1
|
Gobbi G. CCNP Innovations in Neuropsychopharmacology Award: The psychopharmacology of psychedelics: where the brain meets spirituality. J Psychiatry Neurosci 2024; 49:E301-E318. [PMID: 39299781 PMCID: PMC11426389 DOI: 10.1503/jpn.240037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 09/22/2024] Open
Abstract
For 3000 years, psychedelics have been used in religious contexts to enhance spiritual thinking, well-being, and a sense of community. In the last few years, a renaissance in the use of psychedelic drugs for mental disorders has occurred in Western society; consequently, a pressing scientific need to elucidate the intricate mechanisms underlying their actions has arisen. Psychedelics mainly bind to serotonin (5-HT) receptors, particularly 5-HT2A receptors, but may also bind to other receptors. Unlike conventional psychotropic drugs used in psychiatry, psychedelics introduce a distinctive complexity. They not only engage in receptor activation, but also exert influence over specific neural circuits, thereby facilitating transformative cognitive experiences and fostering what many have identified as a spiritual contemplation or mystical experience. This comprehensive review describes clinical studies that have examined the propensity of psychedelics to enhance spiritual, mystical, and transcendent cognitive states. This multifaceted nature, encompassing diverse components and paradigms, necessitates careful consideration during the investigation of psychedelic mechanisms of action to avoid oversimplification. The present review endeavours to elucidate the mechanisms underlying the actions of 2 principal psychedelic substances, psilocybin and lysergic acid diethylamide (LSD), with a focus on monoamine and glutamate receptor mechanisms; molecular aspects, such as neuroplasticity and epigenetics; as well as the impact of psychedelics on brain circuits, including the default mode network and the cortico-striato-thalamo-cortical network. Given their distinctive and intricate mechanisms of action, psychedelics necessitate a novel conceptual framework in psychiatry, offering insight into the treatment of mental health disorders and facilitating the integration of the realms of brain, mind, and spirituality.
Collapse
Affiliation(s)
- Gabriella Gobbi
- From the Department of Psychiatry and the McGill University Health Centre, McGill University, Montréal, Que.
| |
Collapse
|
2
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
3
|
Reitz SL, Wasilczuk AZ, Beh GH, Proekt A, Kelz MB. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Curr Biol 2020; 31:394-405.e4. [PMID: 33188746 DOI: 10.1016/j.cub.2020.10.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Endogenous sleep and general anesthesia are distinct states that share similar traits. Of particular interest to neuroscience is the loss of consciousness that accompanies both states. Multiple lines of evidence demonstrate that general anesthetics can co-opt the neural circuits regulating arousal to produce unconsciousness. However, controversy remains as to whether the neural circuits and, more specifically, the same neurons shaping sleep and wakefulness actually do influence the anesthetic state in vivo. Hypothalamic preoptic area (POA) neurons are intimately involved in modulating spontaneous and anesthetic-induced changes in arousal. Nevertheless, recent work suggests that POA GABAergic or glutamatergic neurons capable of regulating endogenous sleep fail to influence the onset or dissipation of anesthesia. We hypothesized that the POA's broad neuronal diversity could mask convergent roles of a subset of neurons in regulating both arousal and anesthesia. Contrary to a previously published report, we show that chemogenetic activation of POA Tac1 neurons obliterates both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, strongly consolidating the waking state for hours, even during a period of elevated sleep drive. Moreover, chemogenetic activation of Tac1 POA neurons stabilizes the wake state against both isoflurane- and sevoflurane-induced unconsciousness. Tac1-activated mice display a partial resistance to entering isoflurane anesthesia and a more pronounced ability to exit both isoflurane- and sevoflurane-induced unconscious states. We conclude that POA Tac1 neurons can potently reinforce arousal both against endogenous and drug-induced unconscious states. POA Tac1 neurons thus add causal support for the involvement of arousal-regulating systems in the state of general anesthesia.
Collapse
Affiliation(s)
- Sarah L Reitz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gretel H Beh
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Circadian and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1-39. [PMID: 30361863 DOI: 10.3758/s13415-018-00653-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive-compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.
Collapse
|
5
|
Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res 2020; 1734:146729. [PMID: 32067964 DOI: 10.1016/j.brainres.2020.146729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The neurokinins are a class of peptide signaling molecules that mediate a range of central and peripheral functions including pain processing, gastrointestinal function, stress responses, and anxiety. Recent data have linked these neuropeptides with drug-related behaviors. Specifically, substance P (SP) and neurokinin B (NKB), have been shown to influence responses to alcohol, cocaine, and/or opiate drugs. SP and NKB preferentially bind to the neurokinin-1 receptor (NK1R) and neurokinin-3 receptor (NK3R), respectively, but do have some affinity for all classes of neurokinin receptor at high concentrations. NK1R activity has been shown to influence reward and reinforcement for opiate drugs, stimulatory and neurochemical responses to cocaine, and escalated and stress-induced alcohol seeking. In reinstatement models of relapse-like behavior, NK1R antagonism attenuates stress-induced reinstatement for all classes of drugs tested to date. The NK3R also influences alcohol intake and behavioral/neurochemical responses to cocaine, but less research has been performed in regard to this particular receptor in preclinical models of addiction. Clinically, agents targeting these receptors have shown some promise, but have produced mixed results. Here, the preclinical findings for the NK1R and NK3R are reviewed, and discussion is provided to interpret clinical findings. Additionally, important factors to consider in regards to future clinical work are suggested.
Collapse
Affiliation(s)
- Jesse R Schank
- University of Georgia, Department of Physiology and Pharmacology, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Yang E, Kim JY, Yang SH, Lee E, Sun W, Lee HW, Kim H. Three-Dimensional Analysis of Mouse Habenula Subnuclei Reveals Reduced Volume and Gene Expression in the Lipopolysaccharide-mediated Depression Model. Exp Neurobiol 2019; 28:709-719. [PMID: 31902158 PMCID: PMC6946114 DOI: 10.5607/en.2019.28.6.709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
The habenula (Hb) is small but important brain structure, anatomically and functionally links the forebrain with the midbrain to modulate various neuropsychiatric functions associated with drug addiction and emotion-associated dysfunctions. Several reports suggested that the dysfunction of Hb-related functions affected the Hb structurally and functionally. However, the technical limitation has awaited the solid conclusion of whether Hb change due to depression is likely to occur in certain subnuclei of the Hb. To probe this possibility, we developed 3-dimensional reconstruction methods for the high-resolution volumetric analysis of Hb and the mRNA levels at the given volume in normal or lipopolysaccharide (LPS)-mediated mouse model of depression. Notably, we discovered that the volume reduction was prominent in medial Hb but not in lateral Hb after LPS treatments. On the other hand, the RNA expression levels of known Hb regional markers such as Tac1 (dorsal part of medial Hb), ChAT (ventral part of medial Hb), and Tacr1 (medial and lateral Hb) were all decreased in all Hb subnuclei in LPS-injected mice. Accordingly, accurate volumetry with marker labeling was not feasible. Collectively, these established 3D analyses of mouse Hb successfully and precisely determine the volume-based changes of small brain structure, which should be applicable in a wider range of mouse models or pathological specimens.
Collapse
Affiliation(s)
- Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Eunsoo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Escalated Alcohol Self-Administration and Sensitivity to Yohimbine-Induced Reinstatement in Alcohol Preferring Rats: Potential Role of Neurokinin-1 Receptors in the Amygdala. Neuroscience 2019; 413:77-85. [PMID: 31242442 DOI: 10.1016/j.neuroscience.2019.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
Abstract
Genetic factors significantly contribute to the risk for developing alcoholism. To study these factors and other associated phenotypes, rodent lines have been developed using selective breeding for high alcohol preference. One of these models, the alcohol preferring (P) rat, has been used in hundreds of preclinical studies over the last few decades. However, very few studies have examined relapse-like behavior in this rat strain. In this study, we used operant self-administration and yohimbine-induced reinstatement models to examine relapse-like behavior in P rats. Our previous work has demonstrated that P rats show increased expression of the neurokinin-1 receptor (NK1R) in the central nucleus of the amygdala (CeA), and this functionally contributes to escalated alcohol consumption in this strain. We hypothesized that P rats would show increased sensitivity to yohimbine-induced reinstatement that is also mediated by NK1R in the CeA. Using Fos staining, site-specific infusion of NK1R antagonist, and viral vector overexpression, we examined the influence of NK1R on the sensitivity to yohimbine-induced reinstatement of alcohol seeking. We found that P rats displayed increased sensitivity to yohimbine-induced reinstatement as well as increased neuronal activation in the CeA after yohimbine injection compared to the control Wistar strain. Intra-CeA infusion of NK1R antagonist attenuates yohimbine-induced reinstatement in P rats. Conversely, upregulation of NK1R within the CeA of Wistar rats increases alcohol consumption and sensitivity to yohimbine-induced reinstatement. These findings suggest that NK1R upregulation in the CeA contributes to multiple alcohol-related phenotypes in the P rat, including alcohol consumption and sensitivity to relapse.
