1
|
d'Escamard V, Kadian-Dodov D, Ma L, Lu S, King A, Xu Y, Peng S, V Gangula B, Zhou Y, Thomas A, Michelis KC, Bander E, Bouchareb R, Georges A, Nomura-Kitabayashi A, Wiener RJ, Costa KD, Chepurko E, Chepurko V, Fava M, Barwari T, Anyanwu A, Filsoufi F, Florman S, Bouatia-Naji N, Schmidt LE, Mayr M, Katz MG, Hao K, Weiser-Evans MCM, Björkegren JLM, Olin JW, Kovacic JC. Integrative gene regulatory network analysis discloses key driver genes of fibromuscular dysplasia. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1098-1122. [PMID: 39271816 DOI: 10.1038/s44161-024-00533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
Fibromuscular dysplasia (FMD) is a poorly understood disease affecting 3-5% of adult females. The pathobiology of FMD involves arterial lesions of stenosis, dissection, tortuosity, dilation and aneurysm, which can lead to hypertension, stroke, myocardial infarction and even death. Currently, there are no animal models for FMD and few insights as to its pathobiology. In this study, by integrating DNA genotype and RNA sequence data from primary fibroblasts of 83 patients with FMD and 71 matched healthy controls, we inferred 18 gene regulatory co-expression networks, four of which were found to act together as an FMD-associated supernetwork in the arterial wall. After in vivo perturbation of this co-expression supernetwork by selective knockout of a top network key driver, mice developed arterial dilation, a hallmark of FMD. Molecular studies indicated that this supernetwork governs multiple aspects of vascular cell physiology and functionality, including collagen/matrix production. These studies illuminate the complex causal mechanisms of FMD and suggest a potential therapeutic avenue for this challenging disease.
Collapse
Affiliation(s)
- Valentina d'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lijiang Ma
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annette King
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shouneng Peng
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhargravi V Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Zhou
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison Thomas
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine C Michelis
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emir Bander
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rihab Bouchareb
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrien Georges
- INSERM, UMR970 Paris Cardiovascular Research Center (PARCC), Paris, France
- Paris-Descartes University, Sorbonne Paris Cité, Paris, France
| | - Aya Nomura-Kitabayashi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marika Fava
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Temo Barwari
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Anelechi Anyanwu
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farzan Filsoufi
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander Florman
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nabila Bouatia-Naji
- INSERM, UMR970 Paris Cardiovascular Research Center (PARCC), Paris, France
- Paris-Descartes University, Sorbonne Paris Cité, Paris, France
| | - Lukas E Schmidt
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Manuel Mayr
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Michael G Katz
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Integrated Physiology PhD Program, Anschutz Medical Campus, Aurora, CO, USA
| | - Johan L M Björkegren
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Mao C, Li S, Che J, Liu D, Mao X, Rao H. The ubiquitin ligase UBR4 and the deubiquitylase USP5 modulate the stability of DNA mismatch repair protein MLH1. J Biol Chem 2024; 300:107592. [PMID: 39032648 PMCID: PMC11375253 DOI: 10.1016/j.jbc.2024.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
MLH1 plays a critical role in DNA mismatch repair and genome maintenance. MLH1 deficiency promotes cancer development and progression, but the mechanism underlying MLH1 regulation remains enigmatic. In this study, we demonstrated that MLH1 protein is degraded by the ubiquitin-proteasome system and have identified vital cis-elements and trans-factors involved in MLH1 turnover. We found that the region encompassing the amino acids 516 to 650 is crucial for MLH1 degradation. The mismatch repair protein PMS2 may shield MLH1 from degradation as it binds to the MLH1 segment key to its turnover. Furthermore, we have identified the E3 ubiquitin ligase UBR4 and the deubiquitylase USP5, which oppositely modulate MLH1 stability. In consistence, UBR4 or USP5 deficiency affects the cellular response to nucleotide analog 6-TG, supporting their roles in regulating mismatch repair. Our study has revealed important insights into the regulatory mechanisms underlying MLH1 proteolysis, critical to DNA mismatch repair related diseases.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siqi Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun Che
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, Guangdong, China; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Liu Z, Sun P, Li X, Xiao W, Pi L, Liang YK. BIG coordinates auxin and SHORT ROOT to promote asymmetric stem cell divisions in Arabidopsis roots. PLANT CELL REPORTS 2024; 43:188. [PMID: 38960994 DOI: 10.1007/s00299-024-03274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
KEY MESSAGE BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Xiao
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
4
|
Barnsby-Greer L, Mabbitt PD, Dery MA, Squair DR, Wood NT, Lamoliatte F, Lange SM, Virdee S. UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4. Nat Struct Mol Biol 2024; 31:351-363. [PMID: 38182926 PMCID: PMC10873205 DOI: 10.1038/s41594-023-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.
Collapse
Affiliation(s)
- Lucy Barnsby-Greer
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Peter D Mabbitt
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
- Scion, Rotorua, New Zealand
| | - Marc-Andre Dery
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK.
| |
Collapse
|
5
|
Haakonsen DL, Heider M, Ingersoll AJ, Vodehnal K, Witus SR, Uenaka T, Wernig M, Rapé M. Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature 2024; 626:874-880. [PMID: 38297121 PMCID: PMC10881396 DOI: 10.1038/s41586-023-06985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.
Collapse
Affiliation(s)
- Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Heider
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Andrew J Ingersoll
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kayla Vodehnal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel R Witus
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Takeshi Uenaka
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Modrego A, Pasternak T, Omary M, Albacete A, Cano A, Pérez-Pérez JM, Efroni I. Mapping of the Classical Mutation rosette Highlights a Role for Calcium in Wound-Induced Rooting. PLANT & CELL PHYSIOLOGY 2023; 64:152-164. [PMID: 36398993 DOI: 10.1093/pcp/pcac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Removal of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots. ro mutants were severely inhibited in formation of wound-induced roots (WiRs) and had reduced auxin transport rates. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in regulating auxin transport and calcium homeostasis. We show that exogenous calcium inhibits WiR formation in tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin indole-3-acetic-acid but not of 2,4-dichlorophenoxyacetic acid, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN-FORMED1 (PIN1) was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that, like its mammalian ortholog, it is associated with the endoplasmic reticulum. Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintains auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.
Collapse
Affiliation(s)
- Abelardo Modrego
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202, Spain
| | - Moutasem Omary
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Murcia 30100, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia 30100, Spain
| | | | - Idan Efroni
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Chen M, Zhao J, Ding X, Qin Y, Wu X, Li X, Wang L, Jiang G. Ketogenic diet and calorie-restricted diet attenuate ischemic brain injury via UBR4 and downstream CamkⅡ/TAK1/JNK signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
BIG Modulates Stem Cell Niche and Meristem Development via SCR/SHR Pathway in Arabidopsis Roots. Int J Mol Sci 2022; 23:ijms23126784. [PMID: 35743225 PMCID: PMC9224481 DOI: 10.3390/ijms23126784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/18/2022] Open
Abstract
BIG, a regulator of polar auxin transport, is necessary to regulate the growth and development of Arabidopsis. Although mutations in the BIG gene cause severe root developmental defects, the exact mechanism remains unclear. Here, we report that disruption of the BIG gene resulted in decreased quiescent center (QC) activity and columella cell numbers, which was accompanied by the downregulation of WUSCHEL-RELATED HOMEOBOX5 (WOX5) gene expression. BIG affected auxin distribution by regulating the expression of PIN-FORMED proteins (PINs), but the root morphological defects of big mutants could not be rescued solely by increasing auxin transport. Although the loss of BIG gene function resulted in decreased expression of the PLT1 and PLT2 genes, genetic interaction assays indicate that this is not the main reason for the root morphological defects of big mutants. Furthermore, genetic interaction assays suggest that BIG affects the stem cell niche (SCN) activity through the SCRSCARECROW (SCR)/SHORT ROOT (SHR) pathway and BIG disruption reduces the expression of SCR and SHR genes. In conclusion, our findings reveal that the BIG gene maintains root meristem activity and SCN integrity mainly through the SCR/SHR pathway.
