1
|
Hülsmeier AJ. Glycosphingolipids in neurodegeneration - Molecular mechanisms, cellular roles, and therapeutic perspectives. Neurobiol Dis 2025:106851. [PMID: 39978484 DOI: 10.1016/j.nbd.2025.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuronal loss and pose significant global health challenges. Glycosphingolipids (GSLs), critical components of neuronal membranes, regulate signal transduction, membrane organization, neuroinflammation, and lipid raft functionality. This review explores GSL roles in neural development, differentiation, and neurogenesis, along with their dysregulation in neurodegenerative diseases. Aberrations in GSL metabolism drive key pathological features such as protein aggregation, neuroinflammation, and impaired signaling. Specific GSLs, such as GM1, GD3, and GM3, influence amyloid-beta aggregation in AD, α-synuclein stability in PD, and mutant huntingtin toxicity in HD. Therapeutic strategies targeting GSL metabolism, such as GM1 supplementation and enzyme modulation, have demonstrated potential to mitigate disease progression. Further studies using advanced lipidomics and glycomics may support biomarker identification and therapeutic advancements. This work aims to highlight the translational potential of GSL research for diagnosing and managing devastating neurodegenerative conditions.
Collapse
Affiliation(s)
- Andreas J Hülsmeier
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Lu H, Yu X, Li W, Zhang Y, Sun S. Prognosis and metabolism with a Golgi apparatus-related genes-based formula in breast cancer. Medicine (Baltimore) 2024; 103:e39177. [PMID: 39151519 PMCID: PMC11332736 DOI: 10.1097/md.0000000000039177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024] Open
Abstract
The Golgi apparatus (GA), an organelle that processes, sorts, and transports proteins synthesized by the endoplasmic reticulum, is also involved in many cellular processes associated with cancer, such as angiogenesis, the innate immune response, and tumor invasion and migration. We aimed to construct a breast cancer (BC) prognosis prediction model based on GA-related genetic information to evaluate the prognosis of patients with BC more accurately than existing models and to stratify patients for clinical therapy. In this study, The Cancer Genome Atlas-breast invasive carcinoma was used as the training cohort, and the Molecular Taxonomy of Breast Cancer International Consortium cohort was used as the validation cohort. Using bioinformatics methods, we constructed a GA-related gene risk score (GRS). The GRS was used to divide BC patients into a high-GRS group and a low-GRS group, and functional analysis, survival analysis, mutation analysis, immune landscape analysis, and metabolic analysis were performed to compare the 2 groups. Finally, a nomogram was constructed for clinical application. The genes in the GRS model were mainly related to the glucose metabolism pathway, and the main mutations in the 2 groups of patients were mutations in TP53 and CHD1. The mutation rate in the high-GRS group was greater than that in the low-GRS group. The high GRS group had higher tumor immune activity glycolysis; the pentose phosphate pathway tended to be the dominant metabolic pathways in this group, while fatty acid oxidation and glutamine catabolism tended to be dominant in the low-GRS group. GA-related genes were used to construct a prediction model for BC patients and had high accuracy in predicting prognosis. The mutations associated with the GRS are mainly TP53 and CDH1. Interestingly, the GRS is correlated with glucose metabolism in terms of gene expression and functional enrichment. In summary, the role of GRS-related genes in glucose metabolism is worthy of further study.
Collapse
Affiliation(s)
- Hang Lu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Lam D, Arroyo B, Liberchuk AN, Wolfe AL. Effects of N361 Glycosylation on Epidermal Growth Factor Receptor Biological Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603279. [PMID: 39071333 PMCID: PMC11275927 DOI: 10.1101/2024.07.12.603279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase that is frequently modified by glycosylation post-translationally. In cancer, EGFR amplifications and hotspot mutations such as L858R that promote proliferation have been detected in a significant fraction of non-small cell lung carcinomas and breast adenocarcinomas. Molecular dynamic simulations suggested that glycosylation at asparagine residue 361 (N361) promotes dimerization and ligand binding. We stably expressed glycosylation-deficient mutant EGFR N361A, with or without the oncogenic mutation L858R. Immunofluorescence and flow cytometry demonstrated that the mutants were each well expressed at the cell membrane. N361A decreased proliferation relative to wild-type EGFR as well as decreased sensitivity to ligands. Proximity ligation assays measuring co-localization of EGFR with its binding partner HER2 in cells revealed that N361A mutations increased co-localization. N361A, located near the binding interface for the EGFR inhibitor necitumumab, desensitized cells expressing the oncogenic EGFR L858R to antibody-based inhibition. These findings underline the critical relevance of post-translational modifications on oncogene function.
