1
|
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, Fazaludeen F, Mikhailov N, Gotkiewicz M, Ketola K, Lehtonen Š, Koistinaho J, Kanninen KM, Hernández D, Pébay A, Giugno R, Korhonen P, Giniatullin R, Malm T. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation 2022; 19:147. [PMID: 35706029 PMCID: PMC9199162 DOI: 10.1186/s12974-022-02486-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aβ) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aβ. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. Methods Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aβ pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. Results We show that PIEZO1 orchestrates Aβ clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aβ inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aβ clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. Conclusion These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aβ burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02486-y.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Yevheniia Ishchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Feroze Fazaludeen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Maria Gotkiewicz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Damian Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
2
|
Yue F, Feng S, Lu C, Zhang T, Tao G, Liu J, Yue C, Jing N. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. iScience 2021; 24:103207. [PMID: 34704001 PMCID: PMC8524197 DOI: 10.1016/j.isci.2021.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
As an insidious and slowly progressive neurodegenerative disorder, Alzheimer’s disease (AD) uniquely develops in humans but fails in other species. Therefore, it has been challenged to rebuild human AD in animals, including in non-human primates. Here, we bilaterally delivered synthetic Aβ oligomers (AβOs) into the cerebral parenchyma of cynomolgus monkeys, which rapidly drove the formation of massive Aβ plaques and concomitant neurofibrillary tangles in the cynomolgus brain. The amyloid and tau pathology as well as their co-occurrence in AβO-monkeys were reminiscent of those in patients with AD. In addition, the activated astrocytes and microglia surrounding Aβ plaques indicated the triggered neuroinflammation. The degenerative neurons and synapses around Aβ plaques also emerged in cynomolgus brain. Together, soluble AβOs caused the cascade of pathologic events associated with AD in monkeys as occurred in patients at the early phase, which could facilitate the development of a promising animal model for human AD in non-human primates. The Aβ oligomers (AβOs) drive to develop massive Aβ plaque in the monkey brain Neurofibrillary tangles form in multiple brain regions of AβO-monkeys The co-occurrence of amyloid and tau pathology in AβO-monkeys as in patients with AD The neuroinflammation and neurodegeneration are triggered in AβO-monkeys
Collapse
Affiliation(s)
- Feng Yue
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.,Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunling Lu
- Wincon TheraCells Biotechnologies Co, LTD, Nanning, 530000, China
| | - Ting Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai, 200080, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co, LTD, Nanning, 530000, China
| | - Jing Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunmei Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Tsai ST, Chen SY, Lin SZ, Tseng GF. Rostral intralaminar thalamic deep brain stimulation ameliorates memory deficits and dendritic regression in β-amyloid-infused rats. Brain Struct Funct 2020; 225:751-761. [PMID: 32036422 DOI: 10.1007/s00429-020-02033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Rostral intralaminar thalamic deep brain stimulation (ILN-DBS) has been shown to enhance attention and cognition through neuronal activation and brain plasticity. We examined whether rostral ILN-DBS can also attenuate memory deficits and impaired synaptic plasticity and protect glutamatergic transmission in the rat intraventricular β-amyloid (Aβ) infusion model of Alzheimer's disease (AD). Spatial memory was tested in the Morris water maze (MWM), while structural synaptic plasticity and glutamatergic transmission strength were estimated by measuring dendritic spine densities in dye-injected neurons and tissue expression levels of postsynaptic density protein 95 (PSD-95) in medial prefrontal cortex (mPFC) and hippocampus. All these assessments were compared among the naïve control rats, AD rats, and AD rats with ILN-DBS. We found that a single rostral ILN-DBS treatment significantly improved MWM performance and reversed PSD-95 expression reductions in the mPFC and hippocampal region of Aβ-infused rats. In addition, ILN-DBS preserved dendritic spine densities on mPFC and hippocampal pyramidal neurons. In fact, MWM performance, PSD-95 expression levels, and dendritic spine densities did not differ between naïve control and rostral ILN-DBS treatment groups, indicating near complete amelioration of Aβ-induced spatial memory impairments and dendritic regression. These findings suggest that the ILN is critical for modulating glutamatergic transmission, neural plasticity, and spatial memory functions through widespread effects on distributed brain regions. Further, these findings provide a rationale for examining the therapeutic efficacy of ILN-DBS in AD patients.
Collapse
Affiliation(s)
- Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, No. 701, Section 3, Jhongyang Road, Hualien, 970, Taiwan.
