1
|
Smirnov IV, Osipova AA, Smirnova MP, Borodinova AA, Volgushev MA, Malyshev AY. Plasticity of Response Properties of Mouse Visual Cortex Neurons Induced by Optogenetic Tetanization In Vivo. Curr Issues Mol Biol 2024; 46:3294-3312. [PMID: 38666936 PMCID: PMC11049003 DOI: 10.3390/cimb46040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heterosynaptic plasticity, along with Hebbian homosynaptic plasticity, is an important mechanism ensuring the stable operation of learning neuronal networks. However, whether heterosynaptic plasticity occurs in the whole brain in vivo, and what role(s) in brain function in vivo it could play, remains unclear. Here, we used an optogenetics approach to apply a model of intracellular tetanization, which was established and employed to study heterosynaptic plasticity in brain slices, to study the plasticity of response properties of neurons in the mouse visual cortex in vivo. We show that optogenetically evoked high-frequency bursts of action potentials (optogenetic tetanization) in the principal neurons of the visual cortex induce long-term changes in the responses to visual stimuli. Optogenetic tetanization had distinct effects on responses to different stimuli, as follows: responses to optimal and orthogonal orientations decreased, responses to null direction did not change, and responses to oblique orientations increased. As a result, direction selectivity of the neurons decreased and orientation tuning became broader. Since optogenetic tetanization was a postsynaptic protocol, applied in the absence of sensory stimulation, and, thus, without association of presynaptic activity with bursts of action potentials, the observed changes were mediated by mechanisms of heterosynaptic plasticity. We conclude that heterosynaptic plasticity can be induced in vivo and propose that it may play important homeostatic roles in operation of neural networks by helping to prevent runaway dynamics of responses to visual stimuli and to keep the tuning of neuronal responses within the range optimized for the encoding of multiple features in population activity.
Collapse
Affiliation(s)
- Ivan V. Smirnov
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Aksiniya A. Osipova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Maria P. Smirnova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Anastasia A. Borodinova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| | - Maxim A. Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Alexey Y. Malyshev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia; (I.V.S.); (A.A.O.); (M.P.S.); (A.A.B.)
| |
Collapse
|
2
|
Basha D, Chauvette S, Sheroziya M, Timofeev I. Respiration organizes gamma synchrony in the prefronto-thalamic network. Sci Rep 2023; 13:8529. [PMID: 37237017 PMCID: PMC10219931 DOI: 10.1038/s41598-023-35516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple cognitive operations are associated with the emergence of gamma oscillations in the medial prefrontal cortex (mPFC) although little is known about the mechanisms that control this rhythm. Using local field potential recordings from cats, we show that periodic bursts of gamma recur with 1 Hz regularity in the wake mPFC and are locked to the exhalation phase of the respiratory cycle. Respiration organizes long-range coherence in the gamma band between the mPFC and the nucleus reuniens the thalamus (Reu), linking the prefrontal cortex and the hippocampus. In vivo intracellular recordings of the mouse thalamus reveal that respiration timing is propagated by synaptic activity in Reu and likely underlies the emergence of gamma bursts in the prefrontal cortex. Our findings highlight breathing as an important substrate for long-range neuronal synchronization across the prefrontal circuit, a key network for cognitive operations.
Collapse
Affiliation(s)
- Diellor Basha
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Sylvain Chauvette
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Maxim Sheroziya
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Igor Timofeev
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada.
| |
Collapse
|
3
|
Coordinated Regulation of CB1 Cannabinoid Receptors and Anandamide Metabolism Stabilizes Network Activity during Homeostatic Downscaling. eNeuro 2022; 9:ENEURO.0276-22.2022. [PMID: 36316118 PMCID: PMC9663203 DOI: 10.1523/eneuro.0276-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Neurons express overlapping homeostatic mechanisms to regulate synaptic function and network properties in response to perturbations of neuronal activity. Endocannabinoids (eCBs) are bioactive lipids synthesized in the postsynaptic compartments to regulate synaptic transmission, plasticity, and neuronal excitability primarily through retrograde activation of presynaptic cannabinoid receptor type 1 (CB1). The eCB system is well situated to regulate neuronal network properties and coordinate presynaptic and postsynaptic activity. However, the role of the eCB system in homeostatic adaptations to neuronal hyperactivity is unknown. To address this issue, we used Western blotting and targeted lipidomics to measure adaptations in eCB system to bicuculline (BCC)-induced chronic hyperexcitation in mature cultured rat cortical neurons, and used multielectrode array (MEA) recording and live-cell imaging of glutamate dynamics to test the effects of pharmacological manipulations of eCB on network activities. We show that BCC-induced chronic hyperexcitation triggers homeostatic downscaling and a coordinated adaptation to enhance tonic eCB signaling. Hyperexcitation triggers first the downregulation of fatty acid amide hydrolase (FAAH), the lipase that degrades the eCB anandamide, then an accumulation of anandamide and related metabolites, and finally a delayed upregulation of surface and total CB1. Additionally, we show that BCC-induced downregulation of surface AMPA-type glutamate receptors (AMPARs) and upregulation of CB1 occur through independent mechanisms. Finally, we show that endocannabinoids support baseline network activities before and after downscaling and is engaged to suppress network activity during adaptation to hyperexcitation. We discuss the implications of our findings in the context of downscaling and homeostatic regulation of in vitro oscillatory network activities.
Collapse
|
4
|
Dash S, Autio DM, Crandall SR. State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice. J Neurosci 2022; 42:6551-6565. [PMID: 35863890 PMCID: PMC9410757 DOI: 10.1523/jneurosci.2219-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomic, physiological, and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. To address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Their spiking patterns were either modulated by whisking-related behavior (∼28%) or not (∼72%). Whisking-responsive neurons exhibited both increases (activated-type) and decreases in firing rates (suppressed-type) that aligned with whisking onset better than locomotion. We also encountered responsive neurons with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. Whisking-unresponsive CT cells were generally quiet, with many having low spontaneous firing rates (sparse-type) and others being completely silent (silent-type). Remarkably, the sparse firing CT population preferentially spiked at the state transition point when pupil diameter constricted, and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT cells in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states.SIGNIFICANCE STATEMENT Layer 6 corticothalamic neurons provide a massive input to the sensory thalamus and local connectivity within cortex, but their role in thalamocortical processing remains unclear because of difficulty accessing and isolating their activity. Although several recent optogenetic studies reveal that the net influence of corticothalamic actions, suppression versus enhancement, depends critically on the rate these neurons fire, the factors that influence their spiking are poorly understood, particularly during wakefulness. Using the well-established Ntsr1-Cre line to target this elusive population in the whisker somatosensory cortex of awake mice, we found that corticothalamic neurons show diverse state-related responses and modulations in firing rate. These results suggest separate corticothalamic populations can differentially influence thalamocortical excitability during rapid state transitions in awake, behaving animals.