Collapse
|
9
|
UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nat Commun 2022; 13:1594. [PMID: 35332162 PMCID: PMC8948264 DOI: 10.1038/s41467-022-29244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/02/2022] [Indexed: 11/08/2022] Open
Abstract
Ubiquitin ligases control the degradation of core clock proteins to govern the speed and resetting properties of the circadian pacemaker. However, few studies have addressed their potential to regulate other cellular events within clock neurons beyond clock protein turnover. Here, we report that the ubiquitin ligase, UBR4/POE, strengthens the central pacemaker by facilitating neuropeptide trafficking in clock neurons and promoting network synchrony. Ubr4-deficient mice are resistant to jetlag, whereas poe knockdown flies are prone to arrhythmicity, behaviors reflective of the reduced axonal trafficking of circadian neuropeptides. At the cellular level, Ubr4 ablation impairs the export of secreted proteins from the Golgi apparatus by reducing the expression of Coronin 7, which is required for budding of Golgi-derived transport vesicles. In summary, UBR4/POE fulfills a conserved and unexpected role in the vesicular trafficking of neuropeptides, a function that has important implications for circadian clock synchrony and circuit-level signal processing. Although ubiquitin ligases are known to control clock protein degradation, their other roles in clock neurons are unclear. Here the authors report that UBR4 promotes export of neuropeptides from the Golgi for axonal trafficking, which is important for circadian clock synchrony in mice and flies.
Collapse
|
10
|
Protein expression reveals a molecular sexual identity of avian primordial germ cells at pre-gonadal stages. Sci Rep 2021; 11:19236. [PMID: 34584135 PMCID: PMC8478952 DOI: 10.1038/s41598-021-98454-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022] Open
Abstract
In poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.
Collapse
|
11
|
Almasy KM, Davies JP, Plate L. Comparative Host Interactomes of the SARS-CoV-2 Nonstructural Protein 3 and Human Coronavirus Homologs. Mol Cell Proteomics 2021; 20:100120. [PMID: 34186245 PMCID: PMC8236078 DOI: 10.1016/j.mcpro.2021.100120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Katherine M Almasy
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan P Davies
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
13
|
Almasy KM, Davies JP, Plate L. Comparative host interactomes of the SARS-CoV-2 nonstructural protein 3 and human coronavirus homologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.08.434440. [PMID: 33758849 PMCID: PMC7987008 DOI: 10.1101/2021.03.08.434440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, non-structural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) dataset for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance nuclear protein important for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Katherine M. Almasy
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Rasi Bonab F, Baghbanzadeh A, Ghaseminia M, Bolandi N, Mokhtarzadeh A, Amini M, Dadashzadeh K, Hajiasgharzadeh K, Baradaran B, Bannazadeh Baghi H. Molecular pathways in the development of HPV-induced cervical cancer. EXCLI JOURNAL 2021; 20:320-337. [PMID: 33746665 PMCID: PMC7975633 DOI: 10.17179/excli2021-3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Recently, human papillomavirus (HPV) has gained considerable attention in cervical cancer research studies. It is one of the most important sexually transmitted diseases that can affect 160 to 289 out of 10000 persons every year. Due to the infectious nature of this virus, HPV can be considered a serious threat. The knowledge of viral structure, especially for viral oncoproteins like E6, E7, and their role in causing cancer is very important. This virus has different paths (PI3K/Akt, Wnt/β-catenin, ERK/MAPK, and JAK/STAT) that are involved in the transmission of signaling paths through active molecules like MEK (pMEK), ERK (pERK), and Akt (pAkt). It's eventually through these paths that cancer is developed. Precise knowledge of these paths and their signals give us the prognosis to adopt appropriate goals for prevention and control of these series of cancer.
Collapse
Affiliation(s)
- Farnaz Rasi Bonab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Ghaseminia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kianoosh Dadashzadeh
- Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Primary human chondrocytes respond to compression with phosphoproteomic signatures that include microtubule activation. J Biomech 2019; 97:109367. [PMID: 31607375 DOI: 10.1016/j.jbiomech.2019.109367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
Chondrocytes are responsible for maintaining the cartilage that helps joints bear load and move smoothly. These cells typically respond to physiological compression with pathways consistent with matrix synthesis, and chondrocyte mechanotransduction is essential for homeostasis. In osteoarthritis (OA), chondrocyte mechanotransduction appears to be dysregulated, yet the mechanisms remain poorly understood. The objective of this study is to document the phosphoproteomic responses of primary osteoarthritic chondrocytes to physiological sinusoidal compression. We show that OA chondrocytes respond to physiological compression by first activating proteins consistent with cytoskeletal remodeling and decreased transcription, and then later activating proteins for transcription. These results show that several microtubule-related proteins respond to compression. Our results demonstrate that compression is a relevant physiological stimulus for osteoarthritic chondrocytes. Future analyses may build on these results to find differences in compression-induced phosphoproteins between normal and OA cells that lead to druggable targets to restore homeostasis to diseased joints.
Collapse
|
16
|
Phillips L, Gill AJ, Baxter RC. Novel Prognostic Markers in Triple-Negative Breast Cancer Discovered by MALDI-Mass Spectrometry Imaging. Front Oncol 2019; 9:379. [PMID: 31139569 PMCID: PMC6527753 DOI: 10.3389/fonc.2019.00379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
There are no widely-accepted prognostic markers currently available to predict outcomes in patients with triple-negative breast cancer (TNBC), and no targeted therapies with confirmed benefit. We have used MALDI mass spectrometry imaging (MSI) of tryptic peptides to compare regions of cancer and benign tissue in 10 formalin-fixed, paraffin-embedded sections of TNBC tumors. Proteins were identified by reference to a peptide library constructed by LC-MALDI-MS/MS analyses of the same tissues. The prognostic significance of proteins that distinguished between cancer and benign regions was estimated by Kaplan-Meier analysis of their gene expression from public databases. Among peptides that distinguished between cancer and benign tissue in at least 3 tissues with a ROC area under the curve >0.7, 14 represented proteins identified from the reference library, including proteins not previously associated with breast cancer. Initial network analysis using the STRING database showed no obvious functional relationships except among collagen subunits COL1A1, COL1A2, and COL63A, but manual curation, including the addition of EGFR to the analysis, revealed a unique network connecting 10 of the 14 proteins. Kaplan-Meier survival analysis to examine the relationship between tumor expression of genes encoding the 14 proteins, and recurrence-free survival (RFS) in patients with basal-like TNBC showed that, compared to low expression, high expression of nine of the genes was associated with significantly worse RFS, most with hazard ratios >2. In contrast, in estrogen receptor-positive tumors, high expression of these genes showed only low, or no, association with worse RFS. These proteins are proposed as putative markers of RFS in TNBC, and some may also be considered as possible targets for future therapies.
