1
|
Roughgarden J. Lytic/Lysogenic Transition as a Life-History Switch. Virus Evol 2024; 10:veae028. [PMID: 38756985 PMCID: PMC11097211 DOI: 10.1093/ve/veae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.
Collapse
Affiliation(s)
- Joan Roughgarden
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Patel V, Lynn-Bell N, Chevignon G, Kucuk RA, Higashi CHV, Carpenter M, Russell JA, Oliver KM. Mobile elements create strain-level variation in the services conferred by an aphid symbiont. Environ Microbiol 2023; 25:3333-3348. [PMID: 37864320 DOI: 10.1111/1462-2920.16520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Roy A Kucuk
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Giorgini M, Formisano G, García-García R, Bernat-Ponce S, Beitia F. The Susceptibility of Bemisia tabaci Mediterranean (MED) Species to Attack by a Parasitoid Wasp Changes between Two Whitefly Strains with Different Facultative Endosymbiotic Bacteria. INSECTS 2023; 14:808. [PMID: 37887820 PMCID: PMC10607859 DOI: 10.3390/insects14100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy of B. tabaci. Notably, the BtHC strain infected with Hamiltonella and Cardinium was more resistant to parasitization than the BtHR strain infected with Hamiltonella and Rickettsia. The resistant phenotype consisted of fewer nymphs successfully parasitized (containing the parasitoid mature larva or pupa) and in a lower percentage of adult wasps emerging from parasitized nymphs. Interestingly, the resistance traits were not evident when E. mundus parasitism was compared between BtHC and BtHR using parasitoids originating from a colony maintained on BtHC. However, when we moved the parasitoid colony on BtHR and tested E. mundus after it was reared on BtHR for four and seven generations, we saw then that BtHC was less susceptible to parasitization than BtHR. On the other hand, we did not detect any difference in the parasitization of the BtHR strain between the three generations of E. mundus tested. Our findings showed that host strain is a factor affecting the ability of E. mundus to parasitize B. tabaci and lay the basis for further studies aimed at disentangling the role of the facultative endosymbiont Cardinium and of the genetic background in the resistance of B. tabaci MED to parasitoid attack. Furthermore, they highlight that counteradaptations to the variation of B. tabaci defence mechanisms may be rapidly selected in E. mundus to maximize the parasitoid fitness.
Collapse
Affiliation(s)
- Massimo Giorgini
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 80055 Portici, Italy;
| | - Giorgio Formisano
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 80055 Portici, Italy;
| | - Rosalía García-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain; (R.G.-G.); (S.B.-P.); (F.B.)
| | - Saúl Bernat-Ponce
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain; (R.G.-G.); (S.B.-P.); (F.B.)
| | - Francisco Beitia
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain; (R.G.-G.); (S.B.-P.); (F.B.)
| |
Collapse
|
4
|
Giordano R, Weber EP, Mitacek R, Flores A, Ledesma A, De AK, Herman TK, Soto-Adames FN, Nguyen MQ, Hill CB, Hartman GL. Patterns of asexual reproduction of the soybean aphid, Aphis glycines (Matsumura), with and without the secondary symbionts Wolbachia and Arsenophonus, on susceptible and resistant soybean genotypes. Front Microbiol 2023; 14:1209595. [PMID: 37720159 PMCID: PMC10501154 DOI: 10.3389/fmicb.2023.1209595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Plant breeding is used to develop crops with host resistance to aphids, however, virulent biotypes often develop that overcome host resistance genes. We tested whether the symbionts, Arsenophonus (A) and Wolbachia (W), affect virulence and fecundity in soybean aphid biotypes Bt1 and Bt3 cultured on whole plants and detached leaves of three resistant, Rag1, Rag2 and Rag1 + 2, and one susceptible, W82, soybean genotypes. Whole plants and individual aphid experiments of A. glycines with and without Arsenophonus and Wolbachia did not show differences in overall fecundity. Differences were observed in peak fecundity, first day of deposition, and day of maximum nymph deposition of individual aphids on detached leaves. Bt3 had higher fecundity than Bt1 on detached leaves of all plant genotypes regardless of bacterial profile. Symbionts did not affect peak fecundity of Bt1 but increased it in Bt3 (A+W+) and all Bt3 strains began to deposit nymphs earlier than the Bt1 (A+W-). Arsenophonus in Bt1 delayed the first day of nymph deposition in comparison to aposymbiotic Bt1 except when reared on Rag1 + 2. For the Bt1 and Bt3 strains, symbionts did not result in a significant difference in the day they deposited the maximum number of nymphs nor was there a difference in survival or variability in number of nymphs deposited. Variability of number of aphids deposited was higher in aphids feeding on resistant plant genotypes. The impact of Arsenophonus on soybean aphid patterns of fecundity was dependent on the aphid biotype and plant genotype. Wolbachia alone had no detectable impact but may have contributed to the increased fecundity of Bt3 (A+W+). An individual based model, using data from the detached leaves experiment and with intraspecific competition removed, found patterns similar to those observed in the greenhouse and growth chamber experiments including a significant interaction between soybean genotype and aphid strain. Combining individual data with the individual based model of population growth isolated the impact of fecundity and host resistance from intraspecific competition and host health. Changes to patterns of fecundity, influenced by the composition and concentration of symbionts, may contribute to competitive interactions among aphid genotypes and influence selection on virulent aphid populations.
Collapse
Affiliation(s)
- Rosanna Giordano
- Institute of Environment, Florida International University, Miami, FL, United States
- Puerto Rico Science Technology and Research Trust, San Juan, Puerto Rico
| | - Everett P. Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, United States
| | - Ryan Mitacek
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alejandra Flores
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alonso Ledesma
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Arun K. De
- Animal Sciences Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | | | - Felipe N. Soto-Adames
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States
| | - Minh Q. Nguyen
- Neochromosome, Inc., Long Island City, NY, United States
| | - Curtis B. Hill
- Neochromosome, Inc., Long Island City, NY, United States
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Oliver KM. Flies co-opt bacterial toxins for use in defense against parasitoids. Proc Natl Acad Sci U S A 2023; 120:e2304493120. [PMID: 37126694 PMCID: PMC10175828 DOI: 10.1073/pnas.2304493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA30602
| |
Collapse
|
6
|
Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, Klinges JG, Maher RL, McConnell KM, Meiling SS, Messyasz A, Schmeltzer ER, Seabrook S, Sims JA, Veglia AJ, Thurber AR, Thurber RLV, Correa AMS. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME COMMUNICATIONS 2023; 3:27. [PMID: 37009785 PMCID: PMC10068613 DOI: 10.1038/s43705-023-00227-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.
Collapse
Affiliation(s)
| | - Carsten G B Grupstra
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Kristen M Rabbitt
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Dennis Conetta
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Samantha R Coy
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Oceanography, Texas A & M University, College Station, TX, USA
| | - J Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA
| | - Rebecca L Maher
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Sonora S Meiling
- University of the Virgin Islands, St. Thomas, US Virgin Islands, USA
| | - Adriana Messyasz
- Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | | | - Sarah Seabrook
- Oregon State University, Corvallis, OR, USA
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Jordan A Sims
- Department of BioSciences, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | | |
Collapse
|
7
|
Gwokyalya R, Weldon CW, Herren JK, Gichuhi J, Makhulu EE, Ndlela S, Mohamed SA. Friend or Foe: Symbiotic Bacteria in Bactrocera dorsalis-Parasitoid Associations. BIOLOGY 2023; 12:biology12020274. [PMID: 36829551 PMCID: PMC9953478 DOI: 10.3390/biology12020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Parasitoids are promising biocontrol agents of the devastating fruit fly, Bactrocera dorsalis. However, parasitoid performance is a function of several factors, including host-associated symbiotic bacteria. Providencia alcalifaciens, Citrobacter freundii, and Lactococcus lactis are among the symbiotic bacteria commonly associated with B. dorsalis, and they influence the eco-physiological functioning of this pest. However, whether these bacteria influence the interaction between this pest and its parasitoids is unknown. This study sought to elucidate the nature of the interaction of the parasitoids, Fopius arisanus, Diachasmimorpha longicaudata, and Psyttlia cosyrae with B. dorsalis as mediated by symbiotic bacteria. Three types of fly lines were used: axenic, symbiotic, and bacteria-mono-associated (Lactococcus lactis, Providencia alcalifaciens, and Citrobacter freundii). The suitable stages of each fly line were exposed to the respective parasitoid species and reared until the emergence of adult flies/parasitoids. Thereafter, data on the emergence and parasitoid fitness traits were recorded. No wasps emerged from the fly lines exposed to P. cosyrae. The highest emergence of F. arisanus and D. longicaudata was recorded in the L. lactis fly lines. The parasitoid progeny from the L. lactis and P. alcalifaciens fly lines had the longest developmental time and the largest body size. Conversely, parasitoid fecundity was significantly lower in the L. lactis lines, whereas the P. alcalifaciens lines significantly improved fecundity. These results elucidate some effects of bacterial symbionts on host-parasitoid interactions and their potential in enhancing parasitoid-oriented management strategies against B. dorsalis.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- Correspondence: or (R.G.); (S.A.M.)