Collapse
|
8
|
Xu C, Sun Y, Cai X, You T, Zhao H, Li Y, Zhao H. Medial Habenula-Interpeduncular Nucleus Circuit Contributes to Anhedonia-Like Behavior in a Rat Model of Depression. Front Behav Neurosci 2018; 12:238. [PMID: 30356828 PMCID: PMC6189744 DOI: 10.3389/fnbeh.2018.00238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/24/2018] [Indexed: 12/01/2022] Open
Abstract
The habenula is a nuclear complex composed of the lateral habenula (LHb) and medial habenula (MHb), two distinct structures. Much progress has been made to emphasize the role of the LHb in the pathogenesis of depression. In contrast, relatively less research has focused on the MHb. However, in recent years, the role of the MHb has begun to gain increasing attention. The MHb connects to the interpeduncular nucleus (IPN) both morphologically and functionally. The MHb-IPN pathway plays an important role in regulating higher brain functions, including cognition, reward, and decision making. It indicates a role of the MHb in the pathogenesis of depression. Thus, we investigated the role of the MHb-IPN pathway in depression. MHb metabolic activity was increased in the chronic unpredictable mild stress (CUMS)-exposed rat model of depression. MHb lesions in the CUMS-exposed rats reversed anhedonia-like behavior, as observed in the sucrose preference test, and significantly downregulated the elevated metabolic activity of the IPN. Substance P (SP)-containing neurons of the MHb were found to innervate the IPN and to be the main source of SP in the IPN. SP content of IPN tissue of the CUMS-exposed rats was increased and MHb lesions reversed this change. In the in vitro experiment, firing rate recordings showed that SP perfusion increased the activity of IPN neurons. Our results suggest that hyperactivity of the MHb-IPN circuit is involved in the anhedonia-like behavior of depression, and that SP mediates the effect of the MHb on IPN neurons.
Collapse
Affiliation(s)
- Chunpeng Xu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuewei Cai
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tingting You
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hongzhe Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Culman J, Mühlenhoff S, Blume A, Hedderich J, Lützen U, Hunt SP, Rupniak NMJ, Zhao Y. The Hypothalamic-Pituitary-Adrenal Axis and Serotonin Metabolism in Individual Brain Nuclei of Mice with Genetic Disruption of the NK1 Receptor Exposed to Acute Stress. Cell Mol Neurobiol 2018; 38:1271-1281. [PMID: 29948553 DOI: 10.1007/s10571-018-0594-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R-/-mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R-/- mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R-/- mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R-/- mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R-/- mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R-/- mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R-/- mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.
Collapse
Affiliation(s)
- Juraj Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany.
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany.
| | - Stephan Mühlenhoff
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Annegret Blume
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Jürgen Hedderich
- Institute of Medical Informatics and Statistics, University Hospital of Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, 24105, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Stephen P Hunt
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Yi Zhao
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| |
Collapse
|
10
|
Cellular and behavioral effects of lipopolysaccharide treatment are dependent upon neurokinin-1 receptor activation. J Neuroinflammation 2018; 15:60. [PMID: 29486768 PMCID: PMC6389133 DOI: 10.1186/s12974-018-1098-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Several psychiatric conditions are affected by neuroinflammation and neuroimmune activation. The transcription factor nuclear factor kappa light-chain-enhancer of activated B cells (NFkB) plays a major role in inflammation and innate immunity. The neurokinin-1 receptor (NK1R) is the primary endogenous target of the neuroactive peptide substance P, and some data suggests that NK1R stimulation may influence NFkB activity. Both NK1R and NFkB have been shown to play a functional role in complex behaviors including stress responsivity, depression, and addiction. In this study, we test whether NFkB activity in the brain (stimulated by lipopolysaccharide administration) is dependent upon the NK1R. Methods Adult male Wistar rats were treated systemically with the NK1R antagonist L822429 followed by administration of systemic lipopolysaccharide (LPS, a strong activator of NFkB). Hippocampal extracts were used to assess expression of proinflammatory cytokines and NFkB-DNA-binding potential. For behavioral studies, rats were trained to consume 1% (w/v) sucrose solution in a continuous access two-bottle choice model. After establishment of baseline, animals were treated with L822429 and LPS and sucrose preference was measured 12 h post-treatment. Results Systemic LPS treatment causes a significant increase in proinflammatory cytokine expression and NFkB-DNA-binding activity within the hippocampus. These increases are attenuated by systemic pretreatment with the NK1R antagonist L822429. Systemic LPS treatment also led to the development of anhedonic-like behavior, evidenced by decreased sucrose intake in the sucrose preference test. This behavior was significantly attenuated by systemic pretreatment with the NK1R antagonist L822429. Conclusions Systemic LPS treatment induced significant increases in NFkB activity, evidenced by increased NFkB-DNA binding and by increased proinflammatory cytokine expression in the hippocampus. LPS also induced anhedonic-like behavior. Both the molecular and behavioral effects of LPS treatment were significantly attenuated by systemic NK1R antagonism, suggesting that NK1R stimulation lies upstream of NFkB activation following systemic LPS administration and is at least in part responsible for NFkB activation.
Collapse
|
11
|
Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons. Transl Psychiatry 2017; 7:e1060. [PMID: 28291261 PMCID: PMC5416680 DOI: 10.1038/tp.2017.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Anorexia nervosa (AN) is a complex and multifactorial disorder occurring predominantly in women. Despite having the highest mortality among psychiatric conditions, it still lacks robust and effective treatment. Disorders such as AN are most likely syndromes with multiple genetic contributions, however, genome-wide studies have been underpowered to reveal associations with this uncommon illness. Here, we generated induced pluripotent stem cells (iPSCs) from adolescent females with AN and unaffected controls. These iPSCs were differentiated into neural cultures and subjected to extensive transcriptome analysis. Within a small cohort of patients who presented for treatment, we identified a novel gene that appears to contribute to AN pathophysiology, TACR1 (tachykinin 1 receptor). The participation of tachykinins in a variety of biological processes and their interactions with other neurotransmitters suggest novel mechanisms for how a disrupted tachykinin system might contribute to AN symptoms. Although TACR1 has been associated with psychiatric conditions, especially anxiety disorders, we believe this report is its first association with AN. Moreover, our human iPSC approach is a proof-of-concept that AN can be modeled in vitro with a full human genetic complement, and represents a new tool for understanding the elusive molecular and cellular mechanisms underlying the disease.
Collapse
|
12
|
Zhang J, Cai CY, Wu HY, Zhu LJ, Luo CX, Zhu DY. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors. Sci Rep 2016; 6:29551. [PMID: 27404655 PMCID: PMC4941576 DOI: 10.1038/srep29551] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/17/2016] [Indexed: 02/03/2023] Open
Abstract
Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Li-Juan Zhu
- Institute of Neuroscience, Soochow University, Su zhou, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China.,The key laboratory of human functional genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Quesseveur G, Portal B, Basile JA, Ezan P, Mathou A, Halley H, Leloup C, Fioramonti X, Déglon N, Giaume C, Rampon C, Guiard BP. Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Front Cell Neurosci 2015; 9:490. [PMID: 26733815 PMCID: PMC4686612 DOI: 10.3389/fncel.2015.00490] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Clinical and preclinical studies have implicated glial anomalies in major depression. Conversely, evidence suggests that the activity of antidepressant drugs is based, at least in part, on their ability to stimulate density and/or activity of astrocytes, a major glial cell population. Despite this recent evidence, little is known about the mechanism(s) by which astrocytes regulate emotionality. Glial cells communicate with each other through gap junction channels (GJCs), while they can also directly interact with neurons by releasing gliotransmitters in the extracellular compartment via an hemichannels (HCs)-dependent process. Both GJCs and HCs are formed by two main protein subunits: connexins (Cx) 30 and 43 (Cx30 and Cx43). Here we investigate the role of hippocampal Cx43 in the regulation of depression-like symptoms using genetic and pharmacological approaches. The first aim of this study was to evaluate the impact of the constitutive knock-down of Cx43 on a set of behaviors known to be affected in depression. Conversely, the expression of Cx43 was assessed in the hippocampus of mice subjected to prolonged corticosterone (CORT) exposure, given either alone or in combination with an antidepressant drug, the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that the constitutive deficiency of Cx43 resulted in the expression of some characteristic hallmarks of antidepressant-/anxiolytic-like behavioral activities along with an improvement of cognitive performances. Moreover, in a new cohort of wild-type mice, we showed that CORT exposure elicited anxiety and depression-like abnormalities that were reversed by chronic administration of fluoxetine. Remarkably, CORT also increased hippocampal amounts of phosphorylated form of Cx43 whereas fluoxetine treatment normalized this parameter. From these results, we envision that antidepressant drugs may exert their therapeutic activity by decreasing the expression and/or activity of Cx43 resulting from a lower level of phosphorylation in the hippocampus.
