. mori cyclophilin A may accelerate the apoptosis of certain nerve cells involved in regulating behavior, and thus may be an inducer of enhanced locomotor activity (ELA). After the BmNPV invasion, BmNPV-PTP binding to peripheral-type benzodiazepine receptors may initiate a series of abnormal cascades of the nervous system, which results in abnormal hyperactive behavior in B. mori. Besides this, vacuolar ATP synthase catalytic subunit A, annexin, and several enzymes for energy conversion were identified, which may play a role in enhancing viral entry and infectivity and provide energy for enhancing the locomotor activity of B. mori. In general, the results of this study will facilitate the understanding of the molecular mechanisms underlying the ELA of B. mori larva induced by BmNPV.
Collapse
Affiliation(s)
- Guobao Wang
- College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Shuang Na
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Qin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Going gentle into that pathogen-induced goodnight. J Invertebr Pathol 2020; 174:107398. [PMID: 32473941 DOI: 10.1016/j.jip.2020.107398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
A diverse set of pathogens have evolved extended phenotypes that manipulate the moribund behavior of their various insect hosts. By elevating host positioning at death, a phenomenon called "summit disease", these pathogens have been shown to have higher fitness. Though a few summit disease systems have been intensively characterized, in particular the Ophiocordyceps-ant system, summit diseases lack an overarching theory for the underlying mechanisms of this complex behavioral manipulation. In this article, we combine the gamut of summiting systems into a cohesive framework: we propose two types of summit disease (juvenile and adult), which both exploit natural insect behaviors during periods of quiescence. We place this framework in the context of available literature and propose investigations that follow from this comprehensive understanding of summit disease in insects.
Collapse
|
29
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
30
|
Bombyx mori nucleopolyhedrovirus Bm96 suppresses viral virulence in Bombyx mori larvae. J Invertebr Pathol 2020; 173:107374. [PMID: 32294464 DOI: 10.1016/j.jip.2020.107374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/04/2020] [Indexed: 11/21/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a severe pathogen for the domestic silkworm, Bombyx mori. BmNPV harbors over 140 protein-coding genes in its 128.4 kilobase pair-long double-stranded genome. However, many BmNPV genes are still uncharacterized. Here we investigated the role of BmNPV Bm96 in both B. mori cultured cells and larvae. We found that Bm96 is mainly expressed at the late stage of infection and accumulation of Bm96 protein peaks at 24 h post infection (hpi) and declines gradually at 48 hpi in B. mori cultured cells. Compared with the wild-type viruses, Bm96-deletion viruses exhibited higher viral propagation and fast-killing phenotype in B. mori larvae. These results strongly suggest that Bm96 negatively regulates the propagation of BmNPV in B. mori larvae. Furthermore, we observed that larvae infected with Bm96-deletion viruses showed lower locomotory activity at the late stage of infection compared with those infected with the wild-type viruses.
Collapse
|
31
|
Wang M, Hu Z. Cross-talking between baculoviruses and host insects towards a successful infection. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180324. [PMID: 30967030 DOI: 10.1098/rstb.2018.0324] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Baculoviridae is a family of large DNA viruses that infect insects. They have been extensively used as safe and efficient biological agents for the control of insect pests. As a result of coevolution with their hosts, baculoviruses developed unique life cycles characterized by the production of two distinctive virion phenotypes, occlusion-derived virus and budded virus, which are responsible for mediating primary infection in insect midgut epithelia and spreading systemic infection within infected insects, respectively. In this article, advances associated with virus-host interactions during the baculovirus life cycle are reviewed. We mainly focus on how baculoviruses exploit versatile strategies to overcome diverse host barriers and establish successful infections. For example, in the midgut, baculoviruses encode enzymes to degrade peritrophic membranes and use a series of per os infectivity factors to initiate primary infection. A viral fibroblast growth factor is expressed to attract tracheoblasts that spread the virus for systemic infection. Baculoviruses use different strategies to suppress host defence systems, including apoptosis, melanization and RNA interference. Additionally, baculoviruses can manipulate host physiology and induce 'tree-top disease' for optimal virus replication and dispersal. These advances in our understanding of baculoviruses will greatly inform the development of more effective baculoviral pesticides. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| |
