1
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Ying L, Zhao J, Ye Y, Liu Y, Xiao B, Xue T, Zhu H, Wu Y, He J, Qin S, Jiang Y, Guo F, Zhang L, Liu N, Zhang L. Regulation of Cdc42 signaling by the dopamine D2 receptor in a mouse model of Parkinson's disease. Aging Cell 2022; 21:e13588. [PMID: 35415964 PMCID: PMC9124300 DOI: 10.1111/acel.13588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022] Open
Abstract
Substantial spine loss in striatal medium spiny neurons (MSNs) and abnormal behaviors are common features of Parkinson's disease (PD). The caudate putamen (CPu) mainly contains MSNs expressing dopamine D1 receptor (dMSNs) and dopamine D2 receptor (iMSNs) exerting critical effects on motor and cognition behavior. However, the molecular mechanisms contributing to spine loss and abnormal behaviors in dMSNs and iMSNs under parkinsonian state remain unknown. In the present study, we revealed that Cell division control protein 42 (Cdc42) signaling was significantly decreased in the caudate putamen (CPu) in parkinsonian mice. In addition, overexpression of constitutively active Cdc42 in the CPu reversed spine abnormalities and improved the behavior deficits in parkinsonian mice. Utilizing conditional dopamine D1 receptor (D1R) or D2 receptor (D2R) knockout mice, we found that such a decrease under parkinsonian state was further reduced by conditional knockout of the D2R but not D1R. Moreover, the thin spine loss in iMSNs and deficits in motor coordination and cognition induced by conditional knockout of D2R were reversed by overexpression of constitutively active Cdc42 in the CPu. Additionally, conditional knockout of Cdc42 from D2R‐positive neurons in the CPu was sufficient to induce spine and behavior deficits similar to those observed in parkinsonian mice. Overall, our results indicate that impaired Cdc42 signaling regulated by D2R plays an important role in spine loss and behavioral deficits in PD.
Collapse
Affiliation(s)
- Li Ying
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Jinlan Zhao
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yingshan Ye
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yutong Liu
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Bin Xiao
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Tao Xue
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Hangfei Zhu
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yue Wu
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Jing He
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Sifei Qin
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yong Jiang
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology Children's Hospital Research Foundation Cincinnati Ohio USA
| | - Lin Zhang
- Department of Histology and Embryology NMPA Key Laboratory for Safety Evaluation of Cosmetics Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province School of Basic Medical Sciences Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Nuyun Liu
- Laboratory Animal Center Elderly Health Services Research Center Southern Medical University Guangzhou China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| |
Collapse
|
3
|
Low expression of CIP4 in predicting worse overall survival: A potential biomarker for laryngeal cancer. PLoS One 2021; 16:e0253545. [PMID: 34570775 PMCID: PMC8475988 DOI: 10.1371/journal.pone.0253545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Previous reports indicate that Cdc42-interacting protein-4 (CIP4) has previously been reported to plays an important role in the progression of various cancers. However, its correlation with laryngeal cancer (LC) remains unreported. Data from TCGA and GEO databases were used to evaluate the role of CIP4 in LC. Based on GEO and TCGA datasets, we analyzed the differences in CIP4 expression between normal and tumor samples. The Wilcoxon signed-rank test was used to analyze the relationship between clinical features and CIP4. Cox regression and the Kaplan-Meier analyses were used to identify the clinical characteristics associated with the overall survival. Also, the GEPIA database was used to confirm the relationship between CIP4 and overall survival. Lastly, Gene Set Enrichment Analysis (GSEA) was performed based on the TCGA dataset. CIP4 expression in LC was significantly associated with gender and tumor stage (p-values<0.05). Similar to GEPIA validation, Kaplan-Meier survival analysis demonstrated that LC with CIP4-low exhibited a worse prognosis than that with CIP4-high. Univariate analysis revealed that CIP4-high significantly correlated with better overall survival (HR: 0.522, 95% CI: 0.293–0.830, P = 0.026). Besides, multivariate analysis revealed that CIP4 remained independently associated with the overall survival (HR: 0.61, 95% CI: 0.326–0.912, P = 0.012). GSEA showed that the p53, WNT signaling, TGF-β signaling pathways, etc. were enriched in a phenotype high CIP4 expression. In summary, the CIP4 gene is a potential prognostic molecular marker for patients diagnosed with laryngeal cancer. Moreover, the p53, WNT signaling, and TGF-β signaling pathways are potentially associated with CIP4 in LC.
Collapse
|
4
|
Seefelder M, Kochanek S. A meta-analysis of transcriptomic profiles of Huntington's disease patients. PLoS One 2021; 16:e0253037. [PMID: 34111223 PMCID: PMC8191979 DOI: 10.1371/journal.pone.0253037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Description of robust transcriptomic alterations in Huntington’s disease is essential to identify targets for biochemical studies and drug development. We analysed publicly available transcriptome data from the brain and blood of 220 HD patients and 241 healthy controls and identified 737 and 661 genes with robustly altered mRNA levels in the brain and blood of HD patients, respectively. In the brain, a subnetwork of 320 genes strongly correlated with HD and was enriched in transport-related genes. Bioinformatical analysis of this subnetwork highlighted CDC42, PAK1, YWHAH, NFY, DLX1, HMGN3, and PRMT3. Moreover, we found that CREB1 can regulate 78.0% of genes whose mRNA levels correlated with HD in the blood of patients. Alterations in protein transport, metabolism, transcriptional regulation, and CDC42-mediated functions are likely central features of HD. Further our data substantiate the role of transcriptional regulators that have not been reported in the context of HD (e.g. DLX1, HMGN3 and PRMT3) and strongly suggest dysregulation of NFY and its target genes across tissues. A large proportion of the identified genes such as CDC42 were also altered in Parkinson’s (PD) and Alzheimer’s disease (AD). The observed dysregulation of CDC42 and YWHAH in samples from HD, AD and PD patients indicates that those genes and their upstream regulators may be interesting therapeutic targets.
Collapse
Affiliation(s)
- Manuel Seefelder
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| | | |
Collapse
|
5
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Saraceno C, Catania M, Paterlini A, Fostinelli S, Ciani M, Zanardini R, Binetti G, Di Fede G, Caroppo P, Benussi L, Ghidoni R, Bolognin S. Altered Expression of Circulating Cdc42 in Frontotemporal Lobar Degeneration. J Alzheimers Dis 2019; 61:1477-1483. [PMID: 29376863 DOI: 10.3233/jad-170722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The term frontotemporal lobar degeneration (FTLD) defines a group of heterogeneous conditions histologically characterized by neuronal degeneration, inclusions of various proteins, and synaptic loss. However, the molecular mechanisms contributing to these alterations are still unknown. As the Rho-GTPase family member Cell division cycle 42 (Cdc42) plays a key role in the regulation of actin cytoskeleton dynamics and spine formation, we investigated whether Cdc42 protein levels were altered in the disease. Cdc42 was increased in the frontal cortex of FTLD patients compared to age-matched controls, but also in Alzheimer's disease (AD) patients included in the data-set. On the other hand, the pool of circulating Cdc42 in the plasma was altered in FTLD but not in AD patients. Interestingly, the stratification of the FTLD patients according to the different clinical variants showed a specific decrease of Cdc42 expression in the behavioral subgroup. This data support a role of Cdc42 in FTLD and specifically in the behavioral variant.