Collapse
Affiliation(s)
- Gaël Quesseveur
- Institut National de la Santé et de la Recherche Médicale UMR-S 1178 - Dépression, Plasticité and Résistance Aux Antidépresseurs, Laboratoire de Neuropharmacologie EA 3544, Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| | - Benjamin Portal
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Jean-Arnaud Basile
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Collège de France Paris, France
| | - Alexia Mathou
- Centre des Sciences du Goût et de l'Alimentation - Centre National de la Recherche Scientifique UMR 6265 - Institut National de la Recherche Agronomique UMR 1324, Université de Bourgogne Dijon, France
| | - Hélène Halley
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation - Centre National de la Recherche Scientifique UMR 6265 - Institut National de la Recherche Agronomique UMR 1324, Université de Bourgogne Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation - Centre National de la Recherche Scientifique UMR 6265 - Institut National de la Recherche Agronomique UMR 1324, Université de Bourgogne Dijon, France
| | - Nicole Déglon
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Collège de France Paris, France
| | - Claire Rampon
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Bruno P Guiard
- Institut National de la Santé et de la Recherche Médicale UMR-S 1178 - Dépression, Plasticité and Résistance Aux Antidépresseurs, Laboratoire de Neuropharmacologie EA 3544, Faculté de Pharmacie, Université Paris-SudChâtenay-Malabry, France; Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul SabatierToulouse, France
| |
Collapse
|
14
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
15
|
Ayanwuyi LO, Stopponi S, Ubaldi M, Cippitelli A, Nasuti C, Damadzic R, Heilig M, Schank J, Cheng K, Rice KC, Ciccocioppo R. Neurokinin 1 receptor blockade in the medial amygdala attenuates alcohol drinking in rats with innate anxiety but not in Wistar rats. Br J Pharmacol 2015; 172:5136-46. [PMID: 26275374 DOI: 10.1111/bph.13280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/27/2015] [Accepted: 08/02/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Substance P and its preferred neurokinin receptor NK1 have been implicated in stress and anxiety and have been proposed as possible therapeutic targets for the treatment of anxiety/depression. Attention is also being focused on the role this neuropeptide system may play in drug addiction, because stress-related mechanisms promote drug abuse. EXPERIMENTAL APPROACH The effects of the rat-specific NK1 receptor antagonist, L822429, on alcohol intake and seeking behaviour was investigated in genetically selected Marchigian Sardinian alcohol preferring rats. These rats demonstrate an anxious phenotype and are highly sensitive to stress and stress-induced drinking. KEY RESULTS Systemic administration of L822429 significantly reduced operant alcohol self-administration in Marchigian Sardinian alcohol preferring rats, but did not reduce alcohol self-administration in stock Wistar rats. NK1 receptor antagonism also attenuated yohimbine-induced reinstatement of alcohol seeking at all doses tested but had no effect on cue-induced reinstatement of alcohol seeking. L822429 reduced operant alcohol self-administration when injected into the lateral cerebroventricles or the medial amygdala. L822429 injected into the medial amygdala also significantly reduced anxiety-like behaviour in the elevated plus maze test. No effects on alcohol intake were observed following injection of L822429 into the dorsal or the ventral hippocampus. Conclusions and Implications Our results suggest that NK1 receptor antagonists may be useful for the treatment of alcohol addiction associated with stress or comorbid anxiety disorders. The medial amygdala appears to be an important brain site of action of NK1 receptor antagonism.
Collapse
Affiliation(s)
- Lydia O Ayanwuyi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Cinzia Nasuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Ruslan Damadzic
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-1108, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-1108, USA
| | - Jesse Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Kejun Cheng
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
16
|
Frick A, Ahs F, Linnman C, Jonasson M, Appel L, Lubberink M, Långström B, Fredrikson M, Furmark T. Increased neurokinin-1 receptor availability in the amygdala in social anxiety disorder: a positron emission tomography study with [11C]GR205171. Transl Psychiatry 2015; 5:e597. [PMID: 26151925 PMCID: PMC5068728 DOI: 10.1038/tp.2015.92] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
The neurokinin-1 (NK1) receptor is abundantly expressed in the fear circuitry of the brain, including the amygdala, where it modulates stress and anxiety. Despite its proposed involvement in psychopathology, only a few studies of NK1 receptor availability in human subjects with anxiety disorders exist. Here, we compared NK1 receptor availability in patients with social anxiety disorder (SAD; n = 17) and healthy controls (n = 17) using positron emission tomography and the radiotracer [11C]GR205171. The Patlak Graphical plot using a cerebellar reference region was used to model the influx parameter, Ki measuring NK1 receptor availability. Voxel-wise statistical parametric mapping analyses revealed increased NK1 receptor availability specifically in the right amygdala in SAD patients relative to controls. Thus, we demonstrate that exaggerated social anxiety is related to enhanced NK1 receptor availability in the amygdala. This finding supports the contribution of NK1 receptors not only in animal models of stress and anxiety but also in humans with anxiety disorders.
Collapse
Affiliation(s)
- A Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Psychology, Uppsala University, Box 1225, SE-751 42 Uppsala, Sweden. E-mail:
| | - F Ahs
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - C Linnman
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Jonasson
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - L Appel
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - M Lubberink
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - B Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - M Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - T Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Pillidge K, Porter AJ, Dudley JA, Tsai YC, Heal DJ, Stanford SC. The behavioural response of mice lacking NK₁ receptors to guanfacine resembles its clinical profile in treatment of ADHD. Br J Pharmacol 2015; 171:4785-96. [PMID: 25074741 PMCID: PMC4209942 DOI: 10.1111/bph.12860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Mice with functional ablation of substance P-preferring neurokinin-1 receptors (NK1R−/− mice) display behavioural abnormalities resembling those in attention deficit hyperactivity disorder (ADHD). Here, we investigated whether the ADHD treatment, guanfacine, alleviated the hyperactivity and impulsivity/inattention displayed by NK1R−/− mice in the light/dark exploration box (LDEB) and 5-choice serial reaction–time task (5-CSRTT), respectively. Following reports of co-morbid anxiety in ADHD, we also investigated effects of guanfacine on anxiety-like behaviour displayed by NK1R−/− and wild-type (WT) mice in the elevated plus maze (EPM). Experimental Approach Mice were treated with guanfacine (0.1, 0.3 or 1.0 mg·kg−1, i.p.), vehicle or no injection and tested in the 5-CSRTT or the LDEB. Only the lowest dose of guanfacine was used in the EPM assays. Key Results In the 5-CSRTT, a low dose of guanfacine (0.1 mg·kg−1) increased attention in NK1R−/− mice, but not in WT mice. This dose did not affect the total number of trials completed, latencies to respond or locomotor activity in the LDEB. Impulsivity was decreased by the high dose (1.0 mg·kg−1) of guanfacine, but this was evident in both genotypes and is likely to be secondary to a generalized blunting of behaviour. Although the NK1R−/− mice displayed marked anxiety-like behaviour, guanfacine did not affect the behaviour of either genotype in the EPM. Conclusions and Implications This evidence that guanfacine improves attention at a dose that did not affect arousal or emotionality supports our proposal that NK1R−/− mice express an attention deficit resembling that of ADHD patients. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20
Collapse
Affiliation(s)
- Katharine Pillidge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
18
|
Feetham CH, Barrett-Jolley R. NK1-receptor-expressing paraventricular nucleus neurones modulate daily variation in heart rate and stress-induced changes in heart rate variability. Physiol Rep 2014; 2:e12207. [PMID: 25472606 PMCID: PMC4332202 DOI: 10.14814/phy2.12207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is an established center of cardiovascular control, receiving projections from other nuclei of the hypothalamus such as the dorsomedial hypothalamus and the suprachiasmatic nucleus. The PVN contains a population of "pre-autonomic neurones" which project to the intermediolateralis of the spinal cord and increase sympathetic activity, blood pressure, and heart rate. These spinally projecting neurones express a number of membrane receptors including GABA and substance P NK1 receptors. Activation of NK1-expressing neurones increases heart rate, blood pressure, and sympathetic activity. However, their role in the pattern of overall cardiovascular control remains unknown. In this work, we use specific saporin lesion of NK1-expressing PVN rat neurones with SSP-SAP and telemetrically measure resting heart rate and heart rate variability (HRV) parameters in response to mild psychological stress. The HRV parameter "low frequency/high frequency ratio" is often used as an indicator of sympathetic activity and is significantly increased with psychological stress in control rats (0.84 ± 0.14 to 2.02 ± 0.15; P < 0.001; n = 3). We find the stress-induced increase in this parameter to be blunted in the SSP-SAP-lesioned rats (0.83 ± 0.09 to 0.93 ± 0.21; P > 0.05; n = 3). We also find a shift in daily variation of heart rate rhythm and conclude that NK1-expressing PVN neurones are involved with coupling of the cardiovascular system to daily heart rate variation and the sympathetic response to psychological stress.
