1
|
Tang X, Li M. The role of the skin in the atopic march. Int Immunol 2024; 36:567-577. [PMID: 39271155 DOI: 10.1093/intimm/dxae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic diseases, including atopic dermatitis (AD), food allergy (FA), asthma, and allergic rhinitis (AR) are closely related to inflammatory diseases involving different body sites (i.e. the skin, airway, and digestive tract) with characteristic features including specific IgE to allergens (so-called "atopy") and Th2 cell-mediated inflammation. It has been recognized that AD often precedes the development of other atopic diseases. The progression from AD during infancy to FA or asthma/AR in later childhood is referred to as the "atopic march" (AM). Clinical, genetic, and experimental studies have provided evidence that allergen sensitization occurring through AD skin could be the origin of the AM. Here, we provide an updated review focusing on the role of the skin in the AM, from genetic mutations and environmental factors associated with epidermal barrier dysfunction in AD and the AM to immunological mechanisms for skin sensitization, particularly recent progress on the function of key cytokines produced by epidermal keratinocytes or by immune cells infiltrating the skin during AD. We also highlight the importance of developing strategies that target AD skin to prevent and attenuate the AM.
Collapse
Affiliation(s)
- Xin Tang
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, Illkirch 67404, France
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Mei Li
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
2
|
da Silva Duarte AJ, Sanabani SS. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci 2024; 348:122713. [PMID: 38735367 DOI: 10.1016/j.lfs.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Atopic dermatitis, commonly referred to as atopic eczema, is a persistent inflammatory skin disorder that predominantly manifests in children but may endure into adulthood. Its clinical management poses challenges due to the absence of a definitive cure, and its prevalence varies across ethnicities, genders, and geographic locations. The epigenetic landscape of AD includes changes in DNA methylation, changes in histone acetylation and methylation, and regulation by non-coding RNAs. These changes affect inflammatory and immune mechanisms, and research has identified AD-specific variations in DNA methylation, particularly in the affected epidermis. Histone modifications, including acetylation, have been associated with the disruption of skin barrier function in AD, suggesting the potential therapeutic benefit of histone deacetylase inhibitors such as belinostat. Furthermore, non-coding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs), have been implicated in modulating various cellular processes central to AD pathogenesis. Therapeutic implications in AD include the potential use of DNA methylation inhibitors and histone deacetylase inhibitors to correct aberrant methylation patterns and modulate gene expression related to immune responses and skin barrier functions. Additionally, the emerging role of lncRNAs suggests the possibility of using small interfering RNAs or antisense oligonucleotides to inhibit lncRNAs and adjust their regulatory impact on gene expression. In conclusion, the importance of epigenetic elements in AD is becoming increasingly clear as studies highlight the contribution of DNA methylation, histone modifications and, control by non-coding RNAs to the onset and progression of the disease. Understanding these epigenetic changes provides valuable insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
3
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
4
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
5
|
Yu DM, Zhao J, Lee EE, Kim D, Mahapatra R, Rose EK, Zhou Z, Hosler C, El Kurdi A, Choe JY, Abel ED, Hoxhaj G, Westover KD, Cho RJ, Cheng JB, Wang RC. GLUT3 promotes macrophage signaling and function via RAS-mediated endocytosis in atopic dermatitis and wound healing. J Clin Invest 2023; 133:e170706. [PMID: 37721853 PMCID: PMC10617774 DOI: 10.1172/jci170706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
The facilitative GLUT1 and GLUT3 hexose transporters are expressed abundantly in macrophages, but whether they have distinct functions remains unclear. We confirmed that GLUT1 expression increased after M1 polarization stimuli and found that GLUT3 expression increased after M2 stimulation in macrophages. Conditional deletion of Glut3 (LysM-Cre Glut3fl/fl) impaired M2 polarization of bone marrow-derived macrophages. Alternatively activated macrophages from the skin of patients with atopic dermatitis showed increased GLUT3 expression, and a calcipotriol-induced model of atopic dermatitis was rescued in LysM-Cre Glut3fl/fl mice. M2-like macrophages expressed GLUT3 in human wound tissues as assessed by transcriptomics and costaining, and GLUT3 expression was significantly decreased in nonhealing, compared with healing, diabetic foot ulcers. In an excisional wound healing model, LysM-Cre Glut3fl/fl mice showed significantly impaired M2 macrophage polarization and delayed wound healing. GLUT3 promoted IL-4/STAT6 signaling, independently of its glucose transport activity. Unlike plasma membrane-localized GLUT1, GLUT3 was localized primarily to endosomes and was required for the efficient endocytosis of IL-4Rα subunits. GLUT3 interacted directly with GTP-bound RAS in vitro and in vivo through its intracytoplasmic loop domain, and this interaction was required for efficient STAT6 activation and M2 polarization. PAK activation and macropinocytosis were also impaired without GLUT3, suggesting broader roles for GLUT3 in the regulation of endocytosis. Thus, GLUT3 is required for efficient alternative macrophage polarization and function, through a glucose transport-independent, RAS-mediated role in the regulation of endocytosis and IL-4/STAT6 activation.
Collapse
Affiliation(s)
- Dong-Min Yu
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiawei Zhao
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eunice E. Lee
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dohun Kim
- Children’s Medical Center Research Institute and
| | - Ruchika Mahapatra
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Elysha K. Rose
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiwei Zhou
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Calvin Hosler
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abdullah El Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Jun-Yong Choe
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - E. Dale Abel
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Gerta Hoxhaj
- Children’s Medical Center Research Institute and
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Raymond J. Cho
- Department of Dermatology, UCSF, San Francisco, California, USA
| | | | - Richard C. Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Paredes A, Justo-Méndez R, Jiménez-Blasco D, Núñez V, Calero I, Villalba-Orero M, Alegre-Martí A, Fischer T, Gradillas A, Sant'Anna VAR, Were F, Huang Z, Hernansanz-Agustín P, Contreras C, Martínez F, Camafeita E, Vázquez J, Ruiz-Cabello J, Area-Gómez E, Sánchez-Cabo F, Treuter E, Bolaños JP, Estébanez-Perpiñá E, Rupérez FJ, Barbas C, Enríquez JA, Ricote M. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 2023; 618:365-373. [PMID: 37225978 DOI: 10.1038/s41586-023-06068-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.
Collapse
Affiliation(s)
- Ana Paredes
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Justo-Méndez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Daniel Jiménez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Vanessa Núñez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Calero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Villalba-Orero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Medicina y Cirugía Animal, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB/CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Felipe Were
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carmen Contreras
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Martínez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense Madrid (UCM), Madrid, Spain
| | - Estela Area-Gómez
- Departament of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Department of Neurology, Columbia University Medical Campus, New York, NY, USA
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Francisco Javier Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - José Antonio Enríquez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mercedes Ricote
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
7
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
Yao W, German B, Chraa D, Braud A, Hugel C, Meyer P, Davidson G, Laurette P, Mengus G, Flatter E, Marschall P, Segaud J, Guivarch M, Hener P, Birling MC, Lipsker D, Davidson I, Li M. Keratinocyte-derived cytokine TSLP promotes growth and metastasis of melanoma by regulating the tumor-associated immune microenvironment. JCI Insight 2022; 7:161438. [PMID: 36107619 PMCID: PMC9675576 DOI: 10.1172/jci.insight.161438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Malignant melanoma is a major public health issue displaying frequent resistance to targeted therapy and immunotherapy. A major challenge lies in better understanding how melanoma cells evade immune elimination and how tumor growth and metastasis is facilitated by the tumor microenvironment. Here, we show that expression of the cytokine thymic stromal lymphopoietin (TSLP) by epidermal keratinocytes is induced by cutaneous melanoma in both mice and humans. Using genetically engineered models of melanoma and tumor cell grafting combined with TSLP-KO or overexpression, we defined a crosstalk between melanoma cells, keratinocytes, and immune cells in establishing a tumor-promoting microenvironment. Keratinocyte-derived TSLP is induced by signals derived from melanoma cells and subsequently acts via immune cells to promote melanoma progression and metastasis. Furthermore, we show that TSLP signals through TSLP receptor-expressing (TSLPR-expressing) DCs to play an unrecognized role in promoting GATA3+ Tregs expressing a gene signature including ST2, CCR8, ICOS, PD-1, CTLA-4, and OX40 and exhibiting a potent suppressive activity on CD8+ T cell proliferation and IFN-γ production. An analogous population of GATA3-expressing Tregs was also identified in human melanoma tumors. Our study provides insights into the role of TSLP in programming a protumoral immune microenvironment in cutaneous melanoma.