Collapse
Affiliation(s)
- Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marcella Catania
- Division of Neurology and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Anna Paterlini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuseppe Di Fede
- Division of Neurology and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Paola Caroppo
- Division of Neurology and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Bolognin
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
7
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
8
|
Labadorf A, Choi SH, Myers RH. Evidence for a Pan-Neurodegenerative Disease Response in Huntington's and Parkinson's Disease Expression Profiles. Front Mol Neurosci 2018; 10:430. [PMID: 29375298 PMCID: PMC5768647 DOI: 10.3389/fnmol.2017.00430] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Huntington's and Parkinson's Diseases (HD and PD) are neurodegenerative disorders that share some pathological features but are disparate in others. For example, while both diseases are marked by aberrant protein aggregation in the brain, the specific proteins that aggregate and types of neurons affected differ. A better understanding of the molecular similarities and differences between these two diseases may lead to a more complete mechanistic picture of both the individual diseases and the neurodegenerative process in general. We sought to characterize the common transcriptional signature of HD and PD as well as genes uniquely implicated in each of these diseases using mRNA-Seq data from post mortem human brains in comparison to neuropathologically normal controls. The enriched biological pathways implicated by HD differentially expressed genes show remarkable consistency with those for PD differentially expressed genes and implicate the common biological processes of neuroinflammation, apoptosis, transcriptional dysregulation, and neuron-associated functions. Comparison of the differentially expressed (DE) genes highlights a set of consistently altered genes that span both diseases. In particular, processes involving nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and transcription factor cAMP response element-binding protein (CREB) are the most prominent among the genes common to HD and PD. When the combined HD and PD data are compared to controls, relatively few additional biological processes emerge as significantly enriched, suggesting that most pathways are independently seen within each disorder. Despite showing comparable numbers of DE genes, DE genes unique to HD are enriched in far more coherent biological processes than the DE genes unique to PD, suggesting that PD may represent a more heterogeneous disorder. The complexity of the biological processes implicated by this analysis provides impetus for the development of better experimental models to validate the results.
Collapse
Affiliation(s)
- Adam Labadorf
- Bioinformatics Program, Boston University, Boston, MA, United States.,Department of Neurology, Boston University, Boston, MA, United States
| | - Seung H Choi
- Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Richard H Myers
- Bioinformatics Program, Boston University, Boston, MA, United States.,Department of Neurology, Boston University, Boston, MA, United States.,Biostatistics, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
9
|
Bayram-Weston Z, Stone TC, Giles P, Elliston L, Janghra N, Higgs GV, Holmans PA, Dunnett SB, Brooks SP, Jones L. Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington's disease are not reflected in mutant Huntingtin inclusion prevalence. BMC Genomics 2015; 16:1079. [PMID: 26691352 PMCID: PMC4687121 DOI: 10.1186/s12864-015-2251-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
Background The YAC128 model of Huntington’s disease (HD) shows substantial deficits in motor, learning and memory tasks and alterations in its transcriptional profile. We examined the changes in the transcriptional profile in the YAC128 mouse model of HD at 6, 12 and 18 months and compared these with those seen in other models and human HD caudate. Results Differential gene expression by genotype showed that genes related to neuronal function, projection outgrowth and cell adhesion were altered in expression. A Time-course ANOVA revealed that genes downregulated with increased age in wild-type striata were likely to be downregulated in the YAC128 striata. There was a substantial overlap of concordant gene expression changes in the YAC128 striata compared with those in human HD brain. Changes in gene expression over time showed fewer striatal YAC128 RNAs altered in abundance than in the HdhQ150 striata but there was a very marked overlap in transcriptional changes at all time points. Despite the similarities in striatal expression changes at 18 months the HdhQ150 mice showed widespread mHTT and ubiquitin positive inclusion staining in the striatum whereas this was absent in the YAC128 striatum. Conclusions The gene expression changes in YAC128 striata show a very closely matched profile to that of HdhQ150 striata and are already significantly different between genotypes by six months of age, implying that the temporal molecular gene expression profiles of these models match very closely, despite differences in the prevalence of brain inclusion formation between the models. The YAC128 gene expression changes appear to correlate well with gene expression differences caused by ageing. A relatively small number of genes showed significant differences in expression between the striata of the two models and these could explain some of the phenotypic differences between the models. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2251-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zubeyde Bayram-Weston
- Brain Research Group, School of Bioscience, Cardiff University, Cardiff, CF10 4AX, UK.
| | - Timothy C Stone
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Peter Giles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Linda Elliston
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Nari Janghra
- Brain Research Group, School of Bioscience, Cardiff University, Cardiff, CF10 4AX, UK.
| | - Gemma V Higgs
- Brain Research Group, School of Bioscience, Cardiff University, Cardiff, CF10 4AX, UK.
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Stephen B Dunnett
- Brain Research Group, School of Bioscience, Cardiff University, Cardiff, CF10 4AX, UK.
| | - Simon P Brooks
- Brain Research Group, School of Bioscience, Cardiff University, Cardiff, CF10 4AX, UK.
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
10
|
Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol 2015; 8:47. [PMID: 25956236 PMCID: PMC4437251 DOI: 10.1186/s13045-015-0144-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Collapse
Affiliation(s)
- Suxuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
11
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
12
|
Kang MJ, Hansen TJ, Mickiewicz M, Kaczynski TJ, Fye S, Gunawardena S. Disruption of axonal transport perturbs bone morphogenetic protein (BMP)--signaling and contributes to synaptic abnormalities in two neurodegenerative diseases. PLoS One 2014; 9:e104617. [PMID: 25127478 PMCID: PMC4134223 DOI: 10.1371/journal.pone.0104617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/14/2023] Open
Abstract
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.
Collapse
Affiliation(s)
- Min Jung Kang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Timothy J. Hansen
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Monique Mickiewicz
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Tadeusz J. Kaczynski
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Samantha Fye
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Choi KA, Hwang I, Park HS, Oh SI, Kang S, Hong S. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease. Biotechnol J 2014; 9:882-94. [PMID: 24827816 DOI: 10.1002/biot.201300560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
Huntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by progressive loss of neurons in the striatum, a sub-cortical region of the forebrain. The sub-cortical region of the forebrain is associated with the control of movement and behavior, thus HD initially presents with coordination difficulty and cognitive decline. Recent reprogramming technologies, including induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), have created opportunities to understand the pathological cascades that underlie HD and to develop new treatments for this currently incurable neurological disease. The ultimate objectives of stem cell-based therapies for HD are to replace lost neurons and to prevent neuronal dysfunction and death. In this review, we examine the current understanding of the molecular and pathological mechanisms involved in HD. We discuss disease modeling with HD-iPSCs derived from the somatic cells of patients, which could provide an invaluable platform for understanding HD pathogenesis. We speculate about the benefits and drawbacks of using iNSCs as an alternative stem cell source for HD treatment. Finally, we discuss cell culture and engineering systems that promote the directed differentiation of pluripotent stem cell-derived NSCs into a striatal DARPP32(+) GABAergic MSN phenotype for HD. In conclusion, this review summarizes the potentials of cell reprogramming and engineering technologies relevant to the development of cell-based therapies for HD.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea; Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Butland SL, Sanders SS, Schmidt ME, Riechers SP, Lin DTS, Martin DDO, Vaid K, Graham RK, Singaraja RR, Wanker EE, Conibear E, Hayden MR. The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease. Hum Mol Genet 2014; 23:4142-60. [PMID: 24705354 DOI: 10.1093/hmg/ddu137] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10(-5)). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.
