1
|
Levy EW, Leite I, Joyce BW, Shvartsman SY, Posfai E. A tug-of-war between germ cell motility and intercellular bridges controls germline cyst formation in mice. Curr Biol 2024; 34:5728-5738.e4. [PMID: 39566500 DOI: 10.1016/j.cub.2024.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Gametes in many species develop in cysts-clusters of germ cells formed by incomplete cytokinesis-that remain connected through intercellular bridges (ICBs). These connections enable sharing of cytoplasmic components between germ cells and, in the female germ line, enrich select cells in the cyst to become the oocyte(s). In mice, germline cysts of variable sizes are generated during embryonic development, thought to result from cyst fractures. Studies of fixed samples failed to capture fracture events, and thus, the mechanism remained elusive. Here, we use high-resolution live imaging of germ cells within their native tissue environment to visualize germline cyst dynamics. With this novel approach, we reveal a striking motile phenotype of gonad-resident germ cells and show that this randomly oriented cell-autonomous motile behavior during cyst formation underlies fracture events. Conversely, we show that stabilized ICBs help resist excessive fracturing. Additionally, we find that motility and thus fracture rates gradually decrease during development in a sex-dependent manner, completely ceasing by the end of cyst-forming divisions. These results lead to a model where the opposing activities of developmentally regulated cell motility and stable ICBs give rise to cysts of variable sizes. We corroborate these results by developing a model that uses experimentally measured fracture rates to simulate cyst formation and fracture and show that it can reproduce experimentally measured cyst sizes in both male and female. Understanding how variable cysts form will enable further studies of mammalian oocyte selection and establishment of the ovarian reserve.
Collapse
Affiliation(s)
- Ezra W Levy
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Isabella Leite
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA; Quantitative and Computational Biology Program, Lewis-Sigler Institute for Integrative Genomics, Washington Road, Princeton, NJ 08544, USA
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA; Quantitative and Computational Biology Program, Lewis-Sigler Institute for Integrative Genomics, Washington Road, Princeton, NJ 08544, USA; Developmental Dynamics Group, Center for Computational Biology, Flatiron Institute, 5th Avenue, New York, NY 10010, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Shah P, Hill R, Dion C, Clark SJ, Abakir A, Willems J, Arends MJ, Garaycoechea JI, Leitch HG, Reik W, Crossan GP. Primordial germ cell DNA demethylation and development require DNA translesion synthesis. Nat Commun 2024; 15:3734. [PMID: 38702312 PMCID: PMC11068800 DOI: 10.1038/s41467-024-47219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024] Open
Abstract
Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
Affiliation(s)
- Pranay Shah
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ross Hill
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Camille Dion
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Stephen J Clark
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Abdulkadir Abakir
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jeroen Willems
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | | | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Harry G Leitch
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Wolf Reik
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
3
|
Shah P, Hill R, Clark S, Dion C, Abakir A, Arends M, Leitch H, Reik W, Crossan G. Primordial germ cell DNA demethylation and development require DNA translesion synthesis.. [DOI: 10.1101/2023.07.05.547775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
AbstractMutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. It remains unclear if the role of DDR is solely in meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/-orPcnaK164R/K164R) or extension (Rev7-/-) result in a >150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
|
4
|
Crichton JH, Dunce JM, Dunne OM, Salmon LJ, Devenney PS, Lawson J, Adams IR, Davies OR. Structural maturation of SYCP1-mediated meiotic chromosome synapsis by SYCE3. Nat Struct Mol Biol 2023; 30:188-199. [PMID: 36635604 PMCID: PMC7614228 DOI: 10.1038/s41594-022-00909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
In meiosis, a supramolecular protein structure, the synaptonemal complex (SC), assembles between homologous chromosomes to facilitate their recombination. Mammalian SC formation is thought to involve hierarchical zipper-like assembly of an SYCP1 protein lattice that recruits stabilizing central element (CE) proteins as it extends. Here we combine biochemical approaches with separation-of-function mutagenesis in mice to show that, rather than stabilizing the SYCP1 lattice, the CE protein SYCE3 actively remodels this structure during synapsis. We find that SYCP1 tetramers undergo conformational change into 2:1 heterotrimers on SYCE3 binding, removing their assembly interfaces and disrupting the SYCP1 lattice. SYCE3 then establishes a new lattice by its self-assembly mimicking the role of the disrupted interface in tethering together SYCP1 dimers. SYCE3 also interacts with CE complexes SYCE1-SIX6OS1 and SYCE2-TEX12, providing a mechanism for their recruitment. Thus, SYCE3 remodels the SYCP1 lattice into a CE-binding integrated SYCP1-SYCE3 lattice to achieve long-range synapsis by a mature SC.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James M Dunce
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Orla M Dunne
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - Lucy J Salmon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul S Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jennifer Lawson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Abstract
Metazoans function as individual organisms but also as “colonies” of cells whose single-celled ancestors lived and reproduced independently. Insights from evolutionary biology about multicellular group formation help us understand the behavior of cells: why they cooperate, and why cooperation sometimes breaks down. Current explanations for multicellularity focus on two aspects of development which promote cooperation and limit conflict among cells: a single-cell bottleneck, which creates organisms composed of clones, and a separation of somatic and germ cell lineages, which reduces the selective advantage of cheating. However, many obligately multicellular organisms thrive with neither, creating the potential for within-organism conflict. Here, we argue that the prevalence of such organisms throughout the Metazoa requires us to refine our preconceptions of conflict-free multicellularity. Evolutionary theory must incorporate developmental mechanisms across a broad range of organisms—such as unusual reproductive strategies, totipotency, and cell competition—while developmental biology must incorporate evolutionary principles. To facilitate this cross-disciplinary approach, we provide a conceptual overview from evolutionary biology for developmental biologists, using analogous examples in the well-studied social insects.