| |
Collapse
|
4
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
5
|
Zhong J, Guo C, Hou W, Shen N, Miao C. Effects of MFHAS1 on cognitive impairment and dendritic pathology in the hippocampus of septic rats. Life Sci 2019; 235:116822. [PMID: 31476310 DOI: 10.1016/j.lfs.2019.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023]
Abstract
AIMS To investigate the effects of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) on cognitive dysfunction, the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and amyloid β peptide (Aβ) in the hippocampus, as well as dendritic pathology in the hippocampal CA1 region in sepsis-associated encephalopathy (SAE) rats. MAIN METHODS The rats were randomly divided into four groups: 1) control group (subjected to sham surgery), 2) control plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after sham surgery), 3) CLP plus control siRNA group (rats received intracerebroventricular injection of control siRNA after cecal ligation and puncture (CLP)), 4) CLP plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after CLP). The learning and memory capabilities of the rats were examined by means of fear conditioning and Barnes maze test. The concentration of TNF-α and IL-1β was determined by enzyme-linked immunosorbent assay. The efficiency of siRNA transfection, MFHAS1 and Aβ expression were detected by Western blotting. Total branch lengths of pyramidal dendrites of the CA1 basilar trees and spine density were determined by Golgi staining. KEY FINDINGS We observed that MFHAS1 knock-down by Mfhas1 siRNA intracerebroventricular injection could improve cognitive impairment, reduce the expression of TNF-α, IL-1β and Aβ in the hippocampus induced by CLP, and alleviate the dendritic spinal loss of the pyramidal neurons, as well as increase the dendritic branching of the CA1 basilar trees of septic rats. SIGNIFICANCE MFHAS1 knock-down can alleviate cognitive impairment, neuroinflammation and dendritic spinal loss in SAE rats.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Guo
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Shen
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Tamano H, Takiguchi M, Shimaya R, Adlard PA, Bush AI, Takeda A. Extracellular Zn 2+-independently attenuated LTP by human amyloid β 1-40 and rat amyloid β 1-42. Biochem Biophys Res Commun 2019; 514:888-892. [PMID: 31084925 DOI: 10.1016/j.bbrc.2019.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
Human amyloid-β1-40 (Aβ1-40) and rat Aβ1-42 have lower affinity for extracellular Zn2+ than human Aβ1-42. Here we report extracellular Zn2+-independent attenuation of dentate gyrus long-term potentiation (LTP) by human Aβ1-40 and rat Aβ1-42. On the basis of the data that dentate gyrus LTP is extracellular Zn2+-dependently attenuated after local injection of human Aβ1-42 (25 pmol, 1 μl) into the dentate gyrus, which increases intracellular Zn2+ in the dentate gyrus, the toxicity of human Aβ1-40 and rat Aβ1-42 was compared in the in vivo system with human Aβ1-42. Dentate gyrus LTP was attenuated after injection of human Aβ1-40 and rat Aβ1-42 (25 pmol, 1 μl) into the dentate gyrus, which did not increase intracellular Zn2+ in the dentate gyrus. The attenuated LTP was not rescued by co-injection of CaEDTA, an extracellular Zn2+ chelator. The present study suggests that human Aβ1-40 and rat Aβ1-42 affect cognitive activity via extracellular Zn2+-independent mechanism at low micromolar concentration.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryota Shimaya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
7
|
Morsy A, Trippier PC. Current and Emerging Pharmacological Targets for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 72:S145-S176. [PMID: 31594236 DOI: 10.3233/jad-190744] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
No cure or disease-modifying therapy for Alzheimer's disease (AD) has yet been realized. However, a multitude of pharmacological targets have been identified for possible engagement to enable drug discovery efforts for AD. Herein, we review these targets comprised around three main therapeutic strategies. First is an approach that targets the main pathological hallmarks of AD: amyloid-β (Aβ) oligomers and hyperphosphorylated tau tangles which primarily focuses on reducing formation and aggregation, and/or inducing their clearance. Second is a strategy that modulates neurotransmitter signaling. Comprising this strategy are the cholinesterase inhibitors and N-methyl-D-aspartate receptor blockade treatments that are clinically approved for the symptomatic treatment of AD. Additional targets that aim to stabilize neuron signaling through modulation of neurotransmitters and their receptors are also discussed. Finally, the third approach comprises a collection of 'sensitive targets' that indirectly influence Aβ or tau accumulation. These targets are proteins that upon Aβ accumulation in the brain or direct Aβ-target interaction, a modification in the target's function is induced. The process occurs early in disease progression, ultimately causing neuronal dysfunction. This strategy aims to restore normal target function to alleviate Aβ-induced toxicity in neurons. Overall, we generally limit our analysis to targets that have emerged in the last decade and targets that have been validated using small molecules in in vitro and/or in vivo models. This review is not an exhaustive list of all possible targets for AD but serves to highlight the most promising and critical targets suitable for small molecule drug intervention.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Prion acute synaptotoxicity is largely driven by protease-resistant PrPSc species. PLoS Pathog 2018; 14:e1007214. [PMID: 30089152 PMCID: PMC6101418 DOI: 10.1371/journal.ppat.1007214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease. Proof of PrPSc (especially PrPres) species as the synaptotoxic agent was demonstrated by: significant rescue of LTP following selective immuno-depletion of total PrP from cM1000 (dM1000); modestly PK-treated cM1000 (PK+M1000) retaining full synaptotoxicity; and restoration of the LTP impairment when employing reconstituted, PK-eluted, immuno-precipitated M1000 preparations (PK+IP-M1000). Additional detailed electrophysiological analyses exemplified by impairment of post-tetanic potentiation (PTP) suggest possible heightened pre-synaptic vulnerability to the acute synaptotoxicity. This dysfunction correlated with cumulative insufficiency of replenishment of the readily releasable pool (RRP) of vesicles during repeated high-frequency stimulation utilised for induction of LTP. Broadly comparable results with LTP and PTP impairment were obtained utilizing hippocampal slices from PrPC knockout (PrPo/o) mice, with cM1000 serial dilution assessments revealing similar sensitivity of PrPo/o and wild type (WT) slices. Size fractionation chromatography demonstrated that synaptotoxic PrP correlated with PK-resistant species >100kDa, consistent with multimeric PrPSc, with levels of these species >6 ng/ml appearing sufficient to induce synaptic dysfunction. Biochemical analyses of hippocampal slices manifesting acute synaptotoxicity demonstrated reduced levels of multiple key synaptic proteins, albeit with noteworthy differences in PrPo/o slices, while such changes were absent in hippocampi demonstrating rescued LTP through treatment with dM1000. Our findings offer important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development of targeted effective therapies. Misfolding of the normal prion protein (PrPC) into disease-associated conformations (PrPSc) is the critical initiating step for prion diseases. Similar to other neurodegenerative disorders, progressive failure of brain synapses is considered a primary deleterious event underpinning prion disease evolution. Our current understanding of the underlying mechanisms associated with synaptic failure is rudimentary contributing to difficulties in developing effective treatments. Herein we report the use of an electrophysiology paradigm that allowed us to demonstrate that at least modestly proteinase K (PK)-resistant PrPSc species from two mouse-adapted prion strains (M1000 and MU02) are directly synaptotoxic causing significant acute impairment of hippocampal CA1 region long-term potentiation (LTP). Of note, the LTP disruption approximated that reported in prion animal models. Additional detailed analyses provided novel pathophysiological insights suggesting possible heightened pre-synaptic vulnerability to the acute synaptotoxicity through impairment of replenishment of the readily releasable pool of neurotransmitter vesicles, while biochemical analyses demonstrated reduced levels of multiple key pre-and post-synaptic proteins. Broadly similar acute synaptic dysfunction and dose-response susceptibility were observed in slices from mice not expressing PrPC albeit with minor but noteworthy differences in electrophysiological and biochemical findings. Our study offers important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development effective therapies.