Collapse
Affiliation(s)
- Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Beatriz German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Dounia Chraa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Antoine Braud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France.,Dermatology Clinic, Strasbourg University Hospital, Strasbourg, France
| | - Cecile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Patrick Laurette
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Eric Flatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Marine Guivarch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | | | - Dan Lipsker
- Dermatology Clinic, Strasbourg University Hospital, Strasbourg, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, University of Strasbourg, Illkirch, France
| |
Collapse
|
9
|
Anti-Itching and Anti-Inflammatory Effects of Kushenol F via the Inhibition of TSLP Production. Pharmaceuticals (Basel) 2022; 15:ph15111347. [DOI: 10.3390/ph15111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from eczema, itching, disrupted barrier function and aberrant cutaneous immune responses. The aim of the present study was to assess the efficacy of kushenol F as an effective treatment for AD via the suppression of thymic stromal lymphopoietin (TSLP) production. The results of the present study demonstrated that the clinical symptoms of AD were less severe and there was reduced ear thickening and scratching behavior in kushenol F-treated Dermatophagoides farinae extract (DFE)/1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Histopathological analysis demonstrated that kushenol F decreased the DFE/DNCB-induced infiltration of eosinophil and mast cells and TSLP protein expression levels. Furthermore, kushenol F-treated mice exhibited significantly lower concentrations of serum histamine, IgE and IgG2a compared with the DFE/DNCB-induced control mice. Kushenol F also significantly decreased phosphorylated NF-κB and IKK levels and the mRNA expression levels of IL-1β and IL-6 in cytokine combination-induced human keratinocytes. The results of the present study suggested that kushenol F may be a potential therapeutic candidate for the treatment of AD via reducing TSLP levels.
Collapse
|
10
|
Segaud J, Yao W, Marschall P, Daubeuf F, Lehalle C, German B, Meyer P, Hener P, Hugel C, Flatter E, Guivarch M, Clauss L, Martin SF, Oulad-Abdelghani M, Li M. Context-dependent function of TSLP and IL-1β in skin allergic sensitization and atopic march. Nat Commun 2022; 13:4703. [PMID: 36050303 PMCID: PMC9437001 DOI: 10.1038/s41467-022-32196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Atopic diseases, including atopic dermatitis (AD) and asthma, affect a large proportion of the population, with increasing prevalence worldwide. AD often precedes the development of asthma, known as the atopic march. Allergen sensitization developed through the barrier-defective skin of AD has been recognized to be a critical step leading to asthma, in which thymic stromal lymphopoietin (TSLP) was previously shown to be critical. In this study, using a laser-assistant microporation system to disrupt targeted skin layers for generating micropores at a precise anatomic depth of mouse skin, we model allergen exposure superficially or deeply in the skin, leading to epicutaneous sensitization or dermacutaneous sensitization that is associated with a different cytokine microenvironment. Our work shows a differential requirement for TSLP in these two contexts, and identifies an important function for IL-1β, which is independent of TSLP, in promoting allergen sensitization and subsequent allergic asthma. Allergic sensitisation in the skin can lead to allergic dermatitis and further to airway asthma in a process of atopic march. Here the authors examine the difference between superficial or deep skin sensitisation, characterise the immune cells generated and show differential TSLP and IL-1β involvement.
Collapse
Affiliation(s)
- Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - François Daubeuf
- CNRS-Strasbourg University, UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute, ESBS, Illkirch, France.,CNRS-Strasbourg University, UMR7200, Laboratoire d'Innovation Thérapeutique/ Strasbourg Drug Discovery and Development Institute, Faculté de Pharmacie, Illkirch, France
| | - Christine Lehalle
- CNRS-Strasbourg University, UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute, ESBS, Illkirch, France.,CNRS-Strasbourg University, UMR7200, Laboratoire d'Innovation Thérapeutique/ Strasbourg Drug Discovery and Development Institute, Faculté de Pharmacie, Illkirch, France
| | - Beatriz German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Cécile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Eric Flatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Marine Guivarch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Laetitia Clauss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 1258 - Université de Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Lucas R, Szklenar M, Mihály J, Szegedi A, Töröcsik D, Rühl R. Plasma Levels of Bioactive Vitamin D and A5 Ligands Positively Correlate with Clinical Atopic Dermatitis Markers. Dermatology 2022; 238:1076-1083. [PMID: 35609515 DOI: 10.1159/000524343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over the past decade, several controversial studies described a relationship between vitamin D and atopic diseases. Low plasma vitamin D levels or even vitamin D deficiency was associated with an increased incidence of atopic disease, postulating that a higher dietary intake of vitamin D may be a beneficial strategy against atopic diseases such as atopic dermatitis (AD). OBJECTIVE Our aim was to determine the relationship between plasma 25-hydroxyvitamin D3 (25(OH)D3) levels, the levels of the ligand of the vitamin D receptor (VDR) heterodimerization partner as well as the retinoid X receptor (RXR) and the active vitamin A5 derivative 9-cis-13,14-dihydroretinoic acid (9CDHRA) and AD severity. METHODS/RESULTS Samples from AD patients (n = 20) and healthy volunteers (n = 20) were assessed. In our study, the frequently measured VDR ligand precursor 25(OH)D3 in addition to the VDR-ligand 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 9CDHRA displayed no different levels when compared with the plasma of AD patients and healthy volunteers. When performing further correlation studies focusing on AD patients, plasma 25(OH)D3 levels showed a negative correlation with eosinophils in blood (EOS) and SCORing Atopic Dermatitis (SCORAD) values, while 1,25(OH)2D3 and 9CDHRA levels correlated positively with plasma IgE, EOS, and SCORAD values. CONCLUSION In consequence, the metabolic activation of vitamin D from 25(OH)D3 towards 1,25(OH)2D3 as well as the co-liganding of the RXR by 9CDHRA may be an important signalling mechanism, an important marker for AD development and severity as well as the basis for novel nutritional and pharmaceutical AD treatment options.
Collapse
Affiliation(s)
- Renata Lucas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Jeong H, Chong HJ, So J, Jo Y, Yune TY, Ju BG. Ghrelin Represses Thymic Stromal Lymphopoietin Gene Expression through Activation of Glucocorticoid Receptor and Protein Kinase C Delta in Inflamed Skin Keratinocytes. Int J Mol Sci 2022; 23:ijms23073977. [PMID: 35409338 PMCID: PMC8999772 DOI: 10.3390/ijms23073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Ghrelin, a peptide hormone secreted from enteroendocrine cells of the gastrointestinal tract, has anti-inflammatory activity in skin diseases, including dermatitis and psoriasis. However, the molecular mechanism underlying the beneficial effect of ghrelin on skin inflammation is not clear. In this study, we found that ghrelin alleviates atopic dermatitis (AD)-phenotypes through suppression of thymic stromal lymphopoietin (TSLP) gene activation. Knockdown or antagonist treatment of growth hormone secretagogue receptor 1a (GHSR1a), the receptor for ghrelin, suppressed ghrelin-induced alleviation of AD-like phenotypes and suppression of TSLP gene activation. We further found that ghrelin induces activation of the glucocorticoid receptor (GR), leading to the binding of GR with histone deacetylase 3 (HDAC3) and nuclear receptor corepressor (NCoR) NCoR corepressor to negative glucocorticoid response element (nGRE) on the TSLP gene promoter. In addition, ghrelin-induced protein kinase C δ (PKCδ)-mediated phosphorylation of p300 at serine 89 (S89), which decreased the acetylation and DNA binding activity of nuclear factor- κB (NF-κB) p65 to the TSLP gene promoter. Knockdown of PKCδ abolished ghrelin-induced suppression of TSLP gene activation. Our study suggests that ghrelin may help to reduce skin inflammation through GR and PKCδ-p300-NF-κB-mediated suppression of TSLP gene activation.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Hyo-Jin Chong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Jangho So
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Yejin Jo
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Tae-Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
- Correspondence: ; Tel.: +82-2-705-8455
| |
Collapse
|
14
|
Shannon JL, Corcoran DL, Murray JC, Ziegler SF, MacLeod AS, Zhang JY. Thymic stromal lymphopoietin controls hair growth. Stem Cell Reports 2022; 17:649-663. [PMID: 35216683 PMCID: PMC9039851 DOI: 10.1016/j.stemcr.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Skin tissue regeneration after injury involves the production and integration of signals by stem cells residing in hair follicles (HFSCs). Much remains unknown about how specific wound-derived factors modulate stem cell contribution to hair growth. We demonstrate that thymic stromal lymphopoietin (TSLP) is produced in response to skin injury and during the anagen phase of the hair cycle. Intradermal injection of TSLP promoted wound-induced hair growth (WIHG), whereas neutralizing TSLP receptor (TSLPR) inhibited WIHG. Using flow cytometry and fluorescent immunostaining, we found that TSLP promoted proliferation of transit-amplifying cells. Lgr5CreER-mediated deletion of Tslpr in HFSCs inhibited both wound-induced and exogenous TSLP-induced hair growth. Our data highlight a novel function for TSLP in regulation of hair follicle activity during homeostasis and wound healing.