Collapse
|
32
|
Mangold CA, Ishler MJ, Loreto RG, Hazen ML, Hughes DP. Zombie ant death grip due to hypercontracted mandibular muscles. J Exp Biol 2019; 222:jeb200683. [PMID: 31315924 PMCID: PMC6679347 DOI: 10.1242/jeb.200683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022]
Abstract
There are numerous examples of parasites that manipulate the behavior of the hosts that they infect. One such host-pathogen relationship occurs between the 'zombie-ant fungus' Ophiocordyceps unilateralis sensu lato and its carpenter ant host. Infected ants climb to elevated locations and bite onto vegetation where they remain permanently affixed well after death. The mandibular muscles, but not the brain, of infected ants are extensively colonized by the fungus. We sought to investigate the mechanisms by which O. unilateralis s.l. may be able to influence mandibular muscle contraction despite widespread muscle damage. We found that infected muscles show evidence of hypercontraction. Despite the extensive colonization, both motor neurons and neuromuscular junctions appear to be maintained. Infection results in sarcolemmal damage, but this is not specific to the death grip. We found evidence of precise penetration of muscles by fungal structures and the presence of extracellular vesicle-like particles, both of which may contribute to mandibular hypercontraction.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa J Ishler
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Raquel G Loreto
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Institute Pasteur, Paris 75015, France
| | - Missy L Hazen
- Huck Institutes of the Life Sciences Microscopy and Cytometry Facility, Pennsylvania State University, University Park, PA 16802, USA
| | - David P Hughes
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
de Bekker C. Ophiocordyceps-ant interactions as an integrative model to understand the molecular basis of parasitic behavioral manipulation. CURRENT OPINION IN INSECT SCIENCE 2019; 33:19-24. [PMID: 31358190 DOI: 10.1016/j.cois.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 06/10/2023]
Abstract
Ophiocordyceps-infected ants display a substrate biting behavior that aids parasite transmission. World-wide research into this behavioral manipulation has led to new fungal species descriptions, annotated genomes, and detailed field observations. Experimentally tractable modified ant behaviors and the development of infection techniques have enabled the quest for the molecular basis of this phenomenon. Behavioral studies followed by transcriptomics, metabolomics and three-dimensional electron microscopy have led to novel mechanistic hypotheses. This multidisciplinary work represents a big leap forward. However, definitive answers have yet to be obtained. A comprehensive understanding hinges on continued integrative efforts that reveal the precise natural history, behavioral ecology and evolutionary relationships between Ophiocordyceps-ant systems, and the true functions and involvement of genes and metabolites in behavioral manipulation.
Collapse
Affiliation(s)
- Charissa de Bekker
- University of Central Florida, College of Sciences, Biology Department, 4110 Libra Drive, 32816 Orlando, FL, United States.
| |
Collapse
|
34
|
Gasque SN, van Oers MM, Ros VI. Where the baculoviruses lead, the caterpillars follow: baculovirus-induced alterations in caterpillar behaviour. CURRENT OPINION IN INSECT SCIENCE 2019; 33:30-36. [PMID: 31358192 DOI: 10.1016/j.cois.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 06/10/2023]
Abstract
Baculoviruses are well-known for altering the behaviour of their caterpillar hosts by inducing hyperactivity (enhanced locomotion) and/or tree-top disease (climbing to elevated positions before death). These features, along with the genomic small size of baculoviruses compared to non-viral parasites and the at hand techniques for producing mutants, imply that baculoviruses are excellent tools for unravelling the molecular mechanisms underlying parasitic alteration of host behaviour. Baculoviruses can be easily mutated, allowing an optimal experimental setup in comparative studies, where for instance host gene expression can be compared between insects infected with wild-type viruses or with mutant viruses lacking genes involved in behavioural manipulation. Recent studies have revealed the first insight into the underlying molecular pathways that lead to the typical behaviour of baculovirus-infected caterpillars and into the role of light therein. Since host behaviour in general is mediated through the host's central nervous system (CNS), a promising future step will be to study how baculoviruses regulate the neuronal activity of the host.