Collapse
Affiliation(s)
- Stefanie L Butland
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Shaun S Sanders
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Sean-Patrick Riechers
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin-Buch 13125, Germany
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Rona K Graham
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin-Buch 13125, Germany
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| |
Collapse
|
15
|
DeGeer J, Lamarche-Vane N. Rho GTPases in neurodegeneration diseases. Exp Cell Res 2013; 319:2384-94. [PMID: 23830879 DOI: 10.1016/j.yexcr.2013.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Rho GTPases are molecular switches that modulate multiple intracellular signaling processes by means of various effector proteins. As a result, Rho GTPase activities are tightly spatiotemporally regulated in order to ensure homeostasis within the cell. Though the roles of Rho GTPases during neural development have been well documented, their participation during neurodegeneration has been far less characterized. Herein we discuss our current knowledge of the role and function of Rho GTPases and regulators during neurodegeneration, and highlight their potential as targets for therapeutic intervention in common neurodegenerative disorders.
Collapse
Affiliation(s)
- Jonathan DeGeer
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC, Canada H3A 0C7
| | | |
Collapse
|
16
|
Chen Y, Aardema J, Corey SJ. Biochemical and functional significance of F-BAR domain proteins interaction with WASP/N-WASP. Semin Cell Dev Biol 2013; 24:280-6. [PMID: 23384583 DOI: 10.1016/j.semcdb.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/16/2013] [Indexed: 01/17/2023]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain family of proteins includes groups which promote positive (classical BAR, N-BAR, and F-BAR) and negative (I-BAR) membrane deformation. Of these groups, the F-BAR subfamily is the most diverse in its biochemical properties. F-BAR domain proteins dimerize to form a tight scaffold about the membrane. The F-BAR domain provides a banana-shaped, alpha-helical structure that senses membrane curvature. Different types of F-BAR domain proteins contain tyrosine kinase or GTPase activities; some interact with phosphatases and RhoGTPases. Most possess an SH3 domain that facilitates the recruitment and activation of WASP/N-WASP. Thus, F-BAR domain proteins affect remodeling of both membrane and the actin cytoskeleton. The purpose of this review is to highlight the role of F-BAR proteins in coupling WASP/N-WASP to cytoskeletal remodeling. A role for F-BAR/WASP interaction in human diseases affecting nervous, blood, and neoplastic tissues is discussed.
Collapse
Affiliation(s)
- Yolande Chen
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, United States
| | | | | |
Collapse
|
17
|
Leu YW, Huang THM, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:195-211. [PMID: 22956503 DOI: 10.1007/978-1-4419-9967-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells of mesodermal origin that can be isolated from various sources and induced into different cell types. Although MSCs possess immune privilege and are more easily obtained than embryonic stem cells, their propensity to tumorigenesis has not been fully explored. Epigenomic changes in DNA methylation and chromatin structure have been hypothesized to be critical in the determination of lineage-specific differentiation and tumorigenesis of MSCs, but this has not been formally proven. We applied a targeted DNA methylation method to methylate a Polycomb group protein-governed gene, Trip10, in MSCs, which accelerated the cell fate determination of MSCs. In addition, targeted methylation of HIC1 and RassF1A, both tumor suppressor genes, transformed MSCs into tumor stem cell-like cells. This new method will allow better control of the differentiation of MSCs and their use in downstream applications.
Collapse
Affiliation(s)
- Yu-Wei Leu
- Department of Life Science, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | | | | |
Collapse
|
18
|
Bai S, Zeng R, Zhou Q, Liao W, Zhang Y, Xu C, Han M, Pei G, Liu L, Liu X, Yao Y, Xu G. Cdc42-interacting protein-4 promotes TGF-Β1-induced epithelial-mesenchymal transition and extracellular matrix deposition in renal proximal tubular epithelial cells. Int J Biol Sci 2012; 8:859-69. [PMID: 22745576 PMCID: PMC3385008 DOI: 10.7150/ijbs.3490] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 05/29/2012] [Indexed: 01/28/2023] Open
Abstract
Cdc42-interacting protein-4 (CIP4) is an F-BAR (Fer/CIP4 and Bin, amphiphysin, Rvs) family member that regulates membrane deformation and endocytosis, playing a key role in extracellular matrix (ECM) deposition and invasion of cancer cells. These processes are analogous to those observed during the initial epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. The role of CIP4 in renal tubular EMT and renal tubulointerstitial fibrosis was investigated over the course of the current study, demonstrating that the expression of CIP4 increased in the tubular epithelia of 5/6-nephrectomized rats and TGF-β1 treated HK-2 cells. Endogenous CIP4 evidenced punctate localization throughout the cytosol, with elevated levels observed in the perinuclear region of HK-2 cells. Subsequent to TGF-β1 treatment, CIP4 expression increased, forming clusters at the cell periphery that gradually redistributed into the cytoplasm. Simultaneously, EMT induction in cells was confirmed by the prevalence of morphological changes, loss of E-cadherin, increase in α-SMA expression, and secretion of fibronectin. Overexpression of CIP4 promoted characteristics similar to those commonly observed in EMT, and small interfering RNA (siRNA) molecules capable of CIP4 knockdown were used to demonstrate reversed EMT. Cumulatively, results of the current study suggest that CIP4 promotes TGF-β1-induced EMT in tubular epithelial cells. Through this mechanism, CIP4 is capable of inducing ECM deposition and exacerbating progressive fibrosis in chronic renal failure.
Collapse
Affiliation(s)
- Shoujun Bai
- Devision of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen Y, Aardema J, Misra A, Corey SJ. BAR proteins in cancer and blood disorders. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:198-208. [PMID: 22773959 PMCID: PMC3388730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Remodeling of the membrane and cytoskeleton is involved in a wide range of normal and pathologic cellular function. These are complex, highly-coordinated biochemical and biophysical processes involving dozens of proteins. Serving as a scaffold for a variety of proteins and possessing a domain that interacts with plasma membranes, the BAR family of proteins contribute to a range of cellular functions characterized by membrane and cytoskeletal remodeling. There are several subgroups of BAR proteins: BAR, N-BAR, I-BAR, and F-BAR. They differ in their ability to induce angles of membrane curvature and in their recruitment of effector proteins. Evidence is accumulating that BAR proteins contribute to cancer cell invasion, T cell trafficking, phagocytosis, and platelet production. In this review, we discuss the physiological function of BAR proteins and discuss how they contribute to blood and cancer disorders.