Collapse
|
9
|
Zhao B, Pan Y, Wang Z, Xu H, Song X. Hyperbaric Oxygen Pretreatment Improves Cognition and Reduces Hippocampal Damage Via p38 Mitogen-Activated Protein Kinase in a Rat Model. Yonsei Med J 2017; 58:131-138. [PMID: 27873505 PMCID: PMC5122628 DOI: 10.3349/ymj.2017.58.1.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/26/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the effects of hyperbaric oxygen (HBO) pretreatment on cognitive decline and neuronal damage in an Alzheimer's disease (AD) rat model. MATERIALS AND METHODS Rats were divided into three groups: normal saline (NS), AD, and HBO+AD. In the AD group, amyloid β peptide (Aβ)₁₋₄₀ was injected into the hippocampal CA1 region of the brain. NS rats received NS injection. In the HBO+AD group, rats received 5 days of daily HBO therapy following Aβ₁₋₄₀ injection. Learning and memory capabilities were examined using the Morris water maze task. Neuronal damage and astrocyte activation were evaluated by hematoxylin-eosin staining and immunohistochemistry, respectively. Dendritic spine density was determined by Golgi-Cox staining. Tumor necrosis factor-α, interleukin-1β, and interleukin-10 production was assessed by enzyme-linked immunosorbent assay. Neuron apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Protein expression was examined by western blotting. RESULTS Learning and memory dysfunction was ameliorated in the HBO+AD group, as shown by significantly lower swimming distances and escape latency, compared to the AD group. Lower rates of neuronal damage, astrocyte activation, dendritic spine loss, and hippocampal neuron apoptosis were seen in the HBO+AD than in the AD group. A lower rate of hippocampal p38 mitogen-activated protein kinase (MAPK) phosphorylation was observed in the HBO+AD than in the AD group. CONCLUSION HBO pretreatment improves cognition and reduces hippocampal damage via p38 MAPK in AD rats.
Collapse
Affiliation(s)
- Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yongying Pan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zixin Wang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haiping Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
10
|
Zeng J, Jiang X, Hu XF, Ma RH, Chai GS, Sun DS, Xu ZP, Li L, Bao J, Feng Q, Hu Y, Chu J, Chai DM, Hong XY, Wang JZ, Liu GP. Spatial training promotes short-term survival and neuron-like differentiation of newborn cells in Aβ1-42-injected rats. Neurobiol Aging 2016; 45:64-75. [PMID: 27459927 DOI: 10.1016/j.neurobiolaging.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 01/22/2023]
Abstract
Neurogenesis plays a role in hippocampus-dependent learning and impaired neurogenesis may correlate with cognitive deficits in Alzheimer's disease. Spatial training influences the production and fate of newborn cells in hippocampus of normal animals, whereas the effects on neurogenesis in Alzheimer-like animal are not reported until now. Here, for the first time, we investigated the effect of Morris water maze training on proliferation, survival, apoptosis, migration, and differentiation of newborn cells in β-amyloid-treated Alzheimer-like rats. We found that spatial training could preserve a short-term survival of newborn cells generated before training, during the early phase, and the late phase of training. However, the training had no effect on the long-term survival of mature newborn cells generated at previously mentioned 3 different phases. We also demonstrated that spatial training promoted newborn cell differentiation preferentially to the neuron direction. These findings suggest a time-independent neurogenesis induced by spatial training, which may be indicative for the cognitive stimulation in Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Medicine Vocational and Technical School of Wuhan University, Wuhan, P. R. China
| | - Xia Jiang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Pathology, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Xian-Feng Hu
- Wuhan Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Rong-Hong Ma
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu Province, P. R. China
| | - Dong-Sheng Sun
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhi-Peng Xu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Li
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jian Bao
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiong Feng
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yu Hu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jiang Chu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Da-Min Chai
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiao-Yue Hong
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, P. R. China
| | - Gong-Ping Liu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, P. R. China.