Collapse
Affiliation(s)
- Leo Phillips
- Hormones and Cancer Group, University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Robert C Baxter
- Hormones and Cancer Group, University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
17
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
18
|
PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019; 116:7033-7042. [PMID: 30894485 DOI: 10.1073/pnas.1819534116] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV+ but not HPV- cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.
Collapse
|
19
|
Cheng R, Gong L, Li Z, Liang YK. Rice BIG gene is required for seedling viability. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:39-50. [PMID: 30530202 DOI: 10.1016/j.jplph.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 05/07/2023]
Abstract
Arabidopsis BIG (AtBIG) gene encodes an enormous protein that is required for auxin transport. Loss of AtBIG function not only profoundly changes plant architecture but also alters plant adaptability to environmental stimuli. A putative homolog of AtBIG exists in the rice genome, but no function has been ascribed to it. In this study, we focus on the characterization of the gene structure and function of OsBIG. Sequence and phylogenetic analysis shows that the homologs of OsBIG have high amino acid conservation in several domains across species. Transgenic rice plants in which the expression of OsBIG was disrupted through the CRISPR/Cas9 system-mediated genome editing were used for phenotypic analysis. The Osbig/- plants show high levels of cell death, enhanced electrolyte leakage and membrane lipid peroxidation, and reduced chlorophyll content, which likely accounted for the seedling lethality. Moreover, gene expression between Osbig/- and wild-type plants analyzed by RNA-seq indicates that a number of metabolic and hormonal pathways including ribosome, DNA replication, photosynthesis, and chlorophyll metabolism were significantly perturbed by OsBIG deficiency. In summary, OsBIG gene is integral to the normal growth and development in rice.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhengzheng Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
20
|
Kim ST, Lee YJ, Tasaki T, Mun SR, Hwang J, Kang MJ, Ganipisetti S, Yi EC, Kim BY, Kwon YT. The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome. J Cell Sci 2018; 131:jcs.217646. [PMID: 30111582 DOI: 10.1242/jcs.217646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal residues of proteins act as N-degrons. These degrons are recognized by N-recognins, facilitating substrate degradation via the ubiquitin (Ub) proteasome system (UPS) or autophagy. We have previously identified a set of N-recognins [UBR1, UBR2, UBR4 (also known as p600) and UBR5 (also known as EDD)] that bind N-degrons through their UBR boxes to promote proteolysis by the proteasome. Here, we show that the 570 kDa N-recognin UBR4 is associated with maturing endosomes through an interaction with Ca2+-bound calmodulin. The endosomal recruitment of UBR4 is essential for the biogenesis of early endosomes (EEs) and endosome-related processes, such as the trafficking of endocytosed protein cargos and degradation of extracellular cargos by endosomal hydrolases. In mouse embryos, UBR4 marks and plays a role in the endosome-lysosome pathway that mediates the heterophagic proteolysis of endocytosed maternal proteins into amino acids. By screening 9591 drugs through the DrugBank database, we identify picolinic acid as a putative ligand for UBR4 that inhibits the biogenesis of EEs. Our results suggest that UBR4 is an essential modulator in the endosome-lysosome system.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Takafumi Tasaki
- Division of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan.,Department of Medical Zoology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joonsung Hwang
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, Republic of Korea
| | - Srinivasrao Ganipisetti
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
21
|
Hearn TJ, Marti Ruiz MC, Abdul-Awal SM, Wimalasekera R, Stanton CR, Haydon MJ, Theodoulou FL, Hannah MA, Webb AAR. BIG Regulates Dynamic Adjustment of Circadian Period in Arabidopsis thaliana. PLANT PHYSIOLOGY 2018; 178:358-371. [PMID: 29997180 PMCID: PMC6130016 DOI: 10.1104/pp.18.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/28/2018] [Indexed: 05/26/2023]
Abstract
Circadian clocks drive rhythms with a period near 24 h, but the molecular basis of the regulation of the period of the circadian clockis poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis (Arabidopsis thaliana), with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronized to rhythmic signals such as light and dark cycles as well as changes in internal metabolism. To identify the molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function that was shown previously to play a role in light signaling. We found that son1 has an early entrained phase, suggesting that the dynamic alteration of circadian period contributes to the correct timing of biological events. Our data provide insight into how the dynamic period adjustment of circadian oscillators contributes to establishing a correct phase relationship with the environment and show that BIG is involved in this process.
Collapse
Affiliation(s)
- Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Maria C Marti Ruiz
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - S M Abdul-Awal
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Rinukshi Wimalasekera
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Camilla R Stanton
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
22
|
Kim ST, Lee YJ, Tasaki T, Hwang J, Kang MJ, Yi EC, Kim BY, Kwon YT. The N-recognin UBR4 of the N-end rule pathway is required for neurogenesis and homeostasis of cell surface proteins. PLoS One 2018; 13:e0202260. [PMID: 30157281 PMCID: PMC6114712 DOI: 10.1371/journal.pone.0202260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal amino acids of proteins act as a class of degrons (N-degrons) that determine the half-lives of proteins. We have previously identified a family of mammals N-recognins (termed UBR1, UBR2, UBR4/p600, and UBR5/EDD) whose conserved UBR boxes bind N-degrons to facilitate substrate ubiquitination and proteasomal degradation via the ubiquitin-proteasome system (UPS). Amongst these N-recognins, UBR1 and UBR2 mediate ubiquitination and proteolysis of short-lived regulators and misfolded proteins. Here, we characterized the null phenotypes of UBR4-deficient mice in which the UBR box of UBR4 was deleted. We show that the mutant mice die around embryonic days 9.5–10.5 (E9.5–E10.5) associated with abnormalities in various developmental processes such as neurogenesis and cardiovascular development. These developmental defects are significantly attributed to the inability to maintain cell integrity and adhesion, which significantly correlates to the severity of null phenotypes. UBR4-loss induces the depletion of many, but not all, proteins from the plasma membrane, suggesting that UBR4 is involved in proteome-wide turnover of cell surface proteins. Indeed, UBR4 is associated with and required to generate the multivesicular body (MVB) which transiently store endocytosed cell surface proteins before their targeting to autophagosomes and subsequently lysosomes. Our results suggest that the N-recognin UBR4 plays a role in the homeostasis of cell surface proteins and, thus, cell adhesion and integrity.
Collapse
Affiliation(s)
- Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Takafumi Tasaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Joonsung Hwang
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eugene C. Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
- * E-mail: (YTK); (BYK)
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YTK); (BYK)
| |
Collapse
|
23
|
Adams KR, Chauhan S, Patel DB, Clements VK, Wang Y, Jay SM, Edwards NJ, Ostrand-Rosenberg S, Fenselau C. Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles. J Proteome Res 2018; 17:315-324. [PMID: 29061044 PMCID: PMC6137330 DOI: 10.1021/acs.jproteome.7b00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.