Collapse
Affiliation(s)
- Simone N Gasque
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Vera Id Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
35
|
Bhattarai MK, Bhattarai UR, Feng JN, Wang D. Effect of Different Light Spectrum in Helicoverpa armigera Larvae during HearNPV Induced Tree-Top Disease. INSECTS 2018; 9:insects9040183. [PMID: 30518028 PMCID: PMC6316081 DOI: 10.3390/insects9040183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/04/2023]
Abstract
Lepidopteran larvae upon infection by baculovirus show positive photo-tactic movement during tree-top disease. In light of many insects exploiting specific spectral information for the different behavioral decision, each spectral wavelength of light is an individual parsimonious candidate for such behavior stimulation. Here, we investigated the responses of third instar Helicoverpa armigera larvae infected by Helicoverpa armigera nucleopolyhedrovirus (HearNPV) to white (broad-spectrum), blue (450–490 nm), UVA (320–400 nm), and UVB (290–320 nm) lights for the tree-top disease. Our findings suggest that tree-top phenomenon is induced only when the light is applied from above. Blue, white and UVA lights from above induced tree-top disease, causing infected larvae to die in an elevated position compared to those larvae living in the complete dark. In contrast, UVB from above did not induce tree-top disease. Blue light exerted the maximum photo-tactic response, significantly (p < 0.01) higher than white light. The magnitude of the response decreased with decreasing wavelength to UVA, and no response at UVB. Our results suggested that the spectral wavelength of the light has a significant effect on the induction of the tree-top disease in H. armigera third instar larvae infected with HearNPV.
Collapse
Affiliation(s)
- Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Ji-Nian Feng
- Department of Entomology, Northwest A&F University, Yangling 712100, China.
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
36
|
Bhattarai UR, Li F, Katuwal Bhattarai M, Masoudi A, Wang D. Phototransduction and circadian entrainment are the key pathways in the signaling mechanism for the baculovirus induced tree-top disease in the lepidopteran larvae. Sci Rep 2018; 8:17528. [PMID: 30510155 PMCID: PMC6277413 DOI: 10.1038/s41598-018-35885-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023] Open
Abstract
The tree-top disease is an altered behavioral state, displayed by baculovirus-infected lepidopteran larvae, and characterized by climbing to an elevated position before death. The detailed molecular mechanism underlying this phenomenal behavior change has not been reported yet. Our study focused on the transcriptomic changes in the host larvae due to baculovirus infection from pre-symptomatic to tree-top disease stage. Enrichment map visualization of the gene sets grouped based on the functional annotation similarity revealed 34 enriched pathways in signaling mechanism cluster during LdMNPV induced tree-top disease in third instar Lymantria dispar asiatica larvae. Directed light bioassay demonstrated the positively phototactic larvae during tree-top disease and the gene expression analysis showed altered rhythmicity of the host’s core circadian genes (per and tim) during the course of infection emphasizing the role of Circadian entrainment and Phototransduction pathways in the process, which also showed maximum interactions (>50% shared genes with 24 and 23 pathways respectively) among other signaling pathways in the enrichment map. Our study provided valuable insights into different pathways and genes, their coordinated response and molecular regulation during baculovirus infection and also improved our understanding regarding signaling mechanisms in LdMNPV induced tree-top disease.
Collapse
Affiliation(s)
- Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Fengjiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Abolfazl Masoudi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
37
|
Global Analysis of Baculovirus Autographa californica Multiple Nucleopolyhedrovirus Gene Expression in the Midgut of the Lepidopteran Host Trichoplusia ni. J Virol 2018; 92:JVI.01277-18. [PMID: 30209166 DOI: 10.1128/jvi.01277-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus that encodes approximately 156 genes and is highly pathogenic to a variety of larval lepidopteran insects in nature. Oral infection of larval midgut cells is initiated by the occlusion-derived virus (ODV), while secondary infection of other tissues is mediated by the budded virus (BV). Global viral gene expression has been studied in detail in BV-infected cell cultures, but studies of ODV infection in the larval midgut are limited. In this study, we examined expression of the ∼156 AcMNPV genes in Trichoplusia ni midgut tissue using a transcriptomic approach. We analyzed expression profiles of viral genes in the midgut and compared them with profiles from a T. ni cell line (Tnms42). Several viral genes (p6.9, orf76, orf75, pp31, Ac-bro, odv-e25, and odv-ec27) had high expression levels in the midgut throughout the infection. Also, the expression of genes associated with occlusion bodies (polh and p10) appeared to be delayed in the midgut in comparison with the cell line. Comparisons of viral gene expression profiles revealed remarkable similarities between the midgut and cell line for most genes, although substantial differences were observed for some viral genes. These included genes associated with high level BV production (fp-25k), acceleration of systemic infection (v-fgf), and enhancement of viral movement (arif-1/orf20). These differential expression patterns appear to represent specific adaptations for virus infection and transmission through the polarized cells of the lepidopteran midgut.IMPORTANCE Baculoviruses such as AcMNPV are pathogens that are natural regulators of certain insect populations. Baculovirus infections are biphasic, with a primary phase initiated by oral infection of midgut epithelial cells by occlusion-derived virus (ODV) virions and a secondary phase in which other tissues are infected by budded-virus (BV) virions. While AcMNPV infections in cultured cells have been studied extensively, comparatively little is known regarding primary infection in the midgut. In these studies, we identified gene expression patterns associated with ODV-mediated infection of the midgut in Trichoplusia ni and compared those results with prior results from BV-infected cultured cells, which simulate secondary infection. These studies provide a detailed analysis of viral gene expression patterns in the midgut, which likely represent specific viral strategies to (i) overcome or avoid host defenses in the gut and (ii) rapidly move infection from the midgut, into the hemocoel to facilitate systemic infection.