Collapse
Affiliation(s)
- Claire H Feetham
- Institute of Ageing and Chronic Disease, Centre for Integrative Mammalian Biology, University of Liverpool, Liverpool, UK
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, Centre for Integrative Mammalian Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Overexpression of human GATA-1 and GATA-2 interferes with spine formation and produces depressive behavior in rats. PLoS One 2014; 9:e109253. [PMID: 25340772 PMCID: PMC4207676 DOI: 10.1371/journal.pone.0109253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
Functional consequences to which vertebrate GATA transcription factors contribute in the adult brain remain largely an open question. The present study examines how human GATA-1 and GATA-2 (hGATA-1 and hGATA-2) are linked to neuronal differentiation and depressive behaviors in rats. We investigated the effects of adeno-associated viral expression of hGATA-1 and hGATA-2 (AAV-hGATA1 and AAV-hGATA2) in the dentate gyrus (DG) of the dorsal hippocampus on dendrite branching and spine number. We also examined the influence of AAV-hGATA1 and AAV-hGATA2 infusions into the dorsal hippocampus on rodent behavior in models of depression. Viral expression of hGATA-1 and hGATA-2 cDNA in rat hippocampal neurons impaired dendritic outgrowth and spine formation. Moreover, viral-mediated expression of hGATA-1 and hGATA-2 in the dorsal hippocampus caused depressive-like deficits in the forced swim test and learned helplessness models of depression, and decreased the expression of several synapse-related genes as well as spine number in hippocampal neurons. Conversely, shRNA knockdown of GATA-2 increased synapse-related gene expression, spine number, and dendrite branching. The results demonstrate that hGATA-1 and hGATA-2 expression in hippocampus is sufficient to cause depressive like behaviors that are associated with reduction in spine synapse density and expression of synapse-related genes.
Collapse
|
20
|
Révy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C. Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions. Neuropsychopharmacology 2014; 39:2662-72. [PMID: 24903652 PMCID: PMC4207346 DOI: 10.1038/npp.2014.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/18/2014] [Accepted: 05/16/2014] [Indexed: 01/31/2023]
Abstract
The striatum is the input structure of the basal ganglia network that contains heterogeneous neuronal populations, including two populations of projecting neurons called the medium spiny neurons (MSNs), and different types of interneurons. We developed a transgenic mouse model enabling inducible ablation of the striatonigral MSNs constituting the direct pathway by expressing the human diphtheria toxin (DT) receptor under the control of the Slc35d3 gene promoter, a gene enriched in striatonigral MSNs. DT injection into the striatum triggered selective elimination of the majority of striatonigral MSNs. DT-mediated ablation of striatonigral MSNs caused selective loss of cholinergic interneurons in the dorsal striatum but not in the ventral striatum (nucleus accumbens), suggesting a region-specific critical role of the direct pathway in striatal cholinergic neuron homeostasis. Mice with DT injection into the dorsal striatum showed altered basal and cocaine-induced locomotion and dramatic reduction of L-DOPA-induced dyskinesia in the parkinsonian condition. In addition, these mice exhibited reduced anxiety, revealing a role of the dorsal striatum in the modulation of behaviors involving an emotional component, behaviors generally associated with limbic structures. Altogether, these results highlight the implication of the direct striatonigral pathway in the regulation of heterogeneous functions from cell survival to regulation of motor and emotion-associated behaviors.
Collapse
Affiliation(s)
- Delphine Révy
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Florence Jaouen
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Pascal Salin
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Christophe Melon
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Dorian Chabbert
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | | | | | - Francina Langa
- Institut Pasteur, Mouse Genetics Engineering Center, Paris Cedex 15, France
| | - Marianne Amalric
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), UMR 7291, Marseille Cedex 3, France
| | - Lydia Kerkerian-Le Goff
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Hélène Marie
- The European Brain Research Institute, Roma, Italy
| | - Corinne Beurrier
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France,Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille 13288, France, Tel: +33 491 26 92 48, Fax: +33 491 26 92 44, E-mail:
| |
Collapse
|
21
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
22
|
Maejima T, Masseck OA, Mark MD, Herlitze S. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front Integr Neurosci 2013; 7:40. [PMID: 23734105 PMCID: PMC3661940 DOI: 10.3389/fnint.2013.00040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/03/2013] [Indexed: 11/13/2022] Open
Abstract
Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Takashi Maejima
- Department of Zoology and Neurobiology, Ruhr-University Bochum Bochum, Germany
| | | | | | | |
Collapse
|
23
|
Albert PR. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 2012; 367:2402-15. [PMID: 22826341 DOI: 10.1098/rstb.2011.0376] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The serotonin-1A (5-HT(1A)) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT(1A) receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT(1A) receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT(1A) receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT(1A) autoreceptor expression in animal models and humans. Its association with altered 5-HT(1A) expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT(1A) heteroreceptors, and rs6295-induced upregulation of 5-HT(1A) autoreceptors. Targeted therapeutics to inhibit 5-HT(1A) autoreceptor expression and induce 5-HT(1A) heteroreceptor expression may ameliorate treatment of anxiety and major depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , 451 Smyth Road, Ottawa, ON, Canada , K1H 8M5.
| |
Collapse
|
24
|
Schank JR, Ryabinin AE, Giardino WJ, Ciccocioppo R, Heilig M. Stress-related neuropeptides and addictive behaviors: beyond the usual suspects. Neuron 2012; 76:192-208. [PMID: 23040815 PMCID: PMC3495179 DOI: 10.1016/j.neuron.2012.09.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets.
Collapse
Affiliation(s)
- Jesse R. Schank
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Andrey E. Ryabinin
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - William J. Giardino
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - Roberto Ciccocioppo
- Dept. of Experimental Medicine and Public Health, Camerino University, Italy
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
25
|
Huang FL, Huang KP. Methylphenidate improves the behavioral and cognitive deficits of neurogranin knockout mice. GENES, BRAIN, AND BEHAVIOR 2012; 11:794-805. [PMID: 22809330 PMCID: PMC3467336 DOI: 10.1111/j.1601-183x.2012.00825.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/26/2012] [Accepted: 07/12/2012] [Indexed: 01/22/2023]
Abstract
Neurogranin (Ng), a brain-specific calmodulin-binding protein, is expressed highly in hippocampus, and is important for cognitive function. Deletion of the Ng gene from mice caused attenuation of signal reaction cascade in hippocampus, impairments in learning and memory and high frequency stimulation-induced long-term potentiation (LTP). Environmental enrichment alone failed to improve cognitive function. In this study, behavioral testing revealed that Ng knockout (NgKO) mice were both hyperactive and socially withdrawn. Methylphenidate (MPH) was given to mice while they were also kept under an enrichment condition. MPH treatment reduced the hyperactivity of NgKO mice tested in both the open field and forced swim chamber. MPH improved their social abilities such that mice recognized and interacted better with novel subjects. The cognitive memories of MPH-treated mutants were improved in both water maze and contextual fear conditioning tests. High frequency stimulation-induced LTP of NgKO mice was also improved by MPH. The present treatment regimen, however, did not fully reverse the deficits of the mutant mice. In contrast, MPH exerted only a minimal effect on the wild type mice. At the cellular level, MPH increased the number of glial fibrillary acidic protein-positive cells in hippocampus, particularly within the dentate gyrus of NgKO mice. Therefore it will be of interest to determine the nature of MPH-mediated astrocyte activation and how it may modulate behavior in future studies. Taken together these NgKO mice may be useful for the development of better drug treatment to improve cognitive and behavioral impairments.