Collapse
Affiliation(s)
- Suryadeep Dash
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
5
|
Kaplanian A, Vinos M, Skaliora I. GABAb- and GABAa- mediated regulation of Up and Down states across development. J Physiol 2022; 600:2401-2427. [PMID: 35365894 DOI: 10.1113/jp282736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Slow oscillations (SOs), the EEG hallmark of non-REM sleep, and their cellular counterpart, Up-and-Down states (UDSs), are considered the default activity of the cerebral cortex and reflect the underlying neural connectivity. GABAb- and GABAa- receptor-mediated inhibition play a major role in regulating UDS activity. Although SOs and UDSs exhibit significant alterations as a function of age, it is unknown how developmental changes in inhibition contribute to the developmental profile of this activity. In this study, we reveal for the first time, age-dependent effects of GABAb and GABAa signalling on UDSs. We also document the differential subunit composition of postsynaptic GABAa receptors in young and adult animals, highlighting the α1-subunit as a major component of the age-differentiated regulation of UDSs. These findings help clarify the mechanisms that underlie the maturation of cortical network activity, and enhance our understanding regarding the emergence of neurodevelopmental disorders. ABSTRACT Slow oscillations, the hallmark of non-REM sleep, and their cellular counterpart, Up-and-Down states (UDSs), are considered a signature of cortical dynamics that reflect the intrinsic network organization. Although previous studies have explored the role of inhibition in regulating UDSs, little is known about whether this role changes with maturation. This is surprising since both slow oscillations and UDSs exhibit significant age-dependent alterations. To elucidate the developmental impact of GABAb and GABAa receptors on UDS activity, we conducted simultaneous LFP and intracellular recordings ex vivo, in brain slices of young and adult male mice, using selective blockers, CGP and non-saturating concentration of gabazine, respectively. Blockade of both GABAb- and GABAa- signalling showed age-differentiated functions. CGP caused an increase in Down state duration in young animals, but a decrease in adults. Gabazine evoked Spike-and-Wave-Discharges in both ages; however, while young networks became completely epileptic, adults maintained the ability to generate UDSs. Furthermore, voltage clamp recordings of mIPSCs revealed that gabazine selectively blocks phasic currents, particularly involving postsynaptic mechanisms. The latter exhibit clear maturational changes, suggesting a different subunit composition of GABAa receptors in young vs. adult animals. Indeed, subsequent LFP recordings under diazepam (nanomolar or micromolar concentrations) revealed that mechanisms engaging the drug's classical-binding-site, mediated by α1-subunit containing GABAa receptors, have a bigger contribution in Up state initiation in young networks compared to adults. Taken together, these findings help clarify the mechanisms that underlie the maturation of cortical network activity and enhance our understanding regarding the emergence of neurodevelopmental disorders. Abstract figure legend GABAb receptors' participation in Up state termination mechanisms is well-conserved across development. However, regulation of Down-to-Up transitions is age-dependent; GABAb receptors promote them in young while preventing them in adults. Up state maintenance is determined by age-dependent synaptic GABAa receptors' subunit composition and kinetics; α1-GABAa receptors dominate in young while non-α1-GABAa receptors dominate in adults. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ani Kaplanian
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of Biology, University of Patras, Rio, 26504, Greece
| | - Michael Vinos
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of History and Philosophy of Science, University of Athens, Athens, 15771, Greece
| | - Irini Skaliora
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of History and Philosophy of Science, University of Athens, Athens, 15771, Greece
| |
Collapse
|
6
|
Jiang Y, VanDongen AMJ. Selective increase of correlated activity in Arc-positive neurons after chemically induced long-term potentiation in cultured hippocampal neurons. eNeuro 2021; 8:ENEURO.0540-20.2021. [PMID: 34782348 PMCID: PMC8658543 DOI: 10.1523/eneuro.0540-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
The activity-dependent expression of immediate-early genes (IEGs) has been utilised to label memory traces. However, their roles in engram specification are incompletely understood. Outstanding questions remain as to whether expression of IEGs can interplay with network properties such as functional connectivity and also if neurons expressing different IEGs are functionally distinct. In order to connect IEG expression at the cellular level with changes in functional-connectivity, we investigated the expression of 2 IEGs, Arc and c-Fos, in cultured hippocampal neurons. Primary neuronal cultures were treated with a chemical cocktail (4-aminopyridine, bicuculline, and forskolin) to increase neuronal activity, IEG expression, and induce chemical long-term potentiation. Neuronal firing is assayed by intracellular calcium imaging using GCaMP6m and expression of IEGs is assessed by immunofluorescence staining. We noted an emergent network property of refinement in network activity, characterized by a global downregulation of correlated activity, together with an increase in correlated activity between subsets of specific neurons. Subsequently, we show that Arc expression correlates with the effects of refinement, as the increase in correlated activity occurs specifically between Arc-positive neurons. The expression patterns of the IEGs c-Fos and Arc strongly overlap, but Arc was more selectively expressed than c-Fos. A subpopulation of neurons positive for both Arc and c-Fos shows increased correlated activity, while correlated firing between Arc+/cFos- neurons is reduced. Our results relate neuronal activity-dependent expression of the IEGs Arc and c-Fos on the individual cellular level to changes in correlated activity of the neuronal network.SIGNIFICANCEEstablishing a stable long-lasting memory requires neuronal network-level changes in connection strengths in a subset of neurons, which together constitute a memory trace or engram. Two genes, c-Fos and Arc, have been implicated to play critical roles in the formation of the engram. They have been studied extensively at the cellular/molecular level, and have been used as markers of memory traces in mice. We have correlated Arc and c-Fos cellular expression with refinement of correlated neuronal activity following pharmacological activation of networks formed by cultured hippocampal neurons. Whereas there is a global loss of correlated activity, Arc-positive neurons show selectively increased correlated activity. Arc is more selectively expressed than c-Fos, but the two genes act together in encoding information about changes in correlated firing.
Collapse
Affiliation(s)
- Yuheng Jiang
- Program for Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| | - Antonius M J VanDongen
- Program for Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
7
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|
8
|
Dykstra-Aiello C, Koh KMS, Nguyen J, Xue M, Roy S, Krueger JM. A wake-like state in vitro induced by transmembrane TNF/soluble TNF receptor reverse signaling. Brain Behav Immun 2021; 94:245-258. [PMID: 33571627 PMCID: PMC8058269 DOI: 10.1016/j.bbi.2021.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) has sleep regulatory and brain development roles. TNF promotes sleep in vivo and in vitro while TNF inhibition diminishes sleep. Transmembrane (tm) TNF and the tmTNF receptors (Rs), are cleaved by tumor necrosis factor alpha convertase to produce soluble (s) TNF and sTNFRs. Reverse signaling occurs in cells expressing tmTNF upon sTNFR binding. sTNFR administration in vivo inhibits sleep, thus we hypothesized that a wake-like state in vitro would be induced by sTNFR-tmTNF reverse signaling. Somatosensory cortical neuron/glia co-cultures derived from male and female mice lacking both TNFRs (TNFRKO), or lacking TNF (TNFKO) and wildtype (WT) mice were plated onto six-well multi-electrode arrays. Daily one-hour electrophysiological recordings were taken on culture days 4 through 14. sTNFR1 (0.0, 0.3, 3, 30, 60, and 120 ng/µL) was administered on day 14. A final one-hour recording was taken on day 15. Four measures were characterized that are also used to define sleep in vivo: action potentials (APs), burstiness index (BI), synchronization of electrical activity (SYN), and slow wave power (SWP; 0.25-3.75 Hz). Development rates of these emergent electrophysiological properties increased in cells from mice lacking TNF or both TNFRs compared to cells from WT mice. Decreased SWP, after the three lowest doses (0.3, 3 and 30 ng/µL) of the sTNFR1, indicate a wake-like state in cells from TNFRKO mice. A wake-like state was also induced after 3 ng/µl sTNFR1 treatment in cells from TNFKO mice, which express the TNFR1 ligand, lymphotoxin alpha. Cells from WT mice showed no treatment effects. Results are consistent with prior studies demonstrating involvement of TNF in brain development, TNF reverse signaling, and sleep regulation in vivo. Further, the current demonstration of sTNFR1 induction of a wake-like state in vitro is consistent with the idea that small neuronal/glial circuits manifest sleep- and wake-like states analogous to those occurring in vivo. Finally, that sTNF forward signaling enhances sleep while sTNFR1 reverse signaling enhances a wake-like state is consistent with other sTNF/tmTNF/sTNFR1 brain actions having opposing activities.
Collapse
Affiliation(s)
- Cheryl Dykstra-Aiello
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States.
| | - Khia Min Sabrina Koh
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Joseph Nguyen
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Mengran Xue
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - James M Krueger
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| |
Collapse
|
9
|
Sarasso S, D'Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O, Quarenghi M, Laureys S, Devalle G, Rosanova M, Massimini M. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2021; 143:3672-3684. [PMID: 33188680 PMCID: PMC7805800 DOI: 10.1093/brain/awaa338] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
The functional consequences of focal brain injury are thought to be contingent on neuronal alterations extending beyond the area of structural damage. This phenomenon, also known as diaschisis, has clinical and metabolic correlates but lacks a clear electrophysiological counterpart, except for the long-standing evidence of a relative EEG slowing over the injured hemisphere. Here, we aim at testing whether this EEG slowing is linked to the pathological intrusion of sleep-like cortical dynamics within an awake brain. We used a combination of transcranial magnetic stimulation and electroencephalography (TMS/EEG) to study cortical reactivity in a cohort of 30 conscious awake patients with chronic focal and multifocal brain injuries of ischaemic, haemorrhagic and traumatic aetiology. We found that different patterns of cortical reactivity typically associated with different brain states (coma, sleep, wakefulness) can coexist within the same brain. Specifically, we detected the occurrence of prominent sleep-like TMS-evoked slow waves and off-periods—reflecting transient suppressions of neuronal activity—in the area surrounding focal cortical injuries. These perilesional sleep-like responses were associated with a local disruption of signal complexity whereas complex responses typical of the awake brain were present when stimulating the contralesional hemisphere. These results shed light on the electrophysiological properties of the tissue surrounding focal brain injuries in humans. Perilesional sleep-like off-periods can disrupt network activity but are potentially reversible, thus representing a principled read-out for the neurophysiological assessment of stroke patients, as well as an interesting target for rehabilitation.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Fecchio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Silvia Casarotto
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Alessandro Viganò
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Cristina Landi
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | | | - Olivia Gosseries
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Matteo Quarenghi
- Unità Operativa Radiologia, Azienda Ospedaliera Vizzolo P -Risonanza Magnetica- ASST Melegnano e Martesana, Vizzolo Predabissi, Italy
| | - Steven Laureys
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Guya Devalle
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
10
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Lee CH, Le JT, Ballester-Rosado CJ, Anderson AE, Swann JW. Neocortical Slow Oscillations Implicated in the Generation of Epileptic Spasms. Ann Neurol 2021; 89:226-241. [PMID: 33068018 PMCID: PMC7855630 DOI: 10.1002/ana.25935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Epileptic spasms are a hallmark of severe seizure disorders. The neurophysiological mechanisms and the neuronal circuit(s) that generate these seizures are unresolved and are the focus of studies reported here. METHODS In the tetrodotoxin model, we used 16-channel microarrays and microwires to record electrophysiological activity in neocortex and thalamus during spasms. Chemogenetic activation was used to examine the role of neocortical pyramidal cells in generating spasms. Comparisons were made to recordings from infantile spasm patients. RESULTS Current source density and simultaneous multiunit activity analyses indicate that the ictal events of spasms are initiated in infragranular cortical layers. A dramatic pause of neuronal activity was recorded immediately prior to the onset of spasms. This preictal pause is shown to share many features with the down states of slow wave sleep. In addition, the ensuing interictal up states of slow wave rhythms are more intense in epileptic than control animals and occasionally appear sufficient to initiate spasms. Chemogenetic activation of neocortical pyramidal cells supported these observations, as it increased slow oscillations and spasm numbers and clustering. Recordings also revealed a ramp-up in the number of neocortical slow oscillations preceding spasms, which was also observed in infantile spasm patients. INTERPRETATION Our findings provide evidence that epileptic spasms can arise from the neocortex and reveal a previously unappreciated interplay between brain state physiology and spasm generation. The identification of neocortical up states as a mechanism capable of initiating epileptic spasms will likely provide new targets for interventional therapies. ANN NEUROL 2021;89:226-241.