Collapse
|
6
|
Jung KM, Seo M, Kim YM, Kim JL, Han JY. Single-Cell RNA Sequencing Revealed the Heterogeneity of Gonadal Primordial Germ Cells in Zebra Finch ( Taeniopygia guttata). Front Cell Dev Biol 2021; 9:791335. [PMID: 34957119 PMCID: PMC8695979 DOI: 10.3389/fcell.2021.791335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Primordial germ cells (PGCs) are undifferentiated gametes with heterogeneity, an evolutionarily conserved characteristic across various organisms. Although dynamic selection at the level of early germ cell populations is an important biological feature linked to fertility, the heterogeneity of PGCs in avian species has not been characterized. In this study, we sought to evaluate PGC heterogeneity in zebra finch using a single-cell RNA sequencing (scRNA-seq) approach. Using scRNA-seq of embryonic gonadal cells from male and female zebra finches at Hamburger and Hamilton (HH) stage 28, we annotated nine cell types from 20 cell clusters. We found that PGCs previously considered a single population can be separated into three subtypes showing differences in apoptosis, proliferation, and other biological processes. The three PGC subtypes were specifically enriched for genes showing expression patterns related to germness or pluripotency, suggesting functional differences in PGCs according to the three subtypes. Additionally, we discovered a novel biomarker, SMC1B, for gonadal PGCs in zebra finch. The results provide the first evidence of substantial heterogeneity in PGCs previously considered a single population in birds. This discovery expands our understanding of PGCs to avian species, and provides a basis for further research.
Collapse
Affiliation(s)
- Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Minseok Seo
- Department of Computer Convergence Software, Korea University, Sejong, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin Lee Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Goldstein O, Mandujano-Tinoco EA, Levy T, Talice S, Raveh T, Gershoni-Yahalom O, Voskoboynik A, Rosental B. Botryllus schlosseri as a Unique Colonial Chordate Model for the Study and Modulation of Innate Immune Activity. Mar Drugs 2021; 19:md19080454. [PMID: 34436293 PMCID: PMC8398012 DOI: 10.3390/md19080454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms that sustain immunological nonreactivity is essential for maintaining tissue in syngeneic and allogeneic settings, such as transplantation and pregnancy tolerance. While most transplantation rejections occur due to the adaptive immune response, the proinflammatory response of innate immunity is necessary for the activation of adaptive immunity. Botryllus schlosseri, a colonial tunicate, which is the nearest invertebrate group to the vertebrates, is devoid of T- and B-cell-based adaptive immunity. It has unique characteristics that make it a valuable model system for studying innate immunity mechanisms: (i) a natural allogeneic transplantation phenomenon that results in either fusion or rejection; (ii) whole animal regeneration and noninflammatory resorption on a weekly basis; (iii) allogeneic resorption which is comparable to human chronic rejection. Recent studies in B. schlosseri have led to the recognition of a molecular and cellular framework underlying the innate immunity loss of tolerance to allogeneic tissues. Additionally, B. schlosseri was developed as a model for studying hematopoietic stem cell (HSC) transplantation, and it provides further insights into the similarities between the HSC niches of human and B. schlosseri. In this review, we discuss why studying the molecular and cellular pathways that direct successful innate immune tolerance in B. schlosseri can provide novel insights into and potential modulations of these immune processes in humans.
Collapse
Affiliation(s)
- Oron Goldstein
- Regenerative Medicine and Stem Cell Research Center, The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.G.); (E.A.M.-T.); (S.T.); (O.G.-Y.)
| | - Edna Ayerim Mandujano-Tinoco
- Regenerative Medicine and Stem Cell Research Center, The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.G.); (E.A.M.-T.); (S.T.); (O.G.-Y.)
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada Mexico-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Hopkins Marine Station, Stanford University, Chan Zuckerberg Biohub, Pacific Grove, CA 93950, USA; (T.L.); (T.R.); (A.V.)
| | - Shani Talice
- Regenerative Medicine and Stem Cell Research Center, The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.G.); (E.A.M.-T.); (S.T.); (O.G.-Y.)
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Hopkins Marine Station, Stanford University, Chan Zuckerberg Biohub, Pacific Grove, CA 93950, USA; (T.L.); (T.R.); (A.V.)
| | - Orly Gershoni-Yahalom
- Regenerative Medicine and Stem Cell Research Center, The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.G.); (E.A.M.-T.); (S.T.); (O.G.-Y.)
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Hopkins Marine Station, Stanford University, Chan Zuckerberg Biohub, Pacific Grove, CA 93950, USA; (T.L.); (T.R.); (A.V.)
| | - Benyamin Rosental
- Regenerative Medicine and Stem Cell Research Center, The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.G.); (E.A.M.-T.); (S.T.); (O.G.-Y.)