Collapse
Affiliation(s)
- Dennis Lam
- Department of Biological Sciences, Hunter College of the City University of New York
- Department of Pharmacology, Weill Cornell Medicine
| | - Brandon Arroyo
- Department of Biological Sciences, Hunter College of the City University of New York
- Maximizing Access to Research Careers Program, Hunter College of the City University of New York
| | - Ariel N. Liberchuk
- Department of Biological Sciences, Hunter College of the City University of New York
- Macaulay Honors College, Hunter College of the City University of New York
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College of the City University of New York
- Department of Pharmacology, Weill Cornell Medicine
- Biochemistry Ph.D. Program, Graduate Center of the City University of New York
- Molecular, Cellular, and Developmental Biology Ph.D. Subprogram, Graduate Center of the City University of New York
| |
Collapse
|
5
|
King-Lyons ND, Bhati AS, Hu JC, Mandell LM, Shenoy GN, Willison HJ, Connell TD. A Novel Cytotoxic Mechanism for Triple-Negative Breast Cancer Cells Induced by the Type II Heat-Labile Enterotoxin LT-IIc through Ganglioside Ligation. Toxins (Basel) 2024; 16:311. [PMID: 39057951 PMCID: PMC11281474 DOI: 10.3390/toxins16070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC), which constitutes 10-20 percent of all breast cancers, is aggressive, has high metastatic potential, and carries a poor prognosis due to limited treatment options. LT-IIc, a member of the type II subfamily of ADP-ribosylating-heat-labile enterotoxins that bind to a distinctive set of cell-surface ganglioside receptors-is cytotoxic toward TNBC cell lines, but has no cytotoxic activity for non-transformed breast epithelial cells. Here, primary TNBC cells, isolated from resected human tumors, showed an enhanced cytotoxic response specifically toward LT-IIc, in contrast to other enterotoxins that were tested. MDA-MB-231 cells, a model for TNBC, were used to evaluate potential mechanisms of cytotoxicity by LT-IIc, which induced elevated intracellular cAMP and stimulated the cAMP response element-binding protein (CREB) signaling pathway. To dissect the role of ADP-ribosylation, cAMP induction, and ganglioside ligation in the cytotoxic response, MDA-MB-231 cells were exposed to wild-type LT-IIc, the recombinant B-pentamer of LT-IIc that lacks the ADP-ribosylating A polypeptide, or mutants of LT-IIc with an enzymatically inactivated A1-domain. These experiments revealed that the ADP-ribosyltransferase activity of LT-IIc was nonessential for inducing the lethality of MDA-MB-231 cells. In contrast, a mutant LT-IIc with an altered ganglioside binding activity failed to trigger a cytotoxic response in MDA-MB-231 cells. Furthermore, the pharmacological inhibition of ganglioside expression protected MDA-MB-231 cells from the cytotoxic effects of LT-IIc. These data establish that ganglioside ligation, but not the induction of cAMP production nor ADP-ribosyltransferase activity, is essential to initiating the LT-IIc-dependent cell death of MDA-MB-231 cells. These experiments unveiled previously unknown properties of LT-IIc and gangliosides in signal transduction, offering the potential for the targeted treatment of TNBC, an option that is desperately needed.
Collapse
Affiliation(s)
- Natalie D. King-Lyons
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Aryana S. Bhati
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - John C. Hu
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Department of Medicine, Division of Infectious Disease, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Lorrie M. Mandell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Gautam N. Shenoy
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Terry D. Connell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| |
Collapse
|
6
|
Jáñez Pedrayes A, Rymen D, Ghesquière B, Witters P. Glycosphingolipids in congenital disorders of glycosylation (CDG). Mol Genet Metab 2024; 142:108434. [PMID: 38489976 DOI: 10.1016/j.ymgme.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Congenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity. Associating specific symptoms to deficiencies of certain glycoproteins or glycolipids is thus a challenging task. In this review, we focus on the glycosphingolipid (GSL) synthesis pathway, which is still rather unexplored in the context of CDG, and outline the functions of the main GSLs, including gangliosides, and their role in the central nervous system. We provide an overview of GSL studies that have been performed in CDG and show that abnormal GSL levels are not only observed in CDG directly affecting GSL synthesis, but also in better known CDG, such as PMM2-CDG. We highlight the importance of studying GSLs in CDG in order to better understand the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Andrea Jáñez Pedrayes
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Center for Cancer Biology VIB, 3000 Leuven, Belgium; Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Daisy Rymen
- Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Center for Cancer Biology VIB, 3000 Leuven, Belgium.
| | - Peter Witters
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Zhang F, Li K, Zhang W, Zhao Z, Chang F, Du J, Zhang X, Bao K, Zhang C, Shi L, Liu Z, Dai X, Chen C, Wang DW, Xian Z, Jiang H, Ai D. Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis. Circulation 2024; 149:843-859. [PMID: 38018467 DOI: 10.1161/circulationaha.123.066110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.
Collapse
Affiliation(s)
- Fangni Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kan Li
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Fangyuan Chang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Jie Du
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
- Beijing Anzhen Hospital, Capital Medical University, China (J.D.)
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, China (J.D.)
- Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China (J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, China (J.D.)
| | - Xu Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Chunyong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Zongwei Liu
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Xiangchen Dai
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Chen Chen
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Dao Wen Wang
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Zhong Xian
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| |
Collapse
|
8
|
Girych M, Kulig W, Enkavi G, Vattulainen I. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol 2023; 15:a041419. [PMID: 37487628 PMCID: PMC10547395 DOI: 10.1101/cshperspect.a041419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Lipids play a diverse and critical role in cellular processes in all tissues. The unique lipid composition of nerve membranes is particularly interesting because it contains, among other things, polyunsaturated lipids, such as docosahexaenoic acid, which the body only gets through the diet. The crucial role of lipids in neurological processes, especially in receptor-mediated cell signaling, is emphasized by the fact that in many neuropathological diseases there are significant deviations in the lipid composition of nerve membranes compared to healthy individuals. The lipid composition of neuromembranes can significantly affect the function of receptors by regulating the physical properties of the membrane or by affecting specific interactions between receptors and lipids. In addition, it is worth noting that the ligand-binding pocket of many receptors is located inside the cell membrane, due to which lipids can even modulate the binding of ligands to their receptors. These mechanisms highlight the importance of lipids in the regulation of membrane receptor activation and function. In this article, we focus on two major protein families: G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) and discuss how lipids affect their function in neuronal membranes, elucidating the basic mechanisms underlying neuronal function and dysfunction.