Collapse
|
38
|
Zhu Z, Wang J, Wang Q, Yin F, Liu X, Hou D, Zhang L, Liu H, Li J, Arif BM, Wang H, Deng F, Hu Z, Wang M. Genome Characteristics of the Cyclophragma Undans Nucleopolyhedrovirus: A Distinct Species in Group I of Alphabaculovirus. Virol Sin 2018; 33:359-368. [PMID: 30155853 DOI: 10.1007/s12250-018-0047-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
The Cyclophragma undans nucleopolyhedrovirus (CyunNPV), a potential pest control agent, was isolated from Cyclophragma undans (Lepidoptera: Lasiocampidae), an important forest pest. In the present study, we performed detailed genome analysis of CyunNPV and compared its genome to those of other Group I alphabaculoviruses. Sequencing of the CyunNPV genome using the Roche 454 sequencing system generated 142,900 bp with a G + C content of 45%. Genome analysis predicted a total of 147 hypothetical open reading frames comprising 38 baculoviral core genes, 24 lepidopteran baculovirus conserved genes, nine Group I Alphabaculovirus conserved genes, 71 common genes, and five genes that are unique to CyunNPV. In addition, the genome contains 13 homologous repeated sequences (hrs). Phylogenetic analysis groups CyunNPV under a distinct branch within clade "a" of Group I in the genus Alphabaculovirus. Unlike other members of Group I, CyunNPV harbors only nine of the 11 genes previously determined to be specific to Group I viruses. Furthermore, the CyunNPV lacks the tyrosine phosphatase gene and the ac30 gene. The CyunNPV F-like protein contains two insertions of continuous polar amino acids, one at the conventional fusion peptide and a second insertion at the pre-transmembrane domain. The insertions are likely to affect the fusion function and suggest an evolutionary process that led to inactivation of the F-like protein. The above findings imply that CyunNPV is a distinct species under Group I Alphabaculovirus.
Collapse
Affiliation(s)
- Zheng Zhu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qianran Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feifei Yin
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoping Liu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dianhai Hou
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lei Zhang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haizhou Liu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiang Li
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Basil M Arif
- Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, ON, P6A 2E5, Canada
| | - Hualin Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
39
|
Hu X, Zhu M, Liu B, Liang Z, Huang L, Xu J, Yu L, Li K, Jiang M, Xue R, Cao G, Gong C. Circular RNA alterations in the Bombyx mori midgut following B. mori nucleopolyhedrovirus infection. Mol Immunol 2018; 101:461-470. [PMID: 30103194 DOI: 10.1016/j.molimm.2018.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Thus far, no systematic studies have examined circRNA expression profiles in the silkworm following B.mori nucleopolyhedrovirus (BmNPV) infection. To explore the expression patterns of circRNAs in the silkworm midgut following BmNPV infection, circRNAs in normal midguts and BmNPV-infected midguts were analyzed by high-throughput sequencing. A total of 353 circRNAs were significantly differentially expressed, of which 241 were upregulated and 112 were downregulated following infection. GO annotation and KEGG pathways analyses of these circRNAs showed that many key immunity pathways and metabolism pathways were enriched in the BmNPV-infected midguts. The potential roles of the predicted targets of the miRNAs that interacted with the circRNAs showed that ubiquitin, apoptosis, and endocytosis signaling pathways were enriched significantly by BmNPV infection.