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Joseph Gichuhi
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Edward Edmond Makhulu
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Samira Abuelgasim Mohamed
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
- Correspondence: or (R.G.); (S.A.M.)
| |
Collapse
|
8
|
Fungal Flora in Adult Females of the Rearing Population of Ambrosia Beetle Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae): Does It Differ from the Wild Population? DIVERSITY 2022. [DOI: 10.3390/d14070535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ambrosia beetles bore into host trees, and live with fungi symbiotically that serve as a food source. However, it is challenging to directly observe these beetles in the wild. In this study, Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae), a pest of fig trees in Japan, were reared under artificial conditions to emulate the behavior of ambrosia beetle. Fungi were isolated from the adult females of E. interjectus to identify the species associated with secondary symbiosis. In total, nine filamentous fungi and one yeast were identified using morphological characteristics and DNA sequence data. Neocosmospora metavorans (Hypocreales: Nectriaceae), Fusarium sp. (Hypocreales: Nectriaceae), that is undescribed, and Meyerozyma guilliermondii (Saccharomycetes: Saccharomycetales) (yeast) were isolated more frequently from the head (including from mycangia, the fungus-carrying organ) than from the thorax and abdomen of adult beetles. Neocosmospora metavorans was the dominant species isolated from 12 out of 16 heads at 200 to 3300 CFUs/head, compared to the primary mycangia fungus from wild beetles, i.e., Fusarium kuroshium (Hypocreales: Nectriaceae). Temperature had a marked effect on fungal growth in the three symbiont species. Our results represent a major paradigm shift in understanding beetle–fungal interactions, as they show specific symbiont switching can occur in different nesting places.
Collapse
|
9
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
10
|
Whiteman NK. Evolution in small steps and giant leaps. Evolution 2022; 76:67-77. [PMID: 35040122 PMCID: PMC9387839 DOI: 10.1111/evo.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."
Collapse
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
11
|
Vorburger C. Defensive Symbionts and the Evolution of Parasitoid Host Specialization. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:329-346. [PMID: 34614366 DOI: 10.1146/annurev-ento-072621-062042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland;
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
12
|
Benhamou S, Rahioui I, Henri H, Charles H, Da Silva P, Heddi A, Vavre F, Desouhant E, Calevro F, Mouton L. Cytotype Affects the Capability of the Whitefly Bemisia tabaci MED Species To Feed and Oviposit on an Unfavorable Host Plant. mBio 2021; 12:e0073021. [PMID: 34781749 PMCID: PMC8593682 DOI: 10.1128/mbio.00730-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
The acquisition of nutritional obligate primary endosymbionts (P-symbionts) allowed phloemo-phageous insects to feed on plant sap and thus colonize novel ecological niches. P-symbionts often coexist with facultative secondary endosymbionts (S-symbionts), which may also influence their hosts' niche utilization ability. The whitefly Bemisia tabaci is a highly diversified species complex harboring, in addition to the P-symbiont "Candidatus Portiera aleyrodidarum," seven S-symbionts whose roles remain poorly understood. Here, we compare the phenotypic and metabolic responses of three B. tabaci lines differing in their S-symbiont community, reared on three different host plants, hibiscus, tobacco, or lantana, and address whether and how S-symbionts influence insect capacity to feed and produce offspring on those plants. We first show that hibiscus, tobacco, and lantana differ in their free amino acid composition. Insects' performance, as well as free amino acid profile and symbiotic load, were shown to be plant dependent, suggesting a critical role for the plant nutritional properties. Insect fecundity was significantly lower on lantana, indicating that it is the least favorable plant. Remarkably, insects reared on this plant show a specific amino acid profile and a higher symbiont density compared to the two other plants. In addition, this plant was the only one for which fecundity differences were observed between lines. Using genetically homogeneous hybrids, we demonstrate that cytotype (mitochondria and symbionts), and not genotype, is a major determinant of females' fecundity and amino acid profile on lantana. As cytotypes differ in their S-symbiont community, we propose that these symbionts may mediate their hosts' suitable plant range. IMPORTANCE Microbial symbionts are universal in eukaryotes, and it is now recognized that symbiotic associations represent major evolutionary driving forces. However, the extent to which symbionts contribute to their hosts' ecological adaptation and subsequent diversification is far from being fully elucidated. The whitefly Bemisia tabaci is a sap feeder associated with multiple coinfecting intracellular facultative symbionts. Here, we show that plant species simultaneously affect whiteflies' performance, amino acid profile, and symbiotic density, which could be partially explained by differences in plant nutritional properties. We also demonstrate that, on lantana, the least favorable plant used in our study, whiteflies' performance is determined by their cytotype. We propose that the host plant utilization in B. tabaci is influenced by its facultative symbiont community composition, possibly through its impact on the host dietary requirements. Altogether, our data provide new insights into the impact of intracellular microorganisms on their animal hosts' ecological niche range and diversification.
Collapse
Affiliation(s)
- Sylvain Benhamou
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Isabelle Rahioui
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Hélène Henri
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Pedro Da Silva
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Fabrice Vavre
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Emmanuel Desouhant
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Laurence Mouton
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| |
Collapse
|
13
|
Abstract
AbstractTrade-offs and constraints are inherent to life, and studies of these phenomena play a central role in both organismal and evolutionary biology. Trade-offs can be defined, categorized, and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing allocation to one component necessarily requires a decrease in another (if only two components are involved, this is referred to as the Y-model, e.g., energy devoted to size versus number of offspring). (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type composition). (3) Shared biochemical pathways, often involving integrator molecules (e.g., hormones, neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes genetic variants that increase one component of fitness (or a lower-level trait) while simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may impose trade-offs, such as when foraging behavior increases energy availability yet also decreases survival. (6) Sexual selection may lead to the elaboration of (usually male) secondary sexual characters that improve mating success but handicap survival and/or impose energetic costs that reduce other fitness components. Empirical studies of trade-offs often search for negative correlations between two traits that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh environmental conditions or energetic challenges at the extremes of phenotypic distributions, such as among individuals or species that have exceptional athletic abilities. Trade-offs may be (partially) circumvented through various compensatory mechanisms, depending on the timescale involved, ranging from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.
Collapse
|
14
|
Boyd BM, Chevignon G, Patel V, Oliver KM, Strand MR. Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids. Virol J 2021; 18:219. [PMID: 34758862 PMCID: PMC8579659 DOI: 10.1186/s12985-021-01685-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. Methods We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. Results Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. Conclusions APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01685-y.