Collapse
Affiliation(s)
- Katherine R. Adams
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sitara Chauhan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Divya B. Patel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Virginia K. Clements
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Yan Wang
- Proteomic Core Facility, College of Mathematics and Natural Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nathan J. Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington D.C. 20057, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Maffioli E, Schulte C, Nonnis S, Grassi Scalvini F, Piazzoni C, Lenardi C, Negri A, Milani P, Tedeschi G. Proteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells. Front Cell Neurosci 2018; 11:417. [PMID: 29354032 PMCID: PMC5758595 DOI: 10.3389/fncel.2017.00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be “interpreted” by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD) allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography-sensitive mechanotransductive signaling hubs participating in neuronal differentiation were dissected.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Carsten Schulte
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| |
Collapse
|
25
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Abstract
The major transformation activity of the high-risk human papillomaviruses (HPV) is associated with the E7 oncoprotein. The interaction of HPV E7 with retinoblastoma family proteins is important for several E7 activities; however, this interaction does not fully account for the high-risk E7-specific cellular immortalization and transformation activities. We have determined that the cellular non-receptor protein tyrosine phosphatase PTPN14 interacts with HPV E7 from many genus alpha and beta HPV types. We find that high-risk genus alpha HPV E7, but not low-risk genus alpha or beta HPV E7, is necessary and sufficient to reduce the steady-state level of PTPN14 in cells. High-risk E7 proteins target PTPN14 for proteasome-mediated degradation, which requires the ubiquitin ligase UBR4, and PTPN14 is degraded by the proteasome in HPV-positive cervical cancer cell lines. Residues in the C terminus of E7 interact with the C-terminal phosphatase domain of PTPN14, and interference with the E7-PTPN14 interaction restores PTPN14 levels in cells. Finally, PTPN14 degradation correlates with the retinoblastoma-independent transforming activity of high-risk HPV E7. High-risk human papillomaviruses (HPV) are the cause of cervical cancer, some other anogenital cancers, and a growing fraction of oropharyngeal carcinomas. The high-risk HPV E6 and E7 oncoproteins enable these viruses to cause cancer, and the mechanistic basis of their carcinogenic activity has been the subject of intense study. The high-risk E7 oncoprotein is especially important in the immortalization and transformation of human cells, which makes it a central component of HPV-associated cancer development. E7 oncoproteins interact with retinoblastoma family proteins, but for several decades, it has been recognized that high-risk HPV E7 oncoproteins have additional cancer-associated activities. We have determined that high-risk E7 proteins target the proteolysis of the cellular protein tyrosine phosphatase PTPN14 and find that this activity is correlated with the retinoblastoma-independent transforming activity of E7.
Collapse
|
27
|
Rinschen MM, Bharill P, Wu X, Kohli P, Reinert MJ, Kretz O, Saez I, Schermer B, Höhne M, Bartram MP, Aravamudhan S, Brooks BR, Vilchez D, Huber TB, Müller RU, Krüger M, Benzing T. The ubiquitin ligase Ubr4 controls stability of podocin/MEC-2 supercomplexes. Hum Mol Genet 2016; 25:1328-44. [PMID: 26792178 DOI: 10.1093/hmg/ddw016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/16/2016] [Indexed: 11/13/2022] Open
Abstract
The PHB-domain protein podocin maintains the renal filtration barrier and its mutation is an important cause of hereditary nephrotic syndrome. Podocin and its Caenorhabditis elegans orthologue MEC-2 have emerged as key components of mechanosensitive membrane protein signalling complexes. Whereas podocin resides at a specialized cell junction at the podocyte slit diaphragm, MEC-2 is found in neurons required for touch sensitivity. Here, we show that the ubiquitin ligase Ubr4 is a key component of the podocin interactome purified both from cultured podocytes and native glomeruli. It colocalizes with podocin and regulates its stability. In C. elegans, this process is conserved. Here, Ubr4 is responsible for the degradation of mislocalized MEC-2 multimers. Ubiquitylomic analysis of mouse glomeruli revealed that podocin is ubiquitylated at two lysine residues. These sites were Ubr4-dependent and were conserved across species. Molecular dynamics simulations revealed that ubiquitylation of one site, K301, do not only target podocin/MEC-2 for proteasomal degradation, but may also affect stability and disassembly of the multimeric complex. We suggest that Ubr4 is a key regulator of podocyte foot process proteostasis.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany,
| | - Puneet Bharill
- Department II of Internal Medicine, Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priyanka Kohli
- Department II of Internal Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and
| | | | - Oliver Kretz
- Renal Division, University Hospital Freiburg, Freiburg, Germany, Neuroanatomy, University of Freiburg, Freiburg, Germany
| | - Isabel Saez
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and
| | - Bernhard Schermer
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | | | - Sriram Aravamudhan
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany and
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Vilchez
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and
| | - Thomas Benzing
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany,
| |
Collapse
|
28
|
Shigemizu D, Aiba T, Nakagawa H, Ozaki K, Miya F, Satake W, Toda T, Miyamoto Y, Fujimoto A, Suzuki Y, Kubo M, Tsunoda T, Shimizu W, Tanaka T. Exome Analyses of Long QT Syndrome Reveal Candidate Pathogenic Mutations in Calmodulin-Interacting Genes. PLoS One 2015; 10:e0130329. [PMID: 26132555 PMCID: PMC4488844 DOI: 10.1371/journal.pone.0130329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
Long QT syndrome (LQTS) is an arrhythmogenic disorder that can lead to sudden death. To date, mutations in 15 LQTS-susceptibility genes have been implicated. However, the genetic cause for approximately 20% of LQTS patients remains elusive. Here, we performed whole-exome sequencing analyses on 59 LQTS and 61 unaffected individuals in 35 families and 138 unrelated LQTS cases, after genetic screening of known LQTS genes. Our systematic analysis of familial cases and subsequent verification by Sanger sequencing identified 92 candidate mutations in 88 genes for 23 of the 35 families (65.7%): these included eleven de novo, five recessive (two homozygous and three compound heterozygous) and seventy-three dominant mutations. Although no novel commonly mutated gene was identified other than known LQTS genes, protein-protein interaction (PPI) network analyses revealed ten new pathogenic candidates that directly or indirectly interact with proteins encoded by known LQTS genes. Furthermore, candidate gene based association studies using an independent set of 138 unrelated LQTS cases and 587 controls identified an additional novel candidate. Together, mutations in these new candidates and known genes explained 37.1% of the LQTS families (13 in 35). Moreover, half of the newly identified candidates directly interact with calmodulin (5 in 11; comparison with all genes; p=0.042). Subsequent variant analysis in the independent set of 138 cases identified 16 variants in the 11 genes, of which 14 were in calmodulin-interacting genes (87.5%). These results suggest an important role of calmodulin and its interacting proteins in the pathogenesis of LQTS.
Collapse
Affiliation(s)
- Daichi Shigemizu
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kouichi Ozaki
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuki Miya
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Satake
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Fujimoto
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Division of Biosystem Sciences, University of Tokyo, Chiba, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
- * E-mail: (WS); (TT)
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
- * E-mail: (WS); (TT)
| |
Collapse
|
29
|
Parsons K, Nakatani Y, Nguyen MD. p600/UBR4 in the central nervous system. Cell Mol Life Sci 2015; 72:1149-60. [PMID: 25424645 PMCID: PMC11113099 DOI: 10.1007/s00018-014-1788-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
A decade ago, the large 600 kDa mammalian protein p600 (also known as UBR4) was discovered as a multifunctional protein with roles in anoikis, viral transformation and protein degradation. Recently, p600 has emerged as a critical protein in the mammalian brain with roles in neurogenesis, neuronal migration, neuronal signaling and survival. How p600 integrates these apparently unrelated functions to maintain tissue homeostasis and murine survival remains unclear. The common molecular basis underlying many of the actions of p600 suggests, however, certain conservation and transposition of these functions across systems. In this review, we summarize the central nervous system functions of p600 and propose new perspectives on its biological complexity in neuronal physiology and neurological diseases.