Collapse
Affiliation(s)
- Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Bo Liu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Lixu Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jian Xu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Lei Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Kun Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Mengsheng Jiang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
40
|
Bhattarai UR, Katuwal Bhattarai M, Li F, Wang D. Insights into the Temporal Gene Expression Pattern in Lymantria dispar Larvae During the Baculovirus Induced Hyperactive Stage. Virol Sin 2018; 33:345-358. [PMID: 30046995 DOI: 10.1007/s12250-018-0046-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Baculoviruses are effective biological control agents for many insect pests. They not only efficiently challenge the host immune system but also make them hyperactive for better virus dispersal. Some investigations have focused on the viral mechanisms for induction of such altered response from the host. However, there are no current studies monitoring changes in gene expression during this altered phenotype in infected larvae. The L. dispar multiple nucleopolyhedrovirus (LdMNPV) induces hyperactivity in third instar L. dispar larvae at 3-days post infection (dpi), to continued till 6 dpi. The transcriptome profiles of the infected and uninfected larvae at these time points were analyzed to provide new clues on the response of the larvae towards infection during hyperactivity. Gene ontology enrichment analysis revealed, most of the differentially expressed genes (DEGs) were involved in proteolysis, extracellular region, and serine-type endopeptidase activity. Similarly, Kyoto Encyclopedia of Genes and Genome enrichment analysis showed maximum enrichment of 487 genes of the signal transduction category and neuroactive ligand-receptor interaction sub-category with 85 annotated genes. In addition, enrichment map visualization of gene set enrichment analysis showed the coordinated response of neuroactive ligand-receptor interaction genes with other functional gene sets, as an important signal transduction mechanism during the hyperactive stage. Interestingly all the DEGs in neuroactive ligand-receptor interactions were serine proteases, their differential expression during the hyperactive stage correlated with their conceivable involvement in disease progression and the resulting altered phenotype during this period. The outcome provides a basic understanding of L. dispar larval responses to LdMNPV infection during the hyperactive stage and helps to determine the important host factors involved in this process.
Collapse
Affiliation(s)
- Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Fengjiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
41
|
Abstract
Baculoviruses are large DNA viruses of insects that are highly pathogenic in many hosts. In the infection cycle, baculoviruses produce two types of virions. These virion phenotypes are physically and functionally distinct, and each serves a critical role in the biology of the virus. One phenotype, the occlusion-derived virus (ODV), is occluded within a crystallized protein that facilitates oral infection of the host. A large complex of at least nine ODV envelope proteins called per os infectivity factors are critically important for ODV infection of insect midgut epithelial cells. Viral egress from midgut cells is by budding to produce a second virus phenotype, the budded virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. Cell recognition and entry by BV are mediated by a single major envelope glycoprotein: GP64 in some baculoviruses and F in others. Entry and egress by the two virion phenotypes occur by dramatically different mechanisms and reflect a life cycle in which ODV is specifically adapted for oral infection while BV mediates dissemination of the infection within the animal.
Collapse
Affiliation(s)
- Gary W Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York 14853, USA;
| | - David A Theilmann
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia V0H 1Z0, Canada;
| |
Collapse
|
42
|
Kong M, Zuo H, Zhu F, Hu Z, Chen L, Yang Y, Lv P, Yao Q, Chen K. The interaction between baculoviruses and their insect hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:114-123. [PMID: 29408049 DOI: 10.1016/j.dci.2018.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Baculoviruses are double-stranded circular DNA viruses that infect arthropods via the midgut. Because of their superiority as eukaryotic expression systems and their importance as biopesticides, extensive research on the functions of baculovirus genes as well as on the host response to baculovirus infection has been carried out, including transcriptomic and proteomic analyses of the midgut. The morphological and cellular changes caused by baculovirus infection are also important to better understand the infection pathway. Thanks to these previous studies, we now have a clearer picture of the mechanisms of action of the virus and of host immunity. In this paper, we systematically reviewed studies on the interaction between baculoviruses and their insect hosts. By better understanding these interactions, baculoviruses can be developed for use as more efficient biopesticides to improve agricultural development in the future.