Collapse
Affiliation(s)
- Yolande Chen
- Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicago, IL
| | - Jorie Aardema
- Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicago, IL
| | - Ashish Misra
- Division of Cardiology, Department of Medicine, Yale University School of MedicineNew Haven, CT, USA
| | - Seth J Corey
- Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicago, IL
| |
Collapse
|
20
|
Oh E, Robinson I. Barfly: sculpting membranes at the Drosophila neuromuscular junction. Dev Neurobiol 2012; 72:33-56. [PMID: 21630471 DOI: 10.1002/dneu.20923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of a cell to change the shape of its membranes is intrinsic to many cellular functions. Proteins that can alter or recognize curved membrane structures and those that can act to recruit other proteins which stabilize the membrane curvature are likely to be essential in cell functions. The BAR (Bin, amphiphysin, RVS167 homology) domain is a protein domain that can either induce lipidic membranes to curve or can sense curved membranes. BAR domains are found in several proteins at neuronal synapses. We will review BAR domain structure and the role that BAR domain containing proteins play in regulating the morphology and function of the Drosophila neuromuscular junction. In flies the BAR domain containing proteins, endophilin and syndapin affect synaptic vesicle endocytosis, whereas CIP4, dRich, nervous wreck and syndapin affect synaptic morphology. We will review the growing evidence implicating mutations in BAR domain containing proteins being the cause of human pathologies.
Collapse
Affiliation(s)
- Eugene Oh
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
21
|
Lejeune FX, Mesrob L, Parmentier F, Bicep C, Vazquez-Manrique RP, Parker JA, Vert JP, Tourette C, Neri C. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 2012; 13:91. [PMID: 22413862 PMCID: PMC3331833 DOI: 10.1186/1471-2164-13-91] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/13/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. RESULTS Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. CONCLUSIONS Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD.
Collapse
|
22
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
23
|
The F-BAR protein CIP4 inhibits neurite formation by producing lamellipodial protrusions. Curr Biol 2012; 22:494-501. [PMID: 22361215 DOI: 10.1016/j.cub.2012.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/22/2011] [Accepted: 01/19/2012] [Indexed: 02/01/2023]
Abstract
Neurite formation is a seminal event in the early development of neurons. However, little is known about the mechanisms by which neurons form neurites. F-BAR proteins function in sensing and inducing membrane curvature. Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, regulates endocytosis in a variety of cell types. However, there is little data on how CIP4 functions in neurons. Here we show that CIP4 plays a novel role in neuronal development by inhibiting neurite formation. Remarkably, CIP4 exerts this effect not through endocytosis, but by producing lamellipodial protrusions. In primary cortical neurons CIP4 is concentrated specifically at the tips of extending lamellipodia and filopodia, instead of endosomes as in other cell types. Overexpression of CIP4 results in lamellipodial protrusions around the cell body, subsequently delaying neurite formation and enlarging growth cones. These effects depend on the F-BAR and SH3 domains of CIP4 and on its ability to multimerize. Conversely, cortical neurons from CIP4-null mice initiate neurites twice as fast as controls. This is the first study to demonstrate that an F-BAR protein functions differently in neuronal versus nonneuronal cells and induces lamellipodial protrusions instead of invaginations or filopodia-like structures.
Collapse
|
24
|
Fricke R, Gohl C, Bogdan S. The F-BAR protein family Actin' on the membrane. Commun Integr Biol 2011; 3:89-94. [PMID: 20585497 DOI: 10.4161/cib.3.2.10521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022] Open
Abstract
A tight spatio-temporal coordination of the machineries controlling actin dynamics and membrane remodelling is crucial for a huge variety of cellular processes that shape cells into a multicellular organism. Dynamic membrane remodelling is achieved by a functional relationship between proteins that control plasma membrane curvature, membrane fission and nucleation of new actin filaments. The BAR/F-BAR-domain-containing proteins are prime candidates to couple plasma membrane curvature and actin dynamics in different morphogenetic processes. Here, we discuss recent findings on the membrane-shaping proteins of the F-BAR domain subfamily and how they regulate morphogenetic processes in vivo.
Collapse
Affiliation(s)
- Robert Fricke
- Institut für Neurobiologie; Wilhelms-University; Münster; Münster, Germany
| | | | | |
Collapse
|
25
|
Kabaso D, Gongadze E, Elter P, van Rienen U, Gimsa J, Kralj-Iglič V, Iglič A. Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev Med Chem 2011; 11:272-82. [PMID: 21428902 PMCID: PMC3343385 DOI: 10.2174/138955711795305353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 03/03/2011] [Accepted: 12/24/2010] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.
Collapse
Affiliation(s)
- D Kabaso
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Hsu CC, Leu YW, Tseng MJ, Lee KD, Kuo TY, Yen JY, Lai YL, Hung YC, Sun WS, Chen CM, Chu PY, Yeh KT, Yan PS, Chang YS, Huang THM, Hsiao SH. Functional characterization of Trip10 in cancer cell growth and survival. J Biomed Sci 2011; 18:12. [PMID: 21299869 PMCID: PMC3044094 DOI: 10.1186/1423-0127-18-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 02/07/2011] [Indexed: 01/10/2023] Open
Abstract
Background The Cdc42-interacting protein-4, Trip10 (also known as CIP4), is a multi-domain adaptor protein involved in diverse cellular processes, which functions in a tissue-specific and cell lineage-specific manner. We previously found that Trip10 is highly expressed in estrogen receptor-expressing (ER+) breast cancer cells. Estrogen receptor depletion reduced Trip10 expression by progressively increasing DNA methylation. We hypothesized that Trip10 functions as a tumor suppressor and may be involved in the malignancy of ER-negative (ER-) breast cancer. To test this hypothesis and evaluate whether Trip10 is epigenetically regulated by DNA methylation in other cancers, we evaluated DNA methylation of Trip10 in liver cancer, brain tumor, ovarian cancer, and breast cancer. Methods We applied methylation-specific polymerase chain reaction and bisulfite sequencing to determine the DNA methylation of Trip10 in various cancer cell lines and tumor specimens. We also overexpressed Trip10 to observe its effect on colony formation and in vivo tumorigenesis. Results We found that Trip10 is hypermethylated in brain tumor and breast cancer, but hypomethylated in liver cancer. Overexpressed Trip10 was associated with endogenous Cdc42 and huntingtin in IMR-32 brain tumor cells and CP70 ovarian cancer cells. However, overexpression of Trip10 promoted colony formation in IMR-32 cells and tumorigenesis in mice inoculated with IMR-32 cells, whereas overexpressed Trip10 substantially suppressed colony formation in CP70 cells and tumorigenesis in mice inoculated with CP70 cells. Conclusions Trip10 regulates cancer cell growth and death in a cancer type-specific manner. Differential DNA methylation of Trip10 can either promote cell survival or cell death in a cell type-dependent manner.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
28
|
The BMP signaling pathway at the Drosophila neuromuscular junction and its links to neurodegenerative diseases. Curr Opin Neurobiol 2010; 21:182-8. [PMID: 20832291 DOI: 10.1016/j.conb.2010.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/11/2010] [Accepted: 08/14/2010] [Indexed: 11/22/2022]
Abstract
The Drosophila neuromuscular junction (NMJ) has recently provided new insights into the roles of various proteins in neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy (SMA), Multiple Sclerosis (MS) Hereditary Spastic Paraplegia (HSP), and Huntington's Disease (HD). Several developmental signaling pathways including WNT, MAPK and BMP/TGF-β signaling play important roles in the formation and growth of the Drosophila NMJ. Studies of the fly homologues of genes that cause neurodegenerative disease at the NMJ have resulted in a better understanding of the roles of these proteins in vivo. These studies may shed light on the pathological mechanisms of these diseases, with implications for reduced BMP/TGF-β signaling in ALS, SMA and HD and increased signaling in HSP and MS.