| |
Collapse
|
11
|
Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice. Mol Neurobiol 2016; 54:2269-2285. [DOI: 10.1007/s12035-016-9795-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
|
12
|
Combes M, Poindron P, Callizot N. Glutamate protects neuromuscular junctions from deleterious effects of β-amyloid peptide and conversely: an in vitro study in a nerve-muscle coculture. J Neurosci Res 2014; 93:633-43. [PMID: 25491262 DOI: 10.1002/jnr.23524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
Abstract
Murine models of Alzheimer's disease with elevated levels of amyloid-β (Aβ) peptide present motor axon defects and neuronal death. Aβ1-42 accumulation is observed in motor neurons and spinal cords of sporadic and familial cases of amyotrophic lateral sclerosis (ALS). Motor neurons are highly susceptible to glutamate, which has a role in ALS neuronal degeneration. The current study investigates the link between Aβ and glutamate in this neurodegenerative process. Primary rat nerve and human muscle cocultures were intoxicated with glutamate or Aβ. Neuromuscular junction (NMJ) mean size and neurite length were evaluated. The role of N-methyl-D-aspartate receptor (NMDAR) was investigated by using MK801. Glutamate and Aβ production were evaluated in culture supernatant. The current study shows that NMJs are highly sensitive to Aβ peptide, that the toxic pathway involves glutamate and NMDAR, and that glutamate and Aβ act in an interlinked manner. Some motor diseases (e.g., ALS), therefore, could be considered from a new point of view related to these balance disturbances.
Collapse
Affiliation(s)
- Maud Combes
- Department of Research and Development, Neuro-Sys SAS, Gardanne, France
| | | | | |
Collapse
|
13
|
Amtul Z, Nikolova S, Gao L, Keeley RJ, Bechberger JF, Fisher AL, Bartha R, Munoz DG, McDonald RJ, Naus CC, Wojtowicz JM, Hachinski V, Cechetto DF. Comorbid Aβ toxicity and stroke: hippocampal atrophy, pathology, and cognitive deficit. Neurobiol Aging 2014; 35:1605-14. [DOI: 10.1016/j.neurobiolaging.2014.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/23/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
14
|
Bolognin S, Lorenzetto E, Diana G, Buffelli M. The potential role of rho GTPases in Alzheimer's disease pathogenesis. Mol Neurobiol 2014; 50:406-22. [PMID: 24452387 DOI: 10.1007/s12035-014-8637-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a wide loss of synapses and dendritic spines. Despite extensive efforts, the molecular mechanisms driving this detrimental alteration have not yet been determined. Among the factors potentially mediating this loss of neuronal connectivity, the contribution of Rho GTPases is of particular interest. This family of proteins is classically considered a key regulator of actin cytoskeleton remodeling and dendritic spine maintenance, but new insights into the complex dynamics of its regulation have recently determined how its signaling cascade is still largely unknown, both in physiological and pathological conditions. Here, we review the growing evidence supporting the potential involvement of Rho GTPases in spine loss, which is a unanimously recognized hallmark of early AD pathogenesis. We also discuss some new insights into Rho GTPase signaling framework that might explain several controversial results that have been published. The study of the connection between AD and Rho GTPases represents a quite unchartered avenue that holds therapeutic potential.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurological and Movement Sciences, Section of Physiology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
15
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
16
|
Abstract
Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease (AD) because of its neurotoxicity and capacity to form characteristic insoluble deposits known as senile plaques. Aβ derives from amyloid-β protein precursor (AβPP), whose proteolytic processing generates several fragments including Aβ peptides of various lengths. The normal function of AβPP and its fragments remains poorly understood. While some fragments have been suggested to have a function in normal physiological cellular processes, Aβ has been widely considered as a "garbage" fragment that becomes toxic when it accumulates in the brain, resulting in impaired synaptic function and memory. Aβ is produced and released physiologically in the healthy brain during neuronal activity. In the last 10 years, we have been investigating whether Aβ plays a physiological role in the brain. We first demonstrated that picomolar concentrations of a human Aβ42 preparation enhanced synaptic plasticity and memory in mice. Next, we investigated the role of endogenous Aβ in healthy murine brains and found that treatment with a specific antirodent Aβ antibody and an siRNA against murine AβPP impaired synaptic plasticity and memory. The concurrent addition of human Aβ42 rescued these deficits, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal synaptic plasticity and memory to occur. Furthermore, the effect of both exogenous and endogenous Aβ was seen to be mediated by modulation of neurotransmitter release and α7-nicotinic receptors. These findings need to be taken into consideration when designing novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | |
Collapse
|
17
|
Kim J, Chakrabarty P, Hanna A, March A, Dickson DW, Borchelt DR, Golde T, Janus C. Normal cognition in transgenic BRI2-Aβ mice. Mol Neurodegener 2013; 8:15. [PMID: 23663320 PMCID: PMC3658944 DOI: 10.1186/1750-1326-8-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent research in Alzheimer's disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models. RESULTS Using established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice producing Aβ1-40 or both peptides were also cognitively intact. CONCLUSIONS These data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models.
Collapse
Affiliation(s)
- Jungsu Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Current address: Department of Neurology, Washington University School of Medicine, 660 S. Euclid Box 811, St. Louis, MO 63110, USA
| | - Paramita Chakrabarty
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Amanda Hanna
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Amelia March
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - David R Borchelt
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Todd Golde
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Christopher Janus
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer's disease. Eur J Med Chem 2012; 60:285-94. [PMID: 23313637 DOI: 10.1016/j.ejmech.2012.12.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 01/10/2023]
Abstract
Phosphodiesterase type 5 (PDE5) mediates the degradation of cGMP in a variety of tissues including brain. Recent studies have demonstrated the importance of the nitric oxide/cGMP/cAMP-responsive element-binding protein (CREB) pathway to the process of learning and memory. Thus, PDE5 inhibitors (PDE5Is) are thought to be promising new therapeutic agents for the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by memory loss. To explore this possibility, a series of quinoline derivatives were synthesized and evaluated. We found that compound 7a selectively inhibits PDE5 with an IC(50) of 0.27 nM and readily crosses the blood brain barrier. In an in vivo mouse model of AD, compound 7a rescues synaptic and memory defects. Quinoline-based, CNS-permeant PDE5Is have potential for AD therapeutic development.