Collapse
Affiliation(s)
- Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
43
|
Shen Y, Wang H, Xu W, Wu X. Bombyx mori nucleopolyhedrovirus orf133 and orf134 are involved in the embedding of occlusion-derived viruses into polyhedra. J Gen Virol 2018; 99:717-729. [PMID: 29624165 DOI: 10.1099/jgv.0.001058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf133 (bm133) and orf134 (bm134), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac4 and ac5, are two adjacent genes with opposite transcriptional orientations and are highly conserved in all sequenced group I nucleopolyhedroviruses (NPVs). A double bm133-bm134 knockout bacmid was generated to enable the functional study of each gene independently or together. Compared with wild-type and double-repair viruses, deletion of both bm133 and bm134 did not affect budded virus (BV) production or viral DNA replication in transfected BmN cells. Electron microscopy revealed that the double knockout did not affect nucleocapsid assembly, virus-induced intranuclear microvesicle formation or occlusion-derived virus (ODV) production, but the number of virions embedded in the polyhedra decreased significantly. Further investigations showed that disruption of either gene was unable to recover the defect of ODV occlusion, suggesting that Bm133 and Bm134 are indispensable to the embedding of ODVs into polyhedra. Confocal microscopy analysis showed that Bm133 and Bm134 distributed throughout the whole cell during viral infection and Bm134 concentrated on the mature polyhedra in lysed cells. These results suggest that although Bm133 and Bm134 are not essential for BV or ODV development, they play vital roles in polyhedra morphogenesis.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haiping Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
44
|
Wang X, Chen C, Zhang N, Li J, Deng F, Wang H, Vlak JM, Hu Z, Wang M. The group I alphabaculovirus-specific protein, AC5, is a novel component of the occlusion body but is not associated with ODVs or the PIF complex. J Gen Virol 2018; 99:585-595. [PMID: 29465345 DOI: 10.1099/jgv.0.001031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autographa californica nucleopolyhedrovirus (AcMNPV) orf5 (ac5) is a group I alphabaculovirus-specific gene of unknown function, although the protein (AC5) was previously reported to be associated with the per os infectivity factor (PIF) complex. The purpose of this study was to study the dynamics of AC5 during AcMNPV infection and to verify whether it is indeed a component of the PIF complex. Transcription and expression analyses suggested that ac5 is a late viral gene. An ac5-deleted recombinant AcMNPV was generated by homologous recombination. A one-step growth curve assay indicated that ac5 was not required for budded virus (BV) production in Sf9 cells. Scanning electron microscopy and transmission electron microscopy demonstrated that the deletion of ac5 did not affect occlusion body (OB) morphology, and nor did it affect the insertion of occlusion-derived virus (ODV) into OBs. Partially denaturing SDS-PAGE and a co-immunoprecipitation assay clearly showed that AC5 was not a component of the PIF complex, while the deletion of ac5 did not affect the formation and presence of the PIF complex. Further analyses showed, however, that AC5 was an OB-specific protein, but it was not detected as a component of BVs or ODVs. Bioassay experiments showed that the oral infectivity of ac5-deleted AcMNPV to third instar Spodoptera exigua larvae was not significantly different from that of the ac5-repaired virus. In conclusion, AC5 is an intrinsic protein of OBs, instead of being a component of the PIF complex, and is not essential for either BV or ODV infection. AC5 is awaiting the assignment of another hitherto unknown function.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Chen
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiang Li
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hualin Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Zhihong Hu
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
45
|
Zhang S, An S, Hoover K, Li Z, Li X, Liu X, Shen Z, Fang H, Ros VID, Zhang Q, Liu X. Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol Ecol 2018; 27:459-475. [PMID: 29219212 DOI: 10.1111/mec.14457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Baculoviruses manipulate host climbing behaviour to ensure that the hosts die at elevated positions on host plants to facilitate virus proliferation and transmission, which is a process referred to as tree-top disease. However, the detailed molecular mechanism underlying tree-top disease has not been elucidated. Using transcriptome analysis, we showed that two hormone signals, juvenile hormone (JH) and 20-hydroxyecdysone (20E), are key components involved in HaSNPV-induced tree-top disease in Helicoverpa armigera larvae. RNAi-mediated knockdown and exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced tree-top disease, while JH mediates tree-top disease behaviour. Knockdown of BrZ2, a downstream signal of JH and 20E, promoted HaSNPV-induced tree-top disease. We also found that two miRNAs target BrZ2 and are involved in the cross-talk regulation between 20E and JH manipulating HaSNPV replication, time to death and HaSNPV-induced tree-top disease.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