Collapse
Affiliation(s)
- F L Huang
- Program in Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
26
|
Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc Natl Acad Sci U S A 2012; 109:11378-83. [PMID: 22733766 DOI: 10.1073/pnas.1201191109] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Decreased neuronal dendrite branching and plasticity of the hippocampus, a limbic structure implicated in mood disorders, is thought to contribute to the symptoms of depression. However, the mechanisms underlying this effect, as well as the actions of antidepressant treatment, remain poorly characterized. Here, we show that hippocampal expression of neuritin, an activity-dependent gene that regulates neuronal plasticity, is decreased by chronic unpredictable stress (CUS) and that antidepressant treatment reverses this effect. We also show that viral-mediated expression of neuritin in the hippocampus produces antidepressant actions and prevents the atrophy of dendrites and spines, as well as depressive and anxiety behaviors caused by CUS. Conversely, neuritin knockdown produces depressive-like behaviors, similar to CUS exposure. The ability of neuritin to increase neuroplasticity is confirmed in models of learning and memory. Our results reveal a unique action of neuritin in models of stress and depression, and demonstrate a role for neuroplasticity in antidepressant treatment response and related behaviors.
Collapse
|
27
|
Sun JD, Liu Y, Yuan YH, Li J, Chen NH. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 2012; 37:1305-20. [PMID: 22189291 PMCID: PMC3306892 DOI: 10.1038/npp.2011.319] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence has implicated glial anomalies in the pathophysiology of major depression disorder (MDD). Gap junctional communication is a main determinant of astrocytic function. However, it is unclear whether gap junction dysfunction is involved in MDD development. This study investigates changes in the function of astrocyte gap junction occurring in the rat prefrontal cortex (PFC) after chronic unpredictable stress (CUS), a rodent model of depression. Animals exposed to CUS and showing behavioral deficits in sucrose preference test (SPT) and novelty suppressed feeding test (NSFT) exhibited significant decreases in diffusion of gap junction channel-permeable dye and expression of connexin 43 (Cx43), a major component of astrocyte gap junction, and abnormal gap junctional ultrastructure in the PFC. Furthermore, we analyzed the effects of typical antidepressants fluoxetine and duloxetine and glucocorticoid receptor (GR) antagonist mifepristone on CUS-induced gap junctional dysfunction and depressive-like behaviors. The cellular and behavioral alterations induced by CUS were reversed and/or blocked by treatment with typical antidepressants or mifepristone, indicating that the mechanism of their antidepressant action may involve the amelioration of gap junction dysfunction and the cellular changes may be related to GR activation. We then investigated the effects of pharmacological gap junction blockade in the PFC on depressive-like behaviors. The results demonstrate that carbenoxolone (CBX) infusions induced anhedonia in SPT, and anxiety in NSFT, and Cx43 mimetic peptides Gap27 and Gap26 also induced anhedonia, a core symptom of depression. Together, this study supports the hypothesis that gap junction dysfunction contributes to the pathophysiology of depression.
Collapse
Affiliation(s)
- Jian-Dong Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xuanwu District, Beijing 100050, China, Tel: +86 10 63165177, Fax: +86 10 63165177, E-mail:
| |
Collapse
|
28
|
Brenes JC, Broiz AC, Bassi GS, Schwarting RKW, Brandão ML. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety. Braz J Med Biol Res 2012; 45:349-56. [PMID: 22392188 PMCID: PMC3854167 DOI: 10.1590/s0100-879x2012007500030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/16/2012] [Indexed: 11/27/2022] Open
Abstract
Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by Y-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.
Collapse
Affiliation(s)
- J C Brenes
- Experimental and Physiological Psychology, Philipps-University of Marburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Sreepathi H, Ferraguti F. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents. Neuroscience 2012; 203:59-77. [PMID: 22210508 PMCID: PMC3280357 DOI: 10.1016/j.neuroscience.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022]
Abstract
Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ~35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ~75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ~25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses.
Collapse
Key Words
- nk1 receptor
- amygdala
- interneuron
- glutamate
- parvalbumin
- ba, basal nucleus of the amygdala
- bla, basolateral complex of the amygdala
- bp, band pass
- camkiiα, calcium/calmodulin kinase iiα
- cb, calbindin-d28k
- cbp, calcium binding protein
- cr, calretinin
- dab, 3,3′-diaminobenzidine
- gad67, glutamate decarboxylase isoform of 67 kda
- hrp, horseradish peroxidase
- la, lateral nucleus of the amygdala
- li, like immunoreactivity
- ngs, normal goat serum
- nk1, neurokinin 1
- pbs, phosphate buffered saline
- pv, parvalbumin
- rt, room temperature
- sp, substance p
- tbs, tris-buffered saline
- tbs-t, 0.1% v/v triton x-100 in tbs
- vglut, vesicular glutamate transporter
Collapse
Affiliation(s)
| | - F. Ferraguti
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression. Behav Brain Res 2011; 228:91-8. [PMID: 22155476 DOI: 10.1016/j.bbr.2011.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 12/28/2022]
Abstract
The substance P/NK1 receptor system plays an important role in the regulation of stress and emotional responding and as such had been implicated in the pathophysiology of anxiety and depression. The present study investigated whether alterations in the substance P/NK1 receptor system in brain areas which regulate emotional responding accompany the depressive behavioural phenotype observed in the olfactory bulbectomised (OB) mouse. The effect of NK1 receptor deletion on behavioural responding and monoamine levels in discrete brain regions of the OB model, were also examined. Substance P levels in the frontal cortex and NK1 receptor expression in the amygdala and hippocampus were enhanced following olfactory bulbectomy. Although NK1 receptor knockout (NK1-/-) mice did not exhibit altered behavioural responding in the open field test, noradrenaline levels were enhanced in the frontal cortex, amygdala and hippocampus, as were serotonin levels in the frontal cortex. Locomotor activity and exploratory behaviour were enhanced in wild type OB mice, indicative of a depressive-like phenotype, an effect attenuated in NK1-/- mice. Bulbectomy induced a decrease in noradrenaline and 5-HIAA in the frontal cortex and an increase in serotonin in the amygdala, effects attenuated in OB NK1-/- mice. The present studies indicate that alterations in substance P/NK1 receptor system underlie, at least in part, the behavioural and monoaminergic changes in this animal model of depression.
Collapse
|
31
|
Broiz AC, Bassi GS, De Souza Silva MA, Brandão ML. Effects of neurokinin-1 and 3-receptor antagonists on the defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray. Neuroscience 2011; 201:134-45. [PMID: 22123168 DOI: 10.1016/j.neuroscience.2011.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 12/17/2022]
Abstract
The dorsal periaqueductal gray (dPAG) is the main output structure for the defensive response to proximal aversive stimulation. Panic-like responses, such as freezing and escape behaviors, often result when this structure is electrically stimulated. Freezing also ensues after termination of the dPAG stimulation (post-stimulation freezing (PSF)). GABA and 5-HT have been proposed as the main neuromediators of these defense reactions. Neurokinins (NKs) also play a role in the defense reaction; however, it is unclear how the distinct types of NK receptors are involved in the expression of these fear responses. This study investigated the role of NK-1 and NK-3 receptors in the unconditioned defensive behaviors induced by electrical stimulation of the dPAG of rats, with and without previous experience with contextual fear conditioning (CFC). Spantide (100 ρmol/0.2 μl) and SB 222200 (50 and 100 ρmol/0.2 μl), selective antagonists of NK-1 and NK-3 receptors, respectively, were injected into the dPAG. Injection of spantide had antiaversive effects as determined by stimulation of the dPAG in naive animals and in animals subjected previously to CFC. SB 222200 also increased these aversive thresholds but only at doses that caused a motor deficit. Moreover, neither spantide nor SB 222200 influenced the PSF. The results suggest that NK-1 receptors are mainly involved in the mediation of the defensive behaviors organized in the dPAG. Because dPAG-evoked PSF was not affected by intra-dPAG injections of either spantide or SB 222200, it is suggested that neurokinin-mediated mechanisms are not involved in the processing of ascending aversive information from the dPAG.