Collapse
Affiliation(s)
- Kari Parsons
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada,
| | | | | |
Collapse
|
30
|
Activation of diverse signalling pathways by oncogenic PIK3CA mutations. Nat Commun 2014; 5:4961. [PMID: 25247763 PMCID: PMC4210192 DOI: 10.1038/ncomms5961] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signaling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signaling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signaling events and for discovering novel signaling molecules as readouts of pathway activation or potential therapeutic targets.
Collapse
|
31
|
Belzil C, Ramos T, Sanada K, Colicos MA, Nguyen MD. p600 stabilizes microtubules to prevent the aggregation of CaMKIIα during photoconductive stimulation. Cell Mol Biol Lett 2014; 19:381-92. [PMID: 25034033 PMCID: PMC6275876 DOI: 10.2478/s11658-014-0201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022] Open
Abstract
The large microtubule-associated/Ca(2+)-signalling protein p600 (also known as UBR4) is required for hippocampal neuronal survival upon Ca(2+) dyshomeostasis induced by glutamate treatment. During this process, p600 prevents aggregation of the Ca(2+)/calmodulin-dependent kinase IIα (CaMKIIα), a proxy of neuronal death, via direct binding to calmodulin in a microtubuleindependent manner. Using photoconductive stimulation coupled with live imaging of single neurons, we identified a distinct mechanism of prevention of CaMKIIα aggregation by p600. Upon direct depolarization, CaMKIIα translocates to microtubules. In the absence of p600, this translocation is interrupted in favour of a sustained self-aggregation that is prevented by the microtubule-stabilizing drug paclitaxel. Thus, during photoconductive stimulation, p600 prevents the aggregation of CaMKIIα by stabilizing microtubules. The effectiveness of this stabilization for preventing CaMKIIα aggregation during direct depolarization but not during glutamate treatment suggests a model wherein p600 has two modes of action depending on the source of cytosolic Ca(2+).
Collapse
Affiliation(s)
- Camille Belzil
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| | - Tim Ramos
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Michael A. Colicos
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| |
Collapse
|
32
|
Ling HH, Beaulé C, Chiang CK, Tian R, Figeys D, Cheng HYM. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4) in the suprachiasmatic nucleus circadian clock. PLoS One 2014; 9:e103103. [PMID: 25084275 PMCID: PMC4118842 DOI: 10.1371/journal.pone.0103103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN), which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4), a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP)-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.
Collapse
Affiliation(s)
- Harrod H. Ling
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Christian Beaulé
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruijun Tian
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hai-Ying M. Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Boyd M, Coskun M, Lilje B, Andersson R, Hoof I, Bornholdt J, Dahlgaard K, Olsen J, Vitezic M, Bjerrum JT, Seidelin JB, Nielsen OH, Troelsen JT, Sandelin A. Identification of TNF-α-responsive promoters and enhancers in the intestinal epithelial cell model Caco-2. DNA Res 2014; 21:569-83. [PMID: 24990076 PMCID: PMC4263293 DOI: 10.1093/dnares/dsu022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Caco-2 cell line is one of the most important in vitro models for enterocytes, and is used to study drug absorption and disease, including inflammatory bowel disease and cancer. In order to use the model optimally, it is necessary to map its functional entities. In this study, we have generated genome-wide maps of active transcription start sites (TSSs), and active enhancers in Caco-2 cells with or without tumour necrosis factor (TNF)-α stimulation to mimic an inflammatory state. We found 520 promoters that significantly changed their usage level upon TNF-α stimulation; of these, 52% are not annotated. A subset of these has the potential to confer change in protein function due to protein domain exclusion. Moreover, we locate 890 transcribed enhancer candidates, where ∼50% are changing in usage after TNF-α stimulation. These enhancers share motif enrichments with similarly responding gene promoters. As a case example, we characterize an enhancer regulating the laminin-5 γ2-chain (LAMC2) gene by nuclear factor (NF)-κB binding. This report is the first to present comprehensive TSS and enhancer maps over Caco-2 cells, and highlights many novel inflammation-specific promoters and enhancers.
Collapse
Affiliation(s)
- Mette Boyd
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| | - Mehmet Coskun
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark Department of Gastroenterology, Medical Section, University of Copenhagen, Herlev Hospital, Herlev DK-2730, Denmark
| | - Berit Lilje
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| | - Ilka Hoof
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| | - Katja Dahlgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
| | - Jørgen Olsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Morana Vitezic
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| | - Jacob Tveiten Bjerrum
- Department of Gastroenterology, Medical Section, University of Copenhagen, Herlev Hospital, Herlev DK-2730, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, University of Copenhagen, Herlev Hospital, Herlev DK-2730, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, University of Copenhagen, Herlev Hospital, Herlev DK-2730, Denmark
| | | | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, Copenhagen DK-2200, Denmark
| |
Collapse
|
34
|
Belzil C, Asada N, Ishiguro KI, Nakaya T, Parsons K, Pendolino V, Neumayer G, Mapelli M, Nakatani Y, Sanada K, Nguyen MD. p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex. Biol Open 2014; 3:475-85. [PMID: 24812355 PMCID: PMC4058081 DOI: 10.1242/bio.20147807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Apical neural progenitors (aNPs) drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600) in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis.
Collapse
Affiliation(s)
- Camille Belzil
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Heritage Medical Research Building, Calgary, AB T2N 4N1, Canada
| | - Naoyuki Asada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kei-Ichiro Ishiguro
- Dana Farber Cancer Institute, 44 Binney Street, Smith Building 836, Boston, MA 02115, USA Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | - Takeo Nakaya
- Dana Farber Cancer Institute, 44 Binney Street, Smith Building 836, Boston, MA 02115, USA
| | - Kari Parsons
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Heritage Medical Research Building, Calgary, AB T2N 4N1, Canada
| | - Valentina Pendolino
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello, 16-20139 Milan, Italy
| | - Gernot Neumayer
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Heritage Medical Research Building, Calgary, AB T2N 4N1, Canada
| | - Marina Mapelli
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello, 16-20139 Milan, Italy
| | - Yoshihiro Nakatani
- Dana Farber Cancer Institute, 44 Binney Street, Smith Building 836, Boston, MA 02115, USA
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Heritage Medical Research Building, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
35
|
Radhakrishnan VM, Ramalingam R, Larmonier CB, Thurston RD, Laubitz D, Midura-Kiela MT, McFadden RMT, Kuro-O M, Kiela PR, Ghishan FK. Post-translational loss of renal TRPV5 calcium channel expression, Ca(2+) wasting, and bone loss in experimental colitis. Gastroenterology 2013; 145:613-24. [PMID: 23747339 PMCID: PMC3755094 DOI: 10.1053/j.gastro.2013.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/30/2013] [Accepted: 06/01/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Dysregulated Ca(2+) homeostasis likely contributes to the etiology of inflammatory bowel disease-associated loss of bone mineral density. Experimental colitis leads to decreased expression of Klotho, a protein that supports renal Ca(2+) reabsorption by stabilizing the transient receptor potential vanilloid 5 (TRPV5) channel on the apical membrane of distal tubule epithelial cells. METHODS Colitis was induced in mice via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) or transfer of CD4(+)interleukin-10(-/-) and CD4(+), CD45RB(hi) T cells. We investigated changes in bone metabolism, renal processing of Ca(2+), and expression of TRPV5. RESULTS Mice with colitis had normal serum levels of Ca(2+) and parathormone. Computed tomography analysis showed a decreased density of cortical and trabecular bone, and there was biochemical evidence for reduced bone formation and increased bone resorption. Increased fractional urinary excretion of Ca(2+) was accompanied by reduced levels of TRPV5 protein in distal convoluted tubules, with a concomitant increase in TRPV5 sialylation. In mouse renal intermedullary collecting duct epithelial (mIMCD3) cells transduced with TRPV5 adenovirus, the inflammatory cytokines tumor necrosis factor, interferon-γ, and interleukin-1β reduced levels of TRPV5 on the cell surface, leading to its degradation. Cytomix induced interaction between TRPV5 and UBR4 (Ubiquitin recoginition 4), an E3 ubiquitin ligase; knockdown of UBR4 with small interfering RNAs prevented cytomix-induced degradation of TRPV5. The effects of cytokines on TRPV5 were not observed in cells stably transfected with membrane-bound Klotho; TRPV5 expression was preserved when colitis was induced with TNBS in transgenic mice that overexpressed Klotho or in mice with T-cell transfer colitis injected with soluble recombinant Klotho. CONCLUSIONS After induction of colitis in mice via TNBS administration or T-cell transfer, tumor necrosis factor and interferon-γ reduced the expression and activity of Klotho, which otherwise would protect TRPV5 from hypersialylation and cytokine-induced TRPV5 endocytosis, UBR4-dependent ubiquitination, degradation, and urinary wasting of Ca(2+).
