1
|
Derré L, Crettenand F, Grilo N, Stritt K, Kiss B, Tawadros T, Domingos-Pereira S, Roth B, Cerantola Y, Lucca I. The role of preoperative immunonutrition on morbidity and immune response after cystectomy: protocol of a multicenter randomized controlled trial (INCyst Trial). Trials 2024; 25:687. [PMID: 39415282 PMCID: PMC11483975 DOI: 10.1186/s13063-024-08536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Cancer, malnutrition, and surgery negatively impact patient's immune system. Despite standardized surgical technique and the development of new perioperative care protocols, morbidity after cystectomy remains a serious challenge for urologists. Most common postoperative complications, such as infections and ileus, often lead to longer length of stay and worse survival. The immune system and its interaction with the gut microbiota play a pivotal role in cancer immunosurveillance and in patient's response to surgical stress. Malnutrition has been identified as an independent and modifiable risk factor for both mortality and morbidity. Immunonutrition (IN) may improve the nutritional status, immunological function, and clinical outcome of surgical patients. Aims of the study are (1) to evaluate the impact of IN on morbidity and mortality at 30 and 90 days after cystectomy and (2) to determine immune and microbiota signature that would predict IN effect. METHODS This is a randomized, multicentric, controlled, pragmatic, parallel-group comparative study, supported by the Swiss National Science Foundation. A total of 232 patients is planned to be enrolled between April 2023 and June 2026. Three participating centers (Lausanne, Bern, and Riviera-Chablais) have been selected. All patients undergoing elective radical and simple cystectomy will be randomly assigned to receive 7 days of preoperative IN (Oral Impact®, Nestlé, Switzerland) versus standard of care (control group) and followed for 90 days after surgery. For the exploratory outcomes, blood, serum, urine, and stool samples will be collected in patients treated at Lausanne. In order to determine the impact of IN on immune fitness, patients enrolled at Lausanne will be vaccinated against influenza and the establishment of the vaccine-specific immune response will be followed. Analysis of the microbiota and expression of argininosuccinate synthetase 1 as potential biomarker will also be performed. DISCUSSION AND CONCLUSION Strengths of the INCyst study include the randomized, multicenter, prospective design, the large number of patients studied, and the translational investigation. This study will challenge the added value of preoperative IN in patients undergoing cystectomy, assessing the clinical effect of IN on the onset of postoperative morbidity and mortality after cystectomy. Furthermore, it will provide invaluable data on the host immune response and microbiota composition. TRIAL REGISTRATION ClinicalTrials.gov NCT05726786. Registered on March 9, 2023.
Collapse
Affiliation(s)
- Laurent Derré
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - François Crettenand
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Nuno Grilo
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Kevin Stritt
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Bernhard Kiss
- Department of Urology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Thomas Tawadros
- Department of Urology, Hospital of Riviera-Chablais, Rennaz, Switzerland
| | - Sonia Domingos-Pereira
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Beat Roth
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Yannick Cerantola
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Lucca
- Department of Urology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
McAuliffe J, Panetti S, Steffke E, Wicki A, Pereira-Almeida V, Noblecourt L, Hu Y, Guo SYW, Lesenfants J, Ramirez-Valdez RA, Chandrasekar V, Ahmad M, Stroobant V, Vigneron N, Van den Eynde BJ, Leung CSK. Novel H-2D b-restricted CD8 epitope derived from mouse MAGE-type antigen P1A mediates antitumor immunity in C57BL/6 mice. J Immunother Cancer 2024; 12:e008998. [PMID: 39384196 PMCID: PMC11474967 DOI: 10.1136/jitc-2024-008998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Melanoma antigen gene (MAGE)-type antigens are promising targets for cancer immunotherapy as they are expressed in cancer cells but not in normal tissues, except for male germline cells. The mouse P1A antigen shares this MAGE-type expression pattern and has been used as a target antigen in preclinical tumor models aiming to induce antitumor CD8+ T-cell responses. However, so far only one MHC I-restricted P1A epitope has been identified. It is presented by H-2Ld in mice of the H-2d genetic background such as DBA/2 and BALB/c. Given the availability of multiple genetically altered strains of mice in the C57BL/6 background, it would be useful to define P1A T-cell epitopes presented by the H-2b haplotype, to facilitate more refined mechanistic studies. METHODS We employed a heterologous prime-boost vaccination strategy based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding P1A, to induce P1A-specific T-cell responses in C57BL/6 mice. Vaccine-induced responses were measured by intracellular cytokine staining and multiparameter flow cytometry. We mapped the immunogenic CD8 epitope and cloned the cognate T-cell receptor (TCR), which we used for adoptive cell therapy. RESULTS ChAdOx1/MVA-P1A vaccination induces a strong P1A-specific CD8+ T-cell response in C57BL/6 mice. This response is directed against a single 9-amino acid peptide with sequence FAVVTTSFL, corresponding to P1A amino acids 43-51. It is presented by H-2Db. P1A vaccination, especially with ChAdOx1 administered intramuscularly and MVA delivered intravenously, protected mice against P1A-expressing EL4 (EL4.P1A) tumor cell challenge. We identified and cloned four TCRs that are specific for the H-2Db-restricted P1A43-51 peptide. T cells transduced with these TCRs recognized EL4.P1A but not MC38.P1A and B16F10.P1A tumor cells, likely due to differences in the proteasome subtypes present in these cells. Adoptive transfer of these T cells in mice bearing EL4.P1A tumors reduced tumor growth and increased survival. CONCLUSIONS We identified the first CD8+ T-cell epitope of the MAGE-type P1A tumor antigen presented in the H-2b background. This opens new perspectives for mechanistic studies dissecting MAGE-type specific antitumor immunity, making use of the wealth of genetically altered mouse strains available in the C57BL/6 background. This should facilitate the advancement of specific cancer immunotherapies.
Collapse
Affiliation(s)
- James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Silvia Panetti
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily Steffke
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amanda Wicki
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vinnycius Pereira-Almeida
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurine Noblecourt
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yushu Hu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Shi Yu William Guo
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julie Lesenfants
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
| | | | | | - Maryam Ahmad
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Stroobant
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Nathalie Vigneron
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Carol Sze Ki Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Geboers B, Scheltema MJ, Jung J, Bakker J, Timmer FEF, Cerutti X, Katelaris A, Doan P, Gondoputro W, Blazevski A, Agrawal S, Matthews J, Haynes AM, Robertson T, Thompson JE, Meijerink MR, Clark SJ, de Gruijl TD, Stricker PD. Irreversible electroporation of localised prostate cancer downregulates immune suppression and induces systemic anti-tumour T-cell activation - IRE-IMMUNO study. BJU Int 2024. [PMID: 39101639 DOI: 10.1111/bju.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVES To prospectively compare systemic anti-tumour immune responses induced by irreversible electroporation (IRE) and robot-assisted radical prostatectomy (RARP) in patients with localised intermediate-risk prostate cancer (PCa). PATIENTS AND METHODS Between February 2021 and June 2022, before and after treatment (at 5, 14 and 30 days) peripheral blood samples of 30 patients with localised PCa were prospectively collected. Patient inclusion criteria were: International Society of Urological Pathologists Grade 2-3, clinical cancer stage ≤T2c, prostate-specific antigen level <20 ng/mL). Patients were treated with IRE (n = 20) or RARP (n = 10). Frequency and activation status of lymphocytic and myeloid immune cell subsets were determined using flow cytometry. PCa-specific T-cell responses to prostatic acid phosphatase (PSAP) and cancer testis antigen (New York oesophageal squamous cell carcinoma 1 [NY-ESO-1]) were determined by interferon-γ enzyme-linked immunospot assay (ELISpot). Repeated-measures analysis of variance and two-sided Student's t-tests were used to compare immune responses over time and between treatment cohorts. RESULTS Patient and tumour characteristics were similar between the cohorts except for age (median 68 years [IRE] and 62 years [RARP], P = 0.01). IRE induced depletion of systemic regulatory T cells (P = 0.0001) and a simultaneous increase in activated cytotoxic T-lymphocyte antigen 4 (CTLA-4)+ cluster of differentiation (CD)4+ (P < 0.001) and CD8+ (P = 0.032) T cells, consistent with reduction of systemic immune suppression allowing for effector T-cell activation, peaking 14 days after IRE. Effects were positively correlated with tumour volume/ablation size. Accordingly, IRE induced expansion of PSAP and/or NY-ESO-1 specific T-cell responses in four of the eight immune competent patients. Temporarily increased activated myeloid derived suppressor cell frequencies (P = 0.047) were consistent with transient immunosuppression after RARP. CONCLUSIONS Irreversible electroporation induces a PCa-specific systemic immune response in patients with localised PCa, aiding conversion of the tumour microenvironment into a more immune permissive state. Therapeutic efficacy might be further enhanced by combination with CTLA-4 checkpoint inhibition, potentially opening up a new synergistic treatment paradigm for high-risk localised or (oligo)metastatic disease.