Collapse
|
29
|
Aschner M, Levin ED, Suñol C, Olopade JO, Helmcke KJ, Avila DS, Sledge D, Ali RH, Upchurch L, Donerly S, Linney E, Forsby A, Ponnuru P, Connor JR. Gene-environment interactions: neurodegeneration in non-mammals and mammals. Neurotoxicology 2010; 31:582-8. [PMID: 20359493 PMCID: PMC2912949 DOI: 10.1016/j.neuro.2010.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 03/23/2010] [Indexed: 01/10/2023]
Abstract
The understanding of how environmental exposures interact with genetics in central nervous system dysfunction has gained great momentum in the last decade. Seminal findings have been uncovered in both mammalian and non-mammalian model in large result of the extraordinary conservation of both genetic elements and differentiation processes between mammals and non-mammalians. Emerging model organisms, such as the nematode and zebrafish have made it possible to assess the effects of small molecules rapidly, inexpensively, and on a miniaturized scale. By combining the scale and throughput of in vitro screens with the physiological complexity and traditional animal studies, these models are providing relevant information on molecular events in the etiology of neurodegenerative disorders. The utility of these models is largely driven by the functional conservation seen between them and higher organisms, including humans so that knowledge obtained using non-mammalian model systems can often provide a better understanding of equivalent processes, pathways, and mechanisms in man. Understanding the molecular events that trigger neurodegeneration has also greatly relied upon the use of tissue culture models. The purpose of this summary is to provide-state-of-the-art review of recent developments of non-mammalian experimental models and their utility in addressing issues pertinent to neurotoxicity (Caenorhabditis elegans and Danio rerio). The synopses by Aschner and Levin summarize how genetic mutants of these species can be used to complement the understanding of molecular and cellular mechanisms associated with neurobehavioral toxicity and neurodegeneration. Next, studies by Suñol and Olopade detail the predictive value of cultures in assessing neurotoxicity. Suñol and colleagues summarize present novel information strategies based on in vitro toxicity assays that are predictive of cellular effects that can be extrapolated to effects on individuals. Olopade and colleagues describe cellular changes caused by sodium metavanadate (SMV) and demonstrate how rat primary astrocyte cultures can be used as predicitive tools to assess the neuroprotective effects of antidotes on vanadium-induced astrogliosis and demyelination.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsiao SH, Lee KD, Hsu CC, Tseng MJ, Jin VX, Sun WS, Hung YC, Yeh KT, Yan PS, Lai YY, Sun HS, Lu YJ, Chang YS, Tsai SJ, Huang THM, Leu YW. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun 2010; 400:305-12. [PMID: 20727853 DOI: 10.1016/j.bbrc.2010.08.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/14/2010] [Indexed: 02/04/2023]
Abstract
Epigenetic regulation of gene expression by DNA methylation and histone modification controls cell fate during development and homeostasis in adulthood. Aberrant epigenetic modifications may lead to abnormal development, even diseases. We have found that Trip10 (thyroid hormone receptor interactor 10), an adaptor protein involved in diverse functions, is epigenetically regulated during lineage-specific induction of human bone marrow-derived mesenchymal stem cells (MSCs). To determine whether DNA methylation-induced gene silencing is sufficient to restrict cell fate changes, we applied an invitro method to specifically methylate the promoter of Trip10. Our hypothesis was that the methylation status of the Trip10 promoter in MSCs alters the differentiation preference of MSCs. Transfection of in vitro-methylated Trip10 promoter DNA into MSCs resulted in progressive accumulation of cytosine methylation at the endogenous Trip10 promoter, reduced Trip10 expression, and accelerated MSC-to-neuron and MSC-to-osteocyte differentiation. A two-component EGFP reporter gene system was established to confirm the level of transcriptional silencing and visualize the targeted DNA methylation. EGFP expression induced in the reporter system by targeted Trip10 methylation was reversed by adding 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, confirming that the suppressed Trip10 expression and disrupted MSC differentiation resulted from the in vitro-introduced methylations in the Trip10 promoter. With this targeted DNA methylation and reporter system, we are able to monitor the progression of locus-specific DNA methylation in vivo and correlate such changes with potential functional changes. Using this approach, we have established a new role for Trip10, showing that the level of Trip10 expression is associated with the maintenance and differentiation of MSCs.