Collapse
Affiliation(s)
- A C Broiz
- Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brasil
| | | | | | | |
Collapse
|
32
|
Stress-induced reinstatement of alcohol-seeking in rats is selectively suppressed by the neurokinin 1 (NK1) antagonist L822429. Psychopharmacology (Berl) 2011; 218:111-9. [PMID: 21340476 PMCID: PMC3192232 DOI: 10.1007/s00213-011-2201-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Genetic inactivation or pharmacological antagonism of neurokinin 1 (NK1) receptors blocks morphine and alcohol reward in rodents, while NK1 antagonism decreases alcohol craving in humans. The role of the NK1 system for relapse-like behavior has not previously been examined. OBJECTIVE Divergence between human and rodent NK1 receptors has limited the utility of NK1 antagonists developed for the human receptor species for preclinical studies of addiction-related behaviors in rats. Here we used L822429, an NK1 antagonist specifically engineered to bind at high affinity to the rat receptor, to assess the effects of NK1 receptor antagonism on alcohol-seeking behaviors in rats. METHODS L822429 (15 and 30 mg/kg) was used to examine effects of NK1 receptor antagonism on operant self-administration of 10% alcohol in 30-min daily sessions, as well as intermittent footshock stress- and cue-induced reinstatement of alcohol-seeking after extinction of lever responding. RESULTS At the doses used, L822429 did not significantly affect alcohol self-administration or cue-induced reinstatement, but potently and dose dependently suppressed stress-induced reinstatement of alcohol seeking, with an essentially complete suppression at the highest dose. The effect of L822429 on stress-induced reinstatement was behaviorally specific. The drug had no effect on conditioned suppression of operant responding following fear conditioning, locomotor activity, or self-administration of a sucrose solution. CONCLUSIONS To the degree that the reinstatement model provides a model of drug relapse, the results provide support for NK1 antagonism as a promising mechanism for pharmacotherapy of alcoholism, acting through suppression of stress-induced craving and relapse.
Collapse
|
33
|
Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl) 2011; 218:69-82. [PMID: 21494792 PMCID: PMC3192289 DOI: 10.1007/s00213-011-2263-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 03/13/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE AND BACKGROUND High relapse rates during abstinence are a pervasive problem in drug addiction treatment. Relapse is often associated with stress exposure, which can provoke a subjective state of drug craving that can also be demonstrated under controlled laboratory conditions. Stress-induced relapse and craving in humans can be modeled in mice, rats, and monkeys using a reinstatement model in which drug-taking behaviors are extinguished and then reinstated by acute exposure to certain stressors. Studies using the reinstatement model in rats have identified the role of several neurotransmitters and brain sites in stress-induced reinstatement of drug seeking, but the degree to which these preclinical findings are relevant to the human condition is largely unknown. OBJECTIVES AND HIGHLIGHTS Here, we address this topic by discussing recent results on the effect of alpha-2 adrenoceptors and substance P-NK1 receptor antagonists on stress-induced reinstatement in mice and rats and stress-induced craving and potentially stress-induced relapse in humans. We also discuss brain sites and circuits involved in stress-induced reinstatement of drug seeking in rats and those activated during stress-induced craving in humans. CONCLUSIONS There is evidence that alpha-2 adrenoceptor agonists and NK1 receptor antagonists decrease stress-induced drug seeking in rats and stress-induced craving in humans. Whether these drugs would also prevent stress-induced drug relapse in humans and whether similar or different brain mechanisms are involved in stress-induced reinstatement in non-humans and stress-induced drug craving and relapse in humans are subjects for future research.
Collapse
|
34
|
Malherbe P, Knoflach F, Hernandez MC, Hoffmann T, Schnider P, Porter RH, Wettstein JG, Ballard TM, Spooren W, Steward L. Characterization of RO4583298 as a novel potent, dual antagonist with in vivo activity at tachykinin NK₁ and NK₃ receptors. Br J Pharmacol 2011; 162:929-46. [PMID: 21039418 DOI: 10.1111/j.1476-5381.2010.01096.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Clinical results of osanetant and talnetant (selective-NK₃ antagonists) indicate that blocking the NK₃ receptor could be beneficial for the treatment of schizophrenia. The objective of this study was to characterize the in vitro and in vivo properties of a novel dual NK₁/NK₃ antagonist, RO4583298 (2-phenyl-N-(pyridin-3-yl)-N-methylisobutyramide derivative). EXPERIMENTAL APPROACH RO4583298 in vitro pharmacology was investigated using radioligand binding ([³H]-SP, [³H]-osanetant, [³H]-senktide), [³H]-inositol-phosphate accumulation Schild analysis (SP- or [MePhe⁷]-NKB-induced) and electrophysiological studies in guinea-pig substantia nigra pars compacta (SNpc). The in vivo activity of RO4583298 was assessed using reversal of GR73632-induced foot tapping in gerbils (GFT; NK₁) and senktide-induced tail whips in mice (MTW; NK₃). KEY RESULTS RO4583298 has a high-affinity for NK₁ (human and gerbil) and NK₃ (human, cynomolgus monkey, gerbil and guinea-pig) receptors and behaves as a pseudo-irreversible antagonist. Unusually it binds with high-affinity to mouse and rat NK₃, yet with a partial non-competitive mode of antagonism. In guinea-pig SNpc, RO4583298 inhibited the senktide-induced potentiation of spontaneous activity of dopaminergic neurones with an apparent non-competitive mechanism of action. RO4583298 (p.o.) robustly blocked the GFT response, and inhibited the MTW. CONCLUSIONS AND IMPLICATIONS RO4583298 is a high-affinity, non-competitive, long-acting in vivo NK₁/NK₃ antagonist; hence providing a useful in vitro and in vivo pharmacological tool to investigate the roles of NK₁ and NK₃ receptors in psychiatric disorders.
Collapse
Affiliation(s)
- P Malherbe
- Discovery Research CNS, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mathew SJ, Vythilingam M, Murrough JW, Zarate CA, Feder A, Luckenbaugh DA, Kinkead B, Parides MK, Trist DG, Bani MS, Bettica PU, Ratti EM, Charney DS. A selective neurokinin-1 receptor antagonist in chronic PTSD: a randomized, double-blind, placebo-controlled, proof-of-concept trial. Eur Neuropsychopharmacol 2011; 21:221-9. [PMID: 21194898 PMCID: PMC3478767 DOI: 10.1016/j.euroneuro.2010.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/24/2010] [Accepted: 11/30/2010] [Indexed: 01/01/2023]
Abstract
The substance P-neurokinin-1 receptor (SP-NK(1)R) system has been extensively studied in experimental models of stress, fear, and reward. Elevated cerebrospinal fluid (CSF) SP levels were reported previously in combat-related PTSD. No medication specifically targeting this system has been tested in PTSD. This proof-of-concept randomized, double-blind, placebo-controlled trial evaluated the selective NK(1)R antagonist GR205171 in predominately civilian PTSD. Following a 2-week placebo lead-in, 39 outpatients with chronic PTSD and a Clinician-Administered PTSD Scale (CAPS) score ≥50 were randomized to a fixed dose of GR205171 (N=20) or placebo (N=19) for 8weeks. The primary endpoint was mean change from baseline to endpoint in the total CAPS score. Response rate (≥50% reduction in baseline CAPS) and safety/tolerability were secondary endpoints. CSF SP concentrations were measured in a subgroup of patients prior to randomization. There was significant improvement in the mean CAPS total score across all patients over time, but no significant difference was found between GR205171 and placebo. Likewise, there was no significant effect of drug on the proportion of responders [40% GR205171 versus 21% placebo (p=0.30)]. An exploratory analysis showed that GR205171 treatment was associated with significant improvement compared to placebo on the CAPS hyperarousal symptom cluster. GR205171 was well-tolerated, with no discontinuations due to adverse events. CSF SP concentrations were positively correlated with baseline CAPS severity. The selective NK(1)R antagonist GR205171 had fewer adverse effects but was not significantly superior to placebo in the short-term treatment of chronic PTSD. (ClinicalTrials.gov Identifier: NCT 00211861, NCT 00383786).