Collapse
Affiliation(s)
- Bart Geboers
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
- Department of Urology, St. Vincent's Private Clinic, Sydney, New South Wales, Australia
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Matthijs J Scheltema
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
- Department of Urology, St. Antonius Hospital, Utrecht, The Netherlands
| | - Jason Jung
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Florentine E F Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Xanthe Cerutti
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Athos Katelaris
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Paul Doan
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - William Gondoputro
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Alexandar Blazevski
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Shikha Agrawal
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Jayne Matthews
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
- Department of Urology, St. Vincent's Private Clinic, Sydney, New South Wales, Australia
| | - Anne-Maree Haynes
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Tim Robertson
- Department of Anesthesiology, St. Vincent's Private Clinic, Sydney, New South Wales, Australia
| | - James E Thompson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Susan J Clark
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Phillip D Stricker
- St. Vincent's Prostate Cancer Research Centre, Sydney, New South Wales, Australia
- Department of Urology, St. Vincent's Private Clinic, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Tooley K, Jerby L, Escobar G, Krovi SH, Mangani D, Dandekar G, Cheng H, Madi A, Goldschmidt E, Lambden C, Krishnan RK, Rozenblatt-Rosen O, Regev A, Anderson AC. Pan-cancer mapping of single CD8 + T cell profiles reveals a TCF1:CXCR6 axis regulating CD28 co-stimulation and anti-tumor immunity. Cell Rep Med 2024; 5:101640. [PMID: 38959885 PMCID: PMC11293343 DOI: 10.1016/j.xcrm.2024.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus, understanding common underlying expression programs could better inform the next generation of immunotherapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compendium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+ T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+ cell responses and is essential for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Katherine Tooley
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Livnat Jerby
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulia Escobar
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - S Harsha Krovi
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide Mangani
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gitanjali Dandekar
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanning Cheng
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Asaf Madi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella Goldschmidt
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Conner Lambden
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ana C Anderson
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Tian L, Wang Y, Zhang Z, Feng X, Xiao F, Zong M. CD72, a new immune checkpoint molecule, is a novel prognostic biomarker for kidney renal clear cell carcinoma. Eur J Med Res 2023; 28:531. [PMID: 37980541 PMCID: PMC10656955 DOI: 10.1186/s40001-023-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The incidence and mortality of clear cell carcinoma of the kidney increases yearly. There are limited screening methods and advances in treating kidney renal clear cell carcinoma (KIRC). It is important to find new biomarkers to screen, diagnose and predict the prognosis of KIRC. Some studies have shown that CD72 influences the development and progression of colorectal cancer, nasopharyngeal cancer, and acute lymphoid leukemia. However, there is a lack of research on the role of CD72 in the pathogenesis of KIRC. This study aimed to determine whether CD72 is associated with the prognosis and immune infiltration of KIRC, providing an essential molecular basis for the early non-invasive diagnosis and immunotherapy of KIRC. METHODS Using TCGA, GTE, GEO, and ImmPort databases, we obtained the differentially expressed mRNA (DEmRNA) associated with the prognosis and immunity of KIRC patients. We used the Kruskal-Wallis test to identify clinicopathological parameters associated with target gene expression. We performed univariate and multivariate COX regression analyses to determine the effect of target gene expression and clinicopathological parameters on survival. We analyzed the target genes' relevant functions and signaling pathways through enrichment analysis. Finally, the correlation of target genes with tumor immune infiltration was explored by ssGSEA and Spearman correlation analysis. RESULTS The results revealed that patients with KIRC with higher expression of CD72 have a poorer prognosis. CD72 was associated with the Pathologic T stage, Pathologic stage, Pathologic M stage, Pathologic N stage, Histologic grade in KIRC patients, Laterality, and OS event. It was an independent predictor of the overall survival of KIRC patients. Functional enrichment analysis showed that CD72 was significantly enriched in oncogenic and immune-related pathways. According to ssGSEA and Spearman correlation analysis, CD72 expression was significantly associated with tumor immune cells and immune checkpoints. CONCLUSION Our study suggests that CD72 is associated with tumor immunity and may be a biomarker relevant to the diagnosis and prognosis of KIRC patients.
Collapse
Affiliation(s)
- Lv Tian
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- School of Nursing, Jilin University, Changchun, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun, China
| | - Zhiyuan Zhang
- School of Nursing, Jilin University, Changchun, China
| | - Xuechao Feng
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Minru Zong
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- School of Nursing, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Shah S, Cook KW, Symonds P, Weißer J, Skinner A, Al Omari A, Paston SJ, Pike I, Durrant LG, Brentville VA. Vaccination with post-translational modified, homocitrullinated peptides induces CD8 T-cell responses that mediate antitumor immunity. J Immunother Cancer 2023; 11:e006966. [PMID: 37857526 PMCID: PMC10603355 DOI: 10.1136/jitc-2023-006966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Post-translational modification of proteins has the potential to alter the ability of T cells to recognize major histocompatibility complex (MHC) class -I and class-II restricted antigens, thereby resulting in altered immune responses. One such modification is carbamylation (homocitrullination) that results in the formation of homocitrulline (Hcit) residues in a non-enzymatic reaction of cyanate with the lysine residues in the polypeptide chain. Homocitrullination occurs in the tumor microenvironment and CD4-mediated immune responses to Hcit epitopes can target stressed tumor cells and provide a potent antitumor response in mouse models. METHODS Homocitrullinated peptides were identified and assessed in vitro for HLA-A2 binding and in vivo in human leukocyte antigen (HLA) transgenic mouse models for immunogenicity. CD8 responses were assessed in vitro for cytotoxicity and in vivo tumor therapy. Human tumor samples were analyzed by targeted mass spectrometry for presence of homocitrullinated peptides. RESULTS Homocitrullinated peptides from aldolase and cytokeratin were identified, that stimulated CD8-mediated responses in vivo. Modified peptides showed enhanced binding to HLA-A2 compared with the native sequences and immunization of HLA-A2 transgenic mice generated high avidity modification specific CD8 responses that killed peptide expressing target cells. Importantly, in vivo the homocitrullinated aldolase specific response was associated with efficient CD8 dependent antitumor therapy of the aggressive murine B16 tumor model indicating that this epitope is naturally presented in the tumor. In addition, the homocitrullinated aldolase epitope was also detected in human tumor samples. CONCLUSION This is the first evidence that homocitrullinated peptides can be processed and presented via MHC-I and targeted for tumor therapy. Thus, Hcit-specific CD8 T-cell responses have potential in the development of future anticancer therapy.
Collapse
Affiliation(s)
| | | | | | - Juliane Weißer
- Proteome Science R&D GmbH und Co, Frankfurt am Main, Hessen, Germany
| | | | | | | | - Ian Pike
- Proteome Science R&D GmbH und Co, Frankfurt am Main, Hessen, Germany
| | - Lindy G Durrant
- Scancell Ltd, Nottingham, UK
- University of Nottingham, Nottingham, UK
| | | |
Collapse
|
7
|
Rudqvist NP, Charpentier M, Lhuillier C, Wennerberg E, Spada S, Sheridan C, Zhou XK, Zhang T, Formenti SC, Sims JS, Alonso A, Demaria S. Immunotherapy targeting different immune compartments in combination with radiation therapy induces regression of resistant tumors. Nat Commun 2023; 14:5146. [PMID: 37620372 PMCID: PMC10449830 DOI: 10.1038/s41467-023-40844-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Radiation therapy (RT) increases tumor response to CTLA-4 inhibition (CTLA4i) in mice and in some patients, yet deep responses are rare. To identify rational combinations of immunotherapy to improve responses we use models of triple negative breast cancer highly resistant to immunotherapy in female mice. We find that CTLA4i promotes the expansion of CD4+ T helper cells, whereas RT enhances T cell clonality and enriches for CD8+ T cells with an exhausted phenotype. Combination therapy decreases regulatory CD4+ T cells and increases effector memory, early activation and precursor exhausted CD8+ T cells. A combined gene signature comprising these three CD8+ T cell clusters is associated with survival in patients. Here we show that targeting additional immune checkpoints expressed by intratumoral T cells, including PD1, is not effective, whereas CD40 agonist therapy recruits resistant tumors into responding to the combination of RT and CTLA4i, indicating the need to target different immune compartments.
Collapse
Affiliation(s)
- Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson, Houston, TX, 77030, USA
- Department of Immunology, University of Texas MD Anderson, Houston, TX, 77030, USA
| | - Maud Charpentier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Immuno-Oncology, Sanofi, 94403, Vitry-sur-Seine, France
| | - Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SM2 5NG, UK
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Caroline Sheridan
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xi Kathy Zhou
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennifer S Sims
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alicia Alonso
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Freiberger SN, Holzmann D, Morand GB, Hüllner M, Levesque MP, Dummer R, Koelzer VH, Rupp NJ. Combinational expression of tumor testis antigens NY-ESO-1, MAGE-A3, and MAGE-A4 predicts response to immunotherapy in mucosal melanoma patients. J Cancer Res Clin Oncol 2023; 149:5645-5653. [PMID: 36527482 PMCID: PMC10356647 DOI: 10.1007/s00432-022-04514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Immunotherapy using immune checkpoint inhibitors (ICI) has revolutionized cancer treatment in recent years, particularly in melanoma. While response to immunotherapy is associated with high tumor mutational burden (TMB), PD-L1 expression, and microsatellite instability in several cancers, tumors lacking these biomarkers can still respond to this treatment. Especially, mucosal melanoma, commonly exhibiting low TMB compared to cutaneous melanoma, may respond to immunotherapy with immune checkpoint inhibitors. Therefore, the aim of our study was to investigate novel biomarkers in mucosal melanoma that predict response to combined ipilimumab and nivolumab. METHODS We investigated 10 tumor samples from 10 patients (three responders, seven non-responders) before treatment and six tumor samples from five patients after progression using a targeted Next Generation Sequencing (NGS) gene expression panel. The findings were corroborated with an independent method (i.e., immunohistochemical staining) on the same 10 tumor samples before treatment and, to increase the cohort, in addition on three tumor samples before treatment of more recent patients (one responder, two non-responders). RESULTS With the targeted gene expression panel, we found the three tumor testis antigens CTAG1B (NY-ESO-1), MAGE-A3, and MAGE-A4 to be predominantly expressed in responding tumors. This marker panel was either not or not completely expressed in non-responders (p < 0.01). Using immunohistochemistry for all three markers, we could confirm the elevated expression in tumors responding to the ipilimumab/nivolumab combination therapy. CONCLUSION In conclusion, these three biomarkers await validation in a larger patient cohort and could be easily used in future routine diagnostics to predict the outcome of ipilimumab/nivolumab combination therapy in mucosal melanoma patients.
Collapse
Affiliation(s)
- Sandra N Freiberger
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - David Holzmann
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Grégoire B Morand
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
- Department of Otolaryngology - Head and Neck Surgery, Sir Mortimer B. Davis - Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Martin Hüllner
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Grassi F, Granata V, Fusco R, De Muzio F, Cutolo C, Gabelloni M, Borgheresi A, Danti G, Picone C, Giovagnoni A, Miele V, Gandolfo N, Barile A, Nardone V, Grassi R. Radiation Recall Pneumonitis: The Open Challenge in Differential Diagnosis of Pneumonia Induced by Oncological Treatments. J Clin Med 2023; 12:jcm12041442. [PMID: 36835977 PMCID: PMC9964719 DOI: 10.3390/jcm12041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The treatment of primary and secondary lung neoplasms now sees the fundamental role of radiotherapy, associated with surgery and systemic therapies. The improvement in survival outcomes has also increased attention to the quality of life, treatment compliance and the management of side effects. The role of imaging is not only limited to recognizing the efficacy of treatment but also to identifying, as soon as possible, the uncommon effects, especially when more treatments, such as chemotherapy, immunotherapy and radiotherapy, are associated. Radiation recall pneumonitis is an uncommon treatment complication that should be correctly characterized, and it is essential to recognize the mechanisms of radiation recall pneumonitis pathogenesis and diagnostic features in order to promptly identify them and adopt the best therapeutic strategy, with the shortest possible withdrawal of the current oncological drug. In this setting, artificial intelligence could have a critical role, although a larger patient data set is required.