Collapse
Affiliation(s)
- Mykhailo Girych
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
Naito S, Nakayama K, Kawashima N. Enhanced Levels of Glycosphingolipid GM3 Delay the Progression of Diabetic Nephropathy. Int J Mol Sci 2023; 24:11355. [PMID: 37511118 PMCID: PMC10379152 DOI: 10.3390/ijms241411355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
We recently found that albuminuria levels in patients with minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) inversely correlate with glycosphingolipid GM3 expression levels in glomerular podocytes. Moreover, we showed enhanced expression of GM3 via activation of the GM3 synthase gene upon administration of valproic acid (VPA) is effective in suppressing albuminuria and podocyte injury in mice with anti-nephrin antibody-induced podocytopathy. However, the therapeutic effect of GM3 on diabetic nephropathy, which is the most common underlying disease in patients undergoing dialysis and with podocyte injury, remains unclear. Here, we investigated the therapeutic effect of enhanced GM3 expression via VPA on podocyte injury using streptozotocin-induced diabetic nephropathy model mice. Administration of VPA clearly decreased levels of albuminuria and glomerular lesions and inhibited the loss of podocytes and expansion in the mesangial area. Furthermore, we found that albuminuria levels in patients with diabetic nephropathy inversely correlate with the expression of GM3 in podocytes. These results indicate that maintaining GM3 expression in podocytes by administration of VPA may be effective in treating not only podocyte injury, such as MCD and FSGS, but also the late stage of diabetic nephropathy.
Collapse
Affiliation(s)
- Shokichi Naito
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara 252-0374, Kanagawa, Japan
| | - Kenichi Nakayama
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8560, Ibaraki, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara 252-0374, Kanagawa, Japan
| |
Collapse
|
10
|
Suzuki KGN, Komura N, Ando H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 2023; 40:305-314. [PMID: 37133616 DOI: 10.1007/s10719-023-10116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| |
Collapse
|
11
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
12
|
Iwabuchi K, Prinetti A. Afterword (Editorial). Glycoconj J 2023; 40:119-122. [PMID: 36322334 DOI: 10.1007/s10719-022-10090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka Urayasu-shi, Chiba, 279-0021, Japan.
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, 279-0023, Japan.
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| |
Collapse
|
13
|
Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods Mol Biol 2023; 2613:215-227. [PMID: 36587082 DOI: 10.1007/978-1-0716-2910-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gangliosides play a variety of physiological roles and are one of the most important lipid raft constituents. However, their dynamic behaviors have scarcely been investigated in living cells because of the lack of fluorescent probes that behave like their parental molecules. Recently, fluorescent ganglioside probes that mimic native ganglioside behaviors have been developed. In this chapter, I discuss the recent advances in research related to the lateral localization and dynamic behaviors of gangliosides in the plasma membranes of living cells.
Collapse
|
14
|
Inamori KI, Nitta T, Shishido F, Watanabe S, Ohno I, Inokuchi JI. Sialyltransferase Activity Assay for Ganglioside GM3 Synthase. Methods Mol Biol 2023; 2613:101-110. [PMID: 36587074 DOI: 10.1007/978-1-0716-2910-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GM3 synthase (GM3S) is a sialyltransferase that transfers sialic acid from CMP-sialic acid to lactosylceramide. This reaction results in formation of ganglioside GM3 and is essential for biosynthesis of its downstream derivatives, which include a- and b-series gangliosides. Here, we describe a method for GM3S enzymatic assay using fluorescence-labeled alkyl lactoside as acceptor substrate, followed by HPLC for separation of enzymatic product. The method allows quantitative assay of GM3S sialyltransferase activity in cultured cells and mouse brain tissues.
Collapse
Affiliation(s)
- Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Fumi Shishido
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Soichiro Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- Forefront Research Center, Graduate School of Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Hirai G. Sialidase-Resistant Ganglioside GM3 Analogues: Evaluation of Biological Activity. Methods Mol Biol 2023; 2613:79-87. [PMID: 36587072 DOI: 10.1007/978-1-0716-2910-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glycolipids play important biological roles mainly in biological membranes, but their functions at the molecular level remain to be fully established. A chemical biology approach using exogenously added glycolipid probes would be promising, but the possibility of cleavage by cellular glycohydrolases complicates the interpretation of results. Thus, there is a need for non-hydolyzable analogues. In the present study, we designed and synthesized GM3 analogues resistant to GM3-degrading sialidase by replacing the O-sialoside linkage with a C-sialoside linkage. The bioactivity of the analogues was also investigated.
Collapse
Affiliation(s)
- Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
16
|
Balasubramanian H, Sankaran J, Pandey S, Goh CJH, Wohland T. The dependence of EGFR oligomerization on environment and structure: A camera-based N&B study. Biophys J 2022; 121:4452-4466. [PMID: 36335429 PMCID: PMC9748371 DOI: 10.1016/j.bpj.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Number and brightness (N&B) analysis is a fluorescence spectroscopy technique to quantify oligomerization of the mobile fraction of proteins. Accurate results, however, rely on a good knowledge of nonfluorescent states of the fluorescent labels, especially of fluorescent proteins, which are widely used in biology. Fluorescent proteins have been characterized for confocal, but not camera-based, N&B, which allows, in principle, faster measurements over larger areas. Here, we calibrate camera-based N&B implemented on a total internal reflection fluorescence microscope for various fluorescent proteins by determining their propensity to be fluorescent. We then apply camera-based N&B in live CHO-K1 cells to determine the oligomerization state of the epidermal growth factor receptor (EGFR), a transmembrane receptor tyrosine kinase that is a crucial regulator of cell proliferation and survival with implications in many cancers. EGFR oligomerization in resting cells and its regulation by the plasma membrane microenvironment are still under debate. Therefore, we investigate the effects of extrinsic factors, including membrane organization, cytoskeletal structure, and ligand stimulation, and intrinsic factors, including mutations in various EGFR domains, on the receptor's oligomerization. Our results demonstrate that EGFR oligomerization increases with removal of cholesterol or sphingolipids or the disruption of GM3-EGFR interactions, indicating raft association. However, oligomerization is not significantly influenced by the cytoskeleton. Mutations in either I706/V948 residues or E685/E687/E690 residues in the kinase and juxtamembrane domains, respectively, lead to a decrease in oligomerization, indicating their necessity for EGFR dimerization. Finally, EGFR phosphorylation is oligomerization dependent, involving the extracellular domain (550-580 residues). Coupled with biochemical investigations, camera-based N&B indicates that EGFR oligomerization and phosphorylation are the outcomes of several molecular interactions involving the lipid content and structure of the cell membrane and multiple residues in the kinase, juxtamembrane, and extracellular domains.