Collapse
Affiliation(s)
- Bret M Boyd
- Department of Entomology, University of Georgia Athens, Athens, GA, USA. .,Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Vilas Patel
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia Athens, Athens, GA, USA.
| |
Collapse
|
15
|
Merges D, Dal Grande F, Greve C, Otte J, Schmitt I. Virus diversity in metagenomes of a lichen symbiosis (Umbilicaria phaea): complete viral genomes, putative hosts and elevational distributions. Environ Microbiol 2021; 23:6637-6650. [PMID: 34697892 DOI: 10.1111/1462-2920.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Viruses can play critical roles in symbioses by initiating horizontal gene transfer, affecting host phenotypes, or expanding their host's ecological niche. However, knowledge of viral diversity and distribution in symbiotic organisms remains elusive. Here we use deep-sequenced metagenomic DNA (PacBio Sequel II; two individuals), paired with a population genomics approach (Pool-seq; 11 populations, 550 individuals) to understand viral distributions in the lichen Umbilicaria phaea. We assess (i) viral diversity in lichen thalli, (ii) putative viral hosts (fungi, algae, bacteria) and (iii) viral distributions along two replicated elevation gradients. We identified five novel viruses, showing 28%-40% amino acid identity to known viruses. They tentatively belong to the families Caulimoviridae, Myoviridae, Podoviridae and Siphoviridae. Our analysis suggests that the Caulimovirus is associated with green algal photobionts (Trebouxia) of the lichen, and the remaining viruses with bacterial hosts. We did not detect viral sequences in the mycobiont. Caulimovirus abundance decreased with increasing elevation, a pattern reflected by a specific algal lineage hosting this virus. Bacteriophages showed population-specific patterns. Our work provides the first comprehensive insights into viruses associated with a lichen holobiont and suggests an interplay of viral hosts and environment in structuring viral distributions.
Collapse
Affiliation(s)
- Dominik Merges
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Gimmi E, Vorburger C. Strong genotype-by-genotype interactions between aphid-defensive symbionts and parasitoids persist across different biotic environments. J Evol Biol 2021; 34:1944-1953. [PMID: 34695269 PMCID: PMC9298302 DOI: 10.1111/jeb.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
The dynamics of coevolution between hosts and parasites are influenced by their genetic interactions. Highly specific interactions, where the outcome of an infection depends on the precise combination of host and parasite genotypes (G × G interactions), have the potential to maintain genetic variation by inducing negative frequency‐dependent selection. The importance of this effect also rests on whether such interactions are consistent across different environments or modified by environmental variation (G × G × E interaction). In the black bean aphid, Aphis fabae, resistance to its parasitoid Lysiphlebus fabarum is largely determined by the possession of a heritable bacterial endosymbiont, Hamiltonella defensa, with strong G × G interactions between H. defensa and L. fabarum. A key environmental factor in this system is the host plant on which the aphid feeds. Here, we exposed genetically identical aphids harbouring three different strains of H. defensa to three asexual genotypes of L. fabarum and measured parasitism success on three common host plants of A. fabae, namely Vicia faba, Chenopodium album and Beta vulgaris. As expected, we observed the pervasive G × G interaction between H. defensa and L. fabarum, but despite strong main effects of the host plants on average rates of parasitism, this interaction was not altered significantly by the host plant environment (no G × G × E interaction). The symbiont‐conferred specificity of resistance is thus likely to mediate the coevolution of A. fabae and L. fabarum, even when played out across diverse host plants of the aphid.
Collapse
Affiliation(s)
- Elena Gimmi
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, D-USYS, ETH Zürich, Switzerland
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, D-USYS, ETH Zürich, Switzerland
| |
Collapse
|
17
|
Shan HW, Liu SS. The Costs and Benefits of Two Secondary Symbionts in a Whitefly Host Shape Their Differential Prevalence in the Field. Front Microbiol 2021; 12:739521. [PMID: 34659172 PMCID: PMC8515054 DOI: 10.3389/fmicb.2021.739521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Insects commonly harbor maternally inherited intracellular symbionts in nature, and the microbial partners often exert influence on host reproduction and fitness to promote their prevalence. Here, we investigated composition of symbionts and their biological effects in the invasive Bemisia tabaci MED species of a whitefly complex. Our field surveys revealed that populations of the MED whitefly, in addition to the primary symbiont Portiera, mainly contain two secondary symbionts Hamiltonella, which is nearly fixed in the host populations, and Cardinium with infection frequencies ranging from 0 to 86%. We isolated and established Cardinium-positive and Cardinium-free whitefly lines with a similar nuclear genetic background from a field population, and compared performance of the two whitefly lines. The infection of Cardinium incurred significant fitness costs on the MED whitefly, including reduction of fecundity and egg viability as well as delay in development. We then selectively removed Hamiltonella from the Cardinium-free whitefly line and compared performance of two whitefly lines, one harboring both Portiera and Hamiltonella and the other harboring only Portiera. While depletion of Hamiltonella had little or only marginal effects on the fecundity, developmental rate, and offspring survival, the Hamiltonella-free whitefly line produced very few female offspring, often reducing the progeny female ratio from about 50% to less than 1%. Our findings indicate that the varying costs and benefits of the association between these two symbionts and the MED whitefly may play an important role in shaping their differential prevalence in the field.
Collapse
Affiliation(s)
- Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Sochard C, Bellec L, Simon JC, Outreman Y. Influence of "protective" symbionts throughout the different steps of an aphid-parasitoid interaction. Curr Zool 2021; 67:441-453. [PMID: 34616941 PMCID: PMC8489026 DOI: 10.1093/cz/zoaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.
Collapse
Affiliation(s)
| | - Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
| | | | | |
Collapse
|
19
|
Smee MR, Raines SA, Ferrari J. Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome. THE ISME JOURNAL 2021; 15:2537-2546. [PMID: 33712703 PMCID: PMC8397793 DOI: 10.1038/s41396-021-00943-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts often alter the phenotype of their host. Benefits and costs to hosts depend on many factors, including host genotype, symbiont species and genotype, and environmental conditions. Here, we present a study demonstrating genotype-by-genotype (G×G) interactions between multiple species of endosymbionts harboured by an insect, and the first to quantify the relative importance of G×G interactions compared with species interactions in such systems. In the most extensive study to date, we microinjected all possible combinations of five Hamiltonella defensa and five Fukatsuia symbiotica (X-type; PAXS) isolates into the pea aphid, Acyrthosiphon pisum. We applied several ecological challenges: a parasitoid wasp, a fungal pathogen, heat shock, and performance on different host plants. Surprisingly, genetic identity and genotype × genotype interactions explained far more of the phenotypic variation (on average 22% and 31% respectively) than species identity or species interactions (on average 12% and 0.4%, respectively). We determined the costs and benefits associated with co-infection, and how these compared to corresponding single infections. All phenotypes were highly reliant on individual isolates or interactions between isolates of the co-infecting partners. Our findings highlight the importance of exploring the eco-evolutionary consequences of these highly specific interactions in communities of co-inherited species.
Collapse
Affiliation(s)
- Melanie R. Smee
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK ,grid.5386.8000000041936877XPresent Address: Microbiology Department, Cornell University, Ithaca, NY USA
| | - Sally A. Raines
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| | - Julia Ferrari
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| |
Collapse
|
20
|
Selvaraj G, Santos-Garcia D, Mozes-Daube N, Medina S, Zchori-Fein E, Freilich S. An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci. FEMS Microbiol Ecol 2021; 97:6348090. [PMID: 34379764 DOI: 10.1093/femsec/fiab117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 01/12/2023] Open
Abstract
Metabolic conversions allow organisms to produce essential metabolites from the available nutrients in an environment, frequently requiring metabolic exchanges among co-inhabiting organisms. Here, we applied genomic-based simulations for exploring tri-trophic interactions among the sap-feeding insect whitefly (Bemisia tabaci), its host-plants, and symbiotic bacteria. The simplicity of this ecosystem allows capturing the interacting organisms (based on genomic data) and the environmental content (based on metabolomics data). Simulations explored the metabolic capacities of insect-symbiont combinations under environments representing natural phloem. Predictions were correlated with experimental data on the dynamics of symbionts under different diets. Simulation outcomes depict a puzzle of three-layer origins (plant-insect-symbionts) for the source of essential metabolites across habitats and stratify interactions enabling the whitefly to feed on diverse hosts. In parallel to simulations, natural and artificial feeding experiments provide supporting evidence for an environment-based effect on symbiont dynamics. Based on simulations, a decrease in the relative abundance of a symbiont can be associated with a loss of fitness advantage due to an environmental excess in amino-acids whose production in a deprived environment used to depend on the symbiont. The study demonstrates that genomic-based predictions can bridge environment and community dynamics and guide the design of symbiont manipulation strategies.