Collapse
Affiliation(s)
- Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
- Correspondence:
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80015 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Carmine Picone
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Valerio Nardone
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
| |
Collapse
|
11
|
Arra A, Lingel H, Pierau M, Brunner-Weinzierl MC. PD-1 limits differentiation and plasticity of Tc17 cells. Front Immunol 2023; 14:1104730. [PMID: 37205114 PMCID: PMC10186197 DOI: 10.3389/fimmu.2023.1104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
Blockade of surface co-inhibitory receptor programmed cell death-1 (PD-1; CD279) has been established as an important immunotherapeutic approach to treat malignancies. On a cellular level, PD-1 is demonstrated to be of particular importance in inhibiting differentiation and effector function of cytotoxic Tc1 cells (CTLs). Nevertheless, the role of PD-1 in modulating interleukin (IL)-17-producing CD8+ T-cells (Tc17 cells), which generally display suppressed cytotoxic nature, is not well understood. To evaluate the impact of PD-1 in Tc17 responses, we examined its functioning using different in vitro and in vivo models. Upon activation of CD8+ T-cells in Tc17 environment, we found that PD-1 was rapidly expressed on the surface of CD8+ T-cells and triggered a T-cell-internal mechanism that inhibited the expression of IL-17 and Tc17-supporting transcription factors pSTAT3 and RORγt. Expression of type17-polarising cytokine IL-21 and the receptor for IL-23 were also suppressed. Intriguingly, adoptively transferred, PD-1-/- Tc17 cells were highly efficient in rejection of established B16 melanoma in vivo and displayed Tc1 like characteristics ex vivo. When using IL-17A-eGFP reporter mice for in vitro fate tracking, IL-17A-eGFP expressing cells lacking PD-1 signaling upon re-stimulation with IL-12 quickly acquired Tc1 characteristics such as IFN-γ, and granzyme B expression, implicating lineage independent upregulation of CTL-characteristics that are needed for tumor control. In line with plasticity characteristics, absence of PD-1 signaling in Tc17 cells increased the expression of the stemness and persistence-associated molecules TCF1 and BCL6. Thus, PD-1 plays a central role in the specific suppression of Tc17 differentiation and its plasticity in relation to CTL-driven tumor rejection, which provides further explanation as to why the blockade of PD-1 is such an efficient therapeutic target for inducing tumor rejection.
Collapse
Affiliation(s)
- Aditya Arra
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- *Correspondence: Monika C. Brunner-Weinzierl,
| |
Collapse
|
12
|
Nahar KJ, Marsh-Wakefield F, Rawson RV, Gide TN, Ferguson AL, Allen R, Quek C, da Silva IP, Tattersal S, Kiely CJ, Sandanayake N, Carlino MS, McCaughan G, Wilmott JS, Scolyer RA, Long GV, Menzies AM, Palendira U. Distinct pretreatment innate immune landscape and posttreatment T cell responses underlie immunotherapy-induced colitis. JCI Insight 2022; 7:157839. [PMID: 36173679 PMCID: PMC9675442 DOI: 10.1172/jci.insight.157839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Immune-related adverse events represent a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to antitumor responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis, irrespective of their antitumor response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared with patients who did not develop colitis, and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together, our data show that exaggerated innate and T cell responses to combination immunotherapy synergize to propel colitis in susceptible patients.
Collapse
Affiliation(s)
- Kazi J. Nahar
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Felix Marsh-Wakefield
- Faculty of Medicine and Health,,Charles Perkins Centre, and,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert V. Rawson
- Melanoma Institute Australia,,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Tuba N. Gide
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Angela L. Ferguson
- Faculty of Medicine and Health,,Charles Perkins Centre, and,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth Allen
- Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Camelia Quek
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Ines Pires da Silva
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | | | | | | | - Matteo S. Carlino
- Melanoma Institute Australia,,Crown Princess Mary Cancer Centre and Westmead Hospitals, New South Wales, Australia
| | - Geoff McCaughan
- Faculty of Medicine and Health,,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - James S. Wilmott
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Richard A. Scolyer
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V. Long
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Royal North Shore Hospital, Sydney, New South Wales Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Royal North Shore Hospital, Sydney, New South Wales Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| |
Collapse
|
13
|
Nguyen S, Chevalier MF, Benmerzoug S, Cesson V, Schneider AK, Rodrigues-Dias SC, Dartiguenave F, Lucca I, Jichlinski P, Roth B, Nardelli-Haefliger D, Derré L. Vδ2 T cells are associated with favorable clinical outcomes in patients with bladder cancer and their tumor reactivity can be boosted by BCG and zoledronate treatments. J Immunother Cancer 2022; 10:jitc-2022-004880. [PMID: 36002184 PMCID: PMC9413168 DOI: 10.1136/jitc-2022-004880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bladder cancer is an important public health concern due to its prevalence, high risk of recurrence and associated cost of management. Although BCG instillation for urothelial cancer treatment is the gold-standard treatment for this indication, repeated BCG treatments are associated with significant toxicity and failure, underlining the necessity for alternative or complementary immunotherapy and overall for better understanding of T-cell responses generated within bladder mucosa. Tumor-infiltrating lymphocytes (TIL) have long been recognized as a crucial component of the tumor microenvironment for the control of tumor. Among TIL, unconventional γδ T cells sparked interest due to their potent antitumor functions. Although preclinical mouse xenograft models demonstrated the relevance of using γδ T cells as a novel therapy for bladder cancer (BCa), the contribution of γδ T cells in BCa patients’ pathology remains unaddressed. Methods Therefore, we first determined the proportion of intratumor γδ T cells in muscle-invasive patients with BCa by deconvoluting data from The Cancer Genome Atlas (TCGA) and the frequency of blood Vδ1, Vδ2, and total γδ T cells, by flow cytometry, from 80 patients with BCa (40 non-muscle and 40 muscle-invasive patients with BCa), as well as from 20 age-matched non-tumor patients. Then we investigated in vitro which treatment may promote BCa tumor cell recognition by γδ T cells. Results We observed a decrease of γδ T-cell abundance in the tumor compared with corresponding normal adjacent tissue, suggesting that the tumor microenvironment may alter γδ T cells. Yet, high intratumor γδ T-cell proportions were significantly associated with better patient survival outcomes, potentially due to Vδ2 T cells. In the blood of patients with BCa, we observed a lower frequency of total γδ, Vδ1, and Vδ2 T cells compared with non-tumor patients, similarly to the TCGA analysis. In addition, a favorable clinical outcome is associated with a high frequency of circulating γδ T cells, which might be mainly attributed to the Vδ2 T-cell subset. Furthermore, in vitro assays revealed that either BCG, Zoledronate, or anti-BTN3 agonistic antibody treatment of bladder tumor cells induced Vδ2 T-cell cytolytic (CD107a+) and cytokine-production (IFN-γ and TNF-α). Strikingly, combining BCG and Zoledronate treatments significantly elicited the most quantitative and qualitative response by increasing the frequency and the polyfunctionality of bladder tumor-reactive Vδ2 T cells. Conclusions Overall, our results suggest that (1) Vδ2 T cells might play a prominent role in bladder tumor control and (2) non-muscle invasive patients with BCa undergoing BCG therapy may benefit from Zoledronate administration by boosting Vδ2 T cells’ antitumor activity.
Collapse
Affiliation(s)
- Sylvain Nguyen
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mathieu F Chevalier
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,INSERM U976, HIPI Unit (Human Immunology, Pathophysiology and Immunotherapy), Hôpital Saint-Louis, Paris, France
| | - Sulayman Benmerzoug
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Anna K Schneider
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sonia-Cristina Rodrigues-Dias
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Florence Dartiguenave
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ilaria Lucca
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Patrice Jichlinski
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
14
|
[Clinical Value of Autoantibody Prognostic Markers in Tumor Immune Checkpoint
Inhibitor Therapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:534-540. [PMID: 35899453 PMCID: PMC9346161 DOI: 10.3779/j.issn.1009-3419.2022.101.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Serum autoantibody markers have the advantages of easy specimen acquisition, simple detection technology and dynamic real-time monitoring. With the wide application of immune checkpoint inhibitors in the treatment of malignant tumors, autoantibody markers in predicting tumor immune checkpoint inhibitors efficacy and forecasting irAEs (immune related adverse events) show good prediction of potential. This review mainly focused on the progress of autoantibody markers in the prediction of therapeutic effect and the monitoring of irAE in tumor immunotherapy.
.
Collapse
|
15
|
Richard AC. Divide and Conquer: Phenotypic and Temporal Heterogeneity Within CD8 + T Cell Responses. Front Immunol 2022; 13:949423. [PMID: 35911755 PMCID: PMC9334874 DOI: 10.3389/fimmu.2022.949423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of technologies that can characterize the phenotypes, functions and fates of individual cells has revealed extensive and often unexpected levels of diversity between cells that are nominally of the same subset. CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs), are no exception. Investigations of individual CD8+ T cells both in vitro and in vivo have highlighted the heterogeneity of cellular responses at the levels of activation, differentiation and function. This review takes a broad perspective on the topic of heterogeneity, outlining different forms of variation that arise during a CD8+ T cell response. Specific attention is paid to the impact of T cell receptor (TCR) stimulation strength on heterogeneity. In particular, this review endeavors to highlight connections between variation at different cellular stages, presenting known mechanisms and key open questions about how variation between cells can arise and propagate.