Collapse
Affiliation(s)
- Harikrushnan Balasubramanian
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jagadish Sankaran
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Shambhavi Pandey
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Corinna Jie Hui Goh
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Glycosphingolipid GM3 prevents albuminuria and podocytopathy induced by anti-nephrin antibody. Sci Rep 2022; 12:16058. [PMID: 36163359 PMCID: PMC9513075 DOI: 10.1038/s41598-022-20265-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Podocytopathy, which is characterized by injury to podocytes, frequently causes proteinuria or nephrotic syndrome. There is currently a paucity of effective therapeutic drugs to treat proteinuric kidney disease. Recent research suggests the possibility that glycosphingolipid GM3 maintains podocyte function by acting on various molecules including nephrin, but its mechanism of action remains unknown. Here, various analyses were performed to examine the potential relationship between GM3 and nephrin, and the function of GM3 in podocytes using podocytopathy mice, GM3 synthase gene knockout mice, and nephrin injury cells. Reduced amounts of GM3 and nephrin were observed in podocytopathy mice. Intriguingly, this reduction of GM3 and nephrin, as well as albuminuria, were inhibited by administration of valproic acid. However, when the same experiment was performed using GM3 synthase gene knockout mice, valproic acid administration did not inhibit albuminuria. Equivalent results were obtained in model cells. These findings indicate that GM3 acts with nephrin in a collaborative manner in the cell membrane. Taken together, elevated levels of GM3 stabilize nephrin, which is a key molecule of the slit diaphragm, by enhancing the environment of the cell membrane and preventing albuminuria. This study provides novel insight into new drug discovery, which may offer a new therapy for kidney disease with albuminuria.
Collapse
|
18
|
Inokuchi JI, Hosono M. Fond Memories of Professor Sen-itiroh Hakomori. J Biochem 2022; 172:143-145. [PMID: 36065662 DOI: 10.1093/jb/mvac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology (IMBG), Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.,Forefront Research Center, Graduate School of Sciences, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Hosono
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology (IMBG), Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
19
|
Naito S, Kawashima N, Ishii D, Fujita T, Iwamura M, Takeuchi Y. Decreased GM3 correlates with proteinuria in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Exp Nephrol 2022; 26:1078-1085. [PMID: 35804208 DOI: 10.1007/s10157-022-02249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glycolipids on cell membrane rafts play various roles by interacting with glycoproteins. Recently, it was reported that the glycolipid GM3 is expressed in podocytes and may play a role in podocyte protection. In this report, we describe the correlation between changes in GM3 expression in glomeruli and proteinuria in minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) patients. METHODS We performed a case-control study of the correlation between nephrin/GM3 expression levels and proteinuria in MCNS and FSGS patients who underwent renal biopsy at our institution between 2009 and 2014. Normal renal tissue sites were used from patients who had undergone nephrectomy at our institution and gave informed consent. RESULTS Both MCNS and FSGS had decreased GM3 and Nephrin expression compared with the normal (normal vs. MCNS, FSGS; all p < 0.01). Furthermore, in both MCNS and FSGS, GM3 expression was negatively correlated with proteinuria (MCNS: r = - 0.61, p < 0.01, FSGS: r = - 0.56, p < 0.05). However, nephrin expression had a trend to correlate with proteinuria in FSGS (MCNS: r = 0.19, p = 0.58, FSGS: r = - 0.48, p = 0.06). Furthermore, in a simple linear regression analysis, GM3 expression also correlated with proteinuric change after 12 months of treatment (MCNS: r = 0.40, p = 0.38, FSGS: r = 0. 68, p < 0.05). CONCLUSION We showed for the first time that decreased GM3 expression correlates with proteinuria in MCNS and FSGS patients. Further studies are needed on the podocyte-protective effects of GM3.
Collapse
Affiliation(s)
- Shokichi Naito
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Nagako Kawashima
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Daisuke Ishii
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuo Fujita
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
20
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
21
|
Start Me Up: How Can Surrounding Gangliosides Affect Sodium-Potassium ATPase Activity and Steer towards Pathological Ion Imbalance in Neurons? Biomedicines 2022; 10:biomedicines10071518. [PMID: 35884824 PMCID: PMC9313118 DOI: 10.3390/biomedicines10071518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Gangliosides, amphiphilic glycosphingolipids, tend to associate laterally with other membrane constituents and undergo extensive interactions with membrane proteins in cis or trans configurations. Studies of human diseases resulting from mutations in the ganglioside biosynthesis pathway and research on transgenic mice with the same mutations implicate gangliosides in the pathogenesis of epilepsy. Gangliosides are reported to affect the activity of the Na+/K+-ATPase, the ubiquitously expressed plasma membrane pump responsible for the stabilization of the resting membrane potential by hyperpolarization, firing up the action potential and ion homeostasis. Impaired Na+/K+-ATPase activity has also been hypothesized to cause seizures by several mechanisms. In this review we present different epileptic phenotypes that are caused by impaired activity of Na+/K+-ATPase or changed membrane ganglioside composition. We further discuss how gangliosides may influence Na+/K+-ATPase activity by acting as lipid sorting machinery providing the optimal stage for Na+/K+-ATPase function. By establishing a distinct lipid environment, together with other membrane lipids, gangliosides possibly modulate Na+/K+-ATPase activity and aid in “starting up” and “turning off” this vital pump. Therefore, structural changes of neuronal membranes caused by altered ganglioside composition can be a contributing factor leading to aberrant Na+/K+-ATPase activity and ion imbalance priming neurons for pathological firing.