Collapse
Affiliation(s)
- Jessica L Shannon
- Department of Dermatology, Duke University, P.O. Box 103052, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - David L Corcoran
- Genomic and Computational Biology, Duke University, Durham, NC 27705, USA
| | - John C Murray
- Department of Dermatology, Duke University, P.O. Box 103052, Durham, NC 27710, USA
| | - Steven F Ziegler
- Benaroya Research Institute, Seattle, WA 98101, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Amanda S MacLeod
- Department of Dermatology, Duke University, P.O. Box 103052, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, P.O. Box 103052, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Bikle DD. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021; 5:e10578. [PMID: 34950833 PMCID: PMC8674770 DOI: 10.1002/jbm4.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation‐sequencing (ChIP‐seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand‐independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology University of California San Francisco, San Francisco VA Health Center San Francisco CA USA
| |
Collapse
|
16
|
Unraveling heterogeneity in pediatric atopic dermatitis: Identification of serum biomarker based patient clusters. J Allergy Clin Immunol 2021; 149:125-134. [PMID: 34237306 DOI: 10.1016/j.jaci.2021.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Increasing evidence shows that pediatric atopic dermatitis (AD) differs from adult AD on a biologic level. Broad biomarker profiling across a wide range of ages of pediatric patients with AD is lacking. OBJECTIVE Our aim was to identify serum biomarker profiles in children with AD aged 0 to 17 years and compare these profiles with those previously found in adults with AD. METHODS Luminex multiplex immunoassays were used to measure 145 biomarkers in serum from 240 children with AD (aged 0-17 years). Principal components analysis followed by unsupervised k-means clustering were performed to identify patient clusters. Patients were stratified into age groups (0-4 years, 5-11 years, and 12-17 years) to assess association between age and cluster membership. RESULTS Children aged 0 to 4 years had the highest levels of TH1 cell-skewing markers and lowest levels of TH17 cell-related markers. TH2 cell-related markers did not differ significantly between age groups. Similar to the pattern in adults, cluster analysis identified 4 distinct pediatric patient clusters (TH2 cell/retinol-dominant, skin-homing-dominant, TH1 cell/TH2 cell/TH17 cell/IL-1-dominant, and TH1 cell/IL-1/eosinophil-inferior clusters). Only the TH1 cell/TH2 cell/TH17 cell/IL-1-dominant cluster resembled 1 of the previously identified adult clusters. Although no association with age or age of onset seemed to be found, disease severity was significantly associated with the skin-homing-dominant cluster. CONCLUSION Four distinct patient clusters based on serum biomarker profiles could be identified in a large cohort of pediatric patients with AD, of which 1 was similar to previously identified adult clusters. The identification of endotypes driven by distinct underlying immunopathologic pathways might be useful to define pediatric patients with AD who are at risk of persistent disease and may necessitate different targeted treatment approaches.
Collapse
|
17
|
Sahiner UM, Layhadi JA, Golebski K, István Komlósi Z, Peng Y, Sekerel B, Durham SR, Brough H, Morita H, Akdis M, Turner P, Nadeau K, Spits H, Akdis C, Shamji MH. Innate lymphoid cells: The missing part of a puzzle in food allergy. Allergy 2021; 76:2002-2016. [PMID: 33583026 DOI: 10.1111/all.14776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Food allergy is an increasingly prevalent disease driven by uncontrolled type 2 immune response. Currently, knowledge about the underlying mechanisms that initiate and promote the immune response to dietary allergens is limited. Patients with food allergy are commonly sensitized through the skin in their early life, later on developing allergy symptoms within the gastrointestinal tract. Food allergy results from a dysregulated type 2 response to food allergens, characterized by enhanced levels of IgE, IL-4, IL-5, and IL-13 with infiltration of mast cells, eosinophils, and basophils. Recent studies raised a possible role for the involvement of innate lymphoid cells (ILCs) in driving food allergy. Unlike lymphocytes, ILCs lack They represent a group of lymphocytes that lack specific antigen receptors. ILCs contribute to immune responses not only by releasing cytokines and other mediators but also by responding to cytokines produced by activated cells in their local microenvironment. Due to their localization at barrier surfaces of the airways, gut, and skin, ILCs form a link between the innate and adaptive immunity. This review summarizes recent evidence on how skin and gastrointestinal mucosal immune system contribute to both homeostasis and the development of food allergy, as well as the involvement of ILCs toward inflammatory processes and regulatory mechanisms.
Collapse
Affiliation(s)
- Umit M Sahiner
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK.,School of Medicine Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Bulent Sekerel
- School of Medicine Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| | - Helen Brough
- Children's Allergy Service, Evelina London, Guys and St Thomas, NHS Trust, London, UK.,Paediatric Allergy Group, Department of Women and Children's Heath, School of Life Course Sciences, London, UK.,Paediatric Allergy Group, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.,Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Paul Turner
- Section of Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, Imperial College London, London, UK
| |
Collapse
|
18
|
Marschall P, Wei R, Segaud J, Yao W, Hener P, German BF, Meyer P, Hugel C, Ada Da Silva G, Braun R, Kaplan DH, Li M. Dual function of Langerhans cells in skin TSLP-promoted T FH differentiation in mouse atopic dermatitis. J Allergy Clin Immunol 2021; 147:1778-1794. [PMID: 33068561 DOI: 10.1016/j.jaci.2020.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is among the most common chronic inflammatory skin diseases, usually occurring early in life, and often preceding other atopic diseases such as asthma. TH2 has been believed to play a crucial role in cellular and humoral response in AD, but accumulating evidence has shown that follicular helper T cell (TFH), a critical player in humoral immunity, is associated with disease severity and plays an important role in AD pathogenesis. OBJECTIVES This study aimed at investigating how TFHs are generated during the pathogenesis of AD, particularly what is the role of keratinocyte-derived cytokine TSLP and Langerhans cells (LCs). METHODS Two experimental AD mouse models were employed: (1) triggered by the overproduction of TSLP through topical application of MC903, and (2) induced by epicutaneous allergen ovalbumin (OVA) sensitization. RESULTS This study demonstrated that the development of TFHs and germinal center (GC) response were crucially dependent on TSLP in both the MC903 model and the OVA sensitization model. Moreover, we found that LCs promoted TFH differentiation and GC response in the MC903 model, and the depletion of Langerin+ dendritic cells (DCs) or selective depletion of LCs diminished the TFH/GC response. By contrast, in the model with OVA sensitization, LCs inhibited TFH/GC response and suppressed TH2 skin inflammation and the subsequent asthma. Transcriptomic analysis of Langerin+ and Langerin- migratory DCs revealed that Langerin+ DCs became activated in the MC903 model, whereas these cells remained inactivated in OVA sensitization model. CONCLUSIONS Together, these studies revealed a dual functionality of LCs in TSLP-promoted TFH and TH2 differentiation in AD pathogenesis.