Collapse
|
36
|
A novel locus for episodic ataxia:UBR4 the likely candidate. Eur J Hum Genet 2013; 22:505-10. [PMID: 23982692 DOI: 10.1038/ejhg.2013.173] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/09/2013] [Accepted: 06/26/2013] [Indexed: 11/08/2022] Open
Abstract
Episodic ataxias (EAs) are rare neurological channelopathies that are characterized by spells of imbalance and a lack of co-ordination. There are seven clinically recognized EAs and multiple isolated cases. Five disease-causing genes have been identified to date. We describe a novel form of autosomal dominant EA in a large three-generation Irish family. This form of EA presents in early childhood with periods of unsteadiness generalized weakness and slurred speech during an attack, which may be triggered by physical tiredness or stress. Linkage analysis undertaken in 13 related individuals identified a single disease locus (1p36.13-p34.3) with a LOD score of 3.29. Exome sequencing was performed. Following data analysis, which included presence/absence within the linkage peak, two candidate variants were identified. These are located in the HSPG2 and UBR4 genes. UBR4 is an ubiquitin ligase protein that is known to interact with calmodulin, a Ca(2+) protein, in the cytoplasm. It also co-localizes with ITPR1 a calcium release channel that is a major determinant of mammal co-ordination. Although UBR4 is not an ion channel gene, the potential for disrupted Ca(2+) control within neuronal cells highlights its potential for a role in this form of EA.
Collapse
|
37
|
Belzil C, Neumayer G, Vassilev AP, Yap KL, Konishi H, Rivest S, Sanada K, Ikura M, Nakatani Y, Nguyen MD. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem 2013; 288:24452-64. [PMID: 23861403 DOI: 10.1074/jbc.m113.483107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In acute and chronic neurodegeneration, Ca(2+) mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca(2+) influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca(2+) release via inositol 1,4,5-trisphosphate receptors. Downstream of NMDA receptors, p600 associates with the calmodulin·calmodulin-dependent protein kinase IIα complex. A direct and atypical p600/calmodulin interaction is required for neuronal survival. Thus, p600 counteracts specific Ca(2+)-induced death pathways through regulation of Ca(2+) homeostasis and signaling.
Collapse
Affiliation(s)
- Camille Belzil
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakaya T, Ishiguro KI, Belzil C, Rietsch AM, Yu Q, Mizuno SI, Bronson RT, Geng Y, Nguyen MD, Akashi K, Sicinski P, Nakatani Y. p600 Plays Essential Roles in Fetal Development. PLoS One 2013; 8:e66269. [PMID: 23824717 PMCID: PMC3688873 DOI: 10.1371/journal.pone.0066269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
p600 is a multifunctional protein implicated in cytoskeletal organization, integrin-mediated survival signaling, calcium-calmodulin signaling and the N-end rule pathway of ubiquitin-proteasome-mediated proteolysis. While push, the Drosophila counterpart of p600, is dispensable for development up to adult stage, the role of p600 has not been studied during mouse development. Here we generated p600 knockout mice to investigate the in vivo functions of p600. Interestingly, we found that homozygous deletion of p600 results in lethality between embryonic days 11.5 and 13.5 with severe defects in both embryo and placenta. Since p600 is required for placental development, we performed conditional disruption of p600, which deletes selectively p600 in the embryo but not in the placenta. The conditional mutant embryos survive longer than knockout embryos but ultimately die before embryonic day 14.5. The mutant embryos display severe cardiac problems characterized by ventricular septal defects and thin ventricular walls. These anomalies are associated with reduced activation of FAK and decreased expression of MEF2, which is regulated by FAK and plays a crucial role in cardiac development. Moreover, we observed pleiotropic defects in the liver and brain. In sum, our study sheds light on the essential roles of p600 in fetal development.
Collapse
Affiliation(s)
- Takeo Nakaya
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Translational Research Unit and Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Kei-ichiro Ishiguro
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Camille Belzil
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna M. Rietsch
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qunyan Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shin-ichi Mizuno
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Roderick T. Bronson
- Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Koichi Akashi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yoshihiro Nakatani
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, Mulder LCF, Fernandez-Sesma A, García-Sastre A. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 2013; 9:e1003265. [PMID: 23555265 PMCID: PMC3610674 DOI: 10.1371/journal.ppat.1003265] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/06/2013] [Indexed: 12/12/2022] Open
Abstract
An estimated 50 million dengue virus (DENV) infections occur annually and more than forty percent of the human population is currently at risk of developing dengue fever (DF) or dengue hemorrhagic fever (DHF). Despite the prevalence and potential severity of DF and DHF, there are no approved vaccines or antiviral therapeutics available. An improved understanding of DENV immune evasion is pivotal for the rational development of anti-DENV therapeutics. Antagonism of type I interferon (IFN-I) signaling is a crucial mechanism of DENV immune evasion. DENV NS5 protein inhibits IFN-I signaling by mediating proteasome-dependent STAT2 degradation. Only proteolytically-processed NS5 can efficiently mediate STAT2 degradation, though both unprocessed and processed NS5 bind STAT2. Here we identify UBR4, a 600-kDa member of the N-recognin family, as an interacting partner of DENV NS5 that preferentially binds to processed NS5. Our results also demonstrate that DENV NS5 bridges STAT2 and UBR4. Furthermore, we show that UBR4 promotes DENV-mediated STAT2 degradation, and most importantly, that UBR4 is necessary for efficient viral replication in IFN-I competent cells. Our data underscore the importance of NS5-mediated STAT2 degradation in DENV replication and identify UBR4 as a host protein that is specifically exploited by DENV to inhibit IFN-I signaling via STAT2 degradation. Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. At present, there are no vaccines and no specific antiviral therapeutics to prevent or treat DENV infections. We previously described that the NS5 protein of DENV inhibits type I interferon signaling in virus-infected cells by mediating STAT2 degradation. This property allows DENV to overcome the antiviral effects of type I interferon, contributing to viral replication in the host. We have now obtained new insight into the mechanism by which DENV NS5 induces STAT2 degradation. NS5 bridges STAT2 with the cellular protein UBR4, a member of a family of predicted E3 ligases, resulting in UBR4-mediated STAT2 degradation. Elimination of UBR4 or mutations in NS5 that prevent its binding to UBR4 prevent NS5 from inducing STAT2 degradation. Importantly, UBR4 is required for optimal DENV replication in the presence of a competent type I interferon system. Our data demonstrate the requirement of a host factor, UBR4, for DENV to overcome the antiviral interferon response. This information might be important for the design of specific DENV inhibitors that prevent dengue virus from evading innate immunity.