KATSUMA S, KIUCHI T, KAWAMOTO M, FUJIMOTO T, SAHARA K. Unique sex determination system in the silkworm, Bombyx mori: current status and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:205-216. [PMID: 29760316 PMCID: PMC6021594 DOI: 10.2183/pjab.94.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 06/02/2023]
Abstract
The silkworm Bombyx mori has been used for silk production for over 5,000 years. In addition to its contribution to sericulture, B. mori has played an important role in the field of genetics. Classical genetic studies revealed that a gene(s) with a strong feminizing activity is located on the W chromosome, but this W-linked feminizing gene, called Feminizer (Fem), had not been cloned despite more than 80 years of study. In 2014, we discovered that Fem is a precursor of a single W chromosome-derived PIWI-interacting RNA (piRNA). Fem-derived piRNA binds to PIWI protein, and this complex then cleaves the mRNA of the Z-linked Masculinizer (Masc) gene, which encodes a protein required for both masculinization and dosage compensation. These findings showed that the piRNA-mediated interaction between the two sex chromosomes is the primary signal for the sex determination cascade in B. mori. In this review, we summarize the history, current status, and perspective of studies on sex determination and related topics in B. mori.
Collapse
Affiliation(s)
- Susumu KATSUMA
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi KIUCHI
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Munetaka KAWAMOTO
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki FUJIMOTO
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Ken SAHARA
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Iwate, Japan
| |
Collapse
|
47
|
Timely trigger of caterpillar zombie behaviour: temporal requirements for light in baculovirus-induced tree-top disease. Parasitology 2017; 145:822-827. [DOI: 10.1017/s0031182017001822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractHost behavioural manipulation is a common strategy used by parasites to enhance their survival and/or transmission. Baculoviruses induce hyperactivity and tree-top disease (pre-death climbing behaviour) in their caterpillar hosts. However, little is known about the underlying mechanisms of this behavioural manipulation. A previous study showed that the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induced tree-top disease at 3 days post infection in third instar S. exigua larvae and that light plays a key role in triggering this behaviour. Here we investigated the temporal requirements for the presence of light to trigger this behaviour and found that light from above was needed between 43 and 50 h post infection to induce tree-top disease. Infected larvae that were not exposed to light from above in this period finally died at low positions. Exposure to light prior to this period did not affect the final positions where larvae died. Overall we conclude that light in a particular time frame is needed to trigger SeMNPV-induced tree-top disease in S. exigua larvae.
Collapse
|
48
|
Herbison REH. Lessons in Mind Control: Trends in Research on the Molecular Mechanisms behind Parasite-Host Behavioral Manipulation. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
49
|
Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish. Cell Host Microbe 2017; 21:244-253. [PMID: 28182952 PMCID: PMC5301049 DOI: 10.1016/j.chom.2017.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
Both endotherms and ectotherms (e.g., fish) increase their body temperature to limit pathogen infection. Ectotherms do so by moving to warmer places, hence the term “behavioral fever.” We studied the manifestation of behavioral fever in the common carp infected by cyprinid herpesvirus 3, a native carp pathogen. Carp maintained at 24°C died from the infection, whereas those housed in multi-chamber tanks encompassing a 24°C–32°C gradient migrated transiently to the warmest compartment and survived as a consequence. Behavioral fever manifested only at advanced stages of infection. Consistent with this, expression of CyHV-3 ORF12, encoding a soluble decoy receptor for TNF-α, delayed the manifestation of behavioral fever and promoted CyHV-3 replication in the context of a temperature gradient. Injection of anti-TNF-α neutralizing antibodies suppressed behavioral fever, and decreased fish survival in response to infection. This study provides a unique example of how viruses have evolved to alter host behavior to increase fitness. Behavioral fever exhibited by carp in response to CyHV-3 infection is host beneficial CyHV-3 ORF12 delays behavioral fever expression, thereby promoting its own replication CyHV-3 ORF12 encodes a soluble decoy receptor for TNF-α TNF-α is a mediator of behavioral fever expressed by CyHV-3 infected carp
Collapse
|
50
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|