1
|
Findinier J, Joubert LM, Fakhimi N, Schmid MF, Malkovskiy AV, Chiu W, Burlacot A, Grossman AR. Dramatic changes in mitochondrial subcellular location and morphology accompany activation of the CO 2 concentrating mechanism. Proc Natl Acad Sci U S A 2024; 121:e2407548121. [PMID: 39405346 PMCID: PMC11513932 DOI: 10.1073/pnas.2407548121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization is a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limitation, although a role for this reorganization in CCM function remains unclear. We used the green microalga Chlamydomonas reinhardtii to monitor changes in mitochondrial position and ultrastructure as cells transition between high CO2 and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral cell location and orient in parallel tubular arrays that extend along the cell's apico-basal axis. We show that these ultrastructural changes correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membranes, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, with the latter involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial respiration in VLC-acclimated cells reduces the affinity of the cells for Ci. Overall, our results suggest that mitochondrial repositioning functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Neda Fakhimi
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Andrey V. Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
Sui J, Cui Y, Zhang J, Li S, Zhao Y, Bai M, Feng G, Wu H. Enhanced biomass production and harvesting efficiency of Chlamydomonas reinhardtii under high-ammonium conditions by powdered oyster shell. BIORESOURCE TECHNOLOGY 2024; 403:130904. [PMID: 38801957 DOI: 10.1016/j.biortech.2024.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Chlamydomonas reinhardtii prefers ammonium (NH4+) as a nitrogen source, but its late-stage growth under high-NH4+ concentrations (0.5 ∼ 1 g/L) is retarded due to medium acidification. In this study, oyster shell powders were shown to increase the tolerance of C. reinhardtii to NH4+ supplementation at 0.7 g/L in TAP medium in 1-L bubble-column bioreactors, resulting in a 22.9 % increase in biomass production, 62.1 % rise in unsaturated fatty acid accumulation, and 19.2 % improvement in harvesting efficiency. Powdered oyster shell mitigated medium acidification (pH 7.2-7.8) and provided dissolved inorganic carbon up to 8.02 × 103 μmol/L, facilitating a 76.3 % NH4+ consumption, release of up to 189 mg/L of Ca2+, a 42.1 % reduction in ζ-potential and 27.7 % increase in flocculation activity of microalgae cells. This study highlights a promising approach to utilize powdered oyster shell as a liming agent, supplement carbon source, and bio-flocculant for enhancing biomass production and microalgae harvesting in NH4+-rich environments.
Collapse
Affiliation(s)
- Jikang Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxuan Cui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jinku Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Mingkai Bai
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Guangxin Feng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
3
|
Findinier J, Joubert LM, Schmid MF, Malkovskiy A, Chiu W, Burlacot A, Grossman AR. Dramatic Changes in Mitochondrial Subcellular Location and Morphology Accompany Activation of the CO 2 Concentrating Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586705. [PMID: 38585955 PMCID: PMC10996633 DOI: 10.1101/2024.03.25.586705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Andrey Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Matsuda Y. A new combined measurement of single cell periplasmic oxygen and carbonate chemistry revealed the rule enforcing diatom adaptation of seawater bicarbonate utilization. JOURNAL OF PHYCOLOGY 2024; 60:26-28. [PMID: 38363691 DOI: 10.1111/jpy.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Yusuke Matsuda
- Department of Bioscience, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
5
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
6
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
7
|
Shimamura D, Yamano T, Niikawa Y, Hu D, Fukuzawa H. A pyrenoid-localized protein SAGA1 is necessary for Ca 2+-binding protein CAS-dependent expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 156:181-192. [PMID: 36656499 DOI: 10.1007/s11120-022-00996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
Microalgae induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic affinity for dissolved inorganic carbon (Ci) under CO2-limiting conditions. In the model alga Chlamydomonas reinhardtii, the pyrenoid-localized Ca2+-binding protein CAS is required to express genes encoding the Ci-transporters, high-light activated 3 (HLA3), and low-CO2-inducible protein A (LCIA). To identify new factors related to the regulation or components of the CCM, we isolated CO2-requiring mutants KO-60 and KO-62. These mutants had insertions of a hygromycin-resistant cartridge in the StArch Granules Abnormal 1 (SAGA1) gene, which is necessary to maintain the number of pyrenoids and the structure of pyrenoid tubules in the chloroplast. In both KO-60 and the previously identified saga1 mutant, expression levels of 532 genes were significantly reduced. Among them, 10 CAS-dependent genes, including HLA3 and LCIA, were not expressed in the saga1 mutants. While CAS was expressed normally at the protein levels, the localization of CAS was dispersed through the chloroplast rather than in the pyrenoid, even under CO2-limiting conditions. These results suggest that SAGA1 is necessary not only for maintenance of the pyrenoid structure but also for regulation of the nuclear genes encoding Ci-transporters through CAS-dependent retrograde signaling under CO2-limiting stress.