Collapse
Affiliation(s)
- Chih-hong Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - John T. Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos J. Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Anne E. Anderson
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - John W. Swann
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Comparative Perspectives that Challenge Brain Warming as the Primary Function of REM Sleep. iScience 2020; 23:101696. [PMID: 33196022 PMCID: PMC7644584 DOI: 10.1016/j.isci.2020.101696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Rapid eye movement (REM) sleep is a paradoxical state of wake-like brain activity occurring after non-REM (NREM) sleep in mammals and birds. In mammals, brain cooling during NREM sleep is followed by warming during REM sleep, potentially preparing the brain to perform adaptively upon awakening. If brain warming is the primary function of REM sleep, then it should occur in other animals with similar states. We measured cortical temperature in pigeons and bearded dragons, lizards that exhibit NREM-like sleep and REM-like sleep with brain activity resembling wakefulness. In pigeons, cortical temperature decreased during NREM sleep and increased during REM sleep. However, brain temperature did not increase when dragons switched from NREM-like to REM-like sleep. Our findings indicate that brain warming is not a universal outcome of sleep states characterized by wake-like activity, challenging the hypothesis that their primary function is to warm the brain in preparation for wakefulness. In many mammals, the brain cools during non-REM sleep and warms during REM sleep Pigeons exhibit similar changes in cortical temperature during non-REM and REM sleep Brain temperature does not increase during REM-like sleep in bearded dragon lizards Brain warming is not a universal outcome of sleep states with wake-like brain activity
Collapse
|
13
|
REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun 2020; 11:4819. [PMID: 32968048 PMCID: PMC7511313 DOI: 10.1038/s41467-020-18592-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
In many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice. We found that monocular deprivation (MD) or auditory-cued fear conditioning (FC) caused rapid spine elimination in V1 or FrA, respectively. MD- or FC-induced spine elimination was significantly reduced after total sleep or REM sleep deprivation. Total sleep or REM sleep deprivation also prevented MD- and FC-induced reduction of neuronal activity in response to visual or conditioned auditory stimuli. Furthermore, dendritic calcium spikes increased substantially during REM sleep, and the blockade of these calcium spikes prevented MD- and FC-induced spine elimination. These findings reveal an important role of REM sleep in experience-dependent synapse elimination and neuronal activity reduction. Sleep plays an important role in learning and memory. Here the authors show that experience dependent elimination of spines is attenuated by REM sleep deprivation.
Collapse
|
14
|
Burkhanova G, Chernova K, Khazipov R, Sheroziya M. Effects of Cortical Cooling on Activity Across Layers of the Rat Barrel Cortex. Front Syst Neurosci 2020; 14:52. [PMID: 32848644 PMCID: PMC7417609 DOI: 10.3389/fnsys.2020.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Moderate cortical cooling is known to suppress slow oscillations and to evoke persistent cortical activity. However, the cooling-induced changes in electrical activity across cortical layers remain largely unknown. Here, we performed multi-channel local field potential (LFP) and multi-unit activity (MUA) recordings with linear silicone probes through the layers of single cortical barrel columns in urethane-anesthetized rats under normothermia (38°C) and during local cortical surface cooling (30°C). During cortically generated slow oscillations, moderate cortical cooling decreased delta wave amplitude, delta-wave occurrence, the duration of silent states, and delta wave-locked MUA synchronization. Moderate cortical cooling increased total time spent in the active state and decreased total time spent in the silent state. Cooling-evoked changes in the MUA firing rate in cortical layer 5 (L5) varied from increase to decrease across animals, and the polarity of changes in L5 MUA correlated with changes in total time spent in the active state. The decrease in temperature reduced MUA firing rates in all other cortical layers. Sensory-evoked MUA responses also decreased during cooling through all cortical layers. The cooling-dependent slowdown was detected at the fast time-scale with a decreased frequency of sensory-evoked high-frequency oscillations (HFO). Thus, moderate cortical cooling suppresses slow oscillations and desynchronizes neuronal activity through all cortical layers, and is associated with reduced firing across all cortical layers except L5, where cooling induces variable and non-consistent changes in neuronal firing, which are common features of the transition from slow-wave synchronization to desynchronized activity in the barrel cortex.
Collapse
Affiliation(s)
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Aix Marseille University, INSERM, INMED, Marseille, France
| | - Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
15
|
Bachmann C, Tetzlaff T, Duarte R, Morrison A. Firing rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer's disease. PLoS Comput Biol 2020; 16:e1007790. [PMID: 32841234 PMCID: PMC7505475 DOI: 10.1371/journal.pcbi.1007790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/21/2020] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
The impairment of cognitive function in Alzheimer's disease is clearly correlated to synapse loss. However, the mechanisms underlying this correlation are only poorly understood. Here, we investigate how the loss of excitatory synapses in sparsely connected random networks of spiking excitatory and inhibitory neurons alters their dynamical characteristics. Beyond the effects on the activity statistics, we find that the loss of excitatory synapses on excitatory neurons reduces the network's sensitivity to small perturbations. This decrease in sensitivity can be considered as an indication of a reduction of computational capacity. A full recovery of the network's dynamical characteristics and sensitivity can be achieved by firing rate homeostasis, here implemented by an up-scaling of the remaining excitatory-excitatory synapses. Mean-field analysis reveals that the stability of the linearised network dynamics is, in good approximation, uniquely determined by the firing rate, and thereby explains why firing rate homeostasis preserves not only the firing rate but also the network's sensitivity to small perturbations.
Collapse
Affiliation(s)
- Claudia Bachmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Renato Duarte
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Abigail Morrison
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, Larsson PG, Knight RT. An electrophysiological marker of arousal level in humans. eLife 2020; 9:e55092. [PMID: 32720644 PMCID: PMC7394547 DOI: 10.7554/elife.55092] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, 'wake-like' EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from REM sleep solely based on the neurophysiological brain state. Taken together, our findings describe a common electrophysiological marker that tracks states of reduced arousal, including different sleep stages as well as anesthesia in humans.