- Correspondence:
| |
Collapse
|
8
|
Fukuda E, Tanaka H, Yamaguchi K, Takasaka M, Kawamura Y, Okuda H, Isotani A, Ikawa M, Shapiro VS, Tsuchida J, Okada Y, Tsujimura A, Miyagawa Y, Fukuhara S, Kawakami Y, Wada M, Nishimune Y, Goshima N. Identification and characterization of the antigen recognized by the germ cell mAb TRA98 using a human comprehensive wet protein array. Genes Cells 2021; 26:180-189. [PMID: 33527666 DOI: 10.1111/gtc.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
TRA98 is a rat monoclonal antibody (mAb) which recognizes a specific antigen in the nuclei of germ cells. mAb TRA98 has been used to understand the mechanism of germ cell development and differentiation in many studies. In mice, the antigen recognized by mAb TRA98 or GCNA1 has been reported to be a GCNA gene product, but despite the demonstration of the immunoreactivity of this mAb in human testis and sperm in 1997, the antigen in humans remains unknown, as of date. To identify the human antigen recognized by mAb TRA98, a human comprehensive wet protein array was developed containing 19,446 proteins derived from human cDNAs. Using this array, it was found that the antigen of mAb TRA98 is not a GCNA gene product, but nuclear factor-κB activating protein (NKAP). In mice, mAb TRA98 recognized both the GCNA gene product and NKAP. Furthermore, conditional knockout of Nkap in mice revealed a phenotype of Sertoli cell-only syndrome. Although NKAP is a ubiquitously expressed protein, NKAP recognized by mAb TRA98 in mouse testis was SUMOylated. These results suggest that NKAP undergoes modifications, such as SUMOylation in the testis, and plays an important role in spermatogenesis.
Collapse
Affiliation(s)
- Eriko Fukuda
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiromitsu Tanaka
- Molecular Biology Division, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Kei Yamaguchi
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Mieko Takasaka
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | | | - Hidenobu Okuda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayako Isotani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Junji Tsuchida
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Kawakami
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Morimasa Wada
- Molecular Biology Division, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Yoshitake Nishimune
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Naoki Goshima
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Department of Human Sciences, Faculty of Human Sciences, Musasino University, Tokyo, Japan
| |
Collapse
|
9
|
Kowarsky M, Anselmi C, Hotta K, Burighel P, Zaniolo G, Caicci F, Rosental B, Neff NF, Ishizuka KJ, Palmeri KJ, Okamoto J, Gordon T, Weissman IL, Quake SR, Manni L, Voskoboynik A. Sexual and asexual development: two distinct programs producing the same tunicate. Cell Rep 2021; 34:108681. [PMID: 33503429 PMCID: PMC7949349 DOI: 10.1016/j.celrep.2020.108681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 08/24/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023] Open
Abstract
Colonial tunicates are the only chordate that possess two distinct developmental pathways to produce an adult body: either sexually through embryogenesis or asexually through a stem cell-mediated renewal termed blastogenesis. Using the colonial tunicate Botryllus schlosseri, we combine transcriptomics and microscopy to build an atlas of the molecular and morphological signatures at each developmental stage for both pathways. The general molecular profiles of these processes are largely distinct. However, the relative timing of organogenesis and ordering of tissue-specific gene expression are conserved. By comparing the developmental pathways of B. schlosseri with other chordates, we identify hundreds of putative transcription factors with conserved temporal expression. Our findings demonstrate that convergent morphology need not imply convergent molecular mechanisms but that it showcases the importance that tissue-specific stem cells and transcription factors play in producing the same mature body through different pathways.
Collapse
Affiliation(s)
- Mark Kowarsky
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Chiara Anselmi
- Dipartimento di Biologia, Università degli Studi di Padova, 35122 Padova, Italy; Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | - Kohji Hotta
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | - Paolo Burighel
- Dipartimento di Biologia, Università degli Studi di Padova, 35122 Padova, Italy
| | - Giovanna Zaniolo
- Dipartimento di Biologia, Università degli Studi di Padova, 35122 Padova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, 35122 Padova, Italy
| | - Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA; The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Norma F Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Katherine J Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | - Karla J Palmeri
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | | | - Tal Gordon
- Zoology Department, Tel Aviv University, Tel Aviv 69978, Israel
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephen R Quake
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Departments of Applied Physics and Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, 35122 Padova, Italy.
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Apoptosis in the fetal testis eliminates developmentally defective germ cell clones. Nat Cell Biol 2020; 22:1423-1435. [DOI: 10.1038/s41556-020-00603-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/12/2020] [Indexed: 01/22/2023]
|
11
|
Peired AJ, Mazzinghi B, De Chiara L, Guzzi F, Lasagni L, Romagnani P, Lazzeri E. Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opin Biol Ther 2020; 20:467-480. [DOI: 10.1080/14712598.2020.1709439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Letizia De Chiara
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesco Guzzi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Abstract
Primordial germ cells (PGCs) must complete a complex and dynamic developmental program during embryogenesis to establish the germline. This process is highly conserved and involves a diverse array of tasks required of PGCs, including migration, survival, sex differentiation, and extensive epigenetic reprogramming. A common theme across many organisms is that PGC success is heterogeneous: only a portion of all PGCs complete all these steps while many other PGCs are eliminated from further germline contribution. The differences that distinguish successful PGCs as a population are not well understood. Here, we examine variation that exists in PGCs as they navigate the many stages of this developmental journey. We explore potential sources of PGC heterogeneity and their potential implications in affecting germ cell behaviors. Lastly, we discuss the potential for PGC development to function as a multistage selection process that assesses heterogeneity in PGCs to refine germline quality.