Collapse
Affiliation(s)
- Gopinath Selvaraj
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel.,Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Netta Mozes-Daube
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Einat Zchori-Fein
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shiri Freilich
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
21
|
Burke GR, Hines HM, Sharanowski BJ. The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biol Evol 2021; 13:evab105. [PMID: 33988720 PMCID: PMC8325570 DOI: 10.1093/gbe/evab105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid wasps that includes species that produce virus-like entities in their reproductive tracts to promote successful parasitism of host insects. Research on these entities has traditionally focused upon two viral genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable viral integration events in wasp genomes. Here, new genome sequence assemblies for 11 species and 6 publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity searches combined with the identification of ancient core genes revealed sequences from both known and novel EVEs. One species harbored a novel, independently derived EVE related to a divergent large double-stranded DNA (dsDNA) virus that manipulates behavior in other hymenopteran species. Although bracovirus or ichnovirus EVEs were identified as expected in three species, the absence of ichnoviruses in several species suggests that they are independently derived and present in two younger, less widespread lineages than previously thought. Overall, this study presents a novel bioinformatic approach for EVE discovery in genomes and shows that three divergent virus families (nudiviruses, the ancestors of ichnoviruses, and Leptopilina boulardi Filamentous Virus-like viruses) are recurrently acquired as EVEs in parasitoid wasps. Virus acquisition in the parasitoid wasps is a common process that has occurred in many more than two lineages from a diverse range of arthropod-infecting dsDNA viruses.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Heather M Hines
- Department of Biology and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
22
|
Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics 2021; 22:449. [PMID: 34134631 PMCID: PMC8207614 DOI: 10.1186/s12864-021-07742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. Results We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. Conclusions Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host’s obligatory endosymbiont B. aphidicola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07742-8.
Collapse
Affiliation(s)
- Heidi Kaech
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland. .,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alice B Dennis
- Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Gao X, Niu R, Zhu X, Wang L, Ji J, Niu L, Wu C, Zhang S, Luo J, Cui J. Characterization and comparison of the bacterial microbiota of Lysiphlebia japonica parasitioid wasps and their aphid host Aphis gosypii. PEST MANAGEMENT SCIENCE 2021; 77:2710-2718. [PMID: 33492720 DOI: 10.1002/ps.6299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Endosymbiotic bacteria have been reported to mediate interactions between parasitoids and their insect hosts. How parasitic wasps influence changes in host microbial communities and the relationship between them are of great importance to the study of host-parasitoid co-evolutionary and ecological interactions. However, these interactions remain largely unreported for interactions between Aphis gossypii and Lysiphlebia japonica. RESULTS In this study, we characterize the bacterial microbiota of L. japonica wasps at different developmental stages and monitor changes over time in the bacterial microbiota of their parasitized and nonparasitized aphid hosts, using metagenomic analysis of 16S rDNA sequencing data. Proteobacteria, Firmicutes, and Actinobacteria were the three most abundant bacterial phyla identified in L. japonica. We found that parasitism was associated with an increased abundance of Buchnera nutritional endosymbionts, but decreased abundance of Acinetobacter, Arsenophonus, Candidatus_Hamiltonella, and Pseudomonas facultative symbionts in aphid hosts. Functional analysis of enriched pathways of parasitized aphids showed significant differences in the 'transport and metabolism of carbohydrates' and 'amino acid, lipid, and coenzyme biosynthesis' pathways. Notably, the composition of symbiotic bacteria in wasp larvae was highly similar to that of their aphid hosts, especially the high abundance of Buchnera. CONCLUSION The results provide a conceptual framework for L. japonica interactions with A. gossypii in which the exchange of symbiotic microbes provides a means by which microbiota can potentially serve as evolutionary drivers of complex, multilevel interactions underlying the ecology and co-evolution of these hosts and parasites. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueke Gao
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruichang Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Zhu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Changcai Wu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Shuai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Junyu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Vishnyakov AE, Karagodina NP, Lim-Fong G, Ivanov PA, Schwaha TF, Letarov AV, Ostrovsky AN. First evidence of virus-like particles in the bacterial symbionts of Bryozoa. Sci Rep 2021; 11:4. [PMID: 33420126 PMCID: PMC7794531 DOI: 10.1038/s41598-020-78616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/12/2020] [Indexed: 01/29/2023] Open
Abstract
Bacteriophage communities associated with humans and vertebrate animals have been extensively studied, but the data on phages living in invertebrates remain scarce. In fact, they have never been reported for most animal phyla. Our ultrastructural study showed for the first time a variety of virus-like particles (VLPs) and supposed virus-related structures inside symbiotic bacteria in two marine species from the phylum Bryozoa, the cheilostomes Bugula neritina and Paralicornia sinuosa. We also documented the effect of VLPs on bacterial hosts: we explain different bacterial 'ultrastructural types' detected in bryozoan tissues as stages in the gradual destruction of prokaryotic cells caused by viral multiplication during the lytic cycle. We speculate that viruses destroying bacteria regulate symbiont numbers in the bryozoan hosts, a phenomenon known in some insects. We develop two hypotheses explaining exo- and endogenous circulation of the viruses during the life-cycle of B. neritina. Finally, we compare unusual 'sea-urchin'-like structures found in the collapsed bacteria in P. sinuosa with so-called metamorphosis associated contractile structures (MACs) formed in the cells of the marine bacterium Pseudoalteromonas luteoviolacea which are known to trigger larval metamorphosis in a polychaete worm.
Collapse
Affiliation(s)
- A. E. Vishnyakov
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034
| | - N. P. Karagodina
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034
| | - G. Lim-Fong
- grid.262455.20000 0001 2205 6070Department of Biology, Randolph-Macon College, 304 Caroline Street, Ashland, VA 23005 USA
| | - P. A. Ivanov
- grid.4886.20000 0001 2192 9124Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow, Russian Federation 117312
| | - T. F. Schwaha
- grid.10420.370000 0001 2286 1424Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - A. V. Letarov
- grid.4886.20000 0001 2192 9124Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow, Russian Federation 117312 ,grid.14476.300000 0001 2342 9668Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russian Federation 119234
| | - A. N. Ostrovsky
- grid.15447.330000 0001 2289 6897Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, Saint Petersburg, Russian Federation 199034 ,grid.10420.370000 0001 2286 1424Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Engl T, Schmidt THP, Kanyile SN, Klebsch D. Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle. INSECTS 2020; 11:insects11100717. [PMID: 33092035 PMCID: PMC7589553 DOI: 10.3390/insects11100717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/24/2023]
Abstract
Simple Summary Animals engage in various symbioses. However, these interactions are not always beneficial for the host; they can also incur costs under certain circumstances. The bacterial symbiont supports, on the one hand, the cuticle formation of the sawtoothed grain beetle Oryzaephilus surinamensis, which is extremely beneficial under dry conditions as a thicker and more melanized cuticle prevents desiccation of the insect. On the other hand, under higher humidity, the benefit is strongly reduced. In this study, we investigated whether harboring a symbiont can also be a disadvantage. Therefore, we first measured the number of symbionts throughout the beetles’ life and found a strong increase during the end of metamorphosis, just before beetles reach adulthood. Afterwards, males lose the symbionts again, whereas females retain a stable number. A comparison of beetles with and without symbionts revealed no differences in many life history traits. Larval development took the same time and there was also no difference in adult mortality or lifespan or the number of offspring of females. However, females with symbionts started to reproduce significantly later by one to two weeks, meaning they have a disadvantage in comparison to females without symbionts. Thus, harboring a symbiont is beneficial or costly in a context-dependent manner. Abstract Animals engage in a plethora of mutualistic interactions with microorganisms that can confer various benefits to their host but can also incur context-dependent costs. The sawtoothed grain beetle Oryzaephilus surinamensis harbors nutritional, intracellular Bacteroidetes bacteria that supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host. Experimental elimination of the symbiont impairs cuticle formation and reduces fitness under desiccation stress but does not disrupt the host’s life cycle. For this study, we first demonstrated that symbiont populations showed the strongest growth at the end of metamorphosis and then declined continuously in males, but not in females. The symbiont loss neither impacted the development time until adulthood nor adult mortality or lifespan. Furthermore, lifetime reproduction was not influenced by the symbiont presence. However, symbiotic females started to reproduce almost two weeks later than aposymbiotic ones. Thus, symbiont presence incurs a metabolic and context-dependent fitness cost to females, probably due to a nutrient allocation trade-off between symbiont growth and sexual maturation. The O. surinamensis symbiosis thereby represents an experimentally amenable system to study eco-evolutionary dynamics under variable selection pressures.