Collapse
Affiliation(s)
- Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Ruicheng Wei
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Beatriz Falcon German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Cecile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Grace Ada Da Silva
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | | | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
19
|
Saika A, Nagatake T, Hirata SI, Sawane K, Adachi J, Abe Y, Isoyama J, Morimoto S, Node E, Tiwari P, Hosomi K, Matsunaga A, Honda T, Tomonaga T, Arita M, Kabashima K, Kunisawa J. ω3 fatty acid metabolite, 12-hydroxyeicosapentaenoic acid, alleviates contact hypersensitivity by downregulation of CXCL1 and CXCL2 gene expression in keratinocytes via retinoid X receptor α. FASEB J 2021; 35:e21354. [PMID: 33749892 DOI: 10.1096/fj.202001687r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022]
Abstract
ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Nippon Flour Mills Co., Ltd, Innovation Center, Atsugi, Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan.,Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Dermatology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
20
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
21
|
Ishitsuka Y, Roop DR, Ogawa T. "Structural imprinting" of the cutaneous immune effector function. Tissue Barriers 2021; 9:1851561. [PMID: 33270506 PMCID: PMC7849724 DOI: 10.1080/21688370.2020.1851561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Keratinization provides tolerance to desiccation and mechanical durability. Loricrin, which is an epidermal thiol-rich protein, efficiently stabilizes terminally differentiated keratinocytes and maintains redox homeostasis. The discovery of the largely asymptomatic loricrin knockout (LKO) phenotype decades ago was rather unpredicted. Nevertheless, when including redox-driven, NF-E2-related factor 2-mediated backup responses, LKO mice provide opportunities for the observation of altered or "quasi-normal" homeostasis. Specifically, given that the tissue structure, as well as the local metabolism, transmits immunological signals, we sought to dissect the consequence of truncated epidermal differentiation program from immunological perspectives. Through a review of the aggregated evidence, we have attempted to generate an integrated view of the regulation of the peripheral immune system, which possibly occurs within the squamous epithelial tissue with truncated differentiation. This synthesis might not only provide insights into keratinization but also lead to the identification of factors intrinsic to the epidermis that imprint the immune effector function.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tatsuya Ogawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Environmental pollutants and the immune response. Nat Immunol 2020; 21:1486-1495. [PMID: 33046888 DOI: 10.1038/s41590-020-0802-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1-NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor-response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Collapse
|
23
|
Lucas R, Mihály J, Gericke J, de Lera AR, Alvarez S, Veleczki Z, Törőcsik D, Rühl R. Topical Vitamin D Receptor Antagonist/Partial-Agonist Treatment Induces Epidermal Hyperproliferation via RARγ Signaling Pathways. Dermatology 2020; 237:197-203. [PMID: 32866959 DOI: 10.1159/000508334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/30/2020] [Indexed: 11/19/2022] Open
Abstract
Vitamin D and A derivatives are well-known endogenous substances responsible for skin homeostasis. In this study we topically treated shaved mouse skin with a vitamin D agonist (MC903) or vitamin D antagonist/partial agonist (ZK159222) and compared the changes with acetone (control treatment) treatment for 14 days. Topical treatment with ZK159222 resulted in increased expression of genes involved in retinoic acid synthesis, increased retinoic acid concentrations and increased expression of retinoid target genes. Clustering the altered genes revealed that heparin-binding epidermal growth factor-like growth factor, the main driver of epidermal hyperproliferation, was increased via RARγ-mediated pathways, while other clusters of genes were mainly decreased which were comparable to the changes seen upon activation of the RARα-mediated pathways. In summary, we conclude that epidermal hyperproliferation of mouse skin in response to a topically administered vitamin D receptor antagonist/partial agonist (ZK159222) is induced via increased retinoic acid synthesis, retinoic acid levels and increased RARγ-mediated pathways.
Collapse
Affiliation(s)
- Renata Lucas
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihály
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Janine Gericke
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade Vigo, Vigo, Spain
| | - Susana Alvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade Vigo, Vigo, Spain
| | - Zsuzsanna Veleczki
- Departamento de Química Orgánica, Facultade de Química, Universidade Vigo, Vigo, Spain
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary,
- Paprika Bioanalytics BT, Debrecen, Hungary,
| |
Collapse
|
24
|
Töröcsik D, Weise C, Gericke J, Szegedi A, Lucas R, Mihaly J, Worm M, Rühl R. Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients. Exp Dermatol 2020; 28:177-189. [PMID: 30575130 DOI: 10.1111/exd.13867] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Lipoxygenases (LOX) and cyclooxygenase (COX) are the main enzymes for PUFA metabolism to highly bio-active prostaglandins, leukotrienes, thromboxanes, lipoxins, resolvins and protectins. LOX and COX pathways are important for the regulation of pro-inflammatory or pro-resolving metabolite synthesis and metabolism for various inflammatory diseases such as atopic dermatitis (AD). In this study, we determined PUFAs and PUFA metabolites in serum as well as affected and non-affected skin samples from AD patients and the dermal expression of various enzymes, binding proteins and receptors involved in these LOX and COX pathways. Decreased EPA and DHA levels in serum and reduced EPA level in affected and non-affected skin were found; in addition, n3/n6-PUFA ratios were lower in affected and non-affected skin and serum. Mono-hydroxylated PUFA metabolites of AA, EPA, DHA and the sum of AA, EPA and DHA metabolites were increased in affected and non-affected skin. COX1 and ALOX12B expression, COX and 12/15-LOX metabolites as well as various lipids, which are known to induce itch (12-HETE, LTB4, TXB2, PGE2 and PGF2) and the ratio of pro-inflammatory vs pro-resolving lipid mediators in non-affected and affected skin as well as in the serum of AD patients were increased, while n3/n6-PUFAs and metabolite ratios were lower in non-affected and affected AD skin. Expression of COX1 and COX-metabolites was even higher in non-affected AD skin. To conclude, 12/15-LOX and COX pathways were mainly upregulated, while n3/n6-PUFA and metabolite ratios were lower in AD patients skin. All these parameters are a hallmark of a pro-inflammatory and non-resolving environment in affected and partly in non-affected skin of AD patients.
Collapse
Affiliation(s)
- Daniel Töröcsik
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Christin Weise
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Janine Gericke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihaly
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Margitta Worm
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
25
|
Wu J, Guttman-Yassky E. Efficacy of biologics in atopic dermatitis. Expert Opin Biol Ther 2020; 20:525-538. [PMID: 32003247 DOI: 10.1080/14712598.2020.1722998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/25/2020] [Indexed: 12/22/2022]
Abstract
Introduction: Atopic dermatitis (AD) is a heterogeneous disease. Recent advancements in understanding AD pathogenesis resulted in the exponential expansion of its therapeutic pipeline, particularly following the success and FDA-approval of dupilumab. Different phenotypes of AD by age and ethnicity have also recently been described and clinical studies of emerging treatments will further clarify the role of each cytokine pathway in AD.Areas covered: We review the impressive repertoire of biologics for treatment of moderate-to-severe AD, including those targeting Th2, Th22, Th17/IL-23 and IgE. We highlight the scientific rationale behind each approach and provide a discussion of the most recent clinical efficacy and safety data.Expert opinion: AD is a complex disease and recent research has identified numerous endotypes, reinforcing the rationale for developing targeted therapeutics to antagonize these factors. Dupilumab has revolutionized AD treatment and its mechanistic studies also offer crucial insight into AD pathogenesis. Nevertheless, this biologic does not work for everyone, highlighting the need for a more precise approach to address the unique immune fingerprints of each AD subset. Ultimately targeted therapeutics will complement our understanding of the AD molecular map and help push AD management into an era of personalized medicine.
Collapse
Affiliation(s)
- Jianni Wu
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
26
|
Yu X, Wang M, Li L, Zhang L, Chan MTV, Wu WKK. MicroRNAs in atopic dermatitis: A systematic review. J Cell Mol Med 2020; 24:5966-5972. [PMID: 32351034 PMCID: PMC7294122 DOI: 10.1111/jcmm.15208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease, affecting up to 10% to 20% of children and 3% of adults. Although allergen sensitization, skin barrier abnormalities and type 2 immune responses are involved, the exact molecular pathogenesis of AD remains unclear. MicroRNAs (miRNAs) are short (19‐25 nucleotides) single‐stranded RNA molecules that regulate gene expression at post‐transcriptional level and are implicated in the pathogenesis of many inflammatory and immunological skin disorders. This systematic review sought to summarize our current understanding regarding the role of miRNAs in AD development. We searched articles indexed in PubMed (MEDLINE) and Web of Science databases using Medical Subject Heading (MeSH) or Title/Abstract words (‘microRNA/miRNA’ and ‘atopic dermatitis/eczema’) from inception through January 2020. Observational studies revealed dysregulation of miRNAs, including miR‐143, miR‐146a, miR‐151a, miR‐155 and miR‐223, in AD patients. Experimental studies confirmed their functions in regulating keratinocyte proliferation/apoptosis, cytokine signalling and nuclear factor‐κB‐dependent inflammatory responses, together with T helper 17 and regulatory T cell activities. Altogether, this systematic review brings together contemporary findings on how deregulation of miRNAs contributes to AD.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meifang Wang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
27
|
RXRs control serous macrophage neonatal expansion and identity and contribute to ovarian cancer progression. Nat Commun 2020; 11:1655. [PMID: 32246014 PMCID: PMC7125161 DOI: 10.1038/s41467-020-15371-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/04/2022] Open
Abstract
Tissue-resident macrophages (TRMs) populate all tissues and play key roles in homeostasis, immunity and repair. TRMs express a molecular program that is mostly shaped by tissue cues. However, TRM identity and the mechanisms that maintain TRMs in tissues remain poorly understood. We recently found that serous-cavity TRMs (LPMs) are highly enriched in RXR transcripts and RXR-response elements. Here, we show that RXRs control mouse serous-macrophage identity by regulating chromatin accessibility and the transcriptional regulation of canonical macrophage genes. RXR deficiency impairs neonatal expansion of the LPM pool and reduces the survival of adult LPMs through excess lipid accumulation. We also find that peritoneal LPMs infiltrate early ovarian tumours and that RXR deletion diminishes LPM accumulation in tumours and strongly reduces ovarian tumour progression in mice. Our study reveals that RXR signalling controls the maintenance of the serous macrophage pool and that targeting peritoneal LPMs may improve ovarian cancer outcomes. Macrophages can differentiate to perform homeostatic tissue-specific functions. Here the authors show that RXR signalling is critical for large peritoneal macrophage (LPM) expansion during neonatal life and LPM lipid metabolism and survival during adult homeostasis, and that ovarian cancer growth relies on RXR-dependent LPMs.