Collapse
|
16
|
Wang B, Chen J, Caserto JS, Wang X, Ma M. An in situ hydrogel-mediated chemo-immunometabolic cancer therapy. Nat Commun 2022; 13:3821. [PMID: 35780226 PMCID: PMC9250515 DOI: 10.1038/s41467-022-31579-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming of the tumor microenvironment (TME) and poor immunogenicity are two of the challenges that cancer immunotherapies have to overcome for improved clinical benefits. Among various immunosuppressive metabolites that keep anti-tumor immunity in check, the tryptophan catabolite kynurenine (Kyn) is an attractive target for blockade given its role in mediating immunosuppression through multiple pathways. Here, we present a local chemo-immunometabolic therapy through injection of a supramolecular hydrogel concurrently releasing doxorubicin that induces immunogenic tumor cell death and kynureninase that disrupts Kyn-mediated immunosuppressive pathways in TME. The combination synergically enhances tumor immunogenicity and unleashes anti-tumor immunity. In mouse models of triple negative breast cancer and melanoma, a single low dose peritumoral injection of the therapeutic hydrogel promotes TME transformation toward more immunostimulatory, which leads to enhanced tumor suppression and extended mouse survival. In addition, the systemic anti-tumor surveillance induced by the local treatment exhibits an abscopal effect and prevents tumor relapse post-resection. This versatile approach for local chemo-immunometabolic therapy may serve as a general strategy for enhancing anti-tumor immunity and boosting the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Jing Chen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Julia S Caserto
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Gandhi GR, Antony PJ, Lana MJMDP, da Silva BFX, Oliveira RV, Jothi G, Hariharan G, Mohana T, Gan RY, Gurgel RQ, Cipolotti R, Quintans LJ. Natural products modulating interleukins and other inflammatory mediators in tumor-bearing animals: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154038. [PMID: 35358934 DOI: 10.1016/j.phymed.2022.154038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is a group of diseases characterized by abnormal cell growth and proliferation. Natural products are a potentially important source for bioactive phytochemicals in the management of cancer, which regulate a broad range of biological events via the modulation of interleukins (ILs), pro- and anti-inflammatory modulators, and other cancer hallmark-mediated signaling pathways. PURPOSE To systematically review the literature to identify in vivo studies investigating the anticancer properties of medicinal plants and natural molecules as modulators of ILs and their related pro- and anti-inflammatory signaling markers in tumor-bearing animals. METHODS Articles published in English were searched, without any constraint in respect of countries. The electronic databases PubMed, Embase, Scopus, and Web of Science were used for the literature search for studies published between January 2010 and January 2022. The search terms used included medicinal plants, anticancer, antineoplasic agent, ILs, cytokine, and their combinations. A manual search to detect any articles not found in the databases was also made. The identified studies were then critically reviewed and relevant data were extracted and summarized. RESULTS Natural products were found to modulate ILs, including IL-1β, IL-2, IL-4, IL-6, IL-8, IL-18, IL-23, and IL-12, and interferon gamma; increase tissue inhibitor metalloprotease; decrease vascular endothelial growth factor, tumor necrosis factor alpha, granulocyte macrophage colony-stimulating factor, and nuclear factor kappa B; augment immunity by increasing the major histocompatibility complexes II and CD4+, cluster of differentiation 8 + T cell and class II trans-activator expression; and heighten the action of antioxidant enzymes, which are involved in the detoxification of free radicals and reactive oxygen species. CONCLUSION Natural products discussed in this review show great potential to regulate ILs and weaken associated pro- and anti-inflammatory signaling markers in tumor-bearing animals. Flavonoids, polyphenols, polysaccharides, alkaloids and tannins are important phytochemicals in the modulation of ILs, especially pro-inflammatory ones. However, in terms of future research, the importance of clinical trials to investigate their beneficial properties should be warranted.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil.
| | | | | | | | - Roberta Vieira Oliveira
- Department of Medicine, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli 620005, Tamil Nadu, India
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli 620005, Tamil Nadu, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Madha Dental College and Hospital, Kundrathur 600069, Chennai, India
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; Department of Medicine, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil.
| | - Rosana Cipolotti
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; Department of Medicine, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil
| | - Lucindo José Quintans
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil.
| |
Collapse
|
18
|
Aran A, Garrigós L, Curigliano G, Cortés J, Martí M. Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality? Cancers (Basel) 2022; 14:cancers14071771. [PMID: 35406543 PMCID: PMC8996954 DOI: 10.3390/cancers14071771] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The TCR is the T cell antigen receptor, and it is responsible of the T cell activation, through the HLA-antigen complex recognition. Studying the TCR repertoire in patients with cancer can help to better understand the anti-tumoural responses and it has been suggested to have predictive and or/prognostic values, both for the disease and in response to treatments. The aim of this review is to summarize TCR repertoire studies performed in patients with cancer found in the literature, thoroughly analyse the different factors that can be involved in shaping the TCR repertoire, and draw the current conclusions in this field, especially focusing on whether the TCR diversity—or its opposite, the clonality—can be used as predictors or prognostic biomarkers of the disease. Abstract T cells play a vital role in the anti-tumoural response, and the presence of tumour-infiltrating lymphocytes has shown to be directly correlated with a good prognosis in several cancer types. Nevertheless, some patients presenting tumour-infiltrating lymphocytes do not have favourable outcomes. The TCR determines the specificities of T cells, so the analysis of the TCR repertoire has been recently considered to be a potential biomarker for patients’ progression and response to therapies with immune checkpoint inhibitors. The TCR repertoire is one of the multiple elements comprising the immune system and is conditioned by several factors, including tissue type, tumour mutational burden, and patients’ immunogenetics. Its study is crucial to understanding the anti-tumoural response, how to beneficially modulate the immune response with current or new treatments, and how to better predict the prognosis. Here, we present a critical review including essential studies on TCR repertoire conducted in patients with cancer with the aim to draw the current conclusions and try to elucidate whether it is better to encounter higher clonality with few TCRs at higher frequencies, or higher diversity with many different TCRs at lower frequencies.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milano, Italy;
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milano, Italy
| | - Javier Cortés
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-935812409
| |
Collapse
|
19
|
Legut M, Gajic Z, Guarino M, Daniloski Z, Rahman JA, Xue X, Lu C, Lu L, Mimitou EP, Hao S, Davoli T, Diefenbach C, Smibert P, Sanjana NE. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 2022; 603:728-735. [PMID: 35296855 PMCID: PMC9908437 DOI: 10.1038/s41586-022-04494-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/01/2022] [Indexed: 01/16/2023]
Abstract
The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer1. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions2-4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4+ and CD8+ T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF-lymphotoxin-β receptor (LTBR)-is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies5. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
Collapse
Affiliation(s)
- Mateusz Legut
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Zoran Gajic
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Maria Guarino
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Zharko Daniloski
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Beam Tx, Cambridge, MA, USA
| | - Jahan A Rahman
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xinhe Xue
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Congyi Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Lu Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Eleni P Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Teresa Davoli
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Catherine Diefenbach
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Ichiki Y, Fukuyama T, Ohmiya H, Ueno M, Yanagi S, Kanasaki Y, Goto H, Mikami S, Yamazaki H, Nakanishi K, Ishida T. Relationship between Kita-Kyushu Lung Cancer antigen-1 expression and prognosis of cases with lung squamous cell carcinoma. Transl Cancer Res 2022; 10:5212-5221. [PMID: 35116371 PMCID: PMC8798488 DOI: 10.21037/tcr-21-1581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
Background Previously, we identified the highly immunogenic cancer testicular antigen named Kita-Kyushu Lung Cancer antigen-1 (KK-LC-1). In this study, we analyzed the effect of KK-LC-1 expression on the prognosis of patients with resected squamous cell lung cancer. Methods Fifty squamous cell lung cancer patients, who received complete resection, were enrolled in this study. The expressions of KK-LC-1, CD8, human leukocyte antigen (HLA) class I, and programmed cell death protein ligand-1 (PD-L1) were assessed via immunohistochemistry staining using the specimens obtained from the participants. The association between the expression of the abovementioned molecules and patient prognosis was investigated. Results KK-LC-1 expression was observed in 21 of 50 recruited cases (42%). However, no significant correlation was found between KK-LC-1 expression and patient prognosis. The prognosis was significantly better in lung cancer cases with KK-LC-1 expression in which CD8+ T cells infiltrated the tumor. Regardless of the HLA class I expression or the PD-L1 expression, the KK-LC-1 expression in squamous cell lung cancer could not be detected as a significant prognostic factor. Furthermore, considering the polarity of the cancer tissue as epithelium, staining of KK-LC-1 tended to be strong in the area corresponding to the basal side of the tumor tissue. The Ki-67 expression was frequently observed in cancer cells on the basal side, which was consistent with the KK-LC-1 expression in representative four cases with KK-LC-1-positive squamous cell lung cancer. Conclusions Our results indicated that lung squamous cell cancer patients with KK-LC-1 expression and the tumor infiltrating CD8+ T cells might exhibit better prognosis. KK-LC-1 might be highly expressed in cancer cells with high proliferative capacity. Larger cohort analysis is still required for further elucidation and validation of the results of this study.
Collapse
Affiliation(s)
- Yoshinobu Ichiki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan.,Second Department of Surgery, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Haruki Ohmiya
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Mari Ueno
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shinya Yanagi
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Yoshiro Kanasaki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Hidenori Goto
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Hitoshi Yamazaki
- Division of Pathology, Kitasato University Medical Center, Kitamoto, Japan
| | - Kozo Nakanishi
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Tsuyoshi Ishida
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| |
Collapse
|
21
|
De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J, Wilgenhof S, Neyns B, Thielemans K. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J Immunother Cancer 2021; 8:jitc-2019-000329. [PMID: 32114500 PMCID: PMC7057443 DOI: 10.1136/jitc-2019-000329] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background We previously reported that dendritic cell-based mRNA vaccination plus ipilimumab (TriMixDC-MEL IPI) results in an encouraging rate of tumor responses in patients with pretreated advanced melanoma. Here, we report the TriMixDC-MEL IPI-induced T-cell responses detected in the peripheral blood. Methods Monocyte-derived dendritic cells electroporated with mRNA encoding CD70, CD40 ligand, and constitutively active TLR4 (TriMix) as well as the tumor-associated antigens tyrosinase, gp100, MAGE-A3, or MAGE-C2 were administered together with IPI for four cycles. For 18/39 patients, an additional vaccine was administered before the first IPI administration. We evaluated tumor-associated antigen specific T-cell responses in previously collected peripheral blood mononuclear cells, available from 15 patients. Results Vaccine-induced enzyme-linked immunospot assay responses detected after in vitro T-cell stimulation were shown in 12/15 patients. Immune responses detected in patients with a complete or partial response were significantly stronger and broader, and exhibited a higher degree of multifunctionality compared with responses in patients with stable or progressive disease. CD8+ T-cell responses from patients with an ongoing clinical response, either elicited by TriMixDC-MEL IPI or on subsequent pembrolizumab treatment, exhibited the highest degree of multifunctionality. Conclusions TriMixDC-MEL IPI treatment results in robust CD8+ T-cell responses in a meaningful portion of stage III or IV melanoma patients, and obviously in patients with a clinical response. The levels of polyfunctional and multiantigen T-cell responses measured in patients with a complete response, particularly in patients evidently cured after 5+ years of follow-up, may provide a benchmark for the level of immune stimulation needed to achieve a durable clinical remission. Trial registration number NCT01302496.