Collapse
|
22
|
Inamori KI, Inokuchi JI. Ganglioside GM3 Synthase Deficiency in Mouse Models and Human Patients. Int J Mol Sci 2022; 23:ijms23105368. [PMID: 35628171 PMCID: PMC9141422 DOI: 10.3390/ijms23105368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Gangliosides (glycosphingolipids containing one or more sialic acids) are highly expressed in neural tissues in vertebrates, and four species (GM1a, GD1a, GD1b, GT1b) are predominant in mammalian brains. GM3 is the precursor of each of these four species and is the major ganglioside in many nonneural tissues. GM3 synthase (GM3S), encoded by ST3GAL5 gene in humans, is a sialyltransferase responsible for synthesis of GM3 from its precursor, lactosylceramide. ST3GAL5 mutations cause an autosomal recessive form of severe infantile-onset neurological disease characterized by progressive microcephaly, intellectual disability, dyskinetic movements, blindness, deafness, intractable seizures, and pigment changes. Some of these clinical features are consistently present in patients with ST3GAL5 mutations, whereas others have variable expression. GM3S knockout (KO) mice have deafness and enhanced insulin sensitivity, but otherwise do not display the above-described neurological defects reported in ST3GAL5 patients. The authors present an overview of physiological functions and pathological aspects of gangliosides based on findings from studies of GM3S KO mice and discuss differential phenotypes of GM3S KO mice versus human GM3S-deficiency patients.
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Miyagi, Japan
- Correspondence: (K.-i.I.); (J.-i.I.)
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Miyagi, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
- Correspondence: (K.-i.I.); (J.-i.I.)
| |
Collapse
|
23
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
24
|
Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans. Glycoconj J 2022; 39:219-228. [PMID: 35298725 DOI: 10.1007/s10719-022-10056-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
On cell surfaces, carbohydrate chains that modify proteins and lipids mediate various biological functions, which are exerted not only through carbohydrate-protein interactions but also through carbohydrate-carbohydrate interactions. These glycans exhibit considerable degrees of conformational variability and often form clusters providing multiple binding sites. The integration of nuclear magnetic resonance spectroscopy and molecular dynamics simulation has made it possible to delineate the dynamical structures of carbohydrate chains. This approach has facilitated the remodeling of oligosaccharide conformational space in the prebound state to improve protein-binding affinity and has been applied to visualize dynamic carbohydrate-carbohydrate interactions that control glycoprotein-glycoprotein complex formation. Functional glycoclusters have been characterized by experimental and computational approaches applied to various model membranes and artificial self-assembling systems. This line of investigation has provided dynamic views of molecular assembling on glycoclusters, giving mechanistic insights into physiological and pathological molecular events on cell surfaces as well as clues for the design and creation of molecular systems exerting improved glycofunctions. Further development and accumulation of such studies will allow detailed understanding and artificial control of the "glycosynapse" foreseen by Dr. Sen-itiroh Hakomori.
Collapse
|
25
|
Insights on ErbB glycosylation – contributions to precision oncology. Trends Cancer 2022; 8:448-455. [DOI: 10.1016/j.trecan.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
|
26
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
27
|
Haga Y, Ueda K. Glycosylation in cancer: its application as a biomarker and recent advances of analytical techniques. Glycoconj J 2022; 39:303-313. [DOI: 10.1007/s10719-022-10043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
28
|
Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconj J 2022; 39:167-176. [PMID: 35089466 PMCID: PMC8795723 DOI: 10.1007/s10719-022-10041-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.
Collapse
|
29
|
Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconj J 2022; 39:27-38. [PMID: 35064857 PMCID: PMC8979868 DOI: 10.1007/s10719-021-10019-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson’s disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson’s disease etiology and progression.
Collapse
|
30
|
Marullo S, Scott MGH, Enslen H, Coureuil M. Mechanical Activation of the β 2-Adrenergic Receptor by Meningococcus: A Historical and Future Perspective Analysis of How a Bacterial Probe Can Reveal Signalling Pathways in Endothelial Cells, and a Unique Mode of Receptor Activation Involving Its N-Terminal Glycan Chains. Front Endocrinol (Lausanne) 2022; 13:883568. [PMID: 35586623 PMCID: PMC9108228 DOI: 10.3389/fendo.2022.883568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
More than 12 years have passed since the seminal observation that meningococcus, a pathogen causing epidemic meningitis in humans, occasionally associated with infectious vasculitis and septic shock, can promote the translocation of β-arrestins to the cell surface beneath bacterial colonies. The cellular receptor used by the pathogen to induce signalling in host cells and allowing it to open endothelial cell junctions and reach meninges was unknown. The involvement of β-arrestins, which are scaffolding proteins regulating G protein coupled receptor signalling and function, incited us to specifically investigate this class of receptors. In this perspective article we will summarize the events leading to the discovery that the β2-adrenergic receptor is the receptor that initiates the signalling cascades induced by meningococcus in host cells. This receptor, however, cannot mediate cell infection on its own. It needs to be pre-associated with an "early" adhesion receptor, CD147, within a hetero-oligomeric complex, stabilized by the cytoskeletal protein α-actinin 4. It then required several years to understand how the pathogen actually activates the signalling receptor. Once bound to the N-terminal glycans of the β2-adrenergic receptor, meningococcus provides a mechanical stimulation that induces the biased activation of β-arrestin-mediated signalling pathways. This activating mechanical stimulus can be reproduced in the absence of any pathogen by applying equivalent forces on receptor glycans. Mechanical activation of the β2-adrenergic receptor might have a physiological role in signalling events promoted in the context of cell-to-cell interaction.