Collapse
Affiliation(s)
- Janna D Lendner
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center TuebingenTuebingenGermany
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain ResearchTuebingenGermany
- Department of Neurology and Epileptology, University Medical Center TuebingenTuebingenGermany
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, IrvineIrvineUnited States
| | - Luis Romundstad
- Department of Anesthesiology, University of Oslo Medical CenterOsloNorway
| | - Jack J Lin
- Department of Neurology, University of California, IrvineIrvineUnited States
| | - Matthew P Walker
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Pal G Larsson
- Department of Neurosurgery, University of Oslo Medical CenterOsloNorway
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
17
|
Lee YF, Gerashchenko D, Timofeev I, Bacskai BJ, Kastanenka KV. Slow Wave Sleep Is a Promising Intervention Target for Alzheimer's Disease. Front Neurosci 2020; 14:705. [PMID: 32714142 PMCID: PMC7340158 DOI: 10.3389/fnins.2020.00705] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia, characterized by the presence of amyloid-beta plaques and neurofibrillary tau tangles. Plaques and tangles are associated with sleep-wake cycle disruptions, including the disruptions in non-rapid eye movement (NREM) slow wave sleep (SWS). Alzheimer's patients spend less time in NREM sleep and exhibit decreased slow wave activity (SWA). Consistent with the critical role of SWS in memory consolidation, reduced SWA is associated with impaired memory consolidation in AD patients. The aberrant SWA can be modeled in transgenic mouse models of amyloidosis and tauopathy. Animal models exhibited slow wave impairments early in the disease progression, prior to the deposition of amyloid-beta plaques, however, in the presence of abundant oligomeric amyloid-beta. Optogenetic rescue of SWA successfully halted the amyloid accumulation and restored intraneuronal calcium levels in mice. On the other hand, optogenetic acceleration of slow wave frequency exacerbated amyloid deposition and disrupted neuronal calcium homeostasis. In this review, we summarize the evidence and the mechanisms underlying the existence of a positive feedback loop between amyloid/tau pathology and SWA disruptions that lead to further accumulations of amyloid and tau in AD. Moreover, since SWA disruptions occur prior to the plaque deposition, SWA disruptions may provide an early biomarker for AD. Finally, we propose that therapeutic targeting of SWA in AD might lead to an effective treatment for Alzheimer's patients.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Dmitry Gerashchenko
- Harvard Medical School/VA Boston Healthcare System, West Roxbury, MA, United States
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval, Québec, QC, Canada
- CERVO Brain Research Center, Québec, QC, Canada
| | - Brian J. Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
18
|
A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies-Related Issues and Future Directions. SENSORS 2020; 20:s20102770. [PMID: 32414060 PMCID: PMC7285770 DOI: 10.3390/s20102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
Advances in computer processing technology have enabled researchers to analyze real-time brain activity and build real-time closed-loop paradigms. In many fields, the effectiveness of these closed-loop protocols has proven to be better than that of the simple open-loop paradigms. Recently, sleep studies have attracted much attention as one possible application of closed-loop paradigms. To date, several studies that used closed-loop paradigms have been reported in the sleep-related literature and recommend a closed-loop feedback system to enhance specific brain activity during sleep, which leads to improvements in sleep's effects, such as memory consolidation. However, to the best of our knowledge, no report has reviewed and discussed the detailed technical issues that arise in designing sleep closed-loop paradigms. In this paper, we reviewed the most recent reports on sleep closed-loop paradigms and offered an in-depth discussion of some of their technical issues. We found 148 journal articles strongly related with 'sleep and stimulation' and reviewed 20 articles on closed-loop feedback sleep studies. We focused on human sleep studies conducting any modality of feedback stimulation. Then we introduced the main component of the closed-loop system and summarized several open-source libraries, which are widely used in closed-loop systems, with step-by-step guidelines for closed-loop system implementation for sleep. Further, we proposed future directions for sleep research with closed-loop feedback systems, which provide some insight into closed-loop feedback systems.
Collapse
|
19
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
20
|
Nitzan N, McKenzie S, Beed P, English DF, Oldani S, Tukker JJ, Buzsáki G, Schmitz D. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nat Commun 2020; 11:1947. [PMID: 32327634 PMCID: PMC7181800 DOI: 10.1038/s41467-020-15787-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.
Collapse
Affiliation(s)
- Noam Nitzan
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Sam McKenzie
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Daniel Fine English
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
- School of Neuroscience, College of Science, Virginia Tech, VA, 24061, USA
| | - Silvia Oldani
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10016, USA.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany.
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- Cluster of Excellence NeuroCure, Berlin, Germany.
- Einstein Center for Neurosciences, Berlin, Germany.
| |
Collapse
|
21
|
Binder M, Górska U, Pipinis E, Voicikas A, Griskova-Bulanova I. Auditory steady-state response to chirp-modulated tones: A pilot study in patients with disorders of consciousness. NEUROIMAGE-CLINICAL 2020; 27:102261. [PMID: 32388346 PMCID: PMC7215243 DOI: 10.1016/j.nicl.2020.102261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
Chirp-evoked responses were evaluated in patients with disorders of consciousness. PLI estimates in 38–42 Hz window positively correlated with the CRS-R total score. Gamma-range evoked activity may indicate the integrity of thalamocortical networks.
Objective Due to the problems with behavioral diagnosis of patients with prolonged DOC (disorders of consciousness), complementary approaches based on objective measurement of neural function are necessary. In this pilot study, we assessed the sensitivity of auditory chirp-evoked responses to the state of patients with severe brain injury as measured with CRS-R (Coma Recovery Scale - Revised). Methods A convenience sample of fifteen DOC patients was included in the study. Auditory stimuli, chirp-modulated at 1–120 Hz were used to evoke auditory steady-state response (ASSR). Phase-locking index (PLI) estimates within low gamma and high gamma windows were evaluated. Results The PLI estimates within a narrow low gamma 38–42 Hz window positively correlated with the CRS-R total score and with the scores of the Auditory and Visual Function subscales. In the same low gamma window, significant difference in the PLIs was found between minimally conscious (MCS) and vegetative state (VS) patients. We did not observe any between-group differences nor any significant correlations with CRS-R scores in the high gamma window (80–110 Hz). Conclusions Our results support the notion that the activity around 40 Hz may serve as a possible marker of the integrity of thalamocortical networks in prolonged DOC patients. Significance Auditory steady-state responses at gamma-band frequencies highlight the role of upper parts of auditory system in evaluation of the level of consciousness in DOC patients.
Collapse
Affiliation(s)
- Marek Binder
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060 Krakow, Poland.
| | - Urszula Górska
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060 Krakow, Poland
| | - Evaldas Pipinis
- Department of Neurobiology and Biophysics, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Aleksandras Voicikas
- Department of Neurobiology and Biophysics, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| | - Inga Griskova-Bulanova
- Department of Neurobiology and Biophysics, Vilnius University, Sauletekio ave 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
22
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Timofeev I, Schoch SF, LeBourgeois MK, Huber R, Riedner BA, Kurth S. Spatio-temporal properties of sleep slow waves and implications for development. CURRENT OPINION IN PHYSIOLOGY 2020; 15:172-182. [PMID: 32455180 DOI: 10.1016/j.cophys.2020.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective sleep quality can be measured by electroencephalography (EEG), a non-invasive technique to quantify electrical activity generated by the brain. With EEG, sleep depth is measured by appearance and an increase in slow wave activity (scalp-SWA). EEG slow waves (scalp-SW) are the manifestation of underlying synchronous membrane potential transitions between silent (DOWN) and active (UP) states. This bistable periodic rhythm is defined as slow oscillation (SO). During its "silent state" cortical neurons are hyperpolarized and appear inactive, while during its "active state" cortical neurons are depolarized, fire spikes and exhibit continuous synaptic activity, excitatory and inhibitory. In adults, data from high-density EEG revealed that scalp-SW propagate across the cortical mantle in complex patterns. However, scalp-SW propagation undergoes modifications across development. We present novel data from children, indicating that scalp-SW originate centro-parietally, and emerge more frontally by adolescence. Based on the concept that SO and SW could actively modify neuronal connectivity, we discuss whether they fulfill a key purpose in brain development by actively conveying modifications of the maturing brain.
Collapse
Affiliation(s)
- Igor Timofeev
- CERVO Brain Research Centre, Québec, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, CH
| | - Monique K LeBourgeois
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, CH.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, Zurich, CH
| | - Brady A Riedner
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zurich, Zurich, CH.,Department of Psychology, University of Fribourg, Fribourg, CH
| |
Collapse
|
24
|
Alishbayli A, Tichelaar JG, Gorska U, Cohen MX, Englitz B. The asynchronous state's relation to large-scale potentials in cortex. J Neurophysiol 2019; 122:2206-2219. [PMID: 31642401 PMCID: PMC6966315 DOI: 10.1152/jn.00013.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022] Open
Abstract
Understanding the relation between large-scale potentials (M/EEG) and their underlying neural activity can improve the precision of research and clinical diagnosis. Recent insights into cortical dynamics highlighted a state of strongly reduced spike count correlations, termed the asynchronous state (AS). The AS has received considerable attention from experimenters and theorists alike, regarding its implications for cortical dynamics and coding of information. However, how reconcilable are these vanishing correlations in the AS with large-scale potentials such as M/EEG observed in most experiments? Typically the latter are assumed to be based on underlying correlations in activity, in particular between subthreshold potentials. We survey the occurrence of the AS across brain states, regions, and layers and argue for a reconciliation of this seeming disparity: large-scale potentials are either observed, first, at transitions between cortical activity states, which entail transient changes in population firing rate, as well as during the AS, and, second, on the basis of sufficiently large, asynchronous populations that only need to exhibit weak correlations in activity. Cells with no or little spiking activity can contribute to large-scale potentials via their subthreshold currents, while they do not contribute to the estimation of spiking correlations, defining the AS. Furthermore, third, the AS occurs only within particular cortical regions and layers associated with the currently selected modality, allowing for correlations at other times and between other areas and layers.
Collapse
Affiliation(s)
- A. Alishbayli
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Tactile Perception and Learning Laboratory, International School for Advanced Studies, Trieste, Italy
| | - J. G. Tichelaar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - U. Gorska
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland
- Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - M. X. Cohen
- Department of Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - B. Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Soltani S, Chauvette S, Bukhtiyarova O, Lina JM, Dubé J, Seigneur J, Carrier J, Timofeev I. Sleep-Wake Cycle in Young and Older Mice. Front Syst Neurosci 2019; 13:51. [PMID: 31611779 PMCID: PMC6769075 DOI: 10.3389/fnsys.2019.00051] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022] Open
Abstract
Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1–4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep–wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep–wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep–wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep–wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.