Collapse
|
19
|
Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model. J Neurosci 2012; 32:7852-61. [PMID: 22674261 DOI: 10.1523/jneurosci.5901-11.2012] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuronal and synaptic degeneration are the best pathological correlates for memory decline in Alzheimer's disease (AD). Although the accumulation of soluble low-molecular-weight amyloid-β (Aβ) oligomers has been suggested to trigger neurodegeneration in AD, animal models overexpressing or infused with Aβ lack neuronal loss at the onset of memory deficits. Using a novel in vivo approach, we found that repeated hippocampal injections of small soluble Aβ(1-42) oligomers in awake, freely moving mice were able to induce marked neuronal loss, tau hyperphosphorylation, and deficits in hippocampus-dependent memory. The neurotoxicity of small Aβ(1-42) species was observed in vivo as well as in vitro in association with increased caspase-3 activity and reduced levels of the NMDA receptor subunit NR2B. We found that the sequestering agent transthyretin is able to bind the toxic Aβ(1-42) species and attenuated the loss of neurons and memory deficits. Our novel mouse model provides evidence that small, soluble Aβ(1-42) oligomers are able to induce extensive neuronal loss in vivo and initiate a cascade of events that mimic the key neuropathological hallmarks of AD.
Collapse
|
20
|
Akebia Saponin D attenuates amyloid β-induced cognitive deficits and inflammatory response in rats: involvement of Akt/NF-κB pathway. Behav Brain Res 2012; 235:200-9. [PMID: 22963993 DOI: 10.1016/j.bbr.2012.07.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 12/23/2022]
Abstract
Neuroinflammatory responses caused by amyloid β(Aβ) play an important role in the pathogenesis of Alzheimer's disease (AD). Aβ is known to be directly responsible for the activation of glial cells and induction of apoptosis. Akebia Saponin D (ASD) is extracted from a traditional herbal medicine Dipsacus asper Wall, which has been shown to protect against ibotenic acid-induced cognitive deficits and cell death in rats. In this study, we investigated the in vivo protective effect of ASD on learning and memory impairment induced by bilateral intracerebroventricular injections of Aβ1-42 using Morris water and Y-maze task. Furthermore, the anti-inflammatory activity and neuroprotective effect of ASD was examined with methods of histochemistry and biochemistry. These data showed that oral gavage with ASD at doses of 30, 90 and 270 mg/kg for 4 weeks exerted an improved effect on cognitive impairment. Subsequently, the ASD inhibited the activation of glial cells and the expression of tumor necrosis factor (TNF)-α, interleukin-1 beta (IL-1β) and cyclooxygenase-2 (COX-2) in rat brain. Moreover, ASD afforded beneficial actions on inhibitions of Akt and IκB kinase (IKK) phosphorylations, as well as nuclear factor κB (NF-κB) activation induced by Aβ1-42. These results suggest that ASD may be a potential agent for suppressing both Alzheimer's disease-related neuroinflammation and memory system dysfunction.
Collapse
|
21
|
The phosphodiesterase-4 inhibitor rolipram reverses Aβ-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol 2012; 15:749-66. [PMID: 21733236 DOI: 10.1017/s1461145711000836] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
β-amyloid (Aβ) peptides play an important role in cognition deficits, neuroinflammation, and apoptosis observed in Alzheimer's disease (AD). Activation of cyclic AMP (cAMP) signalling enhances memory and inhibits inflammatory and apoptotic responses. However, it is not known whether inhibition of phosphodiesterase-4 (PDE4), a critical controller of intracellular cAMP concentrations, affects AD-associated neuroinflammatory and apoptotic responses and whether these responses contribute to deficits of memory mediated by cAMP signalling. We addressed these issues using memory tests and neurochemical measures. Specifically, rats microinfused with aggregated Aβ25-35 (10 μg/side) into bilateral CA1 subregions displayed deficits in learning ability and memory, as evidenced by decreases in escape latency during acquisition trials and exploratory activities in the probe trial in the water-maze task and 24-h retention in the passive avoidance test. These effects were reversed by rolipram (0.1, 0.25 and 0.5 mg/kg.d i.p.), a prototypic PDE4 inhibitor, in a dose-dependent manner. Interestingly, Aβ25-35-treated rats also displayed decreases in expression of phosphorylated cAMP response-element binding protein (pCREB) and Bcl-2, but increases in expression of NF-κB p65 and Bax in the hippocampus; these effects were also reversed by rolipram in a dose-dependent manner. Similar neurochemical results were observed by replacing Aβ25-35 with Aβ1-42, a full-length amyloid peptide that quickly forms toxic oligomers. These results suggest that PDE4 inhibitors such as rolipram may reverse Aβ-induced memory deficits at least in part via the attenuation of neuronal inflammation and apoptosis mediated by cAMP/CREB signalling. PDE4 could be a target for treatment of memory loss associated with AD.