Collapse
Affiliation(s)
- Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Donghui Hu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
8
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
9
|
Förster B, Rourke LM, Weerasooriya HN, Pabuayon ICM, Rolland V, Au EK, Bala S, Bajsa-Hirschel J, Kaines S, Kasili R, LaPlace L, Machingura MC, Massey B, Rosati VC, Stuart-Williams H, Badger MR, Price GD, Moroney JV. The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad116. [PMID: 36987927 DOI: 10.1093/jxb/erad116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/19/2023]
Abstract
LCIA is a chloroplast envelope protein associated with the CO2 concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an E. coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (βca5) missing the plastid carbonic anhydrase βCA5. Both DCAKO and βca5 cannot grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the βca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Britta Förster
- The Australian National University, Canberra, ACT 2600, Australia
| | - Loraine M Rourke
- The Australian National University, Canberra, ACT 2600, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vivien Rolland
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eng Kee Au
- The Australian National University, Canberra, ACT 2600, Australia
| | - Soumi Bala
- The Australian National University, Canberra, ACT 2600, Australia
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, University, MS 38677, USA
| | - Sarah Kaines
- The Australian National University, Canberra, ACT 2600, Australia
| | - Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lillian LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Baxter Massey
- The Australian National University, Canberra, ACT 2600, Australia
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York YO10 5DD, UK
| | | | - Murray R Badger
- The Australian National University, Canberra, ACT 2600, Australia
| | - G Dean Price
- The Australian National University, Canberra, ACT 2600, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. PLANT PHYSIOLOGY 2022; 190:1609-1627. [PMID: 35961043 PMCID: PMC9614477 DOI: 10.1093/plphys/kiac373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 05/06/2023]
Abstract
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krzysztof Robin Pukacz
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
11
|
Jia B, Yin J, Li X, Li Y, Yang X, Lan C, Huang Y. Increased Lipids in Chlamydomonas reinhardtii by Multiple Regulations of DOF, LACS2, and CIS1. Int J Mol Sci 2022; 23:ijms231710176. [PMID: 36077572 PMCID: PMC9456367 DOI: 10.3390/ijms231710176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Microalgal lipids are essential for biofuel and dietary supplement production. Lipid engineering for higher production has been studied for years. However, due to the complexity of lipid metabolism, single-gene engineering gradually encounters bottlenecks. Multiple gene regulation is more beneficial to boosting lipid accumulation and further clarifying the complex regulatory mechanism of lipid biosynthesis in the homeostasis of lipids, carbohydrates, and protein metabolism. Here, three lipid-related genes, DOF, LACS2, and CIS, were co-regulated in Chlamydomonas reinhartii by two circles of transformation to overexpress DOF and knock down LACS2 and CIS simultaneously. With the multiple regulations of these genes, the intracellular lipids and FA content increased by 142% and 52%, respectively, compared with CC849, whereas the starch and protein contents decreased by 45% and 24%. Transcriptomic analysis showed that genes in TAG and FA biosynthesis were up-regulated, and genes in starch and protein metabolism were down-regulated. This revealed that more carbon precursor fluxes from starch and protein metabolism were redirected towards lipid synthesis pathways. These results showed that regulating genes in various metabolisms contributed to carbon flux redirection and significantly improved intracellular lipids, demonstrating the potential of multiple gene regulation strategies and providing possible candidates for lipid overproduction in microalgae.
Collapse
|
12
|
Priyadharsini P, Nirmala N, Dawn S, Baskaran A, SundarRajan P, Gopinath K, Arun J. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: Review on CO2 bio-fixation pathways modifications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Dao O, Kuhnert F, Weber APM, Peltier G, Li-Beisson Y. Physiological functions of malate shuttles in plants and algae. TRENDS IN PLANT SCIENCE 2022; 27:488-501. [PMID: 34848143 DOI: 10.1016/j.tplants.2021.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Subcellular compartmentalization confers evolutionary advantage to eukaryotic cells but entails the need for efficient interorganelle communication. Malate functions as redox carrier and metabolic intermediate. It can be shuttled across membranes through translocators. The interconversion of malate and oxaloacetate mediated by malate dehydrogenases requires oxidation/reduction of NAD(P)H/NAD(P)+; therefore, malate trafficking serves to transport reducing equivalents and this is termed the 'malate shuttle'. Although the term 'malate shuttle' was coined more than 50 years ago, novel functions are still emerging. This review highlights recent findings on the functions of malate shuttles in photorespiration, fatty acid β-oxidation, interorganelle signaling and its putative role in CO2-concentrating mechanisms. We compare and contrast knowledge in plants and algae, thereby providing an evolutionary perspective on redox trafficking in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France.