Collapse
Affiliation(s)
- Sara Soltani
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Centre, Québec, QC, Canada
| | | | - Olga Bukhtiyarova
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Centre, Québec, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, QC, Canada.,École de Technologie Supérieure, Montreal, QC, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | | | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Centre, Québec, QC, Canada
| |
Collapse
|
26
|
Whitehead K, Slobodina M, Meek J, Fabrizi L. Fronto-central slow cortical activity is attenuated during phasic events in rapid eye movement sleep at full-term birth. Early Hum Dev 2019; 136:45-48. [PMID: 31302388 PMCID: PMC6697120 DOI: 10.1016/j.earlhumdev.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
Delta and theta power across fronto-central regions is lower during phasic (saccadic eye movements) than tonic rapid eye movement (active) sleep in full-term infants (n = 15). This indicates that the behavioural-electrophysiological pillars of rapid eye movement sleep micro-architecture are in place at birth.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Maria Slobodina
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Judith Meek
- Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6BD, United Kingdom.
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
27
|
Abstract
Recent data have shown that sleep plays a beneficial role for cognitive functions such as declarative memory consolidation and perceptual learning. In this article, we review recent findings on the role of sleep in promoting adaptive visual response changes in the lateral geniculate nucleus and primary visual cortex following novel visual experiences. We discuss these findings in the context of what is currently known about how sleep affects the activity and function of thalamocortical circuits and current hypotheses regarding how sleep facilitates synaptic plasticity.
Collapse
Affiliation(s)
- Jaclyn M Durkin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
28
|
Frequency-dependent exacerbation of Alzheimer's disease neuropathophysiology. Sci Rep 2019; 9:8964. [PMID: 31221985 PMCID: PMC6586873 DOI: 10.1038/s41598-019-44964-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/24/2019] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity patterns are disrupted in neurodegenerative disorders, including Alzheimer’s disease (AD). One example is disruption of corticothalamic slow oscillations responsible for sleep-dependent memory consolidation. Slow waves are periodic oscillations in neuronal activity occurring at frequencies of <1 Hz. The power, but not the frequency of slow oscillations is altered in a mouse model of AD. Optogenetic rescue of slow oscillations by increasing activity in cortical pyramidal neurons at the frequency of slow waves restores slow wave power, halts deposition of amyloid plaques and prevents neuronal calcium dysregulation. Here we determined whether driving this circuit at an increased rate would exacerbate the amyloid-dependent calcium dyshomeostasis in transgenic mice. Doubling the frequency of slow waves for one month with optogenetics resulted in increased amyloid beta - dependent disruptions in neuronal calcium homeostasis and loss of synaptic spines. Therefore, while restoration of physiological circuit dynamics is sufficient to abrogate the progression of Alzheimer’s disease pathology and should be considered an avenue for clinical treatment of AD patients with sleep disorders, pathophysiological stimulation of neuronal circuits leads to activity - dependent acceleration of amyloid production, aggregation and downstream neuronal dysfunction.
Collapse
|
29
|
Fauth MJ, van Rossum MC. Self-organized reactivation maintains and reinforces memories despite synaptic turnover. eLife 2019; 8:43717. [PMID: 31074745 PMCID: PMC6546393 DOI: 10.7554/elife.43717] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/30/2019] [Indexed: 01/21/2023] Open
Abstract
Long-term memories are believed to be stored in the synapses of cortical neuronal networks. However, recent experiments report continuous creation and removal of cortical synapses, which raises the question how memories can survive on such a variable substrate. Here, we study the formation and retention of associative memory in a computational model based on Hebbian cell assemblies in the presence of both synaptic and structural plasticity. During rest periods, such as may occur during sleep, the assemblies reactivate spontaneously, reinforcing memories against ongoing synapse removal and replacement. Brief daily reactivations during rest-periods suffice to not only maintain the assemblies, but even strengthen them, and improve pattern completion, consistent with offline memory gains observed experimentally. While the connectivity inside memory representations is strengthened during rest phases, connections in the rest of the network decay and vanish thus reconciling apparently conflicting hypotheses of the influence of sleep on cortical connectivity.
Collapse
Affiliation(s)
- Michael Jan Fauth
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Third Physics Institute, University of Göttingen, Göttingen, Germany
| | - Mark Cw van Rossum
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Zucca S, Pasquale V, Lagomarsino de Leon Roig P, Panzeri S, Fellin T. Thalamic Drive of Cortical Parvalbumin-Positive Interneurons during Down States in Anesthetized Mice. Curr Biol 2019; 29:1481-1490.e6. [PMID: 31031117 PMCID: PMC6509281 DOI: 10.1016/j.cub.2019.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Up and down states are among the most prominent features of the thalamo-cortical system during non-rapid eye movement (NREM) sleep and many forms of anesthesia. Cortical interneurons, including parvalbumin (PV) cells, display firing activity during cortical down states, and this GABAergic signaling is associated with prolonged down-state durations. However, what drives PV interneurons to fire during down states remains unclear. We here tested the hypothesis that background thalamic activity may lead to suprathreshold activation of PV cells during down states. To this aim, we performed two-photon guided juxtasomal recordings from PV interneurons in the barrel field of the somatosensory cortex (S1bf) of anesthetized mice, while simultaneously collecting the local field potential (LFP) in S1bf and the multi-unit activity (MUA) in the ventral posteromedial (VPM) thalamic nucleus. We found that activity in the VPM was associated with longer down-state duration in S1bf and that down states displaying PV cell firing were associated with increased VPM activity. Moreover, thalamic inhibition through application of muscimol reduced the fraction of spikes discharged by PV cells during cortical down states. Finally, we inhibited PV interneurons using optogenetics during down states while monitoring cortical LFP under control conditions and after thalamic muscimol injection. We found increased latency of the optogenetically triggered down-to-up transitions upon thalamic pharmacological blockade compared to controls. These findings demonstrate that spontaneous thalamic activity inhibits cortex during down states through the activation of PV interneurons.
Collapse
Affiliation(s)
- Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Valentina Pasquale
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pedro Lagomarsino de Leon Roig
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems at UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
31
|
Miyawaki H, Watson BO, Diba K. Neuronal firing rates diverge during REM and homogenize during non-REM. Sci Rep 2019; 9:689. [PMID: 30679509 PMCID: PMC6345798 DOI: 10.1038/s41598-018-36710-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/25/2018] [Indexed: 12/02/2022] Open
Abstract
Neurons fire at highly variable intrinsic rates and recent evidence suggests that low- and high-firing rate neurons display different plasticity and dynamics. Furthermore, recent publications imply possibly differing rate-dependent effects in hippocampus versus neocortex, but those analyses were carried out separately and with potentially important differences. To more effectively synthesize these questions, we analyzed the firing rate dynamics of populations of neurons in both hippocampal CA1 and frontal cortex under one framework that avoids the pitfalls of previous analyses and accounts for regression to the mean (RTM). We observed several consistent effects across these regions. While rapid eye movement (REM) sleep was marked by decreased hippocampal firing and increased neocortical firing, in both regions firing rate distributions widened during REM due to differential changes in high- versus low-firing rate cells in parallel with increased interneuron activity. In contrast, upon non-REM (NREM) sleep, firing rate distributions narrowed while interneuron firing decreased. Interestingly, hippocampal interneuron activity closely followed the patterns observed in neocortical principal cells rather than the hippocampal principal cells, suggestive of long-range interactions. Following these undulations in variance, the net effect of sleep was a decrease in firing rates. These decreases were greater in lower-firing hippocampal neurons but also higher-firing frontal cortical neurons, suggestive of greater plasticity in these cell groups. Our results across two different regions, and with statistical corrections, indicate that the hippocampus and neocortex show a mixture of differences and similarities as they cycle between sleep states with a unifying characteristic of homogenization of firing during NREM and diversification during REM.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI, 53211, USA
- Department of Physiology, Graduate School of Medicine, Osaka City University, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Kamran Diba
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI, 53211, USA.
- Department of Anesthesiology, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2019; 12:64. [PMID: 30670952 PMCID: PMC6331430 DOI: 10.3389/fnsys.2018.00064] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research. A common observation in awake rodents is the rapid change in spontaneous cortical activity from high-amplitude, low-frequency (LF) fluctuations, when animals are quiet, to faster and smaller fluctuations when animals are active. This transition is typically thought of as a change in global brain state but recent work has shown variation in cortical states across regions, indicating the presence of a fine spatial scale control system. In sensory areas, the cortical state change is mediated by at least two convergent inputs, one from the thalamus and the other from cholinergic inputs in the basal forebrain. Cortical states have a major impact on the balance of activity between specific subtypes of neurons, on the synchronization between nearby neurons, as well as the functional coupling between distant cortical areas. This reorganization of the activity of cortical networks strongly affects sensory processing. Thus cortical states provide a dynamic control system for the moment-by-moment regulation of cortical processing.