Collapse
Affiliation(s)
- Daniel H Nguyen
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States.
| |
Collapse
|
13
|
Simanjuntak Y, Liang JJ, Chen SY, Li JK, Lee YL, Wu HC, Lin YL. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission. PLoS Pathog 2018; 14:e1006854. [PMID: 29447264 PMCID: PMC5814061 DOI: 10.1371/journal.ppat.1006854] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022] Open
Abstract
Despite the low case fatality, Zika virus (ZIKV) infection has been associated with microcephaly in infants and Guillain-Barré syndrome. Antiviral and vaccine developments against ZIKV are still ongoing; therefore, in the meantime, preventing the disease transmission is critical. Primarily transmitted by Aedes species mosquitoes, ZIKV also can be sexually transmitted. We used AG129 mice lacking interferon-α/β and -γ receptors to study the testicular pathogenesis and sexual transmission of ZIKV. Infection of ZIKV progressively damaged mouse testes, increased testicular oxidative stress as indicated by the levels of reactive oxygen species, nitric oxide, glutathione peroxidase 4, spermatogenesis-associated-18 homolog in sperm and pro-inflammatory cytokines including IL-1β, IL-6, and G-CSF. We then evaluated the potential role of the antioxidant ebselen (EBS) in alleviating the testicular pathology with ZIKV infection. EBS treatment significantly reduced ZIKV-induced testicular oxidative stress, leucocyte infiltration and production of pro-inflammatory response. Furthermore, it improved testicular pathology and prevented the sexual transmission of ZIKV in a male-to-female mouse sperm transfer model. EBS is currently in clinical trials for various diseases. ZIKV infection could be on the list for potential use of EBS, for alleviating the testicular pathogenesis with ZIKV infection and preventing its sexual transmission.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/therapeutic use
- Azoles/therapeutic use
- Cell Nucleus Shape/drug effects
- Cell Nucleus Size/drug effects
- Cell Shape/drug effects
- Cell Size/drug effects
- Cytokines/metabolism
- Isoindoles
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organoselenium Compounds/therapeutic use
- Oxidative Stress/drug effects
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Sexually Transmitted Diseases, Viral/drug therapy
- Sexually Transmitted Diseases, Viral/pathology
- Sexually Transmitted Diseases, Viral/transmission
- Sexually Transmitted Diseases, Viral/virology
- Spermatogenesis/drug effects
- Spermatozoa/immunology
- Spermatozoa/metabolism
- Spermatozoa/pathology
- Spermatozoa/virology
- Testis/drug effects
- Testis/immunology
- Testis/pathology
- Testis/virology
- Zika Virus/drug effects
- Zika Virus/immunology
- Zika Virus/pathogenicity
- Zika Virus Infection/drug therapy
- Zika Virus Infection/pathology
- Zika Virus Infection/transmission
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Si-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Kun Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
15
|
Intestinal stem cells contribute to the maturation of the neonatal small intestine and colon independently of digestive activity. Sci Rep 2017; 7:9891. [PMID: 28860595 PMCID: PMC5578958 DOI: 10.1038/s41598-017-09927-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
The murine intestine, like that of other mammalians, continues to develop after birth until weaning; however, whether this occurs in response to an intrinsic developmental program or food intake remains unclear. Here, we report a novel system for the allotransplantation of small intestine and colon harvested from Lgr5EGFP-IRES-CreERT2/+; Rosa26rbw/+ mice immediately after birth into the subrenal capsule of wild-type mice. By histological and immunohistochemical analysis, the developmental process of transplanted small intestine and colon was shown to be comparable with that of the native tissues: mature intestines equipped with all cell types were formed, indicating that these organs do not require food intake for development. The intestinal stem cells in transplanted tissues were shown to self-renew and produce progeny, resulting in the descendants of the stem cells occupying the crypt-villus unit of the small intestine or the whole crypt of the colon. Collectively, these findings indicate that neonatal intestine development follows an intrinsic program even in the absence of food stimuli.
Collapse
|
16
|
Localized hepatic lobular regeneration by central-vein-associated lineage-restricted progenitors. Proc Natl Acad Sci U S A 2017; 114:3654-3659. [PMID: 28330992 DOI: 10.1073/pnas.1621361114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The regeneration of organ morphology and function following tissue loss is critical to restore normal physiology, yet few cases are documented in mammalian postnatal life. Partial hepatectomy of the adult mammalian liver activates compensatory hepatocyte hypertrophy and cell division across remaining lobes, resulting in restitution of organ mass but with permanent alteration of architecture. Here, we identify a time window in early postnatal life wherein partial amputation culminates in a localized regeneration instead of global hypertrophy and proliferation. Quantifications of liver mass, enzymatic activity, and immunohistochemistry demonstrate that damaged lobes underwent multilineage regeneration, reforming a lobe often indistinguishable from undamaged ones. Clonal analysis during regeneration reveals local clonal expansions of hepatocyte stem/progenitors at injured sites that are lineage but not fate restricted. Tetrachimeric mice show clonal selection occurs during development with further selections following injury. Surviving progenitors associate mainly with central veins, in a pattern of selection different from that of normal development. These results illuminate a previously unknown program of liver regeneration after acute injury and allow for exploration of latent regenerative programs with potential applications to adult liver regeneration.