Collapse
Affiliation(s)
- Sanjay J Mathew
- Mood & Anxiety Disorders Program, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dietary n-3 Fatty Acid Deficiency in Mice Enhances Anxiety Induced by Chronic Mild Stress. Lipids 2011; 46:409-16. [DOI: 10.1007/s11745-010-3523-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
37
|
Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 2010; 53:8274-86. [PMID: 21073191 DOI: 10.1021/jm101206p] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
7,8-Dihydroxyflavone is a recently identified small molecular tropomyosin-receptor-kinase B (TrkB) agonist. Our preliminary structural-activity relationship (SAR) study showed that the 7,8-dihydroxy groups are essential for the agonistic effect. To improve the lead compound's agonistic activity, we have conducted an extensive SAR study and synthesized numerous derivatives. We have successfully identified 4'-dimethylamino-7,8-dihydroxyflavone that displays higher TrkB agonistic activity than that of the lead. This novel compound also exhibits a more robust and longer TrkB activation effect in animals. Consequently, this new compound reveals more potent antiapoptotic activity. Interestingly, chronic oral administration of 4'-dimethylamino-7,8-dihydroxyflavone and its lead strongly promotes neurogenesis in dentate gyrus and demonstrates marked antidepressant effects. Hence, our data support that the synthetic 4'-dimethylamino-7,8-dihydroxyflavone and its lead both are orally bioavailable TrkB agonists and possess potent antidepressant effects.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology and Laboratory Medicine Emory University School of Medicine, Room 141 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Frisch P, Bilkei-Gorzó A, Rácz I, Zimmer A. Modulation of the CRH system by substance P/NKA in an animal model of depression. Behav Brain Res 2010; 213:103-8. [DOI: 10.1016/j.bbr.2010.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
|
39
|
Heilig M, Thorsell A, Sommer WH, Hansson AC, Ramchandani VA, George DT, Hommer D, Barr CS. Translating the neuroscience of alcoholism into clinical treatments: from blocking the buzz to curing the blues. Neurosci Biobehav Rev 2010; 35:334-44. [PMID: 19941895 PMCID: PMC2891917 DOI: 10.1016/j.neubiorev.2009.11.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022]
Abstract
Understanding the pathophysiology of addictive disorders is critical for development of new treatments. A major focus of addiction research has for a long time been on systems that mediate acute positively reinforcing effects of addictive drugs, most prominently the mesolimbic dopaminergic (DA) system and its connections. This research line has been successful in shedding light on the physiology of both natural and drug reward, but has not led to therapeutic breakthroughs. The role of classical reward systems is perhaps least clear in alcohol addiction. Here, recent work is summarized that points to some clinically important conclusions. First, important pharmacogenetic differences exist with regard to positively reinforcing effects of alcohol and the ability of this drug to activate classical reward pathways. This offers an opportunity for personalized treatment approaches in alcoholism. Second, brain stress and fear systems become pathologically activated in later stages of alcoholism and their activation is a major influence in escalation of alcohol intake, sensitization of stress responses, and susceptibility to relapse. These findings offer a new category of treatment mechanisms. Corticotropin-releasing hormone (CRH) signaling through CRH1 receptors is a major candidate target in this category, but recent data indicate that antagonists for substance P (SP) neurokinin 1 (NK1) receptors may have a similar potential.
Collapse
Affiliation(s)
- Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Inst of Health, Bethesda, MD, United States.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, Gobbi G. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 2010; 35:2083-100. [PMID: 20571484 PMCID: PMC3055302 DOI: 10.1038/npp.2010.80] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pharmacological blockade of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), produces CB(1) receptor (CB(1)R)-mediated analgesic, anxiolytic-like and antidepressant-like effects in murids. Using behavioral and electrophysiological approaches, we have characterized the emotional phenotype and serotonergic (5-HT) activity of mice lacking the FAAH gene in comparison to their wild type counterparts, and their response to a challenge of the CB(1)R antagonist, rimonabant. FAAH null-mutant (FAAH(-/-)) mice exhibited reduced immobility in the forced swim and tail suspension tests, predictive of antidepressant activity, which was attenuated by rimonabant. FAAH(-/-) mice showed an increase in the duration of open arm visits in the elevated plus maze, and a decrease in thigmotaxis and an increase in exploratory rearing displayed in the open field, indicating anxiolytic-like effects that were reversed by rimonabant. Rimonabant also prolonged the initiation of feeding in the novelty-suppressed feeding test. Electrophysiological recordings revealed a marked 34.68% increase in dorsal raphe 5-HT neural firing that was reversed by rimonabant in a subset of neurons exhibiting high firing rates (33.15% mean decrease). The response of the prefrontocortical pyramidal cells to the 5-HT(2A/2C) agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI) revealed desensitized 5-HT(2A/2C) receptors, likely linked to the observed anxiolytic-like behaviors. The hippocampal pyramidal response to the 5-HT(1A) antagonist, WAY-100635, indicates enhanced tonus on the hippocampal 5-HT(1A) heteroreceptors, a hallmark of antidepressant-like action. Together, these results suggest that FAAH genetic deletion enhances anxiolytic-like and antidepressant-like effects, paralleled by altered 5-HT transmission and postsynaptic 5-HT(1A) and 5-HT(2A/2C) receptor function.
Collapse
Affiliation(s)
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Noam Katz
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Claire Dominique Walker
- Neuroscience and Mood, Anxiety and Impulsivity Disorders-Related Research Division, Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Daniele Piomelli
- Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, CA, USA
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC, Canada,Department of Psychiatry Research and Training Building, McGill University, Neurobiological Psychiatry Unit, 1033 Pine Avenue West, Montréal, Québec, Canada H3A 1A1, Tel: +1 514 398 1290, Fax: +1 514 398 4866, E-mail:
| |
Collapse
|
41
|
Millan MJ, Dekeyne A, Gobert A, Mannoury la Cour C, Brocco M, Rivet JM, Di Cara B, Lejeune F, Cremers TI, Flik G, de Jong TR, Olivier B, de Nanteuil G. S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: a comparison to aprepitant (MK869) and paroxetine. Eur Neuropsychopharmacol 2010; 20:599-621. [PMID: 20483567 DOI: 10.1016/j.euroneuro.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 12/19/2022]
Abstract
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lithium chloride regulation of the substance P encoding preprotachykinin a, Tac1 gene in rat hippocampal primary cells. J Mol Neurosci 2010; 45:94-100. [PMID: 20690045 DOI: 10.1007/s12031-010-9431-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/19/2010] [Indexed: 12/26/2022]
Abstract
In rat hippocampal cultures, the preprotachykinin A (PPTA/Tac1) gene, which encodes the neuropeptide substance P, is regulated by the action of lithium. We used reporter gene and expression constructs to demonstrate that this mechanism of action of lithium is mediated via a previously characterised cis-regulatory Ebox element in the proximal promoter, which binds members of the basic Helix-Loop-Helix family of transcription factors. Consistent with this, in hippocampal cells, both the expression of the endogenous gene and the function of this promoter element are differentially regulated by the basic Helix-Loop-Helix factors, upstream stimulatory factor 1 and 2 (USF1/2). In addition, the genes for USF1 and USF2 are differentially regulated by lithium in these cells. Our data implicate USF1 as a major regulator of the action of lithium on the proximal PPTA promoter.
Collapse
|
43
|
Rajkumar R, Mahesh R. Assessing the neuronal serotonergic target-based antidepressant stratagem: impact of in vivo interaction studies and knockout models. Curr Neuropharmacol 2010; 6:215-34. [PMID: 19506722 PMCID: PMC2687932 DOI: 10.2174/157015908785777256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 12/26/2022] Open
Abstract
Depression remains a challenge in the field of affective neuroscience, despite a steady research progress. Six out of nine basic antidepressant mechanisms rely on serotonin neurotransmitter system. Preclinical studies have demonstrated the significance of serotonin receptors (5-HT1-3,6,7), its signal transduction pathways and classical down stream targets (including neurotrophins, neurokinins, other peptides and their receptors) in antidepressant drug action. Serotonergic control of depression embraces the recent molecular requirements such as influence on proliferation, neurogenesis, plasticity, synaptic (re)modeling and transmission in the central nervous system. The present progress report analyses the credibility of each protein as therapeutically relevant target of depression. In vivo interaction studies and knockout models which identified these targets are foreseen to unearth new ligands and help them transform to drug candidates. The importance of the antidepressant assay selection at the preclinical level using salient animal models/assay systems is discussed. Such test batteries would definitely provide antidepressants with faster onset, efficacy in resistant (and co-morbid) types and with least adverse effects. Apart from the selective ligands, only those molecules which bring an overall harmony, by virtue of their affinities to various receptor subtypes, could qualify as effective antidepressants. Synchronised modulation of various serotonergic sub-pathways is the basis for a unique and balanced antidepressant profile, as that of fluoxetine (most exploited antidepressant) and such a profile may be considered as a template for the upcoming antidepressants. In conclusion, 5-HT based multi-targeted antidepressant drug discovery supported by in vivo interaction studies and knockout models is advocated as a strategy to provide classic molecules for clinical trials.
Collapse
Affiliation(s)
- R Rajkumar
- Pharmacy Group, FD-III, Vidya Vihar, Birla Institute of Technology & Science, Pilani, Rajasthan-333031, India.
| | | |
Collapse
|
44
|
Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides 2010; 44:215-24. [PMID: 20096456 DOI: 10.1016/j.npep.2009.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/15/2009] [Accepted: 12/15/2009] [Indexed: 12/11/2022]
Abstract
Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.