Collapse
|
22
|
Animal Models of Alzheimer's Disease: Utilization of Transgenic Alzheimer's Disease Models in Studies of Amyloid Beta Clearance. ACTA ACUST UNITED AC 2012; 1:11-20. [PMID: 23440676 PMCID: PMC3575554 DOI: 10.1007/s13670-011-0004-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glial cells in Alzheimer’s disease (AD) have been shown to be capable of clearing or at least restricting the accumulation of toxic amyloid beta (Aβ) deposits. Recently, bone marrow (BM)–derived monocytic cells have been recognized in experimental studies to be superior in their phagocytic properties when compared to their brain endogenous counterparts. In human AD, BM-derived monocytic cells may have deficiencies in their capacity to restrict plaque growth. Therefore, enhancement of phagocytic properties of cells of monocyte origin, both brain endogenous microglia and BM-derived monocytic cells, offers an attractive therapeutic approach to fight off AD. Transgenic mouse models with aberrant Aβ deposition offer a valuable tool for discovery of novel pathways to facilitate cell-mediated Aβ uptake. This article reviews the most recent findings on the phagocytic capacity of cells with monocytic origin in various transgenic AD models and describes the methods to study phagocytic activity of these cells.
Collapse
|
23
|
Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer's disease, and epilepsy. Biochem Res Int 2011; 2011:681385. [PMID: 22235372 PMCID: PMC3253438 DOI: 10.1155/2011/681385] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/17/2011] [Indexed: 01/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.
Collapse
|
24
|
Diverse inflammatory responses in transgenic mouse models of Alzheimer's disease and the effect of immunotherapy on these responses. ASN Neuro 2011; 3:249-58. [PMID: 21995345 PMCID: PMC3227004 DOI: 10.1042/an20110018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the presence of an inflammatory response in AD (Alzheimer's disease) is well known, the data on inflammation are conflicting, suggesting that inflammation either attenuates pathology, exacerbates it or has no effect. Our goal was to more fully characterize the inflammatory response in APP (amyloid precursor protein) transgenic mice with and without disease progression. In addition, we have examined how anti-Aβ (amyloid β-peptide) immunotherapy alters this inflammatory response. We have used quantitative RT–PCR (reverse transcription–PCR) and protein analysis to measure inflammatory responses ranging from pro-inflammatory to anti-inflammatory and repair factors in transgenic mice that develop amyloid deposits only (APPSw) and amyloid deposits with progression to tau pathology and neuron loss [APPSw/NOS2−/− (nitric oxide synthase 2−/−)]. We also examined tissues from previously published immunotherapy studies. These studies were a passive immunization study in APPSw mice and an active vaccination study in APPSw/NOS2−/− mice. Both studies have already been shown to lower amyloid load and improve cognition. We have found that amyloid deposition is associated with high expression of alternative activation and acquired deactivation genes and low expression of pro-inflammatory genes, whereas disease progression is associated with a mixed phenotype including increased levels of some classical activation factors. Immunotherapy targeting amyloid deposition in both mouse models resulted in decreased alternative inflammatory markers and, in the case of passive immunization, a transient increase in pro-inflammatory markers. Our results suggest that an alternative immune response favours retention of amyloid deposits in the brain, and switching away from this state by immunotherapy permits removal of amyloid.
Collapse
|
25
|
Chambon C, Wegener N, Gravius A, Danysz W. Behavioural and cellular effects of exogenous amyloid-β peptides in rodents. Behav Brain Res 2011; 225:623-41. [PMID: 21884730 DOI: 10.1016/j.bbr.2011.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
A better understanding of Alzheimer's disease (AD) and the development of disease modifying therapies are some of the biggest challenges of the 21st century. One of the core features of AD are amyloid plaques composed of amyloid-beta (Aβ) peptides. The first hypothesis proposed that cognitive deficits are linked to plaque-development and transgenic mice have been generated to study this link, thereby providing a good model to develop new therapeutic approaches. Since later it was recognised that in AD patients the cognitive deficit is rather correlated to soluble amyloid levels, consequently, a new hypothesis appeared associating the earliest amyloid toxicity to these soluble species. The purpose of this review is to give a summary of behavioural and cellular data obtained after soluble Aβ peptide administration into rodents' brain, thereby showing that this model is a valid tool to investigate AD pathology when no plaques are present. Additionally, this method offers an excellent, efficient model to test compounds which could act at such early stages of the disease.