Collapse
Affiliation(s)
- James F. A. Poulet
- Neural Circuits and Behaviour, Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, University Lyon 1, Lyon, France
| |
Collapse
|
33
|
Rosanova M, Fecchio M, Casarotto S, Sarasso S, Casali AG, Pigorini A, Comanducci A, Seregni F, Devalle G, Citerio G, Bodart O, Boly M, Gosseries O, Laureys S, Massimini M. Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat Commun 2018; 9:4427. [PMID: 30356042 PMCID: PMC6200777 DOI: 10.1038/s41467-018-06871-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Unresponsive wakefulness syndrome (UWS) patients may retain intact portions of the thalamocortical system that are spontaneously active and reactive to sensory stimuli but fail to engage in complex causal interactions, resulting in loss of consciousness. Here, we show that loss of brain complexity after severe injuries is due to a pathological tendency of cortical circuits to fall into silence (OFF-period) upon receiving an input, a behavior typically observed during sleep. Spectral and phase domain analysis of EEG responses to transcranial magnetic stimulation reveals the occurrence of OFF-periods in the cortex of UWS patients (N = 16); these events never occur in healthy awake individuals (N = 20) but are similar to those detected in healthy sleeping subjects (N = 8). Crucially, OFF-periods impair local causal interactions, and prevent the build-up of global complexity in UWS. Our findings link potentially reversible local events to global brain dynamics that are relevant for pathological loss and recovery of consciousness. Many brain-injured patients retain large cortical islands that are intact, active and reactive but blocked in a state of low complexity, leading to unconsciousness. Here, the authors show that this loss of complexity is due to the pathological engagement of sleep-like neuronal mechanisms.
Collapse
Affiliation(s)
- M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, 20063, Italy.,Neurointensive Care Unit, ASTT Grande Ospedale Metropolitano Niguarda, Milan, 20162, Italy
| | - M Fecchio
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - S Casarotto
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy.,IRCCS Fondazione Don Gnocchi, Milan, 20149, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - A G Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12231-280, Brazil
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - A Comanducci
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - F Seregni
- Department of Paediatrics, Cambridge University Hospital NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - G Devalle
- IRCCS Fondazione Don Gnocchi, Milan, 20149, Italy
| | - G Citerio
- Scuola di Medicina e Chirurgia, University of Milan Bicocca, Milan, 20126, Italy
| | - O Bodart
- GIGA-consciousness, Coma Science Group, University and University Hospital of Liège, Liège, 4000, Belgium
| | - M Boly
- Department of Neurology, University of Wisconsin, Madison, WI, 53705, USA.,Department of Psychiatry, University of Wisconsin, Madison, WI, 53719, USA
| | - O Gosseries
- GIGA-consciousness, Coma Science Group, University and University Hospital of Liège, Liège, 4000, Belgium
| | - S Laureys
- GIGA-consciousness, Coma Science Group, University and University Hospital of Liège, Liège, 4000, Belgium
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy. .,IRCCS Fondazione Don Gnocchi, Milan, 20149, Italy.
| |
Collapse
|
34
|
Arroyo S, Bennett C, Hestrin S. Correlation of Synaptic Inputs in the Visual Cortex of Awake, Behaving Mice. Neuron 2018; 99:1289-1301.e2. [PMID: 30174117 DOI: 10.1016/j.neuron.2018.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
The subthreshold mechanisms that underlie neuronal correlations in awake animals are poorly understood. Here, we perform dual whole-cell recordings in the visual cortex (V1) of awake mice to investigate membrane potential (Vm) correlations between upper-layer sensory neurons. We find that the membrane potentials of neighboring neurons display large, correlated fluctuations during quiet wakefulness, including pairs of cells with disparate tuning properties. These fluctuations are driven by correlated barrages of excitation followed closely by inhibition (∼5-ms lag). During visual stimulation, low-frequency activity is diminished, and coherent high-frequency oscillations appear, even for non-preferred stimuli. These oscillations are generated by alternating excitatory and inhibitory inputs at a similar lag. The temporal sequence of depolarization for pairs of neurons is conserved during both spontaneous- and visually-evoked activity, suggesting a stereotyped flow of activation that may function to produce temporally precise "windows of opportunity" for additional synaptic inputs.
Collapse
Affiliation(s)
- Sergio Arroyo
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Corbett Bennett
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Pala A, Petersen CC. State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice. eLife 2018; 7:35869. [PMID: 30052198 PMCID: PMC6063730 DOI: 10.7554/elife.35869] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
The cellular and synaptic mechanisms driving cell-type-specific function during various cortical network activities and behaviors are poorly understood. Here, we targeted whole-cell recordings to two classes of inhibitory GABAergic neurons in layer 2/3 of the barrel cortex of awake head-restrained mice and correlated spontaneous membrane potential dynamics with cortical state and whisking behavior. Using optogenetic stimulation of single layer 2/3 excitatory neurons we measured unitary excitatory postsynaptic potentials (uEPSPs) across states. During active states, characterized by whisking and reduced low-frequency activity in the local field potential, parvalbumin-expressing neurons depolarized and, albeit in a small number of recordings, received uEPSPs with increased amplitude. In contrast, somatostatin-expressing neurons hyperpolarized and reduced firing rates during active states without consistent change in uEPSP amplitude. These results further our understanding of neocortical inhibitory neuron function in awake mice and are consistent with the hypothesis that distinct genetically-defined cell classes have different state-dependent patterns of activity.
Collapse
Affiliation(s)
- Aurélie Pala
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, United States
| | - Carl Ch Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
36
|
Maksimov A, Diesmann M, van Albada SJ. Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models. Front Comput Neurosci 2018; 12:44. [PMID: 30042668 PMCID: PMC6048296 DOI: 10.3389/fncom.2018.00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
During ongoing and Up state activity, cortical circuits manifest a set of dynamical features that are conserved across these states. The present work systematizes these phenomena by three notions: excitability, the ability to sustain activity without external input; balance, precise coordination of excitatory and inhibitory neuronal inputs; and stability, maintenance of activity at a steady level. Slice preparations exhibiting Up states demonstrate that balanced activity can be maintained by small local circuits. While computational models of cortical circuits have included different combinations of excitability, balance, and stability, they have done so without a systematic quantitative comparison with experimental data. Our study provides quantitative criteria for this purpose, by analyzing in-vitro and in-vivo neuronal activity and characterizing the dynamics on the neuronal and population levels. The criteria are defined with a tolerance that allows for differences between experiments, yet are sufficient to capture commonalities between persistently depolarized cortical network states and to help validate computational models of cortex. As test cases for the derived set of criteria, we analyze three widely used models of cortical circuits and find that each model possesses some of the experimentally observed features, but none satisfies all criteria simultaneously, showing that the criteria are able to identify weak spots in computational models. The criteria described here form a starting point for the systematic validation of cortical neuronal network models, which will help improve the reliability of future models, and render them better building blocks for larger models of the brain.
Collapse
Affiliation(s)
- Andrei Maksimov
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Jülich, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
37
|
Krishnan GP, Rosen BQ, Chen JY, Muller L, Sejnowski TJ, Cash SS, Halgren E, Bazhenov M. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS Comput Biol 2018; 14:e1006171. [PMID: 29949575 PMCID: PMC6039052 DOI: 10.1371/journal.pcbi.1006171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 07/10/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022] Open
Abstract
Sleep spindles are brief oscillatory events during non-rapid eye movement (NREM) sleep. Spindle density and synchronization properties are different in MEG versus EEG recordings in humans and also vary with learning performance, suggesting spindle involvement in memory consolidation. Here, using computational models, we identified network mechanisms that may explain differences in spindle properties across cortical structures. First, we report that differences in spindle occurrence between MEG and EEG data may arise from the contrasting properties of the core and matrix thalamocortical systems. The matrix system, projecting superficially, has wider thalamocortical fanout compared to the core system, which projects to middle layers, and requires the recruitment of a larger population of neurons to initiate a spindle. This property was sufficient to explain lower spindle density and higher spatial synchrony of spindles in the superficial cortical layers, as observed in the EEG signal. In contrast, spindles in the core system occurred more frequently but less synchronously, as observed in the MEG recordings. Furthermore, consistent with human recordings, in the model, spindles occurred independently in the core system but the matrix system spindles commonly co-occurred with core spindles. We also found that the intracortical excitatory connections from layer III/IV to layer V promote spindle propagation from the core to the matrix system, leading to widespread spindle activity. Our study predicts that plasticity of intra- and inter-cortical connectivity can potentially be a mechanism for increased spindle density as has been observed during learning.