Collapse
Affiliation(s)
- Shu-Huei Hsiao
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante RJ, Bonvento G. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Hum Mol Genet 2010; 19:3053-67. [PMID: 20494921 PMCID: PMC2901144 DOI: 10.1093/hmg/ddq212] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder previously thought to be of primary neuronal origin, despite ubiquitous expression of mutant huntingtin (mHtt). We tested the hypothesis that mHtt expressed in astrocytes may contribute to the pathogenesis of HD. To better understand the contribution of astrocytes in HD in vivo, we developed a novel mouse model using lentiviral vectors that results in selective expression of mHtt into striatal astrocytes. Astrocytes expressing mHtt developed a progressive phenotype of reactive astrocytes that was characterized by a marked decreased expression of both glutamate transporters, GLAST and GLT-1, and of glutamate uptake. These effects were associated with neuronal dysfunction, as observed by a reduction in DARPP-32 and NR2B expression. Parallel studies in brain samples from HD subjects revealed early glial fibrillary acidic protein expression in striatal astrocytes from Grade 0 HD cases. Astrogliosis was associated with morphological changes that increased with severity of disease, from Grades 0 through 4 and was more prominent in the putamen. Combined immunofluorescence showed co-localization of mHtt in astrocytes in all striatal HD specimens, inclusive of Grade 0 HD. Consistent with the findings from experimental mice, there was a significant grade-dependent decrease in striatal GLT-1 expression from HD subjects. These findings suggest that the presence of mHtt in astrocytes alters glial glutamate transport capacity early in the disease process and may contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Mathilde Faideau
- CEA, Institute of Biomedical Imaging, Molecular Imaging Research Center, F-92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suetsugu S. The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins. J Biochem 2010; 148:1-12. [PMID: 20435640 DOI: 10.1093/jb/mvq049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plasma membrane, the outermost surface of eukaryotic cells, contains various substructures, such as protrusions or invaginations, which are associated with diverse functions, including endocytosis and cell migration. These structures of the plasma membrane can be considered as tubules or inverted tubules (protrusions) of the membrane. There are six modes of membrane curvature at the plasma membrane, which are classified by the positive or negative curvature and the location of the curvature (tip, neck or shaft of the tubules). The BAR domain superfamily proteins have structurally determined positive and negative curvatures of membrane contact at their BAR, F-BAR and I-BAR domains, which generate and maintain such curved membranes by binding to the membrane. Importantly, the SH3 domains of the BAR domain superfamily proteins bind to the actin regulatory WASP/WAVE proteins, and the BAR/F-BAR/I-BAR domain-SH3 unit could orient the actin filaments towards the membrane for each subcellular structure. These membrane tubulations are also considered to function in membrane fusion and fission.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
33
|
Levin ED, Aschner M, Heberlein U, Ruden D, Welsh-Bohmer KA, Bartlett S, Berger K, Chen L, Corl AB, Eddins D, French R, Hayden KM, Helmcke K, Hirsch HVB, Linney E, Lnenicka G, Page GP, Possidente D, Possidente B, Kirshner A. Genetic aspects of behavioral neurotoxicology. Neurotoxicology 2009; 30:741-53. [PMID: 19647018 PMCID: PMC4086839 DOI: 10.1016/j.neuro.2009.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 12/28/2022]
Abstract
Considerable progress has been made over the past couple of decades concerning the molecular bases of neurobehavioral function and dysfunction. The field of neurobehavioral genetics is becoming mature. Genetic factors contributing to neurologic diseases such as Alzheimer's disease have been found and evidence for genetic factors contributing to other diseases such as schizophrenia and autism are likely. This genetic approach can also benefit the field of behavioral neurotoxicology. It is clear that there is substantial heterogeneity of response with behavioral impairments resulting from neurotoxicants. Many factors contribute to differential sensitivity, but it is likely that genetic variability plays a prominent role. Important discoveries concerning genetics and behavioral neurotoxicity are being made on a broad front from work with invertebrate and piscine mutant models to classic mouse knockout models and human epidemiologic studies of polymorphisms. Discovering genetic factors of susceptibility to neurobehavioral toxicity not only helps identify those at special risk, it also advances our understanding of the mechanisms by which toxicants impair neurobehavioral function in the larger population. This symposium organized by Edward Levin and Annette Kirshner, brought together researchers from the laboratories of Michael Aschner, Douglas Ruden, Ulrike Heberlein, Edward Levin and Kathleen Welsh-Bohmer conducting studies with Caenorhabditis elegans, Drosophila, fish, rodents and humans studies to determine the role of genetic factors in susceptibility to behavioral impairment from neurotoxic exposure.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang S, Feany MB, Saraswati S, Littleton JT, Perrimon N. Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. Dis Model Mech 2009; 2:247-66. [PMID: 19380309 PMCID: PMC2675792 DOI: 10.1242/dmm.000653] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 01/14/2009] [Indexed: 11/20/2022] Open
Abstract
A polyglutamine expansion in the huntingtin (HTT) gene causes neurodegeneration in Huntington's disease (HD), but the in vivo function of the native protein (Htt) is largely unknown. Numerous biochemical and in vitro studies have suggested a role for Htt in neuronal development, synaptic function and axonal trafficking. To test these models, we generated a null mutant in the putative Drosophila HTT homolog (htt, hereafter referred to asdhtt) and, surprisingly, found that dhtt mutant animals are viable with no obvious developmental defects. Instead, dhtt is required for maintaining the mobility and long-term survival of adult animals, and for modulating axonal terminal complexity in the adult brain. Furthermore, removing endogenous dhtt significantly accelerates the neurodegenerative phenotype associated with a Drosophila model of polyglutamine Htt toxicity (HD-Q93), providing in vivo evidence that disrupting the normal function of Htt might contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Genetics
- Present address: Research Center for Neurodegenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA
| | | | - Sudipta Saraswati
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics
- Howard Hughes Medical Institute, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008; 106:5-28. [PMID: 18566021 PMCID: PMC2563142 DOI: 10.1093/toxsci/kfn121] [Citation(s) in RCA: 680] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/10/2008] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.
Collapse
Affiliation(s)
- Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| | - Phillip L. Williams
- Department of Environmental Health Science, College of Public University of Georgia, Athens, Georgia 30602
| | - Alexandre Benedetto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Catherine Au
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Kirsten J. Helmcke
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| |
Collapse
|
36
|
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
Collapse
|
37
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
38
|
Chitu V, Stanley ER. Pombe Cdc15 homology (PCH) proteins: coordinators of membrane-cytoskeletal interactions. Trends Cell Biol 2007; 17:145-56. [PMID: 17296299 DOI: 10.1016/j.tcb.2007.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/20/2006] [Accepted: 01/25/2007] [Indexed: 12/27/2022]
Abstract
Cellular adhesion, motility, endocytosis, exocytosis and cytokinesis involve the coordinated reorganization of the cytoskeleton and of the plasma membrane. The 'Pombe Cdc15 homology' (PCH) family of adaptor proteins has recently been shown to coordinate the membrane and cytoskeletal dynamics involved in these processes by curving membranes, recruiting dynamin and controlling the architecture of the actin cytoskeleton. Mutations in PCH family members or proteins that interact with them are associated with autoinflammatory, neurological or neoplastic diseases. Here, we review the nature, actions and disease associations of the vertebrate PCH family members, highlighting their fundamental roles in the regulation of processes involving membrane-cytoskeletal interactions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental Biology and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | |
Collapse
|
39
|
Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 2007; 6:919-30. [PMID: 16288298 DOI: 10.1038/nrn1806] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several neurological diseases are characterized by the altered activity of one or a few ubiquitously expressed cell proteins, but it is not known how these normal proteins turn into harmful executors of selective neuronal cell death. We selected huntingtin in Huntington's disease to explore this question because the dominant inheritance pattern of the disease seems to exclude the possibility that the wild-type protein has a role in the natural history of this condition. However, even in this extreme case, there is considerable evidence that normal huntingtin is important for neuronal function and that the activity of some of its downstream effectors, such as brain-derived neurotrophic factor, is reduced in Huntington's disease.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | |
Collapse
|
40
|
Kraemer B, Schellenberg GD. Using Caenorhabditis elegans models of neurodegenerative disease to identify neuroprotective strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:219-46. [PMID: 17178476 DOI: 10.1016/s0074-7742(06)77007-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Brian Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington 98108, USA
| | | |
Collapse
|
41
|
Strehlow ANT, Li JZ, Myers RM. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 2006; 16:391-409. [PMID: 17189290 DOI: 10.1093/hmg/ddl467] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat in the first exon of the HD gene, which results in a toxic polyglutamine stretch within huntingtin, the protein it encodes. Understanding the normal function of this essential protein is vital to understanding the root of the disease, yet despite more than a decade of investigation, its role in the cell remains elusive. Identifying the subcellular localization of huntingtin and understanding its effects on global gene expression are critical to this endeavor. While most reports agree that huntingtin is predominantly a cytoplasmic protein, conflicting distribution patterns have been demonstrated at the subcellular level. Here, we examine wild-type huntingtin's localization in cultured cells by expressing the full-length human protein tagged with enhanced green fluorescent protein (EGFP) within its unspliced genomic context. In fibrosarcoma and neuroblastoma cells, huntingtin shows discrete punctate, perinuclear localization overlapping largely with the trans-Golgi and cytoplasmic clathrin-coated vesicles, implicating huntingtin in vesicle trafficking. To determine whether huntingtin is involved in trafficking a specific subset of proteins, we measured changes in global transcription levels in embryonic stem cells and neurons lacking huntingtin. Huntingtin null neurons exhibit a significant reduction in transcripts encoding proteins destined for the extracellular space, many of which are components of the extracellular matrix or involved in cellular adhesion, receptor binding and hormone activity. Together, these findings support a role for huntingtin in the intracellular trafficking of proteins required for the construction of the extracellular matrix.