Collapse
Affiliation(s)
- Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Maudry Laurent-Rolle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana M. Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc Natl Acad Sci U S A 2013; 110:3800-5. [PMID: 23431188 DOI: 10.1073/pnas.1217358110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which destabilizing N-terminal residues of short-lived proteins act as degradation determinants (N-degrons). Substrates carrying N-degrons are recognized by N-recognins that mediate ubiquitylation-dependent selective proteolysis through the proteasome. Our previous studies identified the mammalian N-recognin family consisting of UBR1/E3α, UBR2, UBR4/p600, and UBR5, which recognize destabilizing N-terminal residues through the UBR box. In the current study, we addressed the physiological function of a poorly characterized N-recognin, 570-kDa UBR4, in mammalian development. UBR4-deficient mice die during embryogenesis and exhibit pleiotropic abnormalities, including impaired vascular development in the yolk sac (YS). Vascular development in UBR4-deficient YS normally advances through vasculogenesis but is arrested during angiogenic remodeling of primary capillary plexus associated with accumulation of autophagic vacuoles. In the YS, UBR4 marks endoderm-derived, autophagy-enriched cells that coordinate differentiation of mesoderm-derived vascular cells and supply autophagy-generated amino acids during early embryogenesis. UBR4 of the YS endoderm is associated with a tissue-specific autophagic pathway that mediates bulk lysosomal proteolysis of endocytosed maternal proteins into amino acids. In cultured cells, UBR4 subpopulation is degraded by autophagy through its starvation-induced association with cellular cargoes destined to autophagic double membrane structures. UBR4 loss results in multiple misregulations in autophagic induction and flux, including synthesis and lipidation/activation of the ubiquitin-like protein LC3 and formation of autophagic double membrane structures. Our results suggest that UBR4 plays an important role in mammalian development, such as angiogenesis in the YS, in part through regulation of bulk degradation by lysosomal hydrolases.
Collapse
|
41
|
Abstract
The N-end rule pathway is a proteolytic system in which N-terminal residues of short-lived proteins are recognized by recognition components (N-recognins) as essential components of degrons, called N-degrons. Known N-recognins in eukaryotes mediate protein ubiquitylation and selective proteolysis by the 26S proteasome. Substrates of N-recognins can be generated when normally embedded destabilizing residues are exposed at the N terminus by proteolytic cleavage. N-degrons can also be generated through modifications of posttranslationally exposed pro-N-degrons of otherwise stable proteins; such modifications include oxidation, arginylation, leucylation, phenylalanylation, and acetylation. Although there are variations in components, degrons, and hierarchical structures, the proteolytic systems based on generation and recognition of N-degrons have been observed in all eukaryotes and prokaryotes examined thus far. The N-end rule pathway regulates homeostasis of various physiological processes, in part, through interaction with small molecules. Here, we review the biochemical mechanisms, structures, physiological functions, and small-molecule-mediated regulation of the N-end rule pathway.
Collapse
Affiliation(s)
- Takafumi Tasaki
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
42
|
Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A 2012; 109:E260-7. [PMID: 22232672 DOI: 10.1073/pnas.1116776109] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
More than 120 human papillomaviruses (HPVs) have now been identified and have been associated with a variety of clinical lesions. To understand the molecular differences among these viruses that result in lesions with distinct pathologies, we have begun a MS-based proteomic analysis of HPV-host cellular protein interactions and have created the plasmid and cell line libraries required for these studies. To validate our system, we have characterized the host cellular proteins that bind to the E7 proteins expressed from 17 different HPV types. These studies reveal a number of interactions, some of which are conserved across HPV types and others that are unique to a single HPV species or HPV genus. Binding of E7 to UBR4/p600 is conserved across all virus types, whereas the cellular protein ENC1 binds specifically to the E7s from HPV18 and HPV45, both members of genus alpha, species 7. We identify a specific interaction of HPV16 E7 with ZER1, a substrate specificity factor for a cullin 2 (CUL2)-RING ubiquitin ligase, and show that ZER1 is required for the binding of HPV16 E7 to CUL2. We further show that ZER1 is required for the destabilization of the retinoblastoma tumor suppressor RB1 in HPV16 E7-expressing cells and propose that a CUL2-ZER1 complex functions to target RB1 for degradation in HPV16 E7-expressing cells. These studies refine the current understanding of HPV E7 functions and establish a platform for the rapid identification of virus-host interactions.
Collapse
|
43
|
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci 2011; 20:1298-345. [PMID: 21633985 PMCID: PMC3189519 DOI: 10.1002/pro.666] [Citation(s) in RCA: 527] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/12/2023]
Abstract
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(α) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac)N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Collapse
Affiliation(s)
- Alexander Varshavsky
- 1Division of Biology, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
44
|
Sakai H, Ohuchida K, Mizumoto K, Cui L, Nakata K, Toma H, Nagai E, Tanaka M. Inhibition of p600 expression suppresses both invasiveness and anoikis resistance of gastric cancer. Ann Surg Oncol 2011; 18:2057-65. [PMID: 21347795 PMCID: PMC3115059 DOI: 10.1245/s10434-010-1523-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Advanced gastric cancers often metastasize to distant organs and the peritoneum, leading to a poor prognosis. Both invasiveness and resistance to anchorage-independent cell death (anoikis) are important factors in the process of metastasis. p600 (600-kDa protein), recently identified from a cervical cancer cell line, plays a role in both anoikis resistance and cell migration. In this study, we examined whether p600 is involved in the progression of gastric cancer. METHODS We used both normal gastric mucosal cells and cancer cells laser-microdissected from 42 gastric cancers and their normal counterparts, and compared their p600 mRNA expression levels with quantitative reverse transcriptase-polymerase chain reaction. We inhibited p600 expression in two gastric cancer cell lines with siRNA and examined its effect on the invasiveness and anoikis resistance both in vitro and in vivo. RESULTS Expression of p600 mRNA was significantly higher in gastric cancer cells than in normal mucosal cells (P = 0.027). The invasion assay revealed that invasiveness was significantly reduced by inhibition of p600 (P < 0.01). In vitro experiments revealed that cell viability and colony-formation capacity under anchorage-independent conditions were significantly reduced by inhibition of p600 (P < 0.05). In vivo experiments also showed that the establishment of intraperitoneal disseminated tumors was significantly suppressed by transient inhibition of p600 (P < 0.001). CONCLUSIONS Our results strongly suggest that p600 is involved in gastric cancer progression, and has a potential to be a new molecular target for gastric cancer therapy.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Department of Surgery and Oncology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Corteggio A, Di Geronimo O, Roperto S, Roperto F, Borzacchiello G. Bovine papillomavirus E7 oncoprotein binds to p600 in naturally occurring equine sarcoids. J Gen Virol 2010; 92:378-82. [PMID: 20965990 DOI: 10.1099/vir.0.025866-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies regarding the functions of the bovine papillomavirus (BPV) E7 oncoprotein in vivo are lacking and no E7-mediated mechanism underlying mesenchymal carcinogenesis is known. Here, we show that the interaction between the 600 kDa retinoblastoma protein-associated factor (p600) and BPV E7, described in vitro in cultured cells, takes place in vivo in naturally occurring equine sarcoids. In these cancers we detect the expression of E7 and p600, and demonstrate that E7 and p600 co-localize and physically interact. Furthermore, intracellular signals involved in p600 functional activity are found not to be overexpressed, suggesting a different functional activity of p600 in naturally occurring carcinogenesis. Our results demonstrate, for the first time, that E7-p600 interaction occurs during the natural history of BPV-induced equine tumours, suggesting an important role for E7 in carcinogenesis. Finally, the system provides a suitable animal model of papillomavirus-associated cancer to test therapeutic vaccination against E7.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Department of Pathology and Animal Health, Faculty of Veterinary Medicine, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Ottoline Leyser
- Department of Biology, University of York, York, United Kingdom.