Collapse
Affiliation(s)
- Giri P. Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Burke Q. Rosen
- Departments of Radiology and Neurosciences, UCSD, San Diego, CA, United States of America
| | - Jen-Yung Chen
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Lyle Muller
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, San Diego, CA, United States of America
| | - Terrence J. Sejnowski
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, San Diego, CA, United States of America
| | - Sydney S. Cash
- Dept. of Neurology, Massachusetts General Hospital and Harvard University, Boston, MA, United States of America
| | - Eric Halgren
- Departments of Radiology and Neurosciences, UCSD, San Diego, CA, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
38
|
Mizrahi-Kliger AD, Kaplan A, Israel Z, Bergman H. Desynchronization of slow oscillations in the basal ganglia during natural sleep. Proc Natl Acad Sci U S A 2018; 115:E4274-E4283. [PMID: 29666271 PMCID: PMC5939089 DOI: 10.1073/pnas.1720795115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Slow oscillations of neuronal activity alternating between firing and silence are a hallmark of slow-wave sleep (SWS). These oscillations reflect the default activity present in all mammalian species, and are ubiquitous to anesthesia, brain slice preparations, and neuronal cultures. In all these cases, neuronal firing is highly synchronous within local circuits, suggesting that oscillation-synchronization coupling may be a governing principle of sleep physiology regardless of anatomical connectivity. To investigate whether this principle applies to overall brain organization, we recorded the activity of individual neurons from basal ganglia (BG) structures and the thalamocortical (TC) network over 70 full nights of natural sleep in two vervet monkeys. During SWS, BG neurons manifested slow oscillations (∼0.5 Hz) in firing rate that were as prominent as in the TC network. However, in sharp contrast to any neural substrate explored thus far, the slow oscillations in all BG structures were completely desynchronized between individual neurons. Furthermore, whereas in the TC network single-cell spiking was locked to slow oscillations in the local field potential (LFP), the BG LFP exhibited only weak slow oscillatory activity and failed to entrain nearby cells. We thus show that synchrony is not inherent to slow oscillations, and propose that the BG desynchronization of slow oscillations could stem from its unique anatomy and functional connectivity. Finally, we posit that BG slow-oscillation desynchronization may further the reemergence of slow-oscillation traveling waves from multiple independent origins in the frontal cortex, thus significantly contributing to normal SWS.
Collapse
Affiliation(s)
- Aviv D Mizrahi-Kliger
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel;
| | - Alexander Kaplan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, 9112001 Jerusalem, Israel
| | - Hagai Bergman
- Department of Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
- Department of Neurosurgery, Hadassah University Hospital, 9112001 Jerusalem, Israel
| |
Collapse
|
39
|
Saberi-Moghadam S, Simi A, Setareh H, Mikhail C, Tafti M. In vitro Cortical Network Firing is Homeostatically Regulated: A Model for Sleep Regulation. Sci Rep 2018; 8:6297. [PMID: 29674729 PMCID: PMC5908861 DOI: 10.1038/s41598-018-24339-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Prolonged wakefulness leads to a homeostatic response manifested in increased amplitude and number of electroencephalogram (EEG) slow waves during recovery sleep. Cortical networks show a slow oscillation when the excitatory inputs are reduced (during slow wave sleep, anesthesia), or absent (in vitro preparations). It was recently shown that a homeostatic response to electrical stimulation can be induced in cortical cultures. Here we used cortical cultures grown on microelectrode arrays and stimulated them with a cocktail of waking neuromodulators. We found that recovery from stimulation resulted in a dose-dependent homeostatic response. Specifically, the inter-burst intervals decreased, the burst duration increased, the network showed higher cross-correlation and strong phasic synchronized burst activity. Spectral power below <1.75 Hz significantly increased and the increase was related to steeper slopes of bursts. Computer simulation suggested that a small number of clustered neurons could potently drive the behavior of the network both at baseline and during recovery. Thus, this in vitro model appears valuable for dissecting network mechanisms of sleep homeostasis.
Collapse
Affiliation(s)
- Sohrab Saberi-Moghadam
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Alessandro Simi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Hesam Setareh
- Laboratory of Computational Neuroscience, School of Computer and Communication Sciences, EPFL, 1015, Lausanne, Switzerland
| | - Cyril Mikhail
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Mehdi Tafti
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland. .,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
40
|
Komarov M, Krishnan G, Chauvette S, Rulkov N, Timofeev I, Bazhenov M. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. J Comput Neurosci 2017; 44:1-24. [PMID: 29230640 DOI: 10.1007/s10827-017-0663-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to play critical role in consolidation of recent memories. Past computational studies, based on the Hodgkin-Huxley type neuronal models, revealed possible intracellular and network mechanisms of the neuronal activity during sleep, however, they failed to explore the large-scale cortical network dynamics depending on collective behavior in the large populations of neurons. In this new study, we developed a novel class of reduced discrete time spiking neuron models for large-scale network simulations of wake and sleep dynamics. In addition to the spiking mechanism, the new model implemented nonlinearities capturing effects of the leak current, the Ca2+ dependent K+ current and the persistent Na+ current that were found to be critical for transitions between Up and Down states of the slow oscillation. We applied the new model to study large-scale two-dimensional cortical network activity during slow-wave sleep. Our study explained traveling wave dynamics and characteristic synchronization properties of transitions between Up and Down states of the slow oscillation as observed in vivo in recordings from cats. We further predict a critical role of synaptic noise and slow adaptive currents for spike sequence replay as found during sleep related memory consolidation.
Collapse
Affiliation(s)
- Maxim Komarov
- Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Giri Krishnan
- Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Sylvain Chauvette
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, QC, Québec, G1J2G3, Canada
| | - Nikolai Rulkov
- BioCircuits Institute, University of California, San Diego 9500 Gilman Drive, La Jolla, CA, 92093-0328, USA
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, QC, Québec, G1J2G3, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
41
|
Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses. J Neurosci 2017; 37:10882-10893. [PMID: 29118218 DOI: 10.1523/jneurosci.1838-17.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
How consciousness (experience) arises from and relates to material brain processes (the "mind-body problem") has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the role of the frontal cortex may further delineate NCCs, (3) advocate the need for general, objective, brain-based measures of the capacity for consciousness that are independent of sensory processing and executive functions, and (4) show how animal studies can reveal population and network phenomena of relevance for understanding mechanisms of consciousness.
Collapse
|
42
|
Song I, Orosz I, Chervoneva I, Waldman ZJ, Fried I, Wu C, Sharan A, Salamon N, Gorniak R, Dewar S, Bragin A, Engel J, Sperling MR, Staba R, Weiss SA. Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy. Epilepsia 2017; 58:1972-1984. [PMID: 28948998 DOI: 10.1111/epi.13912] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Differentiating pathologic and physiologic high-frequency oscillations (HFOs) is challenging. In patients with focal epilepsy, HFOs occur during the transitional periods between the up and down state of slow waves. The preferred phase angles of this form of phase-event amplitude coupling are bimodally distributed, and the ripples (80-150 Hz) that occur during the up-down transition more often occur in the seizure-onset zone (SOZ). We investigated if bimodal ripple coupling was also evident for faster sleep oscillations, and could identify the SOZ. METHODS Using an automated ripple detector, we identified ripple events in 40-60 min intracranial electroencephalography (iEEG) recordings from 23 patients with medically refractory mesial temporal lobe or neocortical epilepsy. The detector quantified epochs of sleep oscillations and computed instantaneous phase. We utilized a ripple phasor transform, ripple-triggered averaging, and circular statistics to investigate phase event-amplitude coupling. RESULTS We found that at some individual recording sites, ripple event amplitude was coupled with the sleep oscillatory phase and the preferred phase angles exhibited two distinct clusters (p < 0.05). The distribution of the pooled mean preferred phase angle, defined by combining the means from each cluster at each individual recording site, also exhibited two distinct clusters (p < 0.05). Based on the range of preferred phase angles defined by these two clusters, we partitioned each ripple event at each recording site into two groups: depth iEEG peak-trough and trough-peak. The mean ripple rates of the two groups in the SOZ and non-SOZ (NSOZ) were compared. We found that in the frontal (spindle, p = 0.009; theta, p = 0.006, slow, p = 0.004) and parietal lobe (theta, p = 0.007, delta, p = 0.002, slow, p = 0.001) the SOZ incidence rate for the ripples occurring during the trough-peak transition was significantly increased. SIGNIFICANCE Phase-event amplitude coupling between ripples and sleep oscillations may be useful to distinguish pathologic and physiologic events in patients with frontal and parietal SOZ.
Collapse
Affiliation(s)
- Inkyung Song
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Iren Orosz
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Inna Chervoneva
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Zachary J Waldman
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Ashwini Sharan
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Richard Gorniak
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Sandra Dewar
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Shennan A Weiss
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
43
|
Bistability and up/down state alternations in inhibition-dominated randomly connected networks of LIF neurons. Sci Rep 2017; 7:11916. [PMID: 28931930 PMCID: PMC5607291 DOI: 10.1038/s41598-017-12033-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Electrophysiological recordings in cortex in vivo have revealed a rich variety of dynamical regimes ranging from irregular asynchronous states to a diversity of synchronized states, depending on species, anesthesia, and external stimulation. The average population firing rate in these states is typically low. We study analytically and numerically a network of sparsely connected excitatory and inhibitory integrate-and-fire neurons in the inhibition-dominated, low firing rate regime. For sufficiently high values of the external input, the network exhibits an asynchronous low firing frequency state (L). Depending on synaptic time constants, we show that two scenarios may occur when external inputs are decreased: (1) the L state can destabilize through a Hopf bifucation as the external input is decreased, leading to synchronized oscillations spanning d δ to β frequencies; (2) the network can reach a bistable region, between the low firing frequency network state (L) and a quiescent one (Q). Adding an adaptation current to excitatory neurons leads to spontaneous alternations between L and Q states, similar to experimental observations on UP and DOWN states alternations.