Collapse
|
17
|
García-Domínguez X, Vicente JS, Vera-Donoso CD, Marco-Jimenez F. Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand. Curr Urol Rep 2017; 18:2. [PMID: 28092070 DOI: 10.1007/s11934-017-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently in the USA, one name is added to the organ transplant waiting list every 15 min. As this list grows rapidly, fewer than one-third of waiting patients can receive matched organs from donors. Unfortunately, many patients who require a transplant have to wait for long periods of time, and many of them die before receiving the desired organ. In the USA alone, over 100,000 patients are waiting for a kidney transplant. However, it is a problem that affects around 6% of the word population. Therefore, seeking alternative solutions to this problem is an urgent work. Here, we review the current promising regenerative technologies for kidney function replacement. Despite many approaches being applied in the different ways outlined in this work, obtaining an organ capable of performing complex functions such as osmoregulation, excretion or hormone synthesis is still a long-term goal. However, in the future, the efforts in these areas may eliminate the long waiting list for kidney transplants, providing a definitive solution for patients with end-stage renal disease.
Collapse
Affiliation(s)
- Ximo García-Domínguez
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, C/Camino de Vera s/n, 46022, Valencia, Spain
| | - Jose S Vicente
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, C/Camino de Vera s/n, 46022, Valencia, Spain
| | - Cesar D Vera-Donoso
- Servicio de Urología, Hospital Universitari i Politècnic La Fe, Avinguda de Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Francisco Marco-Jimenez
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, C/Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
18
|
Yanai H, Atsumi N, Tanaka T, Nakamura N, Komai Y, Omachi T, Tanaka K, Ishigaki K, Saiga K, Ohsugi H, Tokuyama Y, Imahashi Y, Ohe S, Hisha H, Yoshida N, Kumano K, Kon M, Ueno H. Intestinal cancer stem cells marked by Bmi1 or Lgr5 expression contribute to tumor propagation via clonal expansion. Sci Rep 2017; 7:41838. [PMID: 28176811 PMCID: PMC5296906 DOI: 10.1038/srep41838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023] Open
Abstract
Although the existence of cancer stem cells in intestine tumors has been suggested, direct evidence has not been yet provided. Here, we showed, using the multicolor lineage-tracing method and mouse models of intestinal adenocarcinoma and adenoma that Bmi1- or Lgr5- positive tumorigenic cells clonally expanded in proliferating tumors. At tumor initiation and during tumor propagation in the colon, the descendants of Lgr5-positive cells clonally proliferated to form clusters. Clonal analysis using ubiquitous multicolor lineage tracing revealed that colon tumors derived from Lgr5-positive cells were monoclonal in origin but eventually merged with neighboring tumors, producing polyclonal tumors at the later stage. In contrast, the origin of small intestine tumors was likely polyclonal, and during cancer progression some clones were eliminated, resulting in the formation of monoclonal tumors, which could merge similar to colon tumors. These results suggest that in proliferating intestinal neoplasms, Bmi1- or Lgr5-positive cells represent a population of cancer stem cells, whereas Lgr5-positive cells also function as cells-of-origin for intestinal tumors.
Collapse
Affiliation(s)
- Hirotsugu Yanai
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Naho Atsumi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Toshihiro Tanaka
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Naohiro Nakamura
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yoshihiro Komai
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Urology and Andrology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Taichi Omachi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kiyomichi Tanaka
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kazuhiko Ishigaki
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kazuho Saiga
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Haruyuki Ohsugi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Urology and Andrology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yoko Tokuyama
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yuki Imahashi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Shuichi Ohe
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Dermatology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Hiroko Hisha
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Naoko Yoshida
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Keiki Kumano
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Masanori Kon
- Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
19
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
20
|
Tanaka T, Atsumi N, Nakamura N, Yanai H, Komai Y, Omachi T, Tanaka K, Ishigaki K, Saiga K, Ohsugi H, Tokuyama Y, Imahashi Y, Hisha H, Yoshida N, Kumano K, Okazaki K, Ueno H. Bmi1-positive cells in the lingual epithelium could serve as cancer stem cells in tongue cancer. Sci Rep 2016; 6:39386. [PMID: 28004815 PMCID: PMC5177893 DOI: 10.1038/srep39386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023] Open
Abstract
We recently reported that the polycomb complex protein Bmi1 is a marker for lingual epithelial stem cells (LESCs), which are involved in the long-term maintenance of lingual epithelial tissue in the physiological state. However, the precise role of LESCs in generating tongue tumors and Bmi1-positive cell lineage dynamics in tongue cancers are unclear. Here, using a mouse model of chemically (4-nitroquinoline-1-oxide: 4-NQO) induced tongue cancer and the multicolor lineage tracing method, we found that each unit of the tumor was generated by a single cell and that the assembly of such cells formed a polyclonal tumor. Although many Bmi1-positive cells within the tongue cancer specimens failed to proliferate, some proliferated continuously and supplied tumor cells to the surrounding area. This process eventually led to the formation of areas derived from single cells after 1–3 months, as determined using the multicolor lineage tracing method, indicating that such cells could serve as cancer stem cells. These results indicate that LESCs could serve as the origin for tongue cancer and that cancer stem cells are present in tongue tumors.