Collapse
Affiliation(s)
- Caroline Chambon
- In Vivo Pharmacology, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, D-60318 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
26
|
Puzzo D, Privitera L, Fa' M, Staniszewski A, Hashimoto G, Aziz F, Sakurai M, Ribe EM, Troy CM, Mercken M, Jung SS, Palmeri A, Arancio O. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 2011; 69:819-30. [PMID: 21472769 DOI: 10.1002/ana.22313] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/10/2010] [Accepted: 10/15/2010] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the role of endogenous amyloid-β peptide (Aβ) in healthy brain. METHODS Long-term potentiation (LTP), a type of synaptic plasticity that is thought to be associated with learning and memory, was examined through extracellular field recordings from the CA1 region of hippocampal slices, whereas behavioral techniques were used to assess contextual fear memory and reference memory. Amyloid precursor protein (APP) expression was reduced through small interfering RNA (siRNA) technique. RESULTS We found that both antirodent Aβ antibody and siRNA against murine APP reduced LTP as well as contextual fear memory and reference memory. These effects were rescued by the addition of human Aβ₄₂, suggesting that endogenously produced Aβ is needed for normal LTP and memory. Furthermore, the effect of endogenous Aβ on plasticity and memory was likely due to regulation of transmitter release, activation of α7-containing nicotinic acetylcholine receptors, and Aβ₄₂ production. INTERPRETATION Endogenous Aβ₄₂ is a critical player in synaptic plasticity and memory within the normal central nervous system. This needs to be taken into consideration when designing therapies aiming at reducing Aβ levels to treat Alzheimer disease.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Pathology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, Härtig W, Grosche J, Goldsteins G, Tanila H, Koistinaho J, Koistinaho M. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer's disease. J Neuroinflammation 2010; 7:90. [PMID: 21138577 PMCID: PMC3004875 DOI: 10.1186/1742-2094-7-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/07/2010] [Indexed: 12/20/2022] Open
Abstract
Background Purified intravenous immunoglobulin (IVIG) obtained from the plasma of healthy humans is indicated for the treatment of primary immunodeficiency disorders associated with defects in humoral immunity. IVIG contains naturally occurring auto-antibodies, including antibodies (Abs) against β-amyloid (Aβ) peptides accumulating in the brains of Alzheimer's disease (AD) patients. IVIG has been shown to alleviate AD pathology when studied with mildly affected AD patients. Although its mechanisms-of-action have been broadly studied, it remains unresolved how IVIG affects the removal of natively formed brain Aβ deposits by primary astrocytes and microglia, two major cell types involved in the neuroinflammatory responses. Methods We first determined the effect of IVIG on Aβ toxicity in primary neuronal cell culture. The mechanisms-of-action of IVIG in reduction of Aβ burden was analyzed with ex vivo assay. We studied whether IVIG solubilizes natively formed Aβ deposits from brain sections of APP/PS1 mice or promotes Aβ removal by primary glial cells. We determined the role of lysosomal degradation pathway and Aβ Abs in the IVIG-promoted reduction of Aβ. Finally, we studied the penetration of IVIG into the brain parenchyma and interaction with brain deposits of human Aβ in a mouse model of AD in vivo. Results IVIG was protective against Aβ toxicity in a primary mouse hippocampal neuron culture. IVIG modestly inhibited the fibrillization of synthetic Aβ1-42 but did not solubilize natively formed brain Aβ deposits ex vivo. IVIG enhanced microglia-mediated Aβ clearance ex vivo, with a mechanism linked to Aβ Abs and lysosomal degradation. The IVIG-enhanced Aβ clearance appears specific for microglia since IVIG did not affect Aβ clearance by astrocytes. The cellular mechanisms of Aβ clearance we observed have potential relevance in vivo since after peripheral administration IVIG penetrated to mouse brain tissue reaching highest concentrations in the hippocampus and bound selectively to Aβ deposits in co-localization with microglia. Conclusions Our results demonstrate that IVIG promotes recognition and removal of natively formed brain Aβ deposits by primary microglia involving natural Aβ Abs in IVIG. These findings may have therapeutic relevance in vivo as IVIG penetrates through the blood-brain barrier and specifically binds to Aβ deposits in brain parenchyma.
Collapse
Affiliation(s)
- Johanna Magga
- Department of Neurobiology, A, I, Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L. On whether the environmental enrichment may provide cognitive and brain reserves. ACTA ACUST UNITED AC 2009; 61:221-39. [DOI: 10.1016/j.brainresrev.2009.07.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
|
30
|
Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, Shughrue PJ. Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol 2009; 223:394-400. [PMID: 19744481 DOI: 10.1016/j.expneurol.2009.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 08/19/2009] [Accepted: 09/01/2009] [Indexed: 11/27/2022]
Abstract
Amyloid plaque deposition in the brain is a hallmark of Alzheimer's disease, but recent evidence indicates that the disease may be primarily caused by soluble amyloid-beta (1-42) (Abeta) oligomers or Abeta-derived diffusible ligands (ADDLs). ADDLs induce cognitive deficits in animal models and are thought to assemble in vitro by a mechanism apart from plaque formation. To investigate the in vivo relationship of ADDLs and plaques, biotin-labeled ADDLs (bADDLs) or amylin oligomers (bAMs) were injected into the hippocampus of hAPP overexpressing mice. The brains were collected 1 or 5 weeks after the last treatment and were processed for immunohistochemistry. Staining of tissue 1 week post-treatment showed bADDLs had diffused throughout the tissue and incorporated into plaques. Additionally, small deposits of thioflavin S-negative bADDLs were observed. At 5 weeks post-treatment, thioflavin S-positive material continued to accumulate around plaques containing bADDLs. Thioflavin S-positive material also accrued around bADDL deposits, implying that bADDLs were capable of seeding new plaques. In contrast, bAMs cleared from the brain and did not accumulate in plaques. Together, these data indicate that ADDLs are able to contribute to in vivo plaque formation in a peptide-specific manner.
Collapse
Affiliation(s)
- Renee C Gaspar
- Department of Integrative Systems Neuroscience, West Point, PA, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Increased Concentrations of Nerve Growth Factor and Brain-Derived Neurotrophic Factor in the Rat Cerebellum After Exposure to Environmental Enrichment. THE CEREBELLUM 2009; 8:499-506. [DOI: 10.1007/s12311-009-0129-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/03/2009] [Indexed: 12/28/2022]
|
32
|
Mizoguchi H, Takuma K, Fukuzaki E, Ibi D, Someya E, Akazawa KH, Alkam T, Tsunekawa H, Mouri A, Noda Y, Nabeshima T, Yamada K. Matrix metalloprotease-9 inhibition improves amyloid beta-mediated cognitive impairment and neurotoxicity in mice. J Pharmacol Exp Ther 2009; 331:14-22. [PMID: 19587312 DOI: 10.1124/jpet.109.154724] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Alzheimer's disease (AD), the expression of matrix metalloproteases (MMPs), which are capable of degrading extracellular matrix proteins, is increased in the brain. Previous studies with cultured glial cells have demonstrated that amyloid beta (Abeta) protein can induce the expression of MMPs, which could be involved in the degradation of Abeta. In the present study, we investigated the role of MMP-2 and MMP-9 in cognitive impairment induced by the injection of Abeta in mice. The intracerebroventricular injection of Abeta25-35, Abeta1-40, and Abeta1-42, but not Abeta40-1, transiently increased MMP-9, but not MMP-2, activity and protein expression in the hippocampus. Immunohistochemistry revealed the expression of MMP-9 to be increased in both neurons and glial cells in the hippocampus after Abeta treatment. The Abeta-induced cognitive impairment in vivo as well as neurotoxicity in vitro was significantly alleviated in MMP-9 homozygous knockout mice and by treatment with MMP inhibitors. These results suggest the increase in MMP-9 expression in the hippocampus to be involved in the development of cognitive impairment induced by Abeta1-40. Thus, specific inhibitors of MMP-9 may have therapeutic potential for the treatment of AD. Our findings suggest that, as opposed to expectations based on previous findings, MMP-9 plays a causal role in Abeta-induced cognitive impairment and neurotoxicity.