Collapse
|
28
|
Abstract
The terminal differentiation of the epidermis is a complex physiological process. During the past few decades, medical genetics has shown that defects in the stratum corneum (SC) permeability barrier cause a myriad of pathological conditions, ranging from common dry skin to lethal ichthyoses. Contrarily, molecular phylogenetics has revealed that amniotes have acquired a specialized form of cytoprotection cornification that provides mechanical resilience to the SC. This superior biochemical property, along with desiccation tolerance, is attributable to the proper formation of the macromolecular protein-lipid complex termed cornified cell envelopes (CE). Cornification largely depends on the peculiar biochemical and biophysical properties of loricrin, which is a major CE component. Despite its quantitative significance, loricrin knockout (LKO) mice have revealed it to be dispensable for the SC permeability barrier. Nevertheless, LKO mice have brought us valuable lessons. It is also becoming evident that absent loricrin affects skin homeostasis more profoundly in many more aspects than previously expected. Through an extensive review of aggregate evidence, we discuss herein the functional significance of the thiol-rich protein loricrin from a biochemical, genetic, pathological, metabolic, or immunological aspect with some theoretical and speculative perspectives.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
29
|
Sharma S, Naura AS. Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review. Biochem Pharmacol 2020; 173:113790. [PMID: 31911090 DOI: 10.1016/j.bcp.2019.113790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Atopic diseases (atopic dermatitis, asthma and allergic rhinitis) affects a huge number of people around the world and their incidence rate is on rise. Atopic dermatitis (AD) is more prevalent in paediatric population which sensitizes an individual to develop allergic rhinitis and asthma later in life. The complex pathogenesis of these allergic diseases though involves numerous cellular signalling pathways but redox imbalance has been reported to be critical for induction/perpetuation of inflammatory process under such conditions. The realm of complementary and alternative medicine has gained greater attention because of the reported anti-oxidant/anti-inflammatory properties. Several case studies of treating atopic diseases with homeopathic remedies have provided positive results. Likewise, pre-clinical studies suggest that various natural compounds suppress allergic response via exhibiting their anti-oxidant potential. Despite the reported beneficial effects of phytochemicals in experimental model system, the clinical success has not been documented so far. It appears that poor absorption and bioavailability of natural compounds may be one of the reasons for realizing their full potential. The current paper throws light on impact of phytochemicals in the redox linked cellular and signalling pathways that may be critical in manifestation of atopic diseases. Further, an effort has been made to identify the gaps in the area so that future strategies could be evolved to exploit the medicinal value of various phytochemicals for an improved efficiency.
Collapse
Affiliation(s)
- Sukriti Sharma
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
30
|
Lüsebrink E, Warm V, Pircher J, Ehrlich A, Zhang Z, Strecker J, Chambon P, Massberg S, Schulz C, Petzold T. Role of RXRβ in platelet function and arterial thrombosis. J Thromb Haemost 2019; 17:1489-1499. [PMID: 31172692 DOI: 10.1111/jth.14531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Retinoid X receptors (RXR) are a family of nuclear receptors that play critical roles in the regulation of numerous fundamental biological processes including cell proliferation, differentiation, and death. Earlier studies suggested that treatment with RXR agonists attenuates platelet activation in all adults (male and femal) and mice; however, the underlying molecular mechanisms have remained insufficiently understood. To elaborate further on this issue, we characterized megakaryocyte and platelet-specific RXR knockout mice to study platelet function in vitro and arterial thrombosis in vivo. APPROACH AND RESULTS First, we identified RXRβ as the dominant RXR receptor in mouse platelets, prompting us to generate a megakaryocyte and platelet-specific PF4Cre ;RXRβflox/flox mouse. Second, we studied activation, spreading, and aggregation of platelets from C57Bl/6 wild-type mice (WT), PF4Cre+ ;RXRβflox/flox mice, and PF4Cre- ;RXRβflox/flox littermate controls in the presence or absence of RXR ligands, that is, 9-cis-retinoic acid (9cRA) and methoprene acid (MA). We found that in vitro treatment with RXR ligands attenuates spreading and aggregation of platelets and increases proplatelet particle formation from megakaryocytes (MK). However, these effects are also observed in RXRβ-deficient platelets and MKs and are thus independent of RXRβ. Third, we investigated arterial thrombus formation in an iron chloride (FeCl3)-induced vascular injury model in vivo, which is also not affected by the absence of RXRβ in platelets. CONCLUSIONS Absence of the most abundant RXR receptor in mouse platelets, RXRβ, does not affect platelet function in vitro and thrombus formation in vivo. Furthermore, RXR agonists' mediated effects on platelet function are independent of RXRβ expression. Hence, our data do not support a significant contribution of RXRβ to arterial thrombosis in mice.
Collapse
Affiliation(s)
- Enzo Lüsebrink
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Verena Warm
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Zhe Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jan Strecker
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Pierre Chambon
- Département de Biologie, Cellulaire and Développement, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
31
|
Li R, Hadi S, Guttman-Yassky E. Current and emerging biologic and small molecule therapies for atopic dermatitis. Expert Opin Biol Ther 2019; 19:367-380. [DOI: 10.1080/14712598.2019.1573422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Randall Li
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Suhail Hadi
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
32
|
Germán B, Wei R, Hener P, Martins C, Ye T, Gottwick C, Yang J, Seneschal J, Boniface K, Li M. Disrupting the IL-36 and IL-23/IL-17 loop underlies the efficacy of calcipotriol and corticosteroid therapy for psoriasis. JCI Insight 2019; 4:123390. [PMID: 30674716 DOI: 10.1172/jci.insight.123390] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023] Open
Abstract
Psoriasis is one of the most common skin inflammatory diseases worldwide. The vitamin D3 analog calcipotriol has been used alone or in combination with corticosteroids in treating plaque psoriasis, but how it suppresses psoriatic inflammation has not been fully understood. Using an experimental mouse psoriasis model, we show that topical calcipotriol inhibited the pivotal IL-23/IL-17 axis and neutrophil infiltration in psoriatic skin, and interestingly, such effects were mediated through the vitamin D receptor (VDR) in keratinocytes (KCs). We further reveal that IL-36α and IL-36γ, which have recently emerged as key players in psoriasis pathogenesis, were effectively repressed by calcipotriol via direct VDR signaling in mouse KCs. Accordingly, calcipotriol treatment suppressed IL-36α/γ expression in lesional skin from patients with plaque psoriasis, which was accompanied by a reduced IL-23/IL-17 expression. In contrast, dexamethasone indirectly reduced IL-36α/γ expression in mouse psoriatic skin through immune cells. Furthermore, we demonstrate that calcipotriol and dexamethasone, in combination, synergistically suppressed the expression of IL-36α/γ, IL-23, and IL-17 in the established mouse psoriasis. Our findings indicate that the combination of calcipotriol and corticosteroid efficiently disrupts the IL-36 and IL-23/IL-17 positive feedback loop, thus revealing a mechanism underlying the superior efficacy of calcipotriol and corticosteroid combination therapy for psoriasis.