Collapse
Affiliation(s)
| | | | - Javier Carrasco
- Laboratory of Translational Oncology, Institute of Pathology and Genetics, Grand Hopital de Charleroi, Charleroi, Hainaut, Belgium
| | - Isabelle Bar
- Laboratory of Translational Oncology, Institute of Pathology and Genetics, Grand Hopital de Charleroi, Charleroi, Hainaut, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Sofie Wilgenhof
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
22
|
Vasileiou S, Lulla PD, Tzannou I, Watanabe A, Kuvalekar M, Callejas WL, Bilgi M, Wang T, Wu MJ, Kamble R, Ramos CA, Rouce RH, Zeng Z, Gee AP, Grilley BJ, Vera JF, Bollard CM, Brenner MK, Heslop HE, Rooney CM, Leen AM, Carrum G. T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. J Clin Oncol 2021; 39:1415-1425. [PMID: 33507803 DOI: 10.1200/jco.20.02224] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Patients with relapsed lymphomas often fail salvage therapies including high-dose chemotherapy and mono-antigen-specific T-cell therapies, highlighting the need for nontoxic, novel treatments. To that end, we clinically tested an autologous T-cell product that targets multiple tumor-associated antigens (TAAs) expressed by lymphomas with the intent of treating disease and preventing immune escape. PATIENTS AND METHODS We expanded polyclonal T cells reactive to five TAAs: PRAME, SSX2, MAGEA4, SURVIVIN, and NY-ESO-1. Products were administered to 32 patients with Hodgkin lymphomas (n = 14) or non-Hodgkin lymphomas (n = 18) in a two-part phase I clinical trial, where the objective of the first phase was to establish the safety of targeting all five TAAs (fixed dose, 0.5 × 107 cells/m2) simultaneously and the second stage was to establish the maximum tolerated dose. Patients had received a median of three prior lines of therapy and either were at high risk for relapse (adjuvant arm, n = 17) or had chemorefractory disease (n = 15) at enrollment. RESULTS Infusions were safe with no dose-limiting toxicities observed in either the antigen- or dose-escalation phases. Although the maximum tolerated dose was not reached, the maximum tested dose at which efficacy was observed (two infusions, 2 × 107 cells/m2) was determined as the recommended phase II dose. Of the patients with chemorefractory lymphomas, two (of seven) with Hodgkin lymphomas and four (of eight) with non-Hodgkin lymphomas achieved durable complete remissions (> 3 years). CONCLUSION T cells targeting five TAAs and administered at doses of up to two infusions of 2 × 107 cells/m2 are well-tolerated by patients with lymphoma both as adjuvant and to treat chemorefractory lymphoma. Preliminary indicators of antilymphoma activity were seen in the chemorefractory cohort across both antigen- and dose-escalation phases.
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal D Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Wendy L Callejas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Mrinalini Bilgi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Mengfen J Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Zihua Zeng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
23
|
Fan C, Qu H, Wang X, Sobhani N, Wang L, Liu S, Xiong W, Zeng Z, Li Y. Cancer/testis antigens: from serology to mRNA cancer vaccine. Semin Cancer Biol 2021; 76:218-231. [PMID: 33910064 DOI: 10.1016/j.semcancer.2021.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/01/2023]
Abstract
Cancer/testis antigens (CTAs) are a group of tumor antigens expressed in numerous cancer tissues, as well as in the testis and placental tissues. There are over 200 CTAs supported by serology and expression data. The expression patterns of CTAs reflect the similarities between the processes of gametogenesis and tumorigenesis. It is notable that CTAs are highly expressed in three types of cancers (lung cancer, bladder cancer, and skin cancer), all of which have a metal etiology. Here, we review the expression, regulation, and function of CTAs and their translational prospects as cancer biomarkers and treatment targets. Many CTAs are highly immunogenic, tissue-specific, and frequently expressed in cancer tissues but not under physiological conditions, rendering them promising candidates for cancer detection. Some CTAs are associated with clinical outcomes, so they may serve as prognostic biomarkers. A small number of CTAs are membrane-bound, making them ideal targets for chimeric antigen receptor (CAR) T cells. Mounting evidence suggests that CTAs induce humoral or cellular immune responses, providing cancer immunotherapeutic opportunities for T-cell receptors (TCRs), CAR T cell, antibody-based therapy and peptide- or mRNA-based vaccines. Indeed, CTAs are the dominating non-mutated targets in mRNA cancer vaccine development. Clinical trials on CTA TCR and vaccines have shown effectiveness, safety, and tolerance, but these successes are limited to a small number of patients. In-depth studies on CTA expression and function are needed to improve CTA-based immunotherapy.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China; Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States
| | - Hongke Qu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Xu Wang
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States
| | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States
| | - Leiming Wang
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States
| | - Shuanglin Liu
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States.
| |
Collapse
|
24
|
Khoa Ta HD, Tang WC, Phan NN, Anuraga G, Hou SY, Chiao CC, Liu YH, Wu YF, Lee KH, Wang CY. Analysis of LAGEs Family Gene Signature and Prognostic Relevance in Breast Cancer. Diagnostics (Basel) 2021; 11:726. [PMID: 33921749 PMCID: PMC8074247 DOI: 10.3390/diagnostics11040726] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BRCA) is one of the most complex diseases and involves several biological processes. Members of the L-antigen (LAGE) family participate in the development of various cancers, but their expressions and prognostic values in breast cancer remain to be clarified. High-throughput methods for exploring disease progression mechanisms might play a pivotal role in the improvement of novel therapeutics. Therefore, gene expression profiles and clinical data of LAGE family members were acquired from the cBioportal database, followed by verification using the Oncomine and The Cancer Genome Atlas (TCGA) databases. In addition, the Kaplan-Meier method was applied to explore correlations between expressions of LAGE family members and prognoses of breast cancer patients. MetaCore, GlueGo, and GluePedia were used to comprehensively study the transcript expression signatures of LAGEs and their co-expressed genes together with LAGE-related signal transduction pathways in BRCA. The result indicated that higher LAGE3 messenger (m)RNA expressions were observed in BRCA tissues than in normal tissues, and they were also associated with the stage of BRCA patients. Kaplan-Meier plots showed that overexpression of LAGE1, LAGE2A, LAGE2B, and LAGE3 were highly correlated to poor survival in most types of breast cancer. Significant associations of LAGE family genes were correlated with the cell cycle, focal adhesion, and extracellular matrix (ECM) receptor interactions as indicated by functional enrichment analyses. Collectively, LAGE family members' gene expression levels were related to adverse clinicopathological factors and prognoses of BRCA patients; therefore, LAGEs have the potential to serve as prognosticators of BRCA patients.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| | - Wan-Chun Tang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Sz-Ying Hou
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-H.L.)
| | - Yen-Hsi Liu
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-H.L.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| |
Collapse
|
25
|
Wei J, Montalvo-Ortiz W, Yu L, Krasco A, Ebstein S, Cortez C, Lowy I, Murphy AJ, Sleeman MA, Skokos D. Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol 2021; 6:6/58/eabg0117. [PMID: 33837124 DOI: 10.1126/sciimmunol.abg0117] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Although radiotherapy has been used for over a century to locally control tumor growth, alone it rarely induces an abscopal response or systemic antitumor immunity capable of inhibiting distal tumors outside of the irradiation field. Results from recent studies suggest that combining immune checkpoint blockades to radiotherapy may enhance abscopal activity. However, the treatment conditions and underlying immune mechanisms that consistently drive an abscopal response during radiation therapy combinations remain unknown. Here, we analyzed the antitumor responses at primary and distal tumor sites, demonstrating that the timing of αPD-1 antibody administration relative to radiotherapy determined the potency of the induced abscopal response. Blockade of the PD-1 pathway after local tumor irradiation resulted in the expansion of polyfunctional intratumoral CD8+ T cells, a decrease in intratumoral dysfunctional CD8+ T cells, expansion of reprogrammable CD8+ T cells, and induction of potent abscopal responses. However, administration of αPD-1 before irradiation almost completely abrogated systemic immunity, which associated with increased radiosensitivity and death of CD8+ T cells. The subsequent reduction of polyfunctional effector CD8+ T cells at the irradiated tumor site generated a suboptimal systemic antitumor response and the loss of abscopal responses. Therefore, this report maximizes the potential synergy between radiotherapy and αPD-1 immunotherapy, information that will benefit clinical combinations of radiotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Joyce Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Welby Montalvo-Ortiz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lola Yu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Krasco
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sarah Ebstein
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Czrina Cortez
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
26
|
Slingluff CL, Zarour HM, Tawbi HAH, Kirkwood JM, Postow MA, Friedlander P, Devoe CE, Gaughan EM, Mauldin IS, Olson WC, Smith KT, Macri MJ, Ricciardi T, Ryan A, Venhaus R, Wolchok JD. A phase 1 study of NY-ESO-1 vaccine + anti-CTLA4 antibody Ipilimumab (IPI) in patients with unresectable or metastatic melanoma. Oncoimmunology 2021; 10:1898105. [PMID: 33796406 PMCID: PMC8007150 DOI: 10.1080/2162402x.2021.1898105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ipilimumab (IPI) can enhance immunity to the cancer-testis antigen NY-ESO-1. A clinical trial was designed to assess safety, immunogenicity, and clinical responses with IPI + NY-ESO-1 vaccines and effects on the tumor microenvironment (TME). Patients with measurable NY-ESO-1+ tumors were enrolled among three arms: A) IPI + NY-ESO-1 protein + poly-ICLC (pICLC) + incomplete Freund’s adjuvant (IFA); B) IPI + NY-ESO-1 overlapping long peptides (OLP) + pICLC + IFA; and C) IPI + NY-ESO-1 OLP + pICLC. Clinical responses were assessed by irRC. T cell and Ab responses were assessed by ex vivo IFN-gamma ELIspot and ELISA. Tumor biopsies pre- and post-treatment were evaluated for immune infiltrates. Eight patients were enrolled: 5, 2, and 1 in Arms A-C, respectively. There were no DLTs. Best clinical responses were SD (4) and PD (4). T-cell and antibody (Ab) responses to NY-ESO-1 were detected in 6 (75%) and 7 (88%) patients, respectively, and were associated with SD. The breadth of Ab responses was greater for patients with SD than PD (p = .036). For five patients evaluable in the TME, treatment was associated with increases in proliferating (Ki67+) CD8+ T cells and decreases in RORγt+ CD4+ T cells. T cell densities increased for those with SD. Detection of T cell responses to NY-ESO-1 ex vivo in most patients suggests that IPI may have enhanced those responses. Proliferating intratumoral CD8+ T cells increased after vaccination plus IPI suggesting favorable impact of IPI plus NY-ESO-1 vaccines on the TME. List of Abbreviations: Ab = antibody; CTCAE = NCI Common Terminology Criteria for Adverse Events; DHFR/DHRP = dihydrofolate reductase; DLT = Dose-limiting toxicity; ELISA = enzyme-linked immunosorbent assay; IFA = incomplete Freund’s adjuvant (Montanide ISA-51); IFNγ = Interferon gamma; IPI = Ipilimumab; irRC = immune-related response criteria; mIFH = multispectral immunofluorescence histology; OLP = NY-ESO-1 overlapping long peptides; PBMC = peripheral blood mononuclear cells; PD = Progressive disease; pICLC = poly-ICLC (Hiltonol), a TLR3/MDA-5 agonist; RLT = Regimen-limiting Toxicity; ROI = regions of interest; RT = room temperature; SAE = serious adverse event; SD = stable disease; TEAE = treatment-emergent adverse events; TLR = toll-like receptor; TME = tumor microenvironment; TRAE = treatment-related adverse events.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Hassane M Zarour