Collapse
|
44
|
Schwalm M, Schmid F, Wachsmuth L, Backhaus H, Kronfeld A, Aedo Jury F, Prouvot PH, Fois C, Albers F, van Alst T, Faber C, Stroh A. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves. eLife 2017; 6:27602. [PMID: 28914607 PMCID: PMC5658067 DOI: 10.7554/elife.27602] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023] Open
Abstract
Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. When a person is in a deep non-dreaming sleep, neurons in their brain alternate slowly between periods of silence and periods of activity. This gives rise to low-frequency brain rhythms called slow waves, which are thought to help stabilize memories. Slow wave activity can be detected on multiple scales, from the pattern of electrical impulses sent by an individual neuron to the collective activity of the brain’s entire outer layer, the cortex. But does slow wave activity in an individual group of neurons in the cortex affect the activity of the rest of the brain? To find out, Schwalm, Schmid, Wachsmuth et al. took advantage of the fact that slow waves also occur under general anesthesia, and placed anesthetized rats inside miniature whole-brain scanners. A small region of cortex in each rat had been injected with a dye that fluoresces whenever the neurons in that region are active. An optical fiber was lowered into the rat’s brain to transmit the fluorescence signals to a computer. Monitoring these signals while the animals lay inside the scanner revealed that slow-wave activity in any one group of cortical neurons was accompanied by slow-wave activity across the cortex as a whole. This relationship was seen only for slow waves, and not for other brain rhythms. Slow waves seem to occur in all species of animal with a backbone, and in both healthy and diseased brains. While it is not possible to inject fluorescent dyes into the human brain, it is possible to monitor neuronal activity using electrodes. Comparing local electrode recordings with measures of whole-brain activity from scanners could thus allow similar experiments to be performed in people. There is growing evidence – from animal models and from studies of patients – that slow waves may be altered in Alzheimer’s disease. Further work is required to determine whether detecting these changes could help diagnose disease at earlier stages, and whether reversing them may have therapeutic potential.
Collapse
Affiliation(s)
- Miriam Schwalm
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,GRADE Brain, Goethe Graduate Academy, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Florian Schmid
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Hendrik Backhaus
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Kronfeld
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felipe Aedo Jury
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pierre-Hugues Prouvot
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Consuelo Fois
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska Albers
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Timo van Alst
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
45
|
Sanders J, Scholz M, Merutka I, Biron D. Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues. BMC Biol 2017; 15:67. [PMID: 28844202 PMCID: PMC5572162 DOI: 10.1186/s12915-017-0407-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disrupting sleep during development leads to lasting deficits in chordates and arthropods. To address lasting impacts of sleep deprivation in Caenorhabditis elegans, we established a nonlethal deprivation protocol. RESULTS Deprivation triggered protective insulin-like signaling and two unfolded protein responses (UPRs): the mitochondrial (UPRmt) and the endoplasmic reticulum (UPRER) responses. While the latter is known to be triggered by sleep deprivation in rodent and insect brains, the former was not strongly associated with sleep deprivation previously. We show that deprivation results in a feeding defect when the UPRmt is deficient and in UPRER-dependent germ cell apoptosis. In addition, when the UPRER is deficient, deprivation causes excess twitching in vulval muscles, mirroring a trend caused by loss of egg-laying command neurons. CONCLUSIONS These data show that nonlethal deprivation of C. elegans sleep causes proteotoxic stress. Unless mitigated, distinct types of deprivation-induced proteotoxicity can lead to anatomically and genetically separable lasting defects. The relative importance of different UPRs post-deprivation likely reflects functional, developmental, and genetic differences between the respective tissues and circuits.
Collapse
Affiliation(s)
- Jarred Sanders
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Monika Scholz
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilaria Merutka
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - David Biron
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Physics, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
46
|
Jercog D, Roxin A, Barthó P, Luczak A, Compte A, de la Rocha J. UP-DOWN cortical dynamics reflect state transitions in a bistable network. eLife 2017; 6:22425. [PMID: 28826485 PMCID: PMC5582872 DOI: 10.7554/elife.22425] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 07/21/2017] [Indexed: 11/21/2022] Open
Abstract
In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.
Collapse
Affiliation(s)
- Daniel Jercog
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Peter Barthó
- MTA TTK NAP B Research Group of Sleep Oscillations, Budapest, Hungary
| | - Artur Luczak
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jaime de la Rocha
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
47
|
Zucca S, D'Urso G, Pasquale V, Vecchia D, Pica G, Bovetti S, Moretti C, Varani S, Molano-Mazón M, Chiappalone M, Panzeri S, Fellin T. An inhibitory gate for state transition in cortex. eLife 2017; 6. [PMID: 28509666 PMCID: PMC5444901 DOI: 10.7554/elife.26177] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023] Open
Abstract
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI:http://dx.doi.org/10.7554/eLife.26177.001
Collapse
Affiliation(s)
- Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Giulia D'Urso
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Valentina Pasquale
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Giuseppe Pica
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Stefano Varani
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Manuel Molano-Mazón
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|
48
|
Shimaoka D, Song C, Knöpfel T. State-Dependent Modulation of Slow Wave Motifs towards Awakening. Front Cell Neurosci 2017; 11:108. [PMID: 28484371 PMCID: PMC5401891 DOI: 10.3389/fncel.2017.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022] Open
Abstract
Slow cortical waves that propagate across the cerebral cortex forming large-scale spatiotemporal propagation patterns are a hallmark of non-REM sleep and anesthesia, but also occur during resting wakefulness. To investigate how the spatial temporal properties of slow waves change with the depth of anesthetic, we optically imaged population voltage transients generated by mouse layer 2/3 pyramidal neurons across one or two cortical hemispheres dorsally with a genetically encoded voltage indicator (GEVI). From deep barbiturate anesthesia to light barbiturate sedation, depolarizing wave events recruiting at least 50% of the imaged cortical area consistently appeared as a conserved repertoire of distinct wave motifs. Toward awakening, the incidence of individual motifs changed systematically (the motif propagating from visual to motor areas increased while that from somatosensory to visual areas decreased) and both local and global cortical dynamics accelerated. These findings highlight that functional endogenous interactions between distant cortical areas are not only constrained by anatomical connectivity, but can also be modulated by the brain state.
Collapse
Affiliation(s)
- Daisuke Shimaoka
- Neuroinformatics Japan Center (DS), RIKEN Brain Science InstituteSaitama, Japan.,Institute of Ophthalmology, University College LondonLondon, UK
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College LondonLondon, UK
| | - Thomas Knöpfel
- Neuroinformatics Japan Center (DS), RIKEN Brain Science InstituteSaitama, Japan.,Institute of Ophthalmology, University College LondonLondon, UK.,Laboratory for Neuronal Circuit Dynamics, Imperial College LondonLondon, UK.,Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College LondonLondon, UK
| |
Collapse
|
49
|
Kastanenka KV, Hou SS, Shakerdge N, Logan R, Feng D, Wegmann S, Chopra V, Hawkes JM, Chen X, Bacskai BJ. Optogenetic Restoration of Disrupted Slow Oscillations Halts Amyloid Deposition and Restores Calcium Homeostasis in an Animal Model of Alzheimer's Disease. PLoS One 2017; 12:e0170275. [PMID: 28114405 PMCID: PMC5257003 DOI: 10.1371/journal.pone.0170275] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022] Open
Abstract
Slow oscillations are important for consolidation of memory during sleep, and Alzheimer’s disease (AD) patients experience memory disturbances. Thus, we examined slow oscillation activity in an animal model of AD. APP mice exhibit aberrant slow oscillation activity. Aberrant inhibitory activity within the cortical circuit was responsible for slow oscillation dysfunction, since topical application of GABA restored slow oscillations in APP mice. In addition, light activation of channelrhodopsin-2 (ChR2) expressed in excitatory cortical neurons restored slow oscillations by synchronizing neuronal activity. Driving slow oscillation activity with ChR2 halted amyloid plaque deposition and prevented calcium overload associated with this pathology. Thus, targeting slow oscillatory activity in AD patients might prevent neurodegenerative phenotypes and slow disease progression.
Collapse
Affiliation(s)
- Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
- * E-mail: (BJB); (KVK)
| | - Steven S. Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Naomi Shakerdge
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Robert Logan
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Danielle Feng
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Susanne Wegmann
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Vanita Chopra
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Jonathan M. Hawkes
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Xiqun Chen
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Brian J. Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
- * E-mail: (BJB); (KVK)
| |
Collapse
|
50
|
Zhan S, Wu Y, Sun P, Lin H, Zhu Y, Han X. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats. Int J Mol Sci 2016; 17:ijms17122102. [PMID: 27983645 PMCID: PMC5187902 DOI: 10.3390/ijms17122102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 01/04/2023] Open
Abstract
Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine) exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle.
Collapse
Affiliation(s)
- Shanshan Zhan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing 210029, China.
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing 210029, China.
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing 210029, China.
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing 210029, China.
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing 210029, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|