Collapse
Affiliation(s)
- Beatriz Germán
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ruicheng Wei
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christina Martins
- INSERM U1035, BMGIC, Equipe Immunodermatologie ATIP-AVENIR, Hôpital Saint-André Service de Dermatologie, Université de Bordeaux, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Cornelia Gottwick
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julien Seneschal
- INSERM U1035, BMGIC, Equipe Immunodermatologie ATIP-AVENIR, Hôpital Saint-André Service de Dermatologie, Université de Bordeaux, France
| | - Katia Boniface
- INSERM U1035, BMGIC, Equipe Immunodermatologie ATIP-AVENIR, Hôpital Saint-André Service de Dermatologie, Université de Bordeaux, France
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
33
|
A steroid alkaloid derivative 02F04 upregulates thymic stromal lymphopoietin expression slowly and continuously through a novel Gq/11-ROCK-ERK1/2 signaling pathway in mouse keratinocytes. Cell Signal 2019; 57:58-64. [PMID: 30664940 DOI: 10.1016/j.cellsig.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/24/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), a master switch of allergic inflammation, plays an important role in the pathogenesis of allergic diseases. Although many compounds upregulate TSLP expression in vivo or in vitro, most of them are pollutants or toxicants. In the previous study, for the first time, we found that a steroid alkaloid derivative 02F04, which has a unique skeletal structure compared with other TSLP-inducing chemicals, significantly induced TSLP production in mouse keratinocytes. However, it is not investigated thoroughly that how 02F04 produces TSLP and why. In this study, we did a detailed investigation on the inducible effect and underlying molecular mechanism of 02F04 on TSLP production. We found that the peak time of TSLP mRNA level induced by 02F04 at 48 h led to a slow and continuous TSLP production in PAM212 cells. Besides, 02F04-induced TSLP production was significantly suppressed by inhibitors of Rho-associated protein kinase (ROCK), guanine nucleotide-binding protein subunit alpha q/11 (Gq/11) and extracellular signal-regulated kinase 1/2 (ERK1/2) at not only protein but also mRNA levels, and by siRNA-mediated knockdown of Gq or G11. This suggested that ROCK, Gq/11 and ERK1/2 signaling pathways were involved in 02F04-induced TSLP production. Increase in the level of p-ERK1/2 induced by 02F04 was suppressed by both inhibitors of ROCK and Gq/11, indicating that ROCK and Gq/11 molecules were located at the upstream of ERK1/2 to regulate 02F04-induced TSLP production. Gq/11 was located at the upstream of ROCK because the specific Gq/11 inhibitor of YM-254890 significantly reduced 02F04-induced actin stress fiber formation. Taken together, 02F04 upregulates a slow and continuous TSLP production through a novel Gq/11-ROCK-ERK1/2 signaling pathway. The thorough understanding the effect and mechanism of 02F04 on TSLP production is expected to supply it as a novel TSLP-regulating compound and a potential new tool for investigating the role of TSLP in allergic disorders.
Collapse
|
34
|
Jeong H, Shin JY, Kim MJ, Na J, Ju BG. Activation of Aryl Hydrocarbon Receptor Negatively Regulates Thymic Stromal Lymphopoietin Gene Expression via Protein Kinase Cδ-p300-NF-κB Pathway in Keratinocytes under Inflammatory Conditions. J Invest Dermatol 2018; 139:1098-1109. [PMID: 30503244 DOI: 10.1016/j.jid.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Epithelial-derived thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in several types of dermatitis. Recently, the anti-inflammatory effects of aryl hydrocarbon receptor (AhR) have been reported in inflamed skin. In this study, keratinocytes were stimulated with tumor necrosis factor-α or flagellin in combination with AhR ligands or antagonist. TSLP gene expression and recruitment of transcriptional regulator to TSLP gene promoter were determined. The effects of AhR activation were also studied in DNFB-induced dermatitis model. We found that AhR activation suppressed upregulation of TSLP expression in keratinocytes treated with tumor necrosis factor-α or flagellin. In addition, AhR activation induced protein kinase Cδ-mediated phosphorylation of p300 at serine 89, leading to decreased acetylation and DNA binding activity of NF-κB p65 to the TSLP gene promoter. We also found that AhR activation alleviates dermatitis induced by DNFB treatment. Protein kinase Cδ depletion by small interfering RNA abolished the beneficial effect of AhR activation on dermatitis. Our study suggests that AhR activation may help to reduce inflammation in the dermatitis via downregulation of TSLP expression.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Youn Shin
- Department of Life Science, Sogang University, Seoul, Korea
| | - Min-Jung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jungtae Na
- Department of Life Science, Sogang University, Seoul, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul, Korea.
| |
Collapse
|
35
|
TRP Channels as Drug Targets to Relieve Itch. Pharmaceuticals (Basel) 2018; 11:ph11040100. [PMID: 30301231 PMCID: PMC6316386 DOI: 10.3390/ph11040100] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although acute itch has a protective role by removing irritants to avoid further damage, chronic itch is debilitating, significantly impacting quality of life. Over the past two decades, a considerable amount of stimulating research has been carried out to delineate mechanisms of itch at the molecular, cellular, and circuit levels. There is growing evidence that transient receptor potential (TRP) channels play important roles in itch signaling. The purpose of this review is to summarize our current knowledge about the role of TRP channels in the generation of itch under both physiological and pathological conditions, thereby identifying them as potential drug targets for effective anti-itch therapies.
Collapse
|
36
|
Zhang Y, Hwang BJ, Liu Z, Li N, Lough K, Williams SE, Chen J, Burette SW, Diaz LA, Su MA, Xiao S, Liu Z. BP180 dysfunction triggers spontaneous skin inflammation in mice. Proc Natl Acad Sci U S A 2018; 115:6434-6439. [PMID: 29866844 PMCID: PMC6016813 DOI: 10.1073/pnas.1721805115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed ΔNC16A) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bin-Jin Hwang
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhen Liu
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Guangdong Center for Adverse Drug Reactions of Monitoring, 510000 Guangzhou, China
| | - Ning Li
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kendall Lough
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Scott E Williams
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jinbo Chen
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Wuhan No. 1 Hospital, The Fourth Affiliated Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Susan W Burette
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luis A Diaz
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Maureen A Su
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China;
| | - Zhi Liu
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
37
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
38
|
Lin SC, Cheng FY, Liu JJ, Ye YL. Expression and Regulation of Thymic Stromal Lymphopoietin and Thymic Stromal Lymphopoietin Receptor Heterocomplex in the Innate-Adaptive Immunity of Pediatric Asthma. Int J Mol Sci 2018; 19:ijms19041231. [PMID: 29670037 PMCID: PMC5979588 DOI: 10.3390/ijms19041231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting the airway, and it is characterized by a wheezing breathing sound, variable airflow obstruction and the presence of inflammatory cells in the submucosa of the bronchi. Viral infection, pollutants and sensitivity to aeroallergens damage the epithelium from childhood, which causes asthma. The pathogenesis of asthma includes pathways of innate stimulation by environmental microbes and irritant pathogens. Damaged epithelial cells produce thymic stromal lymphopoietin (TSLP) and stimulate myeloid dendritic cell maturation through the thymic stromal lymphopoietin receptor (TSLPR) heterocomplex. TSLP-activated myeloid dendritic cells promote naive CD4+ T cells to differentiate into T helper type 2 (Th2) phenotype CD4+ T cells. Re-exposure to allergens or environmental stimuli causes an adaptive immune response. TSLP-activated dendritic cells expressing the OX40 ligand (OX40L; CD252) trigger naive CD4+ T cells to differentiate into inflammatory Th2 effector cells secreting the cytokines interleukin-4, 5, 9, and 13 (IL-4, IL-5, IL-9 and IL-13), and the dendritic cells (DCs) promote the proliferation of allergen-specific Th2 memory cells. Allergen presentation by Th2 cells through its interaction with their receptors in the presence of major histocompatibility complex (MHC) class II on B cells and through costimulation involving CD40 and CD40L interactions results in immunoglobulin class switching from IgM to IgE. DCs and other blood cell subsets express the TSLPR heterocomplex. The regulatory mechanism of the TSLPR heterocomplex on these different cell subsets remains unclear. The TSLPR heterocomplex is composed of the IL-7Rα chain and TSLPR chain. Moreover, two isoforms of TSLP, short isoform TSLP (sfTSLP) and long isoform TSLP (lfTSLP), have roles in atopic and allergic development. Identifying and clarifying the regulation of TSLPR and IL-7Rα in pediatric asthma are still difficult, because the type of blood cell and the expression for each blood cell in different stages of atopic diseases are poorly understood. We believe that further integrated assessments of the regulation mechanism of the TSLP–TSLPR heterocomplex axis in vitro and in vivo can provide a faster and earlier diagnosis of pediatric asthma and promote the development of more effective preventive strategies at the onset of allergies.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Fang-Yi Cheng
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin County 63201, Taiwan.