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein Abdul-Hassan Tawbi
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - John M Kirkwood
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Philip Friedlander
- Department of Medicine, Hematology, and Medical Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Craig E Devoe
- Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Elizabeth M Gaughan
- Department of Medicine/Division of Hematology Oncology, University of Virginia, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Walter C Olson
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kelly T Smith
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Mary J Macri
- Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - Aileen Ryan
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center.,Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
27
|
Krebs FK, Trzeciak ER, Zimmer S, Özistanbullu D, Mitzel‐Rink H, Meissner M, Grabbe S, Loquai C, Tuettenberg A. Immune signature as predictive marker for response to checkpoint inhibitor immunotherapy and overall survival in melanoma. Cancer Med 2021; 10:1562-1575. [PMID: 33449393 PMCID: PMC7940230 DOI: 10.1002/cam4.3710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Malignant melanoma is an immunogenic skin cancer with an increasing global incidence. Advanced stages of melanoma have poor prognoses. Currently, there are no reliable parameters to predict a patient's response to immune checkpoint inhibitor (ICI) therapy. METHODS This study highlights the relevance of a distinct immune signature in the blood for response to ICI therapy and overall survival (OS). Therefore, the immune cell composition in the peripheral blood of 45 melanoma patients prior to ICI therapy was analyzed by flow cytometry and complete blood count. RESULTS Responders to ICI therapy displayed an abundance of proliferating CD4+ T cells, an increased lymphocyte-to-monocyte ratio, a low platelet-to-lymphocyte ratio, low levels of CTLA-4+ Treg, and (arginase 1+ ) polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC). Nevertheless, non-responders with similar immune cell compositions also benefited from therapy displaying increased long-term OS. CONCLUSIONS Our study demonstrated that the observed immune signature in the peripheral blood of melanoma patients prior to treatment could identify responders as well as non-responders that benefit from ICI immunotherapies.
Collapse
Affiliation(s)
- Franziska K. Krebs
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
- German Cancer Consortium (DKTK)Partner Site Mainz/Frankfurt am MainMainzGermany
| | - Emily R. Trzeciak
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sophia Zimmer
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Deniz Özistanbullu
- Department of Dermatology, Venereology and AllergologyJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Heidrun Mitzel‐Rink
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Markus Meissner
- Department of Dermatology, Venereology and AllergologyJohann Wolfgang Goethe UniversityFrankfurtGermany
| | - Stephan Grabbe
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Carmen Loquai
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Andrea Tuettenberg
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
- German Cancer Consortium (DKTK)Partner Site Mainz/Frankfurt am MainMainzGermany
| |
Collapse
|
28
|
Relecom A, Merhi M, Inchakalody V, Uddin S, Rinchai D, Bedognetti D, Dermime S. Emerging dynamics pathways of response and resistance to PD-1 and CTLA-4 blockade: tackling uncertainty by confronting complexity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:74. [PMID: 33602280 PMCID: PMC7893879 DOI: 10.1186/s13046-021-01872-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors provide considerable therapeutic benefit in a range of solid cancers as well as in a subgroup of hematological malignancies. Response rates are however suboptimal, and despite considerable efforts, predicting response to immune checkpoint inhibitors ahead of their administration in a given patient remains elusive. The study of the dynamics of the immune system and of the tumor under immune checkpoint blockade brought insight into the mechanisms of action of these therapeutic agents. Equally relevant are the mechanisms of adaptive resistance to immune checkpoint inhibitors that have been uncovered through this approach. In this review, we discuss the dynamics of the immune system and of the tumor under immune checkpoint blockade emanating from recent studies on animal models and humans. We will focus on mechanisms of action and of resistance conveying information predictive of therapeutic response.
Collapse
Affiliation(s)
- Allan Relecom
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Darawan Rinchai
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar
| | - Davide Bedognetti
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar. .,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Said Dermime
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
29
|
Cancer Vaccines: Antigen Selection Strategy. Vaccines (Basel) 2021; 9:vaccines9020085. [PMID: 33503926 PMCID: PMC7911511 DOI: 10.3390/vaccines9020085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Unlike traditional cancer therapies, cancer vaccines (CVs) harness a high specificity of the host’s immunity to kill tumor cells. CVs can train and bolster the patient’s immune system to recognize and eliminate malignant cells by enhancing immune cells’ identification of antigens expressed on cancer cells. Various features of antigens like immunogenicity and avidity influence the efficacy of CVs. Therefore, the choice and application of antigens play a critical role in establishing and developing CVs. Tumor-associated antigens (TAAs), a group of proteins expressed at elevated levels in tumor cells but lower levels in healthy normal cells, have been well-studied and developed in CVs. However, immunological tolerance, HLA restriction, and adverse events are major obstacles that threaten TAA-based CVs’ efficacy due to the “self-protein” characteristic of TAAs. As “abnormal proteins” that are completely absent from normal cells, tumor-specific antigens (TSAs) can trigger a robust immune response against tumor cells with high specificity and without going through central tolerance, contributing to cancer vaccine development feasibility. In this review, we focus on the unique features of TAAs and TSAs and their application in vaccines, summarizing their performance in preclinical and clinical trials.
Collapse
|
30
|
Jung EH, Jang HR, Kim SH, Suh KJ, Kim YJ, Lee JH, Chung JH, Kim M, Keam B, Kim TM, Kim DW, Heo DS, Lee JS. Tumor LAG-3 and NY-ESO-1 expression predict durable clinical benefits of immune checkpoint inhibitors in advanced non-small cell lung cancer. Thorac Cancer 2021; 12:619-630. [PMID: 33458968 PMCID: PMC7919166 DOI: 10.1111/1759-7714.13834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are an established treatment for non‐small cell lung cancer (NSCLC) that have demonstrated durable clinical benefits (DCBs). Previous studies have suggested NY‐ESO‐1 and LAG‐3 to be surrogate markers of ICI responses in NSCLC; therefore, we explored the predictive value of their expression in NSCLC. Methods We retrospectively reviewed the records of 38 patients with advanced NSCLC treated with anti‐PD‐1 monoclonal antibodies from 2013 to 2016 at Seoul National University Hospital and Seoul National University Bundang Hospital after failed platinum‐based chemotherapy. Tumor tissues from each patient were subjected to immunohistochemical analysis to determine NY‐ESO‐1, LAG‐3, and PD‐L1 expression, whose ability to predict progression‐free survival (PFS) and overall survival (OS) was then analyzed alongside their positive (PPV) and negative (NPV) predictive values. Results NY‐ESO‐1 or LAG‐3 expression was detected in all tumor samples from patients with high PD‐L1 expression and was significantly associated with favorable outcomes, unlike PD‐L1 expression. Patients with both NY‐ESO‐1‐ and LAG‐3‐expressing tumors had a high DCB rate and those with triple‐positive PD‐L1, LAG‐3, and NY‐ESO expression had a superior median OS and PFS than those with triple‐negative expression. Furthermore, LAG‐3 and NY‐ESO‐1 co‐expression was an independent predictor of both PFS and OS, while LAG‐3 displayed a good NPV. Conclusions Patients with NSCLC who co‐express NY‐ESO‐1 or LAG‐3 with PD‐L1 exhibit greater DCBs and improved long‐term survival following anti‐PD‐1 therapy. Moreover, NY‐ESO‐1 and LAG‐3 could be novel predictive biomarkers of survival and should be considered in the future use of ICIs.
Collapse
Affiliation(s)
- Eun Hee Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hee Ryeong Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Ju-Hyun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| |
Collapse
|
31
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
32
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
33
|
Xu P, Liang F. Nanomaterial-Based Tumor Photothermal Immunotherapy. Int J Nanomedicine 2020; 15:9159-9180. [PMID: 33244232 PMCID: PMC7684030 DOI: 10.2147/ijn.s249252] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, photothermal therapy (PTT) particularly nanomaterial-based PTT is a promising therapeutic modality and technique for cancer tumor ablation. In addition to killing tumor cells directly through heat, PTT also can induce immunogenic cell death (ICD) to activate the whole-body anti-tumor immune response, including the redistribution and activation of immune effector cells, the expression and secretion of cytokines and the transformation of memory T lymphocytes. When used in combination with immunotherapy, the efficacy of nanomaterial-based PTT can be improved. This article summarized the mechanism of nanomaterial-based PTT against cancer and how nanomaterial-based PTT impacts the tumor microenvironment and induces an immune response. Moreover, we reviewed recent advances of nanomaterial-based photothermal immunotherapy and discussed challenges and future outlook.
Collapse
Affiliation(s)
- Peng Xu
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| |
Collapse
|
34
|
Bhardwaj N, Friedlander PA, Pavlick AC, Ernstoff MS, Gastman BR, Hanks BA, Curti BD, Albertini MR, Luke JJ, Blazquez AB, Balan S, Bedognetti D, Beechem JM, Crocker AS, D’Amico L, Danaher P, Davis TA, Hawthorne T, Hess BW, Keler T, Lundgren L, Morishima C, Ramchurren N, Rinchai D, Salazar AM, Salim BA, Sharon E, Vitale LA, Wang E, Warren S, Yellin MJ, Disis ML, Cheever MA, Fling SP. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. ACTA ACUST UNITED AC 2020; 1:1204-1217. [DOI: 10.1038/s43018-020-00143-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
|
35
|
Gu Z, Da Silva CG, Van der Maaden K, Ossendorp F, Cruz LJ. Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics 2020; 12:E1054. [PMID: 33158166 PMCID: PMC7694212 DOI: 10.3390/pharmaceutics12111054] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.