Collapse
Affiliation(s)
- Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
- Correspondence:
| | - Thorsten H. P. Schmidt
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
| | - Sthandiwe Nomthandazo Kanyile
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
| | - Dagmar Klebsch
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany; (T.H.P.S.); (S.N.K.); (D.K.)
| |
Collapse
|
26
|
Rossbacher S, Vorburger C. Prior adaptation of parasitoids improves biological control of symbiont-protected pests. Evol Appl 2020; 13:1868-1876. [PMID: 32908591 PMCID: PMC7463345 DOI: 10.1111/eva.12934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
There is increasing demand for sustainable pest management to reduce harmful effects of pesticides on the environment and human health. For pest aphids, biological control with parasitoid wasps provides a welcome alternative, particularly in greenhouses. However, aphids are frequently infected with the heritable bacterial endosymbiont Hamiltonella defensa, which increases resistance to parasitoids and thereby hampers biological control. Using the black bean aphid (Aphis fabae) and its main parasitoid Lysiphlebus fabarum, we tested whether prior adaptation of parasitoids can improve the control of symbiont-protected pests. We had parasitoid lines adapted to two different strains of H. defensa by experimental evolution, as well as parasitoids evolved on H. defensa-free aphids. We compared their ability to control caged aphid populations comprising 60% unprotected and 40% H. defensa-protected aphids, with both H. defensa strains present in the populations. Parasitoids that were not adapted to H. defensa had virtually no effect on aphid population dynamics compared to parasitoid-free controls, but one of the adapted lines and a mixture of both adapted lines controlled aphids successfully, strongly benefitting plant growth. Selection by parasitoids altered aphid population composition in a very specific manner. Aphid populations became dominated by H. defensa-protected aphids in the presence of parasitoids, and each adapted parasitoid line selected for the H. defensa strain it was not adapted to. This study shows, for the first time, that prior adaptation of parasitoids improves biological control of symbiont-protected pests, but the high specificity of parasitoid counter-resistance may represent a challenge for its implementation.
Collapse
Affiliation(s)
- Silvan Rossbacher
- Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Christoph Vorburger
- Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
27
|
Abstract
We know that living matter must behave in accordance with the universal laws of physics and chemistry. However, these laws are insufficient to explain the specific characteristics of the vital phenomenon and, therefore, we need new principles, intrinsic to biology, which are the basis for developing a theoretical framework for understanding life. Here I propose what I call the seven commandments of life (the Vital Order, the Principle of Inexorability, the reformulated Central Dogma, the Tyranny of Time, the Evolutionary Imperative, the Conservative Rule, the Cooperating Thrust) as a set of principles that help us explain the vital phenomenon from an evolutionary perspective. In a metaphorical way, we can consider life like an endless race in which living beings are the runners, who are changing as the race goes on (the evolutionary process), and the commandments the rules.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, Faculty of Biology - CIBUS, University of Santiago de Compostela, Galicia, Spain
| |
Collapse
|
28
|
Pirritano M, Zaburannyi N, Grosser K, Gasparoni G, Müller R, Simon M, Schrallhammer M. Dual-Seq reveals genome and transcriptome of Caedibacter taeniospiralis, obligate endosymbiont of Paramecium. Sci Rep 2020; 10:9727. [PMID: 32546745 PMCID: PMC7297999 DOI: 10.1038/s41598-020-65894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Interest in host-symbiont interactions is continuously increasing, not only due to the growing recognition of the importance of microbiomes. Starting with the detection and description of novel symbionts, attention moves to the molecular consequences and innovations of symbioses. However, molecular analysis requires genomic data which is difficult to obtain from obligate intracellular and uncultivated bacteria. We report the identification of the Caedibacter genome, an obligate symbiont of the ciliate Paramecium. The infection does not only confer the host with the ability to kill other cells but also renders them immune against this effect. We obtained the C. taeniospiralis genome and transcriptome by dual-Seq of DNA and RNA from infected paramecia. Comparison of codon usage and expression level indicates that genes necessary for a specific trait of this symbiosis, i.e. the delivery of an unknown toxin, result from horizontal gene transfer hinting to the relevance of DNA transfer for acquiring new characters. Prediction of secreted proteins of Caedibacter as major agents of contact with the host implies, next to several toxin candidates, a rather uncharacterized secretome which appears to be highly adapted to this symbiosis. Our data provides new insights into the molecular establishment and evolution of this obligate symbiosis and for the pathway characterization of toxicity and immunity.
Collapse
Affiliation(s)
- Marcello Pirritano
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics Saarland University, Saarbrücken, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken and German Centre for Infection Research (DZIF), Hannover, Germany
| | - Katrin Grosser
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany.,Deep Sequencing Unit, Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gilles Gasparoni
- Genetics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmacy, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken and German Centre for Infection Research (DZIF), Hannover, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany. .,Molecular Cell Dynamics Saarland University, Saarbrücken, Germany.
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Rouïl J, Jousselin E, Coeur d’acier A, Cruaud C, Manzano-Marín A. The Protector within: Comparative Genomics of APSE Phages across Aphids Reveals Rampant Recombination and Diverse Toxin Arsenals. Genome Biol Evol 2020; 12:878-889. [PMID: 32386316 PMCID: PMC7313666 DOI: 10.1093/gbe/evaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Phages can fundamentally alter the physiology and metabolism of their hosts. Although these phages are ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception is the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called "types." In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across ten insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.
Collapse
Affiliation(s)
- Jeff Rouïl
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Armelle Coeur d’acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | | |
Collapse
|
30
|
Xu S, Jiang L, Qiao G, Chen J. The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. MICROBIAL ECOLOGY 2020; 79:971-984. [PMID: 31802184 PMCID: PMC7198476 DOI: 10.1007/s00248-019-01435-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Preedy KF, Chaplain MAJ, Leybourne DJ, Marion G, Karley AJ. Learning-induced switching costs in a parasitoid can maintain diversity of host aphid phenotypes although biocontrol is destabilized under abiotic stress. J Anim Ecol 2020; 89:1216-1229. [PMID: 32096554 DOI: 10.1111/1365-2656.13189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/01/2019] [Indexed: 11/27/2022]
Abstract
Aphid populations frequently include phenotypes that are resistant to parasitism by hymenopterous parasitoid wasps, which is often attributed to the presence of 'protective' facultative endosymbionts residing in aphid tissues, particularly Hamiltonella defensa. In field conditions, under parasitoid pressure, the observed coexistence of aphids with and without protective symbionts cannot be explained by their difference in fitness alone. Using the cereal aphid Rhopalosiphum padi as a model, we propose an alternative mechanism whereby parasitoids are more efficient at finding common phenotypes of aphid and experience a fitness cost when switching to the less common phenotype. We construct a model based on delay differential equations and parameterize and validate the model with values within the ranges obtained from experimental studies. We then use it to explore the possible effects on system dynamics under conditions of environmental stress, using our existing data on the effects of drought stress in crops as an example. We show the 'switching penalty' incurred by parasitoids leads to stable coexistence of aphids with and without H. defensa and provides a potential mechanism for maintaining phenotypic diversity among host organisms. We show that drought-induced reduction in aphid development time has little impact. However, greater reduction in fecundity on droughted plants of symbiont-protected aphids can cause insect population cycles when the system would be stable in the absence of drought stress. The stabilizing effect of the increased efficiency in dealing with more commonly encountered host phenotypes is applicable to a broad range of consumer-resource systems and could explain stable coexistence in competitive environments. The loss of stable coexistence when drought has different effects on the competing aphid phenotypes highlights the importance of scenario testing when considering biocontrol for pest management.