Collapse
Affiliation(s)
- Toshihiro Tanaka
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Naho Atsumi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Naohiro Nakamura
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Hirotsugu Yanai
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Urology and Andrology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yoshihiro Komai
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Taichi Omachi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kiyomichi Tanaka
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kazuhiko Ishigaki
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kazuho Saiga
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Haruyuki Ohsugi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.,Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yoko Tokuyama
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Yuki Imahashi
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Hiroko Hisha
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Naoko Yoshida
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Keiki Kumano
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
21
|
Ueno H. Identification of normal and neoplastic stem cells by the multicolor lineage tracing methods. Pathol Int 2016; 66:423-30. [PMID: 27345364 DOI: 10.1111/pin.12425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023]
Abstract
Adult stem cells and embryonic (ES) and induced pluripotent stem (iPS) cells are two major focus areas of stem cell research. Studies on adult stem cells are important not only as sources for regenerative medicine but for analyzing the mechanisms of tissue homeostasis, tissue repair after injury, cancinogenesis, and aging. On the other hand, ES and iPS cells are mainly important for regenerative medicine. However, many adult stem cells, especially those in low-turnover tissues, have remained unidentified. We have been working on the development of methods using multiple fluorescent markers, to improve the accuracy of lineage-tracing analyses of adult stem cells and their fetal progenitors. With this method, we were able to identify lingual epithelial stem cells (LESCs). By using the same strategy, we could potentially identify candidate cancer stem cells. In this review, we would like to introduce how the multicolor lineage tracing method could be used in various stem cell studies.
Collapse
Affiliation(s)
- Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
22
|
Corey DM, Rinkevich Y, Weissman IL. Dynamic Patterns of Clonal Evolution in Tumor Vasculature Underlie Alterations in Lymphocyte-Endothelial Recognition to Foster Tumor Immune Escape. Cancer Res 2015; 76:1348-53. [PMID: 26719541 DOI: 10.1158/0008-5472.can-15-1150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022]
Abstract
Although tumor blood vessels have been a major therapeutic target for cancer chemotherapy, little is known regarding the stepwise development of the tumor microenvironment. Here, we use a multicolor Cre-dependent marker system to trace clonality within the tumor microenvironment to show that tumor blood vessels follow a pattern of dynamic clonal evolution. In an advanced melanoma tumor microenvironment, the vast majority of tumor vasculature clones are derived from a common precursor. Quantitative lineage analysis reveals founder clones diminish in frequency and are replaced by subclones as tumors evolve. These tumor-specific blood vessels are characterized by a developmental switch to a more invasive and immunologically silent phenotype. Gene expression profiling and pathway analysis reveals selection for traits promoting upregulation of alternative angiogenic programs such as unregulated HGF-MET signaling and enhanced autocrine signaling through VEGF and PDGF. Furthermore, we show a developmental switch in the expression of functionally significant primary lymphocyte adhesion molecules on tumor endothelium, such as the loss in expression of the mucosal addressin MAdCAM-1, whose counter receptor a4β7 on lymphocytes controls lymphocyte homing. Changes in adhesive properties on tumor endothelial subclones are accompanied by decreases in expression of lymphocyte chemokines CXCL16, CXCL13, CXCL12, CXCL9, CXCL10, and CCL19. These evolutionary patterns in the expressed genetic program within tumor endothelium will have both a quantitative and functional impact on lymphocyte distribution that may well influence tumor immune function and underlie escape mechanisms from current antiangiogenic pharmacotherapies.
Collapse
Affiliation(s)
- Daniel M Corey
- Department of Hematology, Stanford University School of Medicine, Stanford, California. Stanford Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.
| | - Yuval Rinkevich
- Stanford Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California
| | - Irving L Weissman
- Stanford Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California. Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
23
|
Weissman I. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140364. [PMID: 26416675 PMCID: PMC4633993 DOI: 10.1098/rstb.2014.0364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 01/29/2023] Open
Abstract
The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. Proc Natl Acad Sci U S A 2015. [PMID: 26195745 DOI: 10.1073/pnas.1505464112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is obvious that natural selection operates at the level of individuals and collections of individuals. Nearly two decades ago we showed that in multi-individual colonies of protochordate colonial tunicates sharing a blood circulation, there exists an exchange of somatic stem cells and germline stem cells, resulting in somatic chimeras and stem cell competitions for gonadal niches. Stem cells are unlike other cells in the body in that they alone self-renew, so that they form clones that are perpetuated for the life of the organism. Stem cell competitions have allowed the emergence of competitive somatic and germline stem cell clones. Highly successful germline stem cells usually outcompete less successful competitors both in the gonads of the genotype partner from which they arise and in the gonads of the natural parabiotic partners. Therefore, natural selection also operates at the level of germline stem cell clones. In the colonial tunicate Botryllus schlosseri the formation of natural parabionts is prevented by a single-locus highly polymorphic histocompatibility gene called Botryllus histocompatibility factor. This limits germline stem cell predation to kin, as the locus has hundreds of alleles. We show that in mice germline stem cells compete for gonad niches, and in mice and humans, blood-forming stem cells also compete for bone marrow niches. We show that the clonal progression from blood-forming stem cells to acute leukemias by successive genetic and epigenetic events in blood stem cells also involves competition and selection between clones and propose that this is a general theme in cancer.
Collapse
|
25
|
Maintenance of sweat glands by stem cells located in the acral epithelium. Biochem Biophys Res Commun 2015; 466:333-8. [PMID: 26362184 DOI: 10.1016/j.bbrc.2015.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes.
Collapse
|
26
|
Current Bioengineering Methods for Whole Kidney Regeneration. Stem Cells Int 2015; 2015:724047. [PMID: 26089921 PMCID: PMC4452081 DOI: 10.1155/2015/724047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Kidney regeneration is likely to provide an inexhaustible source of tissues and organs for immunosuppression-free transplantation. It is currently garnering considerable attention and might replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, anatomical complications make kidney regeneration difficult. Here, we review recent advances in the field of kidney regeneration, including (i) the directed differentiation of induced pluripotent stem cells/embryonic stem cells into kidney cells; (ii) blastocyst decomplementation; (iii) use of a decellularized cadaveric scaffold; (iv) embryonic organ transplantation; and (v) use of a nephrogenic niche for growing xenoembryos for de novo kidney regeneration from stem cells. All these approaches represent potentially promising therapeutic strategies for the treatment of patients with chronic kidney disease. Although many obstacles to kidney regeneration remain, we hope that innovative strategies and reliable research will ultimately allow the restoration of renal function in patients with end-stage kidney disease.