Collapse
Affiliation(s)
- Zili Gu
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.G.); (C.G.D.S.)
| | - Candido G. Da Silva
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.G.); (C.G.D.S.)
| | - Koen Van der Maaden
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (K.v.d.M.); (F.O.)
- TECOdevelopment GmbH, 53359 Rheinbach, Germany
| | - Ferry Ossendorp
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (K.v.d.M.); (F.O.)
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.G.); (C.G.D.S.)
| |
Collapse
|
36
|
Edible Oxya chinensis sinuosa-Derived Protein as a Potential Nutraceutical for Anticancer Immunity Improvement. Nutrients 2020; 12:nu12113236. [PMID: 33105813 PMCID: PMC7690572 DOI: 10.3390/nu12113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023] Open
Abstract
Oxya chinensis sinuosa (Ocs) is consumed as representative edible insects in Asia, but its function in various immune systems remains unclear. This study aimed to demonstrate the immunomodulatory effect, particularly on the innate and adaptive immune response, of Ocs protein (Ocs-P) and to investigate its function as a potent anticancer immunostimulant when administered during the progression stage of colon carcinoma in tumor-bearing mice. Our in vitro results demonstrated that Ocs-P treatment induces phenotypic alteration (increased expression of surface molecules and production of Th1-polarizing cytokines and decreased antigen uptake ability) of dendritic cells (DCs) through the activation of MAPK and NF-κB-dependent signaling pathways. Additionally, Ocs-P-stimulated DCs initiated differentiation of naive T cells into IFN-γ-producing Th1-type T cells effectively and activated cytotoxic CD8+ T cell response. In colon carcinoma-bearing mouse models, oral administration of Ocs-P inhibited tumor growth and restored the expression of decreased surface molecules in lineage-CD11c+MHC-II+ splenic DCs. Furthermore, Ocs-P administration enhanced the generation of multifunctional CD4+ and CD8+ T cells expressing Th1-type cytokines (TNF-α, IFN-γ, and IL-2) and the degranulation marker (CD107a). Collectively, these results suggest that Ocs-P demonstrates an immunostimulatory effect and may induce powerful anticancer immunity.
Collapse
|
37
|
Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 2020; 70:569-588. [PMID: 32902664 PMCID: PMC7907026 DOI: 10.1007/s00262-020-02717-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achilles’ heels of cancer that might be exploited therapeutically in the future.
Collapse
|
38
|
Biomarkers, measured during therapy, for response of melanoma patients to immune checkpoint inhibitors: a systematic review. Melanoma Res 2020; 29:453-464. [PMID: 30855527 PMCID: PMC6727956 DOI: 10.1097/cmr.0000000000000589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs), which target CTLA-4 or PD-(L)1 molecules, have shown impressive therapeutic results. Durable responses, however, are only observed in a segment of the patient population and must be offset against severe off-target immune toxicity and high costs. This calls for biomarkers that predict response during ICI treatment. Although many candidate biomarkers exist, as yet, there has been no systematic overview of biomarkers predictive during. Here, we provide a systematic review of the current literature of ICI treatment to establish an overview of candidate predictive biomarkers during ICI treatment in melanoma patients. We performed a systematic Medline search (2000-2018, 1 January) on biomarkers for survival or response to ICI treatment in melanoma patients. We retrieved 735 publications, of which 79 were finally included in this systematic review. Blood markers were largely studied for CTLA-4 ICI, whereas tumor tissue markers were analyzed for PD-(L)1 ICI. Blood cytology and soluble factors were more frequently correlated to overall survival (OS) than response, indicating their prognostic rather than predictive nature. An increase in tumor-infiltrating CD8 + T-cells and a decrease in regulatory T-cells were correlated to response, in addition to mutational load, neoantigen load, and immune-related gene expression. Immune-related adverse events were also associated frequently with a favorable response and OS. This review shows the great variety of potential biomarkers published to date, in an attempt to better understand response to ICI therapy; it also highlights the candidate markers for future research. The most promising biomarkers for response to ICI treatment are the occurrence of immune-related adverse events (especially vitiligo), lowering of lactate dehydrogenase, and increase in activated CD8 + and decrease in regulatory T-cells.
Collapse
|
39
|
Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model. Nutrients 2020; 12:nu12061602. [PMID: 32486094 PMCID: PMC7352220 DOI: 10.3390/nu12061602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are powerful antigen-presenting cells that are often used to evaluate adjuvants, particularly for adjuvant selection for various vaccines. Here, polysaccharides (named ALP) isolated from leaves of Annona muricata L., which are used in traditional medicine such as for bacterial infections and inflammatory diseases, were evaluated as an adjuvant candidate that can induce anti-tumor activity. We first confirmed the phenotypic (surface molecules, cytokines, antigen uptake, and antigen-presenting ability) and functional alterations (T cell proliferation/activation) of DCs in vitro. We also confirmed the adjuvant effect by evaluating anti-tumor activity and immunity using an ALP-treated DC-immunized mouse model. ALP functionally induced DC maturation by up-regulating the secretion of Th1-polarizing pro-inflammatory cytokines, the expression of surface molecules, and antigen-presenting ability. ALP triggered DC maturation, which is dependent on the activation of the MAPK and NF-κB signaling pathways. ALP-activated DCs showed an ample capacity to differentiate naive T cells to Th1 and activated CD8+ T cells effectively. The systemic administration of DCs that pulse ALP and ovalbumin peptides strongly increased cytotoxic T lymphocyte (CTL) activity (by 9.5% compared to that in the control vaccine groups), the generation of CD107a-producing multifunctional T cells, and Th1-mediated humoral immunity, and caused a significant reduction (increased protection by 29% over that in control vaccine groups) in tumor growth. ALP, which triggers the Th1 and CTL response, provides a basis for a new adjuvant for various vaccines.
Collapse
|
40
|
Imai N, Tawara I, Yamane M, Muraoka D, Shiku H, Ikeda H. CD4 + T cells support polyfunctionality of cytotoxic CD8 + T cells with memory potential in immunological control of tumor. Cancer Sci 2020; 111:1958-1968. [PMID: 32304127 PMCID: PMC7293103 DOI: 10.1111/cas.14420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Polyfunctionality/multifunctionality of effector T cells at the single cell level has been shown as an important parameter to predict the quality of T cell response and immunological control of infectious disease and malignancy. However, the fate of polyfunctional CD8+ CTLs and the factors that control the polyfunctionality of T cells remain largely unknown. Here we show that the acquisition of polyfunctionality on the initial stimulation is a sensitive immune correlate of CTL survival and memory formation. CD8+ T cells with high polyfunctionality, assessed with γ‐interferon and tumor necrosis factor‐α production and surface mobilization of the degranulation marker CD107a, showed enhanced Bcl‐2 expression, low apoptosis, and increased CD127highKLRG1low memory precursor phenotype. Consistent with these observations, CD8+ T cells were found to acquire high frequency of cells with polyfunctionality when stimulated in conditions known to enhance memory formation, such as the presence of CD4+ T cells, interleukin (IL)‐2, or IL‐21. Utilizing T‐cell receptor (TCR) transgenic mouse‐derived CD8+ T cells that express a TCR specific for a tumor‐derived neoantigen, we showed that polyfunctional tumor‐specific CTLs generated in the presence of CD4+ T cells showed long persistence in vivo and induced enhanced tumor regression when adoptively transferred into mice with progressing tumor. Acquisition of polyfunctionality thus impacts CTL survival and memory formation associated with immunological control of tumor.
Collapse
Affiliation(s)
- Naoko Imai
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makiko Yamane
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Daisuke Muraoka
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
41
|
Brossart P. The Role of Antigen Spreading in the Efficacy of Immunotherapies. Clin Cancer Res 2020; 26:4442-4447. [PMID: 32357962 DOI: 10.1158/1078-0432.ccr-20-0305] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
The introduction and the unexpected efficacy of checkpoint inhibitors (CPI) and more recently of chimeric antigen receptor T cells (CAR T-cells) in the treatment of malignant diseases boosted the efforts in the development and clinical application of immunotherapeutic approaches. However, the definition of predictive factors associated with clinical responses as well as the identification of underlying mechanisms that promote the therapeutic efficacy remain to be determined. Starting from the first immunotherapeutic trials, it became evident that vaccine-induced tumor-specific T cells or the adoptive transfer of ex vivo-expanded T lymphocytes can recognize and eliminate malignant cells leading to long-lasting remissions in some patients. In addition, a phenomenon called epitope spreading, which was observed in responding patients, seemed to increase the efficiency possibly representing an important predictive factor. This review will focus on experimental and clinical evidence for the induction of epitope spreading and its role in the maintenance of an efficient antitumor immune response in cancer immunotherapy.
Collapse
Affiliation(s)
- Peter Brossart
- Department of Oncology, Haematology, Immuno-Oncology and Rheumatogy, University of Bonn, Bonn, Germany.
| |
Collapse
|
42
|
Rossi G, Russo A, Tagliamento M, Tuzi A, Nigro O, Vallome G, Sini C, Grassi M, Dal Bello MG, Coco S, Longo L, Zullo L, Tanda ET, Dellepiane C, Pronzato P, Genova C. Precision Medicine for NSCLC in the Era of Immunotherapy: New Biomarkers to Select the Most Suitable Treatment or the Most Suitable Patient. Cancers (Basel) 2020; 12:E1125. [PMID: 32365882 PMCID: PMC7281184 DOI: 10.3390/cancers12051125] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, the evolution of treatments has made it possible to significantly improve the outcomes of patients with non-small cell lung cancer (NSCLC). In particular, while molecular targeted therapies are effective in specific patient sub-groups, immune checkpoint inhibitors (ICIs) have greatly influenced the outcomes of a large proportion of NSCLC patients. While nivolumab activity was initially assessed irrespective of predictive biomarkers, subsequent pivotal studies involving other PD-1/PD-L1 inhibitors in pre-treated advanced NSCLC (atezolizumab within the OAK study and pembrolizumab in the Keynote 010 study) reported the first correlations between clinical outcomes and PD-L1 expression. However, PD-L1 could not be sufficient on its own to select patients who may benefit from immunotherapy. Many studies have tried to discover more precise markers that are derived from tumor tissue or from peripheral blood. This review aims to analyze any characteristics of the immunogram that could be used as a predictive biomarker for response to ICIs. Furthermore, we describe the most important genetic alteration that might predict the activity of immunotherapy.