Collapse
Affiliation(s)
| | - Mark A J Chaplain
- Department of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | | | - Glenn Marion
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | |
Collapse
|
32
|
Ives AR, Barton BT, Penczykowski RM, Harmon JP, Kim KL, Oliver K, Radeloff VC. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat Ecol Evol 2020; 4:702-711. [DOI: 10.1038/s41559-020-1155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
|
33
|
Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. Cultivation-Assisted Genome of Candidatus Fukatsuia symbiotica; the Enigmatic "X-Type" Symbiont of Aphids. Genome Biol Evol 2020; 11:3510-3522. [PMID: 31725149 PMCID: PMC7145644 DOI: 10.1093/gbe/evz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia
| | | | | | | | | | | | | |
Collapse
|
34
|
Leybourne DJ, Bos JIB, Valentine TA, Karley AJ. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi. INSECT SCIENCE 2020; 27:69-85. [PMID: 29797656 PMCID: PMC7379937 DOI: 10.1111/1744-7917.12606] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 05/31/2023]
Abstract
Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harbored H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was 5 fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgare and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favor the fittest R. padi genotypes, but symbiont-infected individuals will be favored when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant.
Collapse
Affiliation(s)
- Daniel J. Leybourne
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeUK
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeUK
- Ecological Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| | - Jorunn I. B. Bos
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeUK
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| | | | - Alison J. Karley
- Ecological Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| |
Collapse
|
35
|
Noman MS, Liu L, Bai Z, Li Z. Tephritidae bacterial symbionts: potentials for pest management. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:1-14. [PMID: 31223102 DOI: 10.1017/s0007485319000403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the genera Anastrepha, Bactrocera, Ceratitis, and Rhagoletis. Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera of Klebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia, and Providencia constitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.
Collapse
Affiliation(s)
- M S Noman
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - L Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Bai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
36
|
Verster KI, Wisecaver JH, Karageorgi M, Duncan RP, Gloss AD, Armstrong EE, Price DK, Menon AR, Ali ZM, Whiteman NK. Horizontal Transfer of Bacterial Cytolethal Distending Toxin B Genes to Insects. Mol Biol Evol 2020; 36:2105-2110. [PMID: 31236589 DOI: 10.1093/molbev/msz146] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer events have played a major role in the evolution of microbial species, but their importance in animals is less clear. Here, we report horizontal gene transfer of cytolethal distending toxin B (cdtB), prokaryotic genes encoding eukaryote-targeting DNase I toxins, into the genomes of vinegar flies (Diptera: Drosophilidae) and aphids (Hemiptera: Aphididae). We found insect-encoded cdtB genes are most closely related to orthologs from bacteriophage that infect Candidatus Hamiltonella defensa, a bacterial mutualistic symbiont of aphids that confers resistance to parasitoid wasps. In drosophilids, cdtB orthologs are highly expressed during the parasitoid-prone larval stage and encode a protein with ancestral DNase activity. We show that cdtB has been domesticated by diverse insects and hypothesize that it functions in defense against their natural enemies.
Collapse
Affiliation(s)
- Kirsten I Verster
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | | | - Marianthi Karageorgi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Rebecca P Duncan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Andrew D Gloss
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | | | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, NV
| | - Aruna R Menon
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Zainab M Ali
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
37
|
Impact of bacteria motility in the encounter rates with bacteriophage in mucus. Sci Rep 2019; 9:16427. [PMID: 31712565 PMCID: PMC6848219 DOI: 10.1038/s41598-019-52794-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages—or phages—are viruses that infect bacteria and are present in large concentrations in the mucosa that cover the internal organs of animals. Immunoglobulin (Ig) domains on the phage surface interact with mucin molecules, and this has been attributed to an increase in the encounter rates of phage with bacteria in mucus. However, the physical mechanism behind this phenomenon remains unclear. A continuous time random walk (CTRW) model simulating the diffusion due to mucin-T4 phage interactions was developed and calibrated to empirical data. A Langevin stochastic method for Escherichia coli (E. coli) run-and-tumble motility was combined with the phage CTRW model to describe phage-bacteria encounter rates in mucus for different mucus concentrations. Contrary to previous theoretical analyses, the emergent subdiffusion of T4 in mucus did not enhance the encounter rate of T4 against bacteria. Instead, for static E. coli, the diffusive T4 mutant lacking Ig domains outperformed the subdiffusive T4 wild type. E. coli’s motility dominated the encounter rates with both phage types in mucus. It is proposed, that the local fluid-flow generated by E. coli’s motility combined with T4 interacting with mucins may be the mechanism for increasing the encounter rates between the T4 phage and E. coli bacteria.
Collapse
|
38
|
Lynn-Bell NL, Strand MR, Oliver KM. Bacteriophage acquisition restores protective mutualism. Microbiology (Reading) 2019; 165:985-989. [DOI: 10.1099/mic.0.000816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
39
|
Sochard C, Leclair M, Simon JC, Outreman Y. Host plant effects on the outcomes of defensive symbioses in the pea aphid complex. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10005-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Multipartner Symbiosis across Biological Domains: Looking at the Eukaryotic Associations from a Microbial Perspective. mSystems 2019; 4:4/4/e00148-19. [PMID: 31239394 PMCID: PMC6593219 DOI: 10.1128/msystems.00148-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sponges establish tight associations with both micro- and macroorganisms. However, while studies on sponge microbiomes are numerous, nothing is currently known about the microbiomes of sponge-associated polychaetes and their relationships with those of their host sponges. We analyzed the bacterial communities of symbiotic polychaetes (Haplosyllis spp.) and their host sponges (Clathria reinwardti, Amphimedon paraviridis, Neofibularia hartmani, and Aaptos suberitoides) to assess the influence of the sponges on the polychaete microbiomes. We identified both eukaryote partners by molecular (16S and COI genes) and morphological features, and we identified their microbial communities by high-throughput sequencing of the 16S rRNA gene (V4 region). We unravel the existence of six Haplosyllis species (five likely undescribed) associated at very high densities with the study sponge species in Nha Trang Bay (central Vietnam). A single polychaete species inhabited A. paraviridis and was different from the single species that inhabited A. suberitoides Conversely, two different polychaete species were found in C. reinwardti and N. hartmani, depending on the two host locations. Regardless of the host sponge, polychaete microbiomes were species specific, which is a widespread feature in marine invertebrates. More than half of the polychaete bacteria were also found in the host sponge microbiome but at contrasting abundances. Thus, the associated polychaetes seemed to be able to select, incorporate, and enrich part of the sponge microbiome, a selection that appears to be polychaete species specific. Moreover, the bacterial diversity is similar in both eukaryotic partners, which additionally confirms the influence of food (host sponge) on the structure of the polychaete microbiome.IMPORTANCE The symbiotic lifestyle represents a fundamental cryptic contribution to the diversity of marine ecosystems. Sponges are ideal targets to improve understanding the symbiotic relationships from evolutionary and ecological points of view, because they are the most ancient metazoans on earth, are ubiquitous in the marine benthos, and establish complex symbiosis with both prokaryotes and animals, which in turn also harbor their own bacterial communities. Here, we study the microbiomes of sponge-polychaete associations and confirm that polychaetes feed on their host sponges. The study worms select and enrich part of the sponge microbiome to shape their own species-specific bacterial communities. Moreover, worm microbiome diversity runs parallel to that of its food host sponge. Considering our results on symbiotic polychaetes and previous studies on fishes and mammals, diet appears to be an important source of bacteria for animals to shape their species-specific microbiomes.
Collapse
|
41
|
First Evidence of Intracellular Bacteria Cardinium in Thermophilic Mite Microzetorchestes emeryi (Acari: Oribatida): Molecular Screening of Bacterial Endosymbiont Species. Curr Microbiol 2019; 76:1038-1044. [PMID: 31214820 PMCID: PMC6663925 DOI: 10.1007/s00284-019-01717-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/06/2019] [Indexed: 11/02/2022]
Abstract
We undertook the issue of the distribution of intracellular bacteria among Oribatida (Acari). Six genera of bacteria were detected by PCR and Sanger DNA sequencing: Wolbachia, Cardinium, Rickettsia, Spiroplasma, Arsenophonus, and Hamiltonella. Our research, for the first time, revealed the presence of Cardinium in Microzetorchestes emeryi in two subpopulations separated from each other by 300 m. The percentages of infected animals were the same in both subpopulations-ca. 20%. The identity of 16S rDNA sequences of Cardinium between these two subpopulations of M. emeryi was 97%. Phylogenetic analysis showed that the Cardinium in M. emeryi was clustered into the group A. The occurrence of M. emeryi in Poland has not been reported before and our report is the first one. Cardinium maybe help the thermophilic M. emeryi to adapt to low temperatures in the Central Europe.