Collapse
Affiliation(s)
- Stefano Marullo
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
- *Correspondence: Stefano Marullo,
| | - Mark G. H. Scott
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Hervé Enslen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Institut-Necker-Enfants-Malades, INSERM U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
31
|
Giussani P, Prinetti A, Tringali C. The Role of Sphingolipids in Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22126492. [PMID: 34204326 PMCID: PMC8234743 DOI: 10.3390/ijms22126492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is now considered an innovative and strong strategy to beat metastatic, drug-resistant, or relapsing tumours. It is based on the manipulation of several mechanisms involved in the complex interplay between cancer cells and immune system that culminates in a form of immune-tolerance of tumour cells, favouring their expansion. Current immunotherapies are devoted enforcing the immune response against cancer cells and are represented by approaches employing vaccines, monoclonal antibodies, interleukins, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cells. Despite the undoubted potency of these treatments in some malignancies, many issues are being investigated to amplify the potential of application and to avoid side effects. In this review, we discuss how sphingolipids are involved in interactions between cancer cells and the immune system and how knowledge in this topic could be employed to enhance the efficacy of different immunotherapy approaches. In particular, we explore the following aspects: how sphingolipids are pivotal components of plasma membranes and could modulate the functionality of surface receptors expressed also by immune cells and thus their functionality; how sphingolipids are related to the release of bioactive mediators, sphingosine 1-phosphate, and ceramide that could significantly affect lymphocyte egress and migration toward the tumour milieu, in addition regulating key pathways needed to activate immune cells; given the renowned capability of altering sphingolipid expression and metabolism shown by cancer cells, how it is possible to employ sphingolipids as antigen targets.
Collapse
|
32
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
33
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
34
|
Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in Podocyte Biology and Disease. Int J Mol Sci 2020; 21:E9645. [PMID: 33348903 PMCID: PMC7766259 DOI: 10.3390/ijms21249645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.
Collapse
Affiliation(s)
- Berkan Savas
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 20007 Washington, DC, USA;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano Italy, 20090 Segrate (Milano), Italy;
| | - Dil Sahali
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
- Service Néphrologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Mario Ollero
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| |
Collapse
|
35
|
Role of NEU3 Overexpression in the Prediction of Efficacy of EGFR-Targeted Therapies in Colon Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21228805. [PMID: 33233823 PMCID: PMC7699864 DOI: 10.3390/ijms21228805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors’ activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.
Collapse
|
36
|
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson's disease. Mol Neurodegener 2020; 15:59. [PMID: 33069254 PMCID: PMC7568394 DOI: 10.1186/s13024-020-00408-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson's disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson's disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson's disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson's disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson's disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.
Collapse
Affiliation(s)
- Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Elodie Cuvelier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
| | - Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | |
Collapse
|
37
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
38
|
Tang FL, Wang J, Itokazu Y, Yu RK. Ganglioside GD3 regulates dendritic growth in newborn neurons in adult mouse hippocampus via modulation of mitochondrial dynamics. J Neurochem 2020; 156:819-833. [PMID: 32743804 DOI: 10.1111/jnc.15137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Ganglioside GD3, a major ganglioside species in neural stem cells, plays a crucial role in maintenance of the self-renewal capacity of these cells. However, its bioactivity in postnatally differentiated neurons in the neurogenic regions of adult brains has not been elucidated. Here, we describe for the first time that deletion of GD3 not only impairs neurotrophin-induced stem cell proliferation, but also alters the dendritic structure as well as the number of synapses of nascent neurons in the dentate gyrus of adult brain. When examining the behavioral phenotypes, GD3 synthase-knockout (GD3S-KO) mice displayed impairment in hippocampus-dependent memory function. To further gain insight into its cellular function, we examined GD3-binding partners from mouse brain extract using a GD3-specific monoclonal antibody, R24, followed by LC-MS/MS analysis and identified a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein. Biochemical and imaging analyses revealed mitochondrial fragmentation in GD3-depleted dentate gyrus neurons, suggesting that GD3 is essential for the mitochondrial Drp1 turnover that is required for efficient mitochondrial fission. These results suggest that GD3 is required for proper dendritic and spine maturation of newborn neurons in adult brain through the regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
39
|
Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. Int J Mol Sci 2020; 21:ijms21155349. [PMID: 32731387 PMCID: PMC7432706 DOI: 10.3390/ijms21155349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Gangliosides are essential components of cell membranes and are involved in a variety of physiological processes, including cell growth, differentiation, and receptor-mediated signal transduction. They regulate functions of proteins in membrane microdomains, notably receptor tyrosine kinases such as insulin receptor (InsR) and epidermal growth factor receptor (EGFR), through lateral association. Studies during the past two decades using knockout (KO) or pharmacologically inhibited cells, or KO mouse models for glucosylceramide synthase (GCS; Ugcg), GM3 synthase (GM3S; St3gal5), and GD3 synthase (GD3S; St8sia1) have revealed essential roles of gangliosides in hypothalamic control of energy balance. The a-series gangliosides GM1 and GD1a interact with leptin receptor (LepR) and promote LepR signaling through activation of the JAK2/STAT3 pathway. Studies of GM3S KO cells have shown that the extracellular signal-regulated kinase (ERK) pathway, downstream of the LepR signaling pathway, is also modulated by gangliosides. Recent studies have revealed crosstalk between the LepR signaling pathway and other receptor signaling pathways (e.g., InsR and EGFR pathways). Gangliosides thus have the ability to modulate the effects of leptin by regulating functions of such receptors, and by direct interaction with LepR to control signaling.