Collapse
Affiliation(s)
- Giovanni Rossi
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Marco Tagliamento
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Alessandro Tuzi
- UO Oncologia, ASST Sette Laghi, 21100 Varese, Italy; (A.T.); (O.N.)
| | - Olga Nigro
- UO Oncologia, ASST Sette Laghi, 21100 Varese, Italy; (A.T.); (O.N.)
| | - Giacomo Vallome
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Claudio Sini
- Oncologia Medica e CPDO, ASSL di Olbia-ATS Sardegna, 07026 Olbia, Italy;
| | - Massimiliano Grassi
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Maria Giovanna Dal Bello
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Simona Coco
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Luca Longo
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Lodovica Zullo
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Enrica Teresa Tanda
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Chiara Dellepiane
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Paolo Pronzato
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| | - Carlo Genova
- Lung Cancer Unit, Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.T.); (G.V.); (M.G.); (M.G.D.B.); (S.C.); (L.L.); (L.Z.); (C.D.); (P.P.); (C.G.)
| |
Collapse
|
43
|
Han C, Choi BK, Kim SH, Sim SJ, Han S, Park B, Tsuchiya Y, Takahashi M, Kim YH, Eom HS, Kitaguchi T, Ueda H, Kwon BS. Polymorphic Region-Specific Antibody for Evaluation of Affinity-Associated Profile of Chimeric Antigen Receptor. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:293-305. [PMID: 32368617 PMCID: PMC7191539 DOI: 10.1016/j.omto.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
Antibody applications in cancer immunotherapy involve diverse strategies, some of which redirect T cell-mediated immunity via engineered antibodies. Affinity is a trait that is crucial for these strategies, as optimal affinity reduces unwanted side effects while retaining therapeutic function. Antibody-antigen pairs possessing a broad affinity range are required to define optimal affinity and to investigate the affinity-associated functional profiles of T cell-engaging strategies such as bispecific antibodies and chimeric antigen receptor-engineered T cells. Here, we demonstrate the unique binding characteristic of the developed antibody clone MVR, which exhibits robust binding to B-lymphoid cell lines. Intriguingly, MVR specifically recognizes the highly polymorphic human leukocyte antigen (HLA)-DR complex and exhibits varying affinities that are dependent upon the HLA-DRB1 allele type. Remarkably, MVR binds to the conformational epitope that consists of two hypervariable regions. As an application of MVR, we demonstrate an MVR-engineered chimeric antigen receptor (CAR) that elicits affinity-dependent function in response to a panel of target cell lines that express different HLA-DRB1 alleles. This tool evaluates the effect of affinity on cytotoxic killing, polyfunctionality, and activation-induced cell death of CAR-engineered T cells. Collectively, MVR exhibits huge potential for the evaluation of the affinity-associated profile of T cells that are redirected by engineered antibodies.
Collapse
Affiliation(s)
- Chungyong Han
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seon-Hee Kim
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Su-Jung Sim
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seongeun Han
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Bomi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yohei Tsuchiya
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaki Takahashi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Young H Kim
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Eutilex Institute for Biomedical Research, Eutilex, Seoul, Republic of Korea
| | - Hyeon-Seok Eom
- Center for Hematologic Malignancy, Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Byoung S Kwon
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Eutilex Institute for Biomedical Research, Eutilex, Seoul, Republic of Korea.,Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
44
|
LoRusso PM, Schalper K, Sosman J. Targeted therapy and immunotherapy: Emerging biomarkers in metastatic melanoma. Pigment Cell Melanoma Res 2020; 33:390-402. [PMID: 31705737 DOI: 10.1111/pcmr.12847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Targeted therapy directed against oncogenic BRAF mutations and immune checkpoint inhibitors have transformed melanoma therapy over the past decade and prominently improved patient outcomes. However, not all patients will respond to targeted therapy or immunotherapy and many relapse after initially responding to treatment. This unmet need presents two major challenges. First, can we elucidate novel oncogenic drivers to provide new therapeutic targets? Second, can we identify patients who are most likely to respond to current therapeutic strategies in order to both more accurately select populations and avoid undue drug exposure in patients unlikely to respond? In an effort to evaluate the current state of the field with respect to these questions, we provide an overview of some common oncogenic mutations in patients with metastatic melanoma and ongoing efforts to therapeutically target these populations, as well as a discussion of biomarkers for response to immune checkpoint inhibitors-including tumor programmed death ligand 1 expression and the future use of neoantigens as a means of truly personalized therapy. This information is becoming important in treatment decision making and provides the framework for a treatment algorithm based on the current landscape in metastatic melanoma.
Collapse
Affiliation(s)
| | - Kurt Schalper
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Jeffrey Sosman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical Center, Chicago, IL, USA
| |
Collapse
|
45
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
46
|
Lasso P, Llano Murcia M, Sandoval TA, Urueña C, Barreto A, Fiorentino S. Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model. Integr Cancer Ther 2019; 18:1534735419848047. [PMID: 31056957 PMCID: PMC6505237 DOI: 10.1177/1534735419848047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The tumor cells responsible for metastasis are highly
resistant to chemotherapy and have characteristics of stem cells, with a high
capacity for self-regeneration and the use of detoxifying mechanisms that
participate in drug resistance. In vivo models of highly resistant cells allow
us to evaluate the real impact of the immune response in the control of cancer.
Materials and Methods: A tumor population derived from the 4T1
breast cancer cell line that was stable in vitro and highly aggressive in vivo
was obtained, characterized, and determined to exhibit cancer stem cell (CSC)
phenotypes (CD44+, CD24+, ALDH+,
Oct4+, Nanog+, Sox2+, and high self-renewal
capacity). Orthotopic transplantation of these cells allowed us to evaluate
their in vivo susceptibility to chemo and immune responses induced after
vaccination. Results: The immune response induced after vaccination
with tumor cells treated with doxorubicin decreased the formation of tumors and
macrometastasis in this model, which allowed us to confirm the immune response
relevance in the control of highly chemotherapy-resistant ALDH+ CSCs
in an aggressive tumor model in immunocompetent animals.
Conclusions: The antitumor immune response was the main element
capable of controlling tumor progression as well as metastasis in a highly
chemotherapy-resistant aggressive breast cancer model.
Collapse
Affiliation(s)
- Paola Lasso
- 1 Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
47
|
Gorabi AM, Hajighasemi S, Sathyapalan T, Sahebkar A. Cell transfer-based immunotherapies in cancer: A review. IUBMB Life 2019; 72:790-800. [PMID: 31633881 DOI: 10.1002/iub.2180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
In cell transfer therapy (CTT), immune cells such as innate immune-derived natural killer cells and dendritic cells as well as acquired immune-related T lymphocytes such as tumor-infiltrating lymphocytes and cytokine-activated or genetically modified peripheral blood T cells are used in the management of cancer. These therapies are increasingly becoming the most used treatment modality in cancer after tumor resection, chemotherapy, and radiotherapy. In adoptive cell transfer, the lymphocytes isolated from either a donor or the patient are modified ex vivo and reinfused to target malignant cells. Transferring in vitro-manipulated immune cells produces a continuous antitumor immune response. In this review, we evaluate the recent advances in CTT for the management of various malignancies.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Faculty of Paramedicine, Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, Cheng YL, Bush EC, Dogra P, Thapa P, Farber DL, Sims PA. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun 2019; 10:4706. [PMID: 31624246 PMCID: PMC6797728 DOI: 10.1038/s41467-019-12464-3] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+ compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease.
Collapse
Affiliation(s)
- Peter A Szabo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark E Snyder
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Erin C Bush
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Puspa Thapa
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Li C, Zhu B, Son Y, Wang Z, Jiang L, Xiang M, Ye Z, Beckermann KE, Wu Y, Jenkins J, Siska PJ, Vincent BG, Prakash Y, Peikert T, Edelson BT, Taneja R, Kaplan MH, Rathmell JC, Dong H, Hitosugi T, Sun J. The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8 + T Cell Fitness and Functionality. Immunity 2019; 51:491-507.e7. [PMID: 31533057 PMCID: PMC6903704 DOI: 10.1016/j.immuni.2019.08.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/13/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022]
Abstract
Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.
Collapse
Affiliation(s)
- Chaofan Li
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bibo Zhu
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Youngmin Son
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheng Wang
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Jiang
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Xiang
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kathryn E. Beckermann
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - James Jenkins
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter J. Siska
- Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany,Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Y.S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tobias Peikert
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reshma Taneja
- Department of Physiology, National University of Singapore, Singapore 117593
| | - Mark H. Kaplan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeffrey C. Rathmell
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
50
|
CD19 Chimeric Antigen Receptor T Cells From Patients With Chronic Lymphocytic Leukemia Display an Elevated IFN-γ Production Profile. J Immunother 2019; 41:73-83. [PMID: 29315094 DOI: 10.1097/cji.0000000000000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD19 chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated dramatic results for the treatment of B cell malignancies such as chronic lymphocytic leukemia (CLL). As T cell defects are common in patients with CLL, we compared the T cells from these patients with healthy donors (HDs), and subsequently the CD19 CAR T cells produced from patients and HDs. Despite initial differences when comparing the phenotype of circulating T cells in patients with CLL and HDs, the CD19 CAR T cells manufactured from patients' or HDs' cells showed a similar phenotype (effector memory or terminally differentiated), both were specifically activated by and killed CD19 target cells, and secreted cytokines (ie, IL-2, TNF, and IFN-γ). The frequency of CD19 CAR T cells producing IFN-γ was significantly higher in cells produced from patients as compared with those produced from HDs. Furthermore, our data showed that the polyfunctional profile of CD19 CAR T cells was differently modulated by CD19 K562 cells and autologous B cells. The increased IFN-γ production by CD19 CAR T cells produced from patients with CLL after in vitro stimulation, may if this is also the case in vivo, contribute to a higher risk of a cytokine release syndrome in patients. The different impact by CD19 target cells on the polyfunctional profile of CD19 CAR T cells in vitro underlines the importance of the choice of CD19 target cells when assessing CD19 CAR T cells functions.
Collapse
|