Collapse
Affiliation(s)
- Anne N T Strehlow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
42
|
Aspenström P, Fransson A, Richnau N. Pombe Cdc15 homology proteins: regulators of membrane dynamics and the actin cytoskeleton. Trends Biochem Sci 2006; 31:670-9. [PMID: 17074490 DOI: 10.1016/j.tibs.2006.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/21/2006] [Accepted: 10/18/2006] [Indexed: 11/18/2022]
Abstract
Pombe Cdc15 homology (PCH) proteins have emerged in many species as important coordinators of signalling pathways that regulate actomyosin assembly and membrane dynamics. For example, the prototype PCH protein, Cdc15p of Schizosaccharomyces pombe, has a role in assembly of the contractile ring, which is needed to separate dividing cells. Recently, mammalian PCH proteins have been found to bind phospholipids and to participate in membrane deformation. These findings suggest that PCH proteins are crucial linkers of membrane dynamics and actin polymerization, for example, during the internalization of transmembrane receptors. Intriguingly, some members of the PCH protein family are mutated in neurodegenerative and inflammatory diseases, which has implications for the identification of cures for such disorders.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
43
|
Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR. General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 2006; 103:16248-53. [PMID: 17060612 PMCID: PMC1637568 DOI: 10.1073/pnas.0607815103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human CA150, a transcriptional activator, binds to and is co-deposited with huntingtin during Huntington's disease. The second WW domain of CA150 is a three-stranded beta-sheet that folds in vitro in microseconds and forms amyloid fibers under physiological conditions. We found from exhaustive alanine scanning studies that fibrillation of this WW domain begins from its denatured conformations, and we identified a subset of residues critical for fibril formation. We used high-resolution magic-angle-spinning NMR studies on site-specific isotopically labeled fibrils to identify abundant long-range interactions between side chains. The distribution of critical residues identified by the alanine scanning and NMR spectroscopy, along with the electron microscopy data, revealed the protofilament repeat unit: a 26-residue non-native beta-hairpin. The structure we report has similarities to the hairpin formed by the A(beta)((1-40)) protofilament, yet also contains closely packed side-chains in a "steric zipper" arrangement found in the cross-beta spine formed from small peptides from the Sup35 prion protein. Fibrillation of unrelated amyloidogenic sequences shows the common feature of zippered repeat units that act as templates for fiber elongation.
Collapse
Affiliation(s)
- Neil Ferguson
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
, , or
| | - Johanna Becker
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Henning Tidow
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sandra Tremmel
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Timothy D. Sharpe
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Jeremy Flinders
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
| | - Miriana Petrovich
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John Berriman
- New York Structural Biology Center, 89 Covent Avenue at 133rd Street, New York, NY 10027
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; and
- To whom correspondence may be addressed. E-mail:
, , or
| | - Alan R. Fersht
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
44
|
Qian J, Chen W, Lettau M, Podda G, Zörnig M, Kabelitz D, Janssen O. Regulation of FasL expression: A SH3 domain containing protein family involved in the lysosomal association of FasL. Cell Signal 2006; 18:1327-37. [PMID: 16318909 DOI: 10.1016/j.cellsig.2005.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
As a death factor of T cells and Natural Killer (NK) cells, Fas Ligand (FasL) is stored in association with secretory lysosomes. Upon stimulation, these cytotoxic granules are transported to the cell membrane where FasL is exposed on the cell surface, shed or secreted. It has been noted before that the proline-rich domain within the cytosolic part of FasL is required for its vesicular association. However, the molecular interactions involved in targeting FasL to secretory lysosomes or to the plasma membrane have not been elucidated. We now identified a family of structurally related proteins that upon co-expression with FasL reallocate the death factor from a membrane to an intracellular localization. Members of this protein family are characterized by a similar domain structure and include FBP17, PACSIN1-3, CD2BP1, CIP4, Rho-GAP C1 and several hypothetical proteins. We show that all tested members of this "FCH/SH3-family" co-precipitate FasL from transfectants. The interactions strictly depend on functional SH3 domains within the FCH/SH3 proteins. Since co-expression of FasL with individual FCH/SH3 proteins dramatically alters the intracellular localization of FasL especially in non-hematopoietic cells, our data suggest that FCH/SH3 proteins might play an important role for the subcellular distribution and lysosomal association of FasL.
Collapse
Affiliation(s)
- Jing Qian
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Archila S, King MA, Carlson GM, Rice NA. The cytoskeletal organizing protein Cdc42-interacting protein 4 associates with phosphorylase kinase in skeletal muscle. Biochem Biophys Res Commun 2006; 345:1592-9. [PMID: 16735024 DOI: 10.1016/j.bbrc.2006.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 11/18/2022]
Abstract
Phosphorylase kinase is a key enzyme in regulating glycogenolytic flux in skeletal muscle in response to changing energy demands. In the present study, we sought to identify interacting proteins of phosphorylase kinase by yeast two-hybrid screening. Screening a rabbit skeletal muscle cDNA library with the exposed C-terminus of the alpha subunit (residues 1060-1237), we identified eight independent, yet overlapping, constructs of cdc42-interacting protein 4 (CIP4). Immunocytochemistry indicated that CIP4 colocalized with phosphorylase kinase in vivo, and the cognate binding domain on CIP4 was determined to lie between residues 398 and 545. While this region of CIP4 does contain a known src homology 3 domain, transient transfections and coimmunoprecipitation experiments showed that this domain is not responsible for the dimeric interaction. Based upon sequence analysis the association is inferred to be mediated by two proline-rich sequences in CIP4, residues 436-439 and 441-444, that bind to a cognate WW domain found between residues 1107 and 1129 of PhKalpha.