Collapse
|
42
|
Blow F, Douglas AE. The hemolymph microbiome of insects. JOURNAL OF INSECT PHYSIOLOGY 2019; 115:33-39. [PMID: 30953618 DOI: 10.1016/j.jinsphys.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Hemolymph has long been recognized as a key mediator of nutritional and immunological homeostasis in insects, with the tacit understanding that hemolymph is a hostile environment for microorganisms, and microbiologically sterile in healthy insects. Recent research is overturning the conventional wisdom, and there is now overwhelming evidence that various non-pathogenic microorganisms can stably or transiently inhabit hemolymph in a diversity of insects. Most is known about Spiroplasma, especially in Drosophila species, and secondary symbionts of the Enterobacteriaceae, notably Hamiltonella defensa, in aphids. These bacteria require many nutrients, representing a likely drain on host nutritional resources, and they persist in the hemolymph by a combination of evasion and tolerance of insect immune effectors. These traits can be costly to the insect host. For some hemolymph microorganisms, these costs are balanced by other traits beneficial to the insect, notably protection against natural enemies mediated by specific toxins or competition for key nutrients. Three key priorities for future research are: to investigate the prevalence and taxonomic diversity of hemolymph microorganisms in insects; to establish the role of host nutritional and immune factors as determinants of the abundance and proliferation rates of hemolymph microorganisms; and to integrate the developing understanding of these microorganisms and their impacts (both costs and benefits) on insect nutrition and immune function into the wider study of insect physiology.
Collapse
Affiliation(s)
- Frances Blow
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Hashmi TR, Devi SR, Ahmad A, Meshram NM, Prasad R. Genetic Status and Endosymbionts Diversity of Bemisia tabaci (Gennadius) on Hosts Belonging to Family Malvaceae in India. NEOTROPICAL ENTOMOLOGY 2019; 48:207-218. [PMID: 30374735 DOI: 10.1007/s13744-018-0639-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
A study was instigated to examine the genetic status and distribution of known endosymbionts namely Portiera, Rickettsia, Wolbachia, Cardinium, and Arsenophonus in the populations of Bemisia tabaci (Gennadius) from three host plants: cotton (Gossypium herbaceum), okra (Abelmoschus esculentus L.), and China rose (Hibiscus rosa-sinensis) belonging to the family Malvaceae. The presence of four secondary endosymbionts Rickettsia, Wolbachia, Cardinium, and Arsenophonus was checked in Bemisia tabaci populations. Phylogenetic analyses grounded on the mitochondrial cytochrome oxidase I gene (mtCO1) unveiled the presence of Asia 1, Asia II 1, and Asia II 7 genetic groups for Bemisia tabaci on abovementioned crops. Individuals were examined for symbiotic bacterial infection with specific primers amplifying the 16S rRNA gene for Portiera, Rickettsia, Cardinium, and Wolbachia, and the 23S rRNA gene for Arsenophonus. The results show that Portiera was present in all the Bemisia tabaci samples. However, variations were noted in the circulation frequencies of secondary endosymbionts among the Bemisia tabaci populations. A significant difference was noticed in the distribution frequency of Rickettsia between cotton and China rose or okra with their p values as 0.016 and 0.033 respectively. The uneven incidence of secondary endosymbionts ropes the assumption that each endosymbiotic bacterium not only has a role in the endurance but may contribute to the polyphagous nature of Bemisia tabaci. It also brings an uncomplicated evidence for progressive studies on control measures of this notorious insect pest.
Collapse
Affiliation(s)
- T R Hashmi
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India.
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India.
| | - S R Devi
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - A Ahmad
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - N M Meshram
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - R Prasad
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
44
|
Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. CURRENT OPINION IN INSECT SCIENCE 2019; 32:1-7. [PMID: 31113620 DOI: 10.1016/j.cois.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Protective mutualisms are common in nature and include insect infections with cryptic symbionts that defend against pathogens and parasites. An archetypal defensive symbiont, Hamiltonella defensa protects aphids against parasitoids by disabling wasp development. Successful defense requires H. defensa infection with bacteriophages (APSEs), which play other key roles in mutualism maintenance. Genomes of H. defensa strains are highly similar in gene inventories, varying primarily in mobile element content. Protective phenotypes are highly variable across aphid models depending on H. defensa/APSE, aphid and wasp genotypes. Infection frequencies of H. defensa are highly dynamic in field populations, influenced by a variety of selective and non-selective factors confounding biological control implications. Overall, H. defensa infections likely represent a global aphid protection network with effects radiating outward from focal interactions.
Collapse
Affiliation(s)
- Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
45
|
Konecka E, Olszanowski Z. Phylogenetic analysis based on the 16S rDNA, gltA, gatB, and hcpA gene sequences of Wolbachia from the novel host Ceratozetes thienemanni (Acari: Oribatida). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:175-181. [PMID: 30708135 DOI: 10.1016/j.meegid.2019.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
We determined the occurrence of intracellular endosymbionts (Wolbachia, Cardinium, Arsenophonus, Rickettsia, Spiroplasma, Hamiltonella, flavobacteria, and microsporidia) in oribatid mites (Acari: Oribatida) with the use of PCR technique. For the first time we looked for and detected Wolbachia in parthenogenetic oribatid mite Ceratozetes thienemanni Willmann, 1943. The 16S rDNA, gatB, hcpA, and gltA sequences of Wolbachia in C. thienemanni showed the highest similarity (≥ 90%) to the genes of Wolbachia from springtails (Collembola) and oribatid mite Gustavia microcephala. We found the unique sequence 5'-GGGGTAATGGCC-3' in 16S rDNA of Wolbachia from C. thienemanni and collembolan representing group E. The phylogeny of Wolbachia based on the analysis of single genes as well as concatenated alignments of four bacterial loci showed that the bacteria from C. thienemanni belonged to Wolbachia group E, like the endosymbionts from springtail hosts and G. microcephala. Considering coexisting of representatives of Oribatida and Collembola in the same soil habitat and similar food, it is possible that the source of Wolbachia infection was the same. Residues of dead invertebrates could be in organic matter of their soil food, so the scenario of infection transferred by eating of remains of soil cohabitates is also possible. It could explain the similarity and relationship of the Wolbachia in these two arthropod groups. Oribatid mite C. thienemanni is a parthenogenetic mite which is a unique feature in the genus Ceratozetes. Moreover, this species, within the entire genus Ceratozetes, is characterized by the most northerly distribution. It is difficult to determine either it is parthenogenesis or the presence of endosymbionts that are in some way responsible for this kind of evolutionary success. Maybe we are dealing here with a kind of synergy of both factors?