| |
Collapse
|
14
|
Burlacot A, Dao O, Auroy P, Cuiné S, Li-Beisson Y, Peltier G. Alternative photosynthesis pathways drive the algal CO 2-concentrating mechanism. Nature 2022; 605:366-371. [PMID: 35477755 DOI: 10.1038/s41586-022-04662-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Global photosynthesis consumes ten times more CO2 than net anthropogenic emissions, and microalgae account for nearly half of this consumption1. The high efficiency of algal photosynthesis relies on a mechanism concentrating CO2 (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, which enhances CO2 fixation2. Although many cellular components involved in the transport and sequestration of inorganic carbon have been identified3,4, how microalgae supply energy to concentrate CO2 against a thermodynamic gradient remains unknown4-6. Here we show that in the green alga Chlamydomonas reinhardtii, the combined action of cyclic electron flow and O2 photoreduction-which depend on PGRL1 and flavodiiron proteins, respectively-generate a low luminal pH that is essential for CCM function. We suggest that luminal protons are used downstream of thylakoid bestrophin-like transporters, probably for the conversion of bicarbonate to CO2. We further establish that an electron flow from chloroplast to mitochondria contributes to energizing non-thylakoid inorganic carbon transporters, probably by supplying ATP. We propose an integrated view of the network supplying energy to the CCM, and describe how algal cells distribute energy from photosynthesis to power different CCM processes. These results suggest a route for the transfer of a functional algal CCM to plants to improve crop productivity.
Collapse
Affiliation(s)
- Adrien Burlacot
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Pascaline Auroy
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Stephan Cuiné
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
15
|
Fei C, Wilson AT, Mangan NM, Wingreen NS, Jonikas MC. Modelling the pyrenoid-based CO 2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. NATURE PLANTS 2022; 8:583-595. [PMID: 35596080 PMCID: PMC9122830 DOI: 10.1038/s41477-022-01153-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/11/2022] [Indexed: 05/19/2023]
Abstract
Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2 to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green alga Chlamydomonas reinhardtii. Our model recapitulates all Chlamydomonas PCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2 leakage, as well as proper enzyme localization to reduce futile cycling between CO2 and HCO3-. Importantly, our model demonstrates the feasibility of a purely passive CO2 uptake strategy at air-level CO2, while active HCO3- uptake proves advantageous at lower CO2 levels. We propose a four-step engineering path to increase the rate of CO2 fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2 fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.
Collapse
Affiliation(s)
- Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 188:1081-1094. [PMID: 34791500 PMCID: PMC8825250 DOI: 10.1093/plphys/kiab528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 05/18/2023]
Abstract
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiki Matsuoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Choi BY, Kim H, Shim D, Jang S, Yamaoka Y, Shin S, Yamano T, Kajikawa M, Jin E, Fukuzawa H, Lee Y. The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism. THE PLANT CELL 2022; 34:910-926. [PMID: 34893905 PMCID: PMC8824676 DOI: 10.1093/plcell/koab293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/28/2021] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms are exposed to various environmental sources of oxidative stress. Land plants have diverse mechanisms to withstand oxidative stress, but how microalgae do so remains unclear. Here, we characterized the Chlamydomonas reinhardtii basic leucine zipper (bZIP) transcription factor BLZ8, which is highly induced by oxidative stress. Oxidative stress tolerance increased with increasing BLZ8 expression levels. BLZ8 regulated the expression of genes likely involved in the carbon-concentrating mechanism (CCM): HIGH-LIGHT ACTIVATED 3 (HLA3), CARBONIC ANHYDRASE 7 (CAH7), and CARBONIC ANHYDRASE 8 (CAH8). BLZ8 expression increased the photosynthetic affinity for inorganic carbon under alkaline stress conditions, suggesting that BLZ8 induces the CCM. BLZ8 expression also increased the photosynthetic linear electron transfer rate, reducing the excitation pressure of the photosynthetic electron transport chain and in turn suppressing reactive oxygen species (ROS) production under oxidative stress conditions. A carbonic anhydrase inhibitor, ethoxzolamide, abolished the enhanced tolerance to alkaline stress conferred by BLZ8 overexpression. BLZ8 directly