Collapse
|
27
|
Dosch R. Next generation mothers: Maternal control of germline development in zebrafish. Crit Rev Biochem Mol Biol 2014; 50:54-68. [DOI: 10.3109/10409238.2014.985816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Abstract
Asingle cells in undifferentiated spermatogonia are considered to be the most primitive forms of germ stem cells (GSCs). Although GFRα1 is thought to be a marker of Asingle cells, we found that Bmi1(High) is more specific than GFRα1 for Asingle cells. Bmi1(High) expression in Asingle cells is correlated with seminiferous stages, and its expression was followed by the proliferative stage of Asingle GSCs. In contrast, GFRα1 expression was seminiferous stage-independent. Fate analyses of EdU-positive Bmi1(High)-positive cell-derived Asingle cells revealed that these cells self-renewed or generated transient amplifying Apaired cells. Bmi1(High)-positive cells were resistant to irradiation-induced injury, after which they regenerated. Elimination of Bmi1(High)-positive cells from seminiferous tubules resulted in the appearance of tubules with seminiferous stage mismatches. Thus, in this study, we found that Bmi1(High) is a seminiferous stage-dependent marker for long-term GSCs and that Bmi1(High)-positive cells play important roles in maintaining GSCs and in regenerating spermatogenic progenitors after injury.
Collapse
|
29
|
Leitch HG, Tang WWC, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 2014; 104:149-87. [PMID: 23587241 DOI: 10.1016/b978-0-12-416027-9.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
Collapse
Affiliation(s)
- Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
30
|
Tanaka T, Komai Y, Tokuyama Y, Yanai H, Ohe S, Okazaki K, Ueno H. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat Cell Biol 2013; 15:511-8. [DOI: 10.1038/ncb2719] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
|
31
|
Abstract
The generation of chimeras, which is now a standard technology for producing gene modified mutant mice, was originally developed as a tool for developmental biology. However, the application of conventional single marker chimeric mice for developmental study was initially limited. This situation has been dramatically changed by development of multicolor chimeric mice using various kinds of fluorescent proteins. Now using our technology, up to ten different clones could be distinguished by their colors, which enable us to perform more accurate statistical analyses and lineage tracing experiments than by conventional methods. This method could be applied to visualize not only cell turnover of normal stem cells but also cancer development of live tissues in vivo. In the present review, we will discuss how these methods have been developed and what questions they are now answering by mainly focusing on intestinal stem cells and intestinal tumors.
Collapse
|
32
|
Usui JI, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2417-26. [PMID: 22507837 DOI: 10.1016/j.ajpath.2012.03.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/29/2012] [Accepted: 03/01/2012] [Indexed: 12/23/2022]
Abstract
Because a shortage of donor organs has been a major obstacle to the expansion of organ transplantation programs, the generation of transplantable organs is among the ultimate goals of regenerative medicine. However, the complex cellular interactions among and within tissues that are required for organogenesis are difficult to recapitulate in vitro. As an alternative, we used blastocyst complementation to generate pluripotent stem cell (PSC)-derived donor organs in vivo. We hypothesized that if we injected PSCs into blastocysts obtained from mutant mice in which the development of a certain organ was precluded by genetic manipulation, thereby leaving a niche for organ development, the PSC-derived cells would developmentally compensate for the defect and form the missing organ. In our previous work, we showed proof-of-principle findings of pancreas generation by injection of PSCs into pancreas-deficient Pdx1(-/-) mouse blastocysts. In this study, we have extended this technique to kidney generation using Sall1(-/-) mouse blastocysts. As a result, the defective cells were totally replaced, and the kidneys were entirely formed by the injected mouse PSC-derived cells, except for structures not under the influence of Sall1 expression (ie, collecting ducts and microvasculature). These findings indicate that blastocyst complementation can be extended to generate PSC-derived kidneys. This system may therefore provide novel insights into renal organogenesis.