Collapse
|
40
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
41
|
Zheng C, Terreni M, Sollogoub M, Zhang Y. Ganglioside GM3 and Its Role in Cancer. Curr Med Chem 2019; 26:2933-2947. [PMID: 29376491 DOI: 10.2174/0929867325666180129100619] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
Ganglioside GM3 is strongly related with human tumors, such as lung, brain cancers and melanomas, and more and more evidences have revealed that GM3 possesses powerful effects on cancer development and progression. GM3 is over expressed on several types of cancers, and can be as a tumor-associated carbohydrate antigen, used for immunotherapy of cancers. GM3 can also inhibit tumor cells growth by anti-angiogenesis or motility and so on. Especially, GM3 has effects on the EGFR tyrosine kinase signaling, uPAR-related signaling and glycolipid-enriched microdomains, which are essential for cancer signaling conduction. It is obvious that GM3 will be a promising target for cancer treatment.
Collapse
Affiliation(s)
- Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France.,Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China
| |
Collapse
|
42
|
Virion Z, Doly S, Saha K, Lambert M, Guillonneau F, Bied C, Duke RM, Rudd PM, Robbe-Masselot C, Nassif X, Coureuil M, Marullo S. Sialic acid mediated mechanical activation of β 2 adrenergic receptors by bacterial pili. Nat Commun 2019; 10:4752. [PMID: 31628314 PMCID: PMC6800425 DOI: 10.1038/s41467-019-12685-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/21/2019] [Indexed: 01/14/2023] Open
Abstract
Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.
Collapse
Affiliation(s)
- Zoe Virion
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France
| | - Stéphane Doly
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Kusumika Saha
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Mireille Lambert
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Camille Bied
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Rebecca M Duke
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Catherine Robbe-Masselot
- CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Université Lille, 59000, Lille, France
| | - Xavier Nassif
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathieu Coureuil
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.
| | - Stefano Marullo
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
43
|
Iioka H, Saito K, Kondo E. Crumbs3 regulates the expression of glycosphingolipids on the plasma membrane to promote colon cancer cell migration. Biochem Biophys Res Commun 2019; 519:287-293. [PMID: 31500807 DOI: 10.1016/j.bbrc.2019.08.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
Abstract
The cell polarity regulator Crumbs3 (Crb3) promotes colon cancer cell migration and metastasis. However, the underlying mechanism of cancer cell migration regulated by Crb3 has not been fully elucidated. Here, we demonstrated that Crb3 is associated with cell migration by regulating glycosphingolipid (GSL) expression in human colon cancer cells. Crb3-knockout (KO) cells showed a remarkable increase in ganglioside GM3 (GM3) on the cell surface. Reduced migration by Crb3-KO cells was restored by forced expression of both Crb3 and Neuraminidase3 (Neu3). Immunofluorescent staining revealed that most Crb3 is colocalized with the recycling endosome marker Rab11. These findings show that Crb3 may promote colon cancer cell migration by regulating the expression of GSLs on the cell surface.
Collapse
Affiliation(s)
- Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
44
|
The sugar code: letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing. Biochem J 2019; 476:2623-2655. [PMID: 31551311 DOI: 10.1042/bcj20170853] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Ubiquitous occurrence in Nature, abundant presence at strategically important places such as the cell surface and dynamic shifts in their profile by diverse molecular switches qualifies the glycans to serve as versatile biochemical signals. However, their exceptional structural complexity often prevents one noting how simple the rules of objective-driven assembly of glycan-encoded messages are. This review is intended to provide a tutorial for a broad readership. The principles of why carbohydrates meet all demands to be the coding section of an information transfer system, and this at unsurpassed high density, are explained. Despite appearing to be a random assortment of sugars and their substitutions, seemingly subtle structural variations in glycan chains by a sophisticated enzymatic machinery have emerged to account for their specific biological meaning. Acting as 'readers' of glycan-encoded information, carbohydrate-specific receptors (lectins) are a means to turn the glycans' potential to serve as signals into a multitude of (patho)physiologically relevant responses. Once the far-reaching significance of this type of functional pairing has become clear, the various modes of spatial presentation of glycans and of carbohydrate recognition domains in lectins can be explored and rationalized. These discoveries are continuously revealing the intricacies of mutually adaptable routes to achieve essential selectivity and specificity. Equipped with these insights, readers will gain a fundamental understanding why carbohydrates form the third alphabet of life, joining the ranks of nucleotides and amino acids, and will also become aware of the importance of cellular communication via glycan-lectin recognition.