Collapse
Affiliation(s)
- Soleil Archila
- Department of Biology, Western Kentucky University, Bowling Green, 42101-1080, USA
| | | | | | | |
Collapse
|
46
|
Aspenström P, Richnau N, Johansson AS. The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp Cell Res 2006; 312:2180-94. [PMID: 16630611 DOI: 10.1016/j.yexcr.2006.03.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/23/2022]
Abstract
Binding partners for the Cdc42 effector CIP4 were identified by the yeast two-hybrid system, as well as by testing potential CIP4-binding proteins in coimmunoprecipitation experiments. One of the CIP4-binding proteins, DAAM1, was characterised in more detail. DAAM1 is a ubiquitously expressed member of the mammalian diaphanous-related formins, which include proteins such as mDia1 and mDia2. DAAM1 was shown to bind to the SH3 domain of CIP4 in vivo. Ectopically expressed DAAM1 localised in dotted pattern at the dorsal side of transfected cells and the protein was accumulated in the proximity to the microtubule organising centre. Moreover, ectopic expression of DAAM1 induced a marked alteration of the cell morphology, seen as rounding up of the cells, the formation of branched protrusions as well as a reduction of stress-fibres in the transfected cells. Coimmunoprecipitation experiments demonstrated that DAAM1 bound to RhoA and Cdc42 in a GTP-dependent manner. Moreover, DAAM1 was found to interact and collaborate with the non-receptor tyrosine kinase Src in the formation of branched protrusions. Taken together, our data indicate that DAAM1 communicates with Rho GTPases, CIP4 and Src in the regulation of the signalling pathways that co-ordinate the dynamics of the actin filament system.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
47
|
Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 2006; 18:168-78. [PMID: 16488588 DOI: 10.1016/j.ceb.2006.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/09/2006] [Indexed: 01/05/2023]
Abstract
Secretion and endocytosis are highly dynamic processes that are sensitive to external stimuli. Thus, in multicellular organisms, different cell types utilize specialised pathways of intracellular membrane traffic to facilitate specific physiological functions. In addition to the complex internal molecular factors that govern sorting functions and fission or fusion of transport carriers, the actin cytoskeleton plays an important role in both the endocytic and secretory pathways. The interaction between the actin cytoskeleton and membrane trafficking is not restricted to transport processes: it also appears to be directly involved in the biogenesis of Golgi-derived transport carriers (budding and fission processes) and in the maintenance of the unique flat shape of Golgi cisternae.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina and Instituts de Nanociències i Nanotecnologia (IN(2)UB) and d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | |
Collapse
|
48
|
Tsuji E, Tsuji Y, Fujiwara T, Ogata S, Tsukamoto K, Saku K. Splicing variant of Cdc42 interacting protein-4 disrupts beta-catenin-mediated cell-cell adhesion: expression and function in renal cell carcinoma. Biochem Biophys Res Commun 2005; 339:1083-8. [PMID: 16343437 DOI: 10.1016/j.bbrc.2005.11.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
We have identified an alternative splicing variant in the Cdc42-interacting protein 4 (CIP4) gene in patients with renal cell carcinoma (RCC); almost 50% of the RCCs examined showed an aberrant splicing event in reverse transcription-PCR and the insertion of 19 nucleotides derived from intron9 based on a sequence analysis. This variant (CIP4-V) encodes a premature stop codon, resulting in the loss of a tyrosine phosphorylation site, the Cdc42 binding domain, and the SH3 domain. In this report, we show that overexpression of CIP4-V causes the formation of ubiquitinated aggresomes and a loss of cell-cell adhesion. We determined that CIP4-V increased the beta-catenin tyrosine phosphorylation levels that mediate Fer/Fyn tyrosine kinases and induced beta-catenin mistrafficking from cell membrane to cytoplasmic aggresome. These results indicate that CIP4 is critical for beta-catenin-mediated cell-cell adhesion and may be an important aspect of its functional contribution to RCC, especially with regard to metastasis and invasiveness.
Collapse
|
49
|
Larocca MC, Shanks RA, Tian L, Nelson DL, Stewart DM, Goldenring JR. AKAP350 interaction with cdc42 interacting protein 4 at the Golgi apparatus. Mol Biol Cell 2004; 15:2771-81. [PMID: 15047863 PMCID: PMC420101 DOI: 10.1091/mbc.e03-10-0757] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The A kinase anchoring protein 350 (AKAP350) is a multiply spliced type II protein kinase A anchoring protein that localizes to the centrosomes in most cells and to the Golgi apparatus in epithelial cells. In the present study, we sought to identify AKAP350 interacting proteins that could yield insights into AKAP350 function at the Golgi apparatus. Using yeast two-hybrid and pull-down assays, we found that AKAP350 interacts with a family of structurally related proteins, including FBP17, FBP17b, and cdc42 interacting protein 4 (CIP4). CIP4 interacts with the GTP-bound form of cdc42, with the Wiscott Aldrich Syndrome group of proteins, and with microtubules, and exerts regulatory effects on cytoskeleton and membrane trafficking. CIP4 is phosphorylated by protein kinase A in vitro, and elevation of intracellular cyclic AMP with forskolin stimulates in situ phosphorylation of CIP4. Our results indicate that CIP4 interacts with AKAP350 at the Golgi apparatus and that either disruption of this interaction by expressing the CIP4 binding domain in AKAP350, or reduction of AKAP350 expression by RNA interference leads to changes in Golgi structure. The results suggest that AKAP350 and CIP4 influence the maintenance of normal Golgi apparatus structure.
Collapse
Affiliation(s)
- M Cecilia Larocca
- Department of Surgery, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, and the Nashville VA Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
50
|
Mattson MP, Sherman M. Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromolecular Med 2004; 4:109-32. [PMID: 14528056 DOI: 10.1385/nmm:4:1-2:109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 06/25/2003] [Indexed: 02/04/2023]
Abstract
Aggregation of abnormal proteins, both inside and outside of cells, is a prominent feature of major neurodegenerative disorders, including Alzheimer's, Parkinson's, polyglutamine expansion, and prion diseases. Other articles in this special issue of NeuroMolecular Medicine describe the genetic and molecular factors that promote aberrant protein aggregation. In the present article, we consider how it is that pathogenic aggregation-prone proteins compromise signal transduction pathways that regulate neuronal plasticity and survival. In some cases the protein in question may have widespread and relatively nonspecific effects on signaling. For example, amyloid beta-peptide induces membrane-associated oxidative stress, which impairs the function of various receptors, ion channels and transporters, as well as downstream kinases and transcription factors. Other proteins, such as polyglutamine repeat proteins, may affect specific protein -protein interactions, including those involved in signaling pathways activated by neurotransmitters, neurotrophins, and steroid hormones. Synapses are particularly sensitive to abnormal protein aggregation and impaired synaptic signaling may trigger apoptosis and related cell death cascades. Impairment of signal transduction in protein aggregation disorders may be amenable to therapy as demonstrated by a recent study showing that dietary restriction can preserve synaptic function and protect neurons in a mouse model of Huntington's disease. Finally, emerging findings are revealing how activation of certain signaling pathways can suppress protein aggregation and/or the cytotoxicity resulting from the abnormal protein aggregation. A better understanding of how abnormal protein aggregation occurs and how it affects and is affected by specific signal transduction pathways, is leading to novel approaches for preventing and treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, MD 21224, USA.
| | | |
Collapse
|