| |
Collapse
|
47
|
Besche HC, Haas W, Gygi SP, Goldberg AL. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 2010; 48:2538-49. [PMID: 19182904 DOI: 10.1021/bi802198q] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies, mainly in yeast, have identified various cofactors that associate with the 26S proteasome and appear to influence its function. To identify these proteins in different cells and physiological states, we developed a method to gently and rapidly isolate 26S proteasomes and associated proteins without the need for genetic modifications of the proteasome. This method is based on the affinity of this complex for the ubiquitin-like (UBL) domain of hHR23B and elution with a competing polypeptide containing a ubiquitin-interacting motif. Associated with 26S proteasomes from rat muscle were a variety of known proteasome-interacting proteins, activators, and ubiquitin conjugates. In addition, we identified over 40 proteins not previously known to associate with the 26S proteasome, some of which were tightly associated with the proteasome in a substoichiometric fashion, e.g., the deubiquitinating enzymes USP5/isopeptidase T and USP7/HAUSP and the ubiquitin ligases ARF-BP1/HUWE1 and p600/UBR4. By altering buffer conditions, we also purified by this approach complexes of the ATPase p97/VCP associated with its adaptor proteins Ufd1-Npl4, p47, SAKS1, and FAF1, all of which contain ubiquitin-binding motifs. These complexes were isolated with ubiquitin conjugates bound and were not previously known to bind to the UBL domain of hHR23B. These various UBL-interacting proteins, dubbed the UBL interactome, represent a network of proteins that function together in ubiquitin-dependent proteolysis, and the UBL method offers many advantages for studies of the diversity, functions, and regulation of 26S proteasomes and p97 complexes under different conditions.
Collapse
Affiliation(s)
- Henrike C Besche
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
48
|
Coon BG, Mukherjee D, Hanna CB, Riese DJ, Lowe M, Aguilar RC. Lowe syndrome patient fibroblasts display Ocrl1-specific cell migration defects that cannot be rescued by the homologous Inpp5b phosphatase. Hum Mol Genet 2009; 18:4478-91. [PMID: 19700499 PMCID: PMC7289333 DOI: 10.1093/hmg/ddp407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Lowe syndrome (LS) is a life-threatening, developmental disease characterized by mental retardation, cataracts and renal failure. Although this human illness has been linked to defective function of the phosphatidylinositol 5-phosphatase, Ocrl1 (Oculo-Cerebro-Renal syndrome ofLowe protein1), the mechanism by which this enzyme deficiency triggers the disease is not clear. Ocrl1 is known to localize mainly to the Golgi apparatus and endosomes, however it translocates to plasma membrane ruffles upon cell stimulation with growth factors. The functional implications of this inducible translocation to the plasma membrane are presently unknown. Here we show that Ocrl1 is required for proper cell migration, spreading and fluid-phase uptake in both established cell lines and human dermal fibroblasts. We found that primary fibroblasts from two patients diagnosed with LS displayed defects in these cellular processes. Importantly, these abnormalities were suppressed by expressing wild-type Ocrl1 but not by a phosphatase-deficient mutant. Interestingly, the homologous human PI-5-phosphatase, Inpp5b, was unable to complement the Ocrl1-dependent cell migration defect. Further, Ocrl1 variants that cannot bind the endocytic adaptor AP2 or clathrin, like Inpp5b, were less apt to rescue the migration phenotype. However, no defect in membrane recruitment of AP2/clathrin or in transferrin endocytosis by patient cells was detected. Collectively, our results suggest that Ocrl1, but not Inpp5b, is involved in ruffle-mediated membrane remodeling. Our results provide new elements for understanding how Ocrl1 deficiency leads to the abnormalities associated with the LS.
Collapse
Affiliation(s)
- Brian G Coon
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
49
|
Yugawa T, Kiyono T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 2009; 19:97-113. [PMID: 19156753 DOI: 10.1002/rmv.605] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last two decades, since the initial discovery of human papillomavirus (HPV) type 16 and 18 DNAs in cervical cancers by Dr. Harald zur Hausen (winner of the Nobel Prize in Physiology or Medicine, 2008), the HPVs have been well characterised as causative agents for cervical cancer. Viral DNA from a specific group of HPVs can be detected in at least 90% of all cervical cancers and two viral genes, E6 and E7, are invariably expressed in HPV-positive cervical cancer cells. Their gene products are known to inactivate the major tumour suppressors, p53 and retinoblastoma protein (pRB), respectively. In addition, one function of E6 is to activate telomerase, and E6 and E7 cooperate to effectively immortalise human primary epithelial cells. Though expression of E6 and E7 is itself not sufficient for cancer development, it seems to be either directly or indirectly involved in every stage of multi-step carcinogenesis. Epidemiological and biological studies suggest the potential efficacy of prophylactic vaccines to prevent genital HPV infection as an anti-cancer strategy. However, given the widespread nature of HPV infection and unresolved issues about the duration and type specificity of the currently available HPV vaccines, it is crucial that molecular details of the natural history of HPV infection as well as the biological activities of the viral oncoproteins be elucidated in order to provide the basis for development of new therapeutic strategies against HPV-associated malignancies. This review highlights novel functions of E6 and E7 as well as the molecular mechanisms of HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Takashi Yugawa
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | |
Collapse
|
50
|
Abstract
There is an increasing body of literature pointing to cytoskeletal proteins as spatial organizers and interactors of organelles. In this study, we identified protein 600 (p600) as a novel microtubule-associated protein (MAP) developmentally regulated in neurons. p600 exhibits the unique feature to interact with the endoplasmic reticulum (ER). Silencing of p600 by RNA interference (RNAi) destabilizes neuronal processes in young primary neurons undergoing neurite extension and containing scarce staining of the ER marker Bip. Furthermore, in utero electroporation of p600 RNAi alters neuronal migration, a process that depends on synergistic actions of microtubule dynamics and ER functions. p600-depleted migrating neurons display thin, crooked, and "zigzag" leading process with very few ER membranes. Thus, p600 constitutes the only known MAP to associate with the ER in neurons, and this interaction may impact on multiple cellular processes ranging from neuronal development to neuronal maturation and plasticity.
Collapse
|