Collapse
Affiliation(s)
- Jo-ichi Usui
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Reizel Y, Itzkovitz S, Adar R, Elbaz J, Jinich A, Chapal-Ilani N, Maruvka YE, Nevo N, Marx Z, Horovitz I, Wasserstrom A, Mayo A, Shur I, Benayahu D, Skorecki K, Segal E, Dekel N, Shapiro E. Cell lineage analysis of the mammalian female germline. PLoS Genet 2012; 8:e1002477. [PMID: 22383887 PMCID: PMC3285577 DOI: 10.1371/journal.pgen.1002477] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/23/2011] [Indexed: 01/11/2023] Open
Abstract
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development. Many aspects of mammalian female germline development during embryogenesis and throughout adulthood are either unknown or under debate. In this study we applied a novel method for the reconstruction of cell lineage trees utilizing microsatellite mutations, accumulated during mouse life, in oocytes and other cells, sampled from young and old mice. Analysis of the reconstructed cell lineage trees shows that oocytes are clustered separately from bone-marrow derived cells, that oocytes from different ovaries share common progenitors, and that oocyte depth (number of cell divisions since the zygote) increases significantly with mouse age.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Adar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Judith Elbaz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Adrian Jinich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Chapal-Ilani
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef E. Maruvka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zipora Marx
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Horovitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Wasserstrom
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irena Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Karl Skorecki
- Rappaport Faculty of Medicine and Research Institute, Technion and Rambam Medical Center, Haifa, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (ND); (ES)
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (ND); (ES)
| |
Collapse
|
34
|
Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui JI, Knisely AS, Hirabayashi M, Nakauchi H. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 2010; 142:787-99. [PMID: 20813264 DOI: 10.1016/j.cell.2010.07.039] [Citation(s) in RCA: 407] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/05/2010] [Accepted: 06/30/2010] [Indexed: 12/26/2022]
Abstract
The complexity of organogenesis hinders in vitro generation of organs derived from a patient's pluripotent stem cells (PSCs), an ultimate goal of regenerative medicine. Mouse wild-type PSCs injected into Pdx1(-/-) (pancreatogenesis-disabled) mouse blastocysts developmentally compensated vacancy of the pancreatic "developmental niche," generating almost entirely PSC-derived pancreas. To examine the potential for xenogenic approaches in blastocyst complementation, we injected mouse or rat PSCs into rat or mouse blastocysts, respectively, generating interspecific chimeras and thus confirming that PSCs can contribute to xenogenic development between mouse and rat. The development of these mouse/rat chimeras was primarily influenced by host blastocyst and/or foster mother, evident by body size and species-specific organogenesis. We further injected rat wild-type PSCs into Pdx1(-/-) mouse blastocysts, generating normally functioning rat pancreas in Pdx1(-/-) mice. These data constitute proof of principle for interspecific blastocyst complementation and for generation in vivo of organs derived from donor PSCs using a xenogenic environment.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sakharova NY, Chailakhyan LM. Comparative embryology and mammalian cloning. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Eguizabal C, Shovlin TC, Durcova-Hills G, Surani A, McLaren A. Generation of primordial germ cells from pluripotent stem cells. Differentiation 2009; 78:116-23. [PMID: 19683852 DOI: 10.1016/j.diff.2009.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 01/21/2023]
Abstract
Embryonic stem (ES) cells, derived from pre-implantation embryo, embryonic germ (EG) cells, derived from embryonic precursors of gametes, primordial germ cells (PGCs), can differentiate into any cell type in the body. Moreover, ES cells have the capacity to differentiate into PGCs in vitro. In the present study we have shown the differentiation capacity of six EG cell lines to form PGCs in vitro, in comparison to ES cells. Cell lines were differentiated via embryoid body (EB) formation using the co-expression of mouse vasa homolog (Mvh) and Oct-4 to identify newly formed PGCs in vitro. We found an increase of PGC numbers in almost all analysed cell lines in 5-day-old EBs, thus suggesting that EG and ES cells have similar efficiency to generate PGCs. The addition of retinoic acid confirmed that the cultures had attained a PGC-like identity and continued to proliferate. Furthermore we have shown that the expression pattern of Prmt5 and H3K27me3 in newly formed PGCs is similar to that observed in embryonic day E11.5 PGCs in vivo. By co-culturing EBs with Chinese hamster ovary (CHO) cells some of the PGCs entered into meiosis, as judged by Scp3 expression. The derivation of germ cells from pluripotent stem cells in vitro could provide an invaluable model system to study both the genetic and epigenetic programming of germ cell development in vivo.
Collapse
Affiliation(s)
- Cristina Eguizabal
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | | | | | |
Collapse
|
37
|
Sheng XR, Posenau T, Gumulak-Smith JJ, Matunis E, Van Doren M, Wawersik M. Jak-STAT regulation of male germline stem cell establishment during Drosophila embryogenesis. Dev Biol 2009; 334:335-44. [PMID: 19643104 DOI: 10.1016/j.ydbio.2009.07.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 11/16/2022]
Abstract
Germline stem cells (GSCs) in Drosophila are descendants of primordial germ cells (PGCs) specified during embryogenesis. The precise timing of GSC establishment in the testis has not been determined, nor is it known whether mechanisms that control GSC maintenance in the adult are involved in GSC establishment. Here, we determine that PGCs in the developing male gonad first become GSCs at the embryo to larval transition. This coincides with formation of the embryonic hub; the critical signaling center that regulates adult GSC behavior within the stem cell microenvironment (niche). We find that the Jak-STAT signaling pathway is activated in a subset of PGCs that associate with the newly-formed embryonic hub. These PGCs express GSC markers and function like GSCs, while PGCs that do not associate with the hub begin to differentiate. In the absence of Jak-STAT activation, PGCs adjacent to the hub fail to exhibit the characteristics of GSCs, while ectopic activation of the Jak-STAT pathway prevents differentiation. These findings show that stem cell formation is closely linked to development of the stem cell niche, and suggest that Jak-STAT signaling is required for initial establishment of the GSC population in developing testes.
Collapse
Affiliation(s)
- X Rebecca Sheng
- Department of Cell Biology, 725 N. Wolfe Street, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Germ cells undergo comprehensive epigenetic reprogramming toward acquiring fitness for pluripotency and totipotency. Notably, the full extent of the epigenetic reprogramming experienced by germ cells remains unmatched by attempts to experimentally restore pluripotency in somatic cells. We propose that the defects present in experimentally generated cells are corrected upon differentiation into the germ cell lineage, as has been observed in cases of germline transmission. Unraveling the mechanisms responsible for germ cell-specific epigenetic reprogramming will likely have important implications for both basic and clinical stem cell research.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|