| |
Collapse
|
39
|
Hatayama T, Segawa R, Mizuno N, Eguchi S, Akamatsu H, Fukuda M, Nakata F, Leonard WJ, Hiratsuka M, Hirasawa N. All- Trans Retinoic Acid Enhances Antibody Production by Inducing the Expression of Thymic Stromal Lymphopoietin Protein. THE JOURNAL OF IMMUNOLOGY 2018; 200:2670-2676. [DOI: 10.4049/jimmunol.1701276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Many classical vaccines contain whole pathogens and, thus, may occasionally induce adverse effects, such as inflammation. Vaccines containing purified rAgs resolved this problem, but, owing to their low antigenicity, they require adjuvants. Recently, the use of several cytokines, including thymic stromal lymphopoietin (TSLP), has been proposed for this purpose. However, it is difficult to use cytokines as vaccine adjuvants in clinical practice. In this study, we examined the effects of all-trans retinoic acid (atRA) on TSLP production and Ag-induced Ab production. Application of atRA onto the ear lobes of mice selectively induced TSLP production without inducing apparent inflammation. The effects appeared to be regulated via retinoic acid receptors γ and α. Treatment with atRA was observed to enhance OVA-induced specific Ab production; however, this effect was completely absent in TSLP receptor–knockout mice. An enhancement in Ab production was also observed when recombinant hemagglutinin was used as the Ag. In conclusion, atRA was an effective adjuvant through induction of TSLP production. Therefore, we propose that TSLP-inducing low m.w. compounds, such as atRA, may serve as effective adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Takahiro Hatayama
- *Graduate School of Pharmaceutical Science, Tohoku University, Miyagi 980-8578, Japan
| | - Ryosuke Segawa
- *Graduate School of Pharmaceutical Science, Tohoku University, Miyagi 980-8578, Japan
| | - Natsumi Mizuno
- *Graduate School of Pharmaceutical Science, Tohoku University, Miyagi 980-8578, Japan
| | | | | | | | | | - Warren J. Leonard
- ‡Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Masahiro Hiratsuka
- *Graduate School of Pharmaceutical Science, Tohoku University, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- *Graduate School of Pharmaceutical Science, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
40
|
Hiramoto K, Yamate Y, Yokoyama S. Ultraviolet A Eye Irradiation Ameliorates Atopic Dermatitis via p53 and Clock Gene Proteins in NC/Nga Mice. Photochem Photobiol 2018; 94:378-383. [PMID: 29105092 DOI: 10.1111/php.12853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
Atopic dermatitis (AD) is a widespread chronic skin condition that severely affects quality of life and can lead to more serious complications. Although ultraviolet (UV)A eye irradiation can exert various effects on the skin, it is unknown whether UVA can affect AD. To investigate potential associations, we used an NC/Nga mouse model of AD to study the effects of UVA eye irradiation. The eyes of mice were irradiated with a UVA dose of 100 kJ m-2 using a FL20SBLB-A lamp. Our histological data demonstrated that AD symptoms could be ameliorated by UVA eye irradiation. We also observed an increase in the levels of adrenocorticotropic hormone (ACTH), p53 and retinoid X receptor α (RXRα) in mice with UVA-irradiated eyes. In contrast, the levels of thymic stromal lymphopoietin (TSLP), period 2 (PER2) and differentiated embryo chondrocytes 1 (DEC1) protein were decreased in mice treated with UVA irradiation. Furthermore, UVA eye-irradiated mice exhibited reduced DEC1 and RXRα colocalization compared with nonirradiated mice. These results suggested that p53 and various clock gene proteins played important roles in the amelioration of AD symptoms observed after UVA eye irradiation; this technique may have therapeutic applications in AD.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Satoshi Yokoyama
- Department of Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
41
|
Weng Y, Mizuno N, Dong J, Segawa R, Yonezawa T, Cha BY, Woo JT, Moriya T, Hiratsuka M, Hirasawa N. Induction of thymic stromal lymphopoietin by a steroid alkaloid derivative in mouse keratinocytes. Int Immunopharmacol 2017; 55:28-37. [PMID: 29220720 DOI: 10.1016/j.intimp.2017.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 01/16/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) plays critical roles in inducing and exacerbating allergic diseases. Chemical compounds that induce TSLP production can enhance sensitization to antigens and exacerbate allergic inflammation. Hence, identifying such chemicals will be important to prevent an increase in allergic diseases. In the present study, we found, for the first time, that a steroid alkaloid derivative, code no. 02F04, concentration and time dependently induced mRNA expression and production of TSLP in a mouse keratinocyte cell line, PAM212. In particular, the activity of 02F04 was selective to TSLP. As an analogue of the liver X receptor (LXR) endogenous ligand, 02F04 rapidly increased ATP-binding cassette transporter A1 (ABCA1) expression by regulating the nuclear receptor of LXR. However, instead of being inhibited by the LXR antagonist, 02F04-induced TSLP production was delayed and markedly suppressed by inhibitors of phospholipase C (PLC), pan-protein kinase C (PKC), PKCδ, Rho-associated protein kinase (ROCK), extracellular signal-regulated kinase (ERK) 1/2, and IκΒ kinase 2 (IKK2). Treatment with 02F04 caused the formation of F-actin filaments surrounding the nucleus of PAM212 cells, which then disappeared following addition of ROCK inhibitor. 02F04 also induced phosphorylation of ERK1/2 from 2h after treatment, with a maximum at 24h, and increased nuclear factor-κB (NF-κB) promoter activity by 1.3-fold. Taken together, these results indicate that 02F04-induced TSLP production is regulated via distinct signal transduction pathways, including PLC, PKC, ROCK, ERK1/2, and NF-κB but not nuclear receptors. 02F04, with a unique skeletal structure in inducing TSLP production, can represent a potential new tool for investigating the role of TSLP in allergic diseases.
Collapse
Affiliation(s)
- Yan Weng
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Jiangxu Dong
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Takayuki Yonezawa
- Research Institute for Biological Functions, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Byung Yoon Cha
- Research Institute for Biological Functions, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Je-Tae Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Takahiro Moriya
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
| |
Collapse
|
42
|
Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 2017; 138:1253-1264. [PMID: 27817797 DOI: 10.1016/j.jaci.2016.09.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022]
Abstract
In the last decade, the full picture of the role of innate lymphoid cells (ILCs) has been gradually revealed. ILCs are classified into 3 groups based on their transcription factors and cytokine production patterns, which mirror helper T-cell subsets. Unlike T cells and B cells, ILCs do not have antigen receptors. They promptly respond to multiple tissue-derived factors, such as cytokines and alarmins, and produce multiple proinflammatory and immunoregulatory cytokines. It has been reported that ILC-derived cytokines are important for the induction and regulation of inflammation. Accumulating evidence suggests that ILCs play substantial roles in protection against infection and the pathogenesis of inflammatory diseases, such as allergic diseases and autoimmune diseases. Different ILC subsets localize in distinct tissue/organ niches and receive tissue-derived signals on different types of inflammation, which allows them to acquire diverse phenotypes with specialized effector capacities. In this review we highlight the roles of ILCs in a variety of organs, such as the airway, skin, and gastrointestinal tract, in the context of allergic and nonallergic inflammation.
Collapse
Affiliation(s)
- Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
43
|
Mizuno N, Abe K, Morishita Y, Yamashita S, Segawa R, Dong J, Moriya T, Hiratsuka M, Hirasawa N. Pentanoic acid induces thymic stromal lymphopoietin production through G q/11 and Rho-associated protein kinase signaling pathway in keratinocytes. Int Immunopharmacol 2017; 50:216-223. [PMID: 28683366 DOI: 10.1016/j.intimp.2017.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/23/2017] [Accepted: 06/22/2017] [Indexed: 01/22/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) plays an important role in allergic skin inflammation. Short-chain fatty acids (SCFAs), including pentanoic acid, are products of bacterial metabolism and are associated with allergic skin disorders. However, whether SCFAs induce TSLP production is still unclear. In this study, we evaluated the effect of SCFAs on TSLP production and found that pentanoic acid was the most efficacious of the tested SCFAs. The Gq/11 inhibitor YM-254890 and the Rho-associated protein kinase (ROCK) inhibitor Y-27632 inhibited pentanoic acid-induced TSLP production, as did transfection with Gq/11 siRNA. These results suggested that pentanoic acid-induced TSLP production was mediated by Gq/11 and ROCK, providing insights into a novel TSLP production pathway in keratinocytes. The novel mechanism of TSLP production is expected to support the development of TSLP-regulating approaches in allergic skin disorders.