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
46
|
Finer-Scale Phylosymbiosis: Insights from Insect Viromes. mSystems 2018; 3:mSystems00131-18. [PMID: 30574559 PMCID: PMC6299154 DOI: 10.1128/msystems.00131-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses are the most abundant biological entity on the planet and interact with microbial communities with which they associate. The virome of animals is often dominated by bacterial viruses, known as bacteriophages or phages, which can (re)structure bacterial communities potentially vital to the animal host. Beta diversity relationships of animal-associated bacterial communities in laboratory and wild populations frequently parallel animal phylogenetic relationships, a pattern termed phylosymbiosis. However, little is known about whether viral communities also exhibit this eco-evolutionary pattern. Metagenomics of purified viruses from recently diverged species of Nasonia parasitoid wasps reared in the lab indicates for the first time that the community relationships of the virome can also exhibit complete phylosymbiosis. Therefore, viruses, particularly bacteriophages here, may also be influenced by animal evolutionary changes either directly or indirectly through the tripartite interactions among hosts, bacteria, and phage communities. Moreover, we report several new bacteriophage genomes from the common gut bacteria in Nasonia. Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern whereby the ecological relatedness (e.g., beta diversity relationships) of host-associated microbial communities parallels the phylogeny of the host species. Representing the most abundant biological entities on the planet and common members of the animal-associated microbiome, viruses can be influential members of host-associated microbial communities that may recapitulate, reinforce, or ablate phylosymbiosis. Here we sequence the metagenomes of purified viral communities from three different parasitic wasp Nasonia species, one cytonuclear introgression line of Nasonia, and the flour moth outgroup Ephestia kuehniella. Results demonstrate complete phylosymbiosis between the viral metagenome and insect phylogeny. Across all Nasonia contigs, 69% of the genes in the viral metagenomes are either new to the databases or uncharacterized, yet over 99% of the contigs have at least one gene with similarity to a known sequence. The core Nasonia virome spans 21% of the total contigs, and the majority of that core is likely derived from induced prophages residing in the genomes of common Nasonia-associated bacterial genera: Proteus, Providencia, and Morganella. We also assemble the first complete viral particle genomes from Nasonia-associated gut bacteria. Taken together, results reveal the first complete evidence for phylosymbiosis in viral metagenomes, new genome sequences of viral particles from Nasonia-associated gut bacteria, and a large set of novel or uncharacterized genes in the Nasonia virome. This work suggests that phylosymbiosis at the host-microbiome level will likely extend to the host-virome level in other systems as well. IMPORTANCE Viruses are the most abundant biological entity on the planet and interact with microbial communities with which they associate. The virome of animals is often dominated by bacterial viruses, known as bacteriophages or phages, which can (re)structure bacterial communities potentially vital to the animal host. Beta diversity relationships of animal-associated bacterial communities in laboratory and wild populations frequently parallel animal phylogenetic relationships, a pattern termed phylosymbiosis. However, little is known about whether viral communities also exhibit this eco-evolutionary pattern. Metagenomics of purified viruses from recently diverged species of Nasonia parasitoid wasps reared in the lab indicates for the first time that the community relationships of the virome can also exhibit complete phylosymbiosis. Therefore, viruses, particularly bacteriophages here, may also be influenced by animal evolutionary changes either directly or indirectly through the tripartite interactions among hosts, bacteria, and phage communities. Moreover, we report several new bacteriophage genomes from the common gut bacteria in Nasonia.
Collapse
|
47
|
A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Mol Phylogenet Evol 2018; 131:64-71. [PMID: 30391314 DOI: 10.1016/j.ympev.2018.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/15/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
The understanding of the biology of arthropods requires an understanding of their bacterial associates. We determined the distribution of bacteria Wolbachia sp., Rickettsia sp., Cardinium sp., Spiroplasma sp., Arsenophonus sp., Hamiltonella sp., and Flavobacterium in oribatid mites (Acari: Oribatida). We identified Cardinium sp. in Achipteria coleoptrata. This is the first report of this bacterium in A. coleoptrata. Approximately 30% of the mite population was infected by Cardinium sp. The Cardinium 16S rDNA was examined for the presence of two sequences unique for this microorganism. One of them was noted in Cardinium sp. of A. coleoptrata. In the second sequence, we found nucleotide substitution in the 7th position: A instead of T. In our opinion, this demonstrated the unique nature of Cardinium sp. of A. coleoptrata. We also determined phylogenetic relationship between Cardinium sp., including the strain found in A. coleoptrata by studying the 16S rRNA and gyrB gene sequences. It revealed that Cardinium from A. coleoptrata did not cluster together with strains from groups A, B, C or D, and constituted a separate clade E. These observations make A. coleoptrata a unique Cardinium host in terms of the distinction of the strain.
Collapse
|
48
|
He L, Liu B, Tian J, Lu F, Li X, Tian Y. Culturable epiphytic bacteria isolated from Teleogryllus occipitalus crickets metabolize insecticides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21501. [PMID: 30120789 DOI: 10.1002/arch.21501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of insecticide resistance is attributed to evolutionary changes in pest insect genomes, such as alteration of drug target sites, upregulation of degrading enzymes, and enhancement of drug excretion. Beyond these well-known mechanisms, symbiotic bacteria may confer insecticide resistance to host crickets. The current study was designed to screen all possible culturable bacterial groups found living in and on the bodies of Teleogryllus occipitalis crickets. We recovered 263 visible bacterial colonies and cultured them individually. After identifying the colonies based on morphology and phylogenetic analysis, we shortlisted 55 bacterial strains belonging to 28 genera. Of these 55 bacterial strains, 18 degraded at least 50% of the original amount of 400 mg/L chlorpyrifos (CP) after 24 hr of coculture. Six of these strains degraded more than 70% of the original amount of 400 mg/L CP. Three strains had antagonistic effects on Bacillus thuringiensis growth. Additionally, the ability of the isolates to degrade glyphosate, phoxim, and esfenvalerate was assessed. We also detected extracellular hydrolase enzyme activities in these isolates. We propose that epiphytic bacterial strains play multiple roles in cricket biology, one of which contributes to chemical and biological pesticide resistance.
Collapse
Affiliation(s)
- Linling He
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| | - Bo Liu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiewei Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| | - Fengjuan Lu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| | - Xiaoguang Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc Biol Sci 2018; 284:rspb.2017.1925. [PMID: 29093227 DOI: 10.1098/rspb.2017.1925] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022] Open
Abstract
Heritable symbionts are common in insects with many contributing to host defence. Hamiltonella defensa is a facultative, bacterial symbiont of the pea aphid, Acyrthosiphon pisum that provides protection against the endoparasitoid wasp Aphidius ervi Protection levels vary among strains of H. defensa that are differentially infected by bacteriophages named APSEs. By contrast, little is known about mechanism(s) of resistance owing to the intractability of host-restricted microbes for functional study. Here, we developed methods for culturing strains of H. defensa that varied in the presence and type of APSE. Most H. defensa strains proliferated at 27°C in co-cultures with the TN5 cell line or as pure cultures with no insect cells. The strain infected by APSE3, which provides high levels of protection in vivo, produced a soluble factor(s) that disabled development of A. ervi embryos independent of any aphid factors. Experimental transfer of APSE3 also conferred the ability to disable A. ervi development to a phage-free strain of H. defensa Altogether, these results provide a critical foundation for characterizing symbiont-derived factor(s) involved in host protection and other functions. Our results also demonstrate that phage-mediated transfer of traits provides a mechanism for innovation in host restricted symbionts.
Collapse
Affiliation(s)
- Jayce W Brandt
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
50
|
Garushyants SK, Beliavskaia AY, Malko DB, Logacheva MD, Rautian MS, Gelfand MS. Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia. Front Microbiol 2018; 9:738. [PMID: 29713316 PMCID: PMC5911502 DOI: 10.3389/fmicb.2018.00738] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
While most endosymbiotic bacteria are transmitted only vertically, Holospora spp., an alphaproteobacterium from the Rickettsiales order, can desert its host and invade a new one. All bacteria from the genus Holospora are intranuclear symbionts of ciliates Paramecium spp. with strict species and nuclear specificity. Comparative metabolic reconstruction based on the newly sequenced genome of Holospora curviuscula, a macronuclear symbiont of Paramecium bursaria, and known genomes of other Holospora species shows that even though all Holospora spp. can persist outside the host, they cannot synthesize most of the essential small molecules, such as amino acids, and lack some central energy metabolic pathways, including glycolysis and the citric acid cycle. As the main energy source, Holospora spp. likely rely on nucleotides pirated from the host. Holospora-specific genes absent from other Rickettsiales are possibly involved in the lifestyle switch from the infectious to the reproductive form and in cell invasion.
Collapse
Affiliation(s)
- Sofya K Garushyants
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Kharkevitch Institute for Information Transmission Problems, Moscow, Russia
| | - Alexandra Y Beliavskaia
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Maria D Logacheva
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maria S Rautian
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Kharkevitch Institute for Information Transmission Problems, Moscow, Russia.,National Research Center for Hematology, Moscow, Russia.,National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|