Collapse
|
45
|
Cavdarli S, Groux-Degroote S, Delannoy P. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Biomolecules 2019; 9:E311. [PMID: 31357634 PMCID: PMC6723632 DOI: 10.3390/biom9080311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are mostly localized at the plasma membrane in lipid raft domains and implicated in many cellular signaling pathways mostly by interacting with tyrosine kinase receptors. Gangliosides are divided into four series according to the number of sialic acid residues, which can be also modified by O-acetylation. Both ganglioside expression and sialic acid modifications can be modified in pathological conditions such as cancer, which can induce either pro-cancerous or anti-cancerous effects. In this review, we summarize the specific functions of gangliosides in neuro-ectodermal derived tumors, and their roles in reprogramming the lipidomic profile of cell membrane occurring with the induction of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Sophie Groux-Degroote
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| |
Collapse
|
46
|
Integrated Computational Analysis Highlights unique miRNA Signatures in the Subventricular Zone and Striatum of GM2 Gangliosidosis Animal Models. Int J Mol Sci 2019; 20:ijms20133179. [PMID: 31261761 PMCID: PMC6651736 DOI: 10.3390/ijms20133179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
This work explores for the first time the potential contribution of microRNAs (miRNAs) to the pathophysiology of the GM2 gangliosidosis, a group of Lysosomal Storage Diseases. In spite of the genetic origin of GM2 gangliosidosis, the cascade of events leading from the gene/protein defects to the cell dysfunction and death is not fully elucidated. At present, there is no cure for patients. Taking advantage of the animal models of two forms of GM2 gangliosidosis, Tay-Sachs (TSD) and Sandhoff (SD) diseases, we performed a microRNA screening in the brain subventricular zone (SVZ) and striatum (STR), which feature the neurogenesis and neurodegeneration states, respectively, in adult mutant mice. We found abnormal expression of a panel of miRNAs involved in lipid metabolism, CNS development and homeostasis, and neuropathological processes, highlighting region- and disease-specific profiles of miRNA expression. Moreover, by using a computational analysis approach, we identified a unique disease- (SD or TSD) and brain region-specific (SVZ vs. STR) miRNAs signatures of predicted networks potentially related to the pathogenesis of the diseases. These results may contribute to the understanding of GM2 gangliosidosis pathophysiology, with the aim of developing effective treatments.
Collapse
|
47
|
Furukawa K, Ohmi Y, Ohkawa Y, Bhuiyan RH, Zhang P, Tajima O, Hashimoto N, Hamamura K, Furukawa K. New era of research on cancer-associated glycosphingolipids. Cancer Sci 2019; 110:1544-1551. [PMID: 30895683 PMCID: PMC6501054 DOI: 10.1111/cas.14005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer‐associated glycosphingolipids have been used as markers for diagnosis and targets for immunotherapy of malignant tumors. Recent progress in the analysis of their implications in the malignant properties of cancer cells revealed that cancer‐associated glycosphingolipids are not only tumor markers, but also functional molecules regulating various signals introduced by membrane microdomains, lipid rafts. In particular, a novel approach, enzyme‐mediated activation of radical sources combined with mass spectrometry, has enabled us to clarify the mechanisms by which cancer‐associated glycosphingolipids regulate cell signals based on the interaction with membrane molecules and formation of molecular complexes on the cell surface. Novel findings obtained from these approaches are now providing us with insights into the development of new anticancer therapies targeting membrane molecular complexes consisting of cancer‐associated glycolipids and their associated membrane molecules. Thus, a new era of cancer‐associated glycosphingolipids has now begun.
Collapse
Affiliation(s)
- Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Medical Technology, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Anatomy, Faculty of Medical and Dental Sciences, Tokushima University, Tokushima, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
48
|
Pasquel-Dávila DS, Yanez-Vaca SA, Espinosa-Hidalgo ND, Cuadros Buenaventura EG. Gangliosides generalities and role in cancer therapies. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gangliosides are located in the plasma membrane; this confers them the ability to interact with other molecules in order to participate in important cellular processes. Some gangliosides presence or absence in the cell surface is associated with either normal condition or pathologies. Particularly in cancer, gangliosides play a critical role in pathological events like cellular malignancy, tumor formation, and metastasis, defining gangliosides as good candidates to be used as cellular markers. When specific gangliosides are exhibited, immunotherapy could be applied in order to inhibit tumorigenesis or induce an immunogenic response. Novel cancer treatments such as NGcGM3/VSSP vaccines, valproic acid, BMS-345541 inhibitor of GD2 and immunotherapies using 1E10 and 14F7 monoclonal antibodies are described. On this review, there will be studied the gangliosides that allowed developing biological techniques that can give immunogenicity to cancer cells
Collapse
Affiliation(s)
| | - Sabrina A. Yanez-Vaca
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí – Ecuador
| | | | | |
Collapse
|
49
|
Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, Laporte M, Vanderlinden E, Liekens S, Stevaert A, Naesens L. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol 2019; 100:583-601. [PMID: 30762518 DOI: 10.1099/jgv.0.001235] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases (RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying platelet-derived growth factor receptor β (PDGFRβ), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor (CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFRβ-containing endosomal compartment. PDGFRβ/GM3-dependent virus internalization involved PDGFRβ phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRβ by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-γ. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFRβ signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.
Collapse
Affiliation(s)
- Pieter Vrijens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Talitha Boogaerts
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Els Vanstreels
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Roberto Ronca
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manon Laporte
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Evelien Vanderlinden
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sandra Liekens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Abstract
Gangliosides comprise a varied family of glycosphingolipid structures bearing one or more sialic acid residues. They are found in all mammalian tissues but are most abundant in the brain, where they represent the quantitatively major class of sialoglycans. As prominent molecular determinants on cell surfaces, they function as molecular-recognition partners for diverse glycan-binding proteins ranging from bacterial toxins to endogenous cell-cell adhesion molecules. Gangliosides also regulate the activity of plasma membrane proteins, including protein tyrosine kinases, by lateral association in the same membranes in which they reside. Their roles in molecular recognition and membrane protein regulation implicate gangliosides in human physiology and pathology, including infectious diseases, diabetes, cancer, and neurodegeneration. The varied structures and biosynthetic pathways of gangliosides are presented here, along with representative examples of their biological functions in health and disease.
Collapse
|