Collapse
Affiliation(s)
- Brett Alldredge
- Kansas City University of Medicine and Bioscience, College of Medicine, 1705 Independence Ave., Kansas City, United States.
| |
Collapse
|
45
|
Pollak DD, Monje FJ, Lubec G. The learned safety paradigm as a mouse model for neuropsychiatric research. Nat Protoc 2010; 5:954-62. [PMID: 20431541 DOI: 10.1038/nprot.2010.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fear conditioning is one of the most widely used animal models for studying the neurobiological basis of fear and anxiety states. Conditioned inhibition of fear (or learned safety), however, is a relatively unexplored behavioral paradigm addressing the aspect of regulation of fear, which is central to survival and mental health. Although fear conditioning is achieved by pairing a previously neutral, conditioned stimulus (CS) with an aversive, unconditioned stimulus (US), learned safety training consists of a series of explicitly unpaired CS-US presentations. Animals are trained for 3 d, one session per day, and learn to associate the CS with protection from the impending danger of the aversive events. The entire procedure can be completed within 7 d. The protocol has been successfully used to study the molecular underpinnings of a behavioral intervention for depression. This paradigm complements currently used animal tests in neuropsychiatric research addressing the dysregulation of emotional behaviors in genetic, pharmacological or environmental mouse models of human affective disorders.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
46
|
Baek MN, Jung KH, Halder D, Choi MR, Lee BH, Lee BC, Jung MH, Choi IG, Chung MK, Oh DY, Chai YG. Artificial microRNA-based neurokinin-1 receptor gene silencing reduces alcohol consumption in mice. Neurosci Lett 2010; 475:124-8. [PMID: 20347940 DOI: 10.1016/j.neulet.2010.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/27/2022]
Abstract
In the brain, the stress system plays an important role in motivating continued alcohol use and relapse. The neuropeptide substance P and the neurokinin-1 receptor (NK1R) are involved in the stress response and drug reward systems. Recent findings have shown that the binding of ligands to NK1Rs decreases the self-administration of alcohol in mice. We examined the effect of an artificial microRNA (amiRNA) on the functional expression of NK1R in mouse brains. Lentiviruses expressing either an amiRNA targeting the NK1R (amiNK1R) or a negative control amiRNA (amiNC) were injected into mouse brains. Four weeks after amiRNA injection, we found that amiNK1R decreased the voluntary alcohol consumption compared to mice injected with amiNC. We also observed that NK1R expression was reduced in the hippocampus. RNA interference is an effective approach to regulate the expression of specific behavior-related genes. Our results support the potential use of amiRNA as a therapeutic agent for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Mi Na Baek
- Division of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J Neurosci 2010; 30:2433-41. [PMID: 20164327 DOI: 10.1523/jneurosci.5880-09.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence suggests that 5-HT(1A) receptor (5-HT(1A)R) is implicated in anxiety disorders. However, the mechanism underlying the role of 5-HT(1A)R in these diseases remains unknown. Here, we show that 5-HT(1A)R-selective agonist 8-OH-DPAT and selective serotonin reuptake inhibitor (SSRI) fluoxetine downregulated hippocampal neuronal nitric oxide synthase (nNOS) expression, whereas 5-HT(1A)R-selective antagonist NAN-190 upregulated hippocampal nNOS expression. By assessing anxiety-related behaviors using the novelty suppressed feeding, open-field, and elevated plus maze tests, we show that mice lacking nNOS gene [knock-out (KO)] or treated with nNOS-selective inhibitor 7-nitroindazole (7-NI; i.p., 30 mg/kg/d for 28 d; or intrahippocampal microinjection, 16.31 microg/1.0 microl) displayed an anxiolytic-like phenotype, implicating nNOS in anxiety. We also show that, in wild-type (WT) mice, administrations of 8-OH-DPAT (i.p., 0.1 mg/kg/d) or fluoxetine (i.p., 10 mg/kg/d) for 28 d caused anxiolytic-like effects, whereas NAN-190 (i.p., 0.3 mg/kg/d for 28 d) caused anxiogenic-like effects. In KO mice, however, these drugs were ineffective. Moreover, intrahippocampal infusion of 8-OH-DPAT (45.963 microg/100 microl) using 14 d osmotic minipump produced anxiolytic effects. Intrahippocampal microinjection of 7-NI (16.31 microg/1.0 microl) abolished the anxiogenic-like effects of intrahippocampal NAN-190 (4.74 microg/1.0 microl). Additionally, NAN-190 decreased and 8-OH-DPAT increased phosphorylated cAMP response element-binding protein (CREB) levels in WT mice but not in KO mice. Blockade of hippocampal CREB phosphorylation by microinjection of H89 (5.19 microg/1.0 microl), a PKA (protein kinase A) inhibitor, abolished the anxiolytic-like effects of 7-NI (i.p., 30 mg/kg/d for 21 d). These findings indicate that both hippocampal nNOS and CREB activity mediate the anxiolytic effects of 5-HT(1A)R agonists and SSRIs.
Collapse
|
48
|
Vink R, van den Heuvel C. Substance P antagonists as a therapeutic approach to improving outcome following traumatic brain injury. Neurotherapeutics 2010; 7:74-80. [PMID: 20129499 PMCID: PMC5084114 DOI: 10.1016/j.nurt.2009.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/29/2009] [Indexed: 11/17/2022] Open
Abstract
Although a number of secondary injury factors are known to contribute to the development of morphological injury and functional deficits following traumatic brain injury, accumulating evidence has suggested that neuropeptides, and in particular substance P, may play a critical role. Substance P is released early following acute injury to the CNS as part of a neurogenic inflammatory response. In so doing, it facilitates an increase in the permeability of the blood-brain barrier and the development of vasogenic edema. At the cellular level, substance P has been shown to directly result in neuronal cell death; functionally, substance P has been implicated in learning and memory, mood and anxiety, stress mechanisms, emotion-processing, migraine, emesis, pain, and seizures, all of which may be adversely affected after brain injury. Inhibition of post-traumatic substance P activity, either by preventing release or by antagonism of the neurokinin-1 receptor, has consistently resulted in a profound decrease in development of edema and marked improvements in functional outcome. This review summarizes the current evidence supporting a role for substance P in acute brain injury.
Collapse
Affiliation(s)
- Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
49
|
Yan TC, McQuillin A, Thapar A, Asherson P, Hunt SP, Stanford SC, Gurling H. NK1 (TACR1) receptor gene 'knockout' mouse phenotype predicts genetic association with ADHD. J Psychopharmacol 2010; 24:27-38. [PMID: 19204064 PMCID: PMC3943619 DOI: 10.1177/0269881108100255] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mice with functional genetic ablation of the Tacr1 (substance P-preferring receptor) gene (NK1R-/-) are hyperactive. Here, we investigated whether this is mimicked by NK1R antagonism and whether dopaminergic transmission is disrupted in brain regions that govern motor performance. The locomotor activity of NK1R-/- and wild-type mice was compared after treatment with an NK1R antagonist and/or psychostimulant (d-amphetamine or methylphenidate). The inactivation of NK1R (by gene mutation or receptor antagonism) induced hyperactivity in mice, which was prevented by both psychostimulants. Using in vivo microdialysis, we then compared the regulation of extracellular dopamine in the prefrontal cortex (PFC) and striatum in the two genotypes. A lack of functional NK1R reduced (>50%) spontaneous dopamine efflux in the prefrontal cortex and abolished the striatal dopamine response to d-amphetamine. These behavioural and neurochemical abnormalities in NK1R-/- mice, together with their atypical response to psychostimulants, echo attention deficit hyperactivity disorder (ADHD) in humans. These findings prompted genetic studies on the TACR1 gene (the human equivalent of NK1R) in ADHD patients in a case-control study of 450 ADHD patients and 600 screened supernormal controls. Four single-nucleotide polymorphisms (rs3771829, rs3771833, rs3771856, and rs1701137) at the TACR1 gene, previously known to be associated with bipolar disorder or alcoholism, were strongly associated with ADHD. In conclusion, our proposal that NK1R-/- mice offer a mouse model of ADHD was borne out by our human studies, which suggest that DNA sequence changes in and around the TACR1 gene increase susceptibility to this disorder.
Collapse
Affiliation(s)
- TC Yan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - A McQuillin
- Molecular Psychiatry Laboratory, Department of Mental Health Sciences, Royal Free & UCL School of Medicine, London, UK
| | - A Thapar
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - P Asherson
- ADHD genetics group, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - SP Hunt
- Department of Cell and Developmental Biology, University College London, London, UK
| | - SC Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - H Gurling
- Molecular Psychiatry Laboratory, Department of Mental Health Sciences, Royal Free & UCL School of Medicine, London, UK
| |
Collapse
|
50
|
Yan TC, Hunt SP, Stanford SC. Behavioural and neurochemical abnormalities in mice lacking functional tachykinin-1 (NK1) receptors: A model of attention deficit hyperactivity disorder. Neuropharmacology 2009; 57:627-35. [DOI: 10.1016/j.neuropharm.2009.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 01/23/2023]
|