Collapse
Affiliation(s)
- Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Koudai Abe
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Yukari Morishita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Saori Yamashita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Jiangxu Dong
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Takahiro Moriya
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
| |
Collapse
|
44
|
Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 138:336-49. [PMID: 27497276 DOI: 10.1016/j.jaci.2016.06.010] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti-IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system players. These targeted molecules can be expressed on or drive the cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment.
Collapse
Affiliation(s)
- Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.
| | - Jean-Pierre Allam
- Department of Dermatology and Allergy, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Stefanie Gilles
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, and the Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfram Hoetzenecker
- Department of Dermatology/Allergology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Edward Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Allergy Unit, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Swiss Institute for Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
45
|
Yamada Y, Ueda Y, Nakamura A, Kanayama S, Tamura R, Hashimoto K, Matsumoto T, Ishii R. Immediate-type allergic and protease-mediated reactions are involved in scratching behaviour induced by topical application of Dermatophagoides farinae
extract in NC/Nga mice. Exp Dermatol 2017; 27:418-426. [DOI: 10.1111/exd.13322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Yoshihito Yamada
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Yuhki Ueda
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Aki Nakamura
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Shoji Kanayama
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Rie Tamura
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Kei Hashimoto
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Tatsumi Matsumoto
- Drug Development Research Laboratories; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| | - Ritsuko Ishii
- Strategic Research Planning & Management Department; Kyoto R&D Center; Maruho Co., Ltd.; Kyoto Japan
| |
Collapse
|
46
|
Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S, Zhu Z, Zheng T. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2543-2555. [PMID: 28228560 PMCID: PMC5360537 DOI: 10.4049/jimmunol.1600126] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022]
Abstract
Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show in the present study that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, downregulation of epidermal differentiation complex genes, and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially upregulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP+ cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (thymic stromal lymphopoietin and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced thymic stromal lymphopoietin but it also increased the expression of IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway.
Collapse
Affiliation(s)
- Hongfei Lou
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | - Jingning Lu
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Eun Byul Choi
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Min Hee Oh
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Mingeum Jeong
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Sara Barmettler
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Zhou Zhu
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Tao Zheng
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| |
Collapse
|
47
|
Ganti KP, Mukherji A, Surjit M, Li M, Chambon P. Similarities and differences in the transcriptional control of expression of the mouse TSLP gene in skin epidermis and intestinal epithelium. Proc Natl Acad Sci U S A 2017; 114:E951-E960. [PMID: 28115699 PMCID: PMC5307459 DOI: 10.1073/pnas.1620697114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously reported that selective ablation of the nuclear receptors retinoid X receptor (RXR)-α and RXR-β in mouse epidermal keratinocytes (RXR-αβep-/-) or a topical application of active vitamin D3 (VD3) and/or all-trans retinoic acid (RA) on wild-type mouse skin induces a human atopic dermatitis-like phenotype that is triggered by an increased expression of the thymic stromal lymphopoietin (TSLP) proinflammatory cytokine. We demonstrate here that in epidermal keratinocytes, unliganded heterodimers of vitamin D receptor (VDR)/RXR-α and retinoic acid receptor-γ (RAR-γ)/RXR-β are bound as repressing complexes to their cognate DNA-binding sequence(s) (DBS) in the TSLP promoter regulatory region. Treatments with either an agonistic VD3 analog or RA dissociate the repressing complexes and recruit coactivator complexes and RNA polymerase II, thereby inducing transcription. Furthermore, we identified several functional NF-κB, activator protein 1 (AP1), STAT, and Smad DBS in the TSLP promoter region. Interestingly, many of these transcription factors and DBS present in the TSLP promoter region are differentially used in intestinal epithelial cell(s) (IEC). Collectively, our study reveals that, in vivo within their heterodimers, the RXR and RAR isotypes are not functionally redundant, and it also unveils the combinatorial mechanisms involved in the tissue-selective regulation of TSLP transcription in epidermal keratinocytes and IEC.
Collapse
Affiliation(s)
- Krishna Priya Ganti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U964), Illkirch 67404, France
- University of Strasbourg Institute for Advanced Study, F-67083 Strasbourg, France
- Collège de France, 75005 Paris, France
| | - Atish Mukherji
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U964), Illkirch 67404, France
- University of Strasbourg Institute for Advanced Study, F-67083 Strasbourg, France
- Collège de France, 75005 Paris, France
| | - Milan Surjit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U964), Illkirch 67404, France
- University of Strasbourg Institute for Advanced Study, F-67083 Strasbourg, France
- Collège de France, 75005 Paris, France
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad-121001, India
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U964), Illkirch 67404, France
- University of Strasbourg Institute for Advanced Study, F-67083 Strasbourg, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U964), Illkirch 67404, France;
- University of Strasbourg Institute for Advanced Study, F-67083 Strasbourg, France
- Collège de France, 75005 Paris, France
| |
Collapse
|
48
|
Kashiwagi M, Hosoi J, Lai JF, Brissette J, Ziegler SF, Morgan BA, Georgopoulos K. Direct control of regulatory T cells by keratinocytes. Nat Immunol 2017; 18:334-343. [PMID: 28092372 PMCID: PMC5310986 DOI: 10.1038/ni.3661] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Environmental challenges to epithelial cells trigger gene expression changes that elicit context-appropriate immune responses. Here we show that the chromatin remodeler Mi-2β controls epidermal homeostasis by regulating genes involved in keratinocyte and immune-cell activation to maintain an inactive state. Mi-2β depletion caused rapid deployment of both a pro-inflammatory and an immunosuppressive response in the skin. A key target of Mi-2β in keratinocytes was the pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP). Loss of TSLP receptor (TSLPR) signaling specifically in regulatory T (Treg) cells prevented their activation and permitted rapid progression from a skin pro-inflammatory response to a lethal systemic condition. Thus, in addition to their well-characterized role in pro-inflammatory responses, keratinocytes also directly support immune-suppressive responses that are critical for re-establishing organismal homeostasis.
Collapse
Affiliation(s)
- Mariko Kashiwagi
- Cuteneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Junichi Hosoi
- Cuteneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jen-Feng Lai
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Janice Brissette
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Bruce A Morgan
- Cuteneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Katia Georgopoulos
- Cuteneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
49
|
Effects of Ambient Fine Particles PM 2.5 on Human HaCaT Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010072. [PMID: 28085100 PMCID: PMC5295323 DOI: 10.3390/ijerph14010072] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
The current study was conducted to observe the effects of fine particulate matter (PM2.5) on human keratinocyte cell line (HaCaT) cells. The potential mechanism linking PM2.5 and skin was explored. HaCaT cells were cultured and then accessed in plate with PM2.5. Cell viability was tested by Cell Counting Kit-8. The mRNA and protein expression of Filaggrin, Loricrin, Involucrin, and Repetin were analyzed. The levels of Granulocyte-macrophage Colony Stimulating Factor, Thymic Stromal Lymphopoietin, Tumor Necrosis Factor-α, Interleukin-1α, and Interleukin-8 were detected in the supernatant of the HaCaT cell with enzyme-linked immunosorbent assay kits. Cell viability decreased with the increase in PM2.5. Compared with the control group, the protein expression of Filaggrin, Repetin, Involucrin, and Loricrin showed different expression patterns in PM2.5 treatment groups. The level of Tumor Necrosis Factor-α, Thymic Stromal Lymphopoietin, Interleukin-1α, and Interleukin-8 significantly increased in the cells treated with PM2.5. Ambient PM2.5 may increase the risk of eczema and other skin diseases. The relative mechanism may be associated with the impairment of the skin barrier and the elevation of inflammatory responses.
Collapse
|
50
|
The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol Int 2017; 66:22-30. [PMID: 28012781 DOI: 10.1016/j.alit.2016.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022] Open
Abstract
Itch is an unpleasant cutaneous sensation that can arise following insect bites, exposure to plant ingredients, and some diseases. Itch can also have idiopathic causes. Itch sensations are thought to protect against external insults and toxic substances. Although itch is not directly lethal, chronic and long lasting itch in certain diseases can worsen quality of life. Therefore, the mechanisms responsible for chronic itch require careful investigation. There is a significant amount of basic research concerning itch, and the effect of various itch mediators on primary sensory neurons have been studied. Interestingly, many mediators of itch involve signaling related to transient receptor potential (TRP) channels. TRP channels, especially thermosensitive TRP channels, are expressed by primary sensory neurons and skin keratinocytes, which receive multimodal stimuli, including those that cause itch sensations. Here we review the molecular and cellular mechanisms of itch and the involvement of TRP channels in mediating itch sensations.
Collapse
|