Collapse
|
33
|
Abstract
Treatment for Alzheimer's disease is entering a new and exciting phase, with several new drugs beginning clinical trials. Many of these new therapies are based on our best current understanding of the pathogenesis of Alzheimer's disease, and are designed to try to either slow or halt the progression of the disease. There are several different theories underlying the current efforts, and these are briefly reviewed. Therapies directed against some aspect of β-amyloid formation, against neurofibrillary tangle formation and against the inflammatory response are all considered, as are the problems associated with each area. It is as yet unclear which, if any, of these approaches will be successful, but the high level of activity in each of these three fields provides some hope that an effective treatment for Alzheimer's disease is on the horizon.
Collapse
Affiliation(s)
- Peter Davies
- Litwin-Zucker Center for Research on Alzheimer's Disease, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | |
Collapse
|
34
|
Begum AN, Yang F, Teng E, Hu S, Jones MR, Rosario ER, Beech W, Hudspeth B, Ubeda OJ, Cole GM, Frautschy SA. Use of copper and insulin-resistance to accelerate cognitive deficits and synaptic protein loss in a rat Abeta-infusion Alzheimer's disease model. J Alzheimers Dis 2008; 15:625-40. [PMID: 19096161 PMCID: PMC4313743 DOI: 10.3233/jad-2008-15409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rat amyloid-beta (Abeta) intracerebroventricular infusion can model aspects of Alzheimer's disease (AD) and has predicted efficacy of therapies such as ibuprofen and curcumin in transgenic mouse models. High density lipoprotein (HDL), a normal plasma carrier of Abeta, is used to attenuate Abeta aggregation within the pump, causing Abeta-dependent toxicity and cognitive deficits within 3 months. Our goal was to identify factors that might accelerate onset of Abeta-dependent deficits to improve efficiency and cost-effectiveness of model. We focused on: 1) optimizing HDL-Abeta preparation for maximal toxicity; 2) evaluating the role of copper, a factor typically in water that can impact oligomer stability; and 3) determining impact of insulin resistance (type II diabetes), a risk factor for AD. In vitro studies were performed to determine doses of copper and methods of Abeta-HDL preparation that maximized toxicity. These preparations when infused resulted in earlier onset of cognitive deficits within 6 weeks post-infusion. Induction of insulin resistance did not exacerbate Abeta-dependent cognitive deficits, but did exacerbate synaptic protein loss. In summary, the newly described in vivo infusion model may be useful cost-effective method for screening for new therapeutic drugs for AD.
Collapse
Affiliation(s)
- Aynun N. Begum
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Fusheng Yang
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Edmond Teng
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
- Greater Los Angeles Veterans Affairs Healthcare System, Neurobehavior Unit, Los Angeles, CA, USA
| | - Shuxin Hu
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Mychica R. Jones
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Emily R. Rosario
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Walter Beech
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Beverly Hudspeth
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Oliver J. Ubeda
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Greg M. Cole
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| | - Sally A. Frautschy
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
- Geriatric Research Education Clinical Center (GRECC), North Hills, CA, USA
| |
Collapse
|
35
|
Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility. Neuroscience 2008; 154:444-53. [DOI: 10.1016/j.neuroscience.2008.03.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/20/2022]
|
36
|
Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc Natl Acad Sci U S A 2008; 105:7863-8. [PMID: 18505838 DOI: 10.1073/pnas.0802908105] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is associated with progressive memory decline. Hippocampal place cells are a well understood candidate for the neural basis of one type of memory in rodents; these cells identify the animal's location in an environment and are crucial for spatial memory and navigation. We have recorded place cells in the Tg2576 mouse model of AD, and we report that aged (16 mo) but not young (3 mo) transgenic mice show degraded neuronal representations of the environment. The level of place cell degradation correlates with the animals' (poorer) spatial memory as tested in a forced-choice spatial alternation T-maze task and with hippocampal, but not neocortical, amyloid plaque burden. Place cell recording provides a sensitive assay for measuring the amount and rate of functional deterioration in animal models of dementia as well as providing a quantifiable physiological indication of the beneficial effects of potential therapies.
Collapse
|
37
|
Stepanichev MY, Onufriev MV, Yakovlev AA, Khrenov AI, Peregud DI, Vorontsova ON, Lazareva NA, Gulyaeva NV. Amyloid-β (25–35) increases activity of neuronal NO-synthase in rat brain. Neurochem Int 2008; 52:1114-24. [DOI: 10.1016/j.neuint.2007.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/29/2007] [Indexed: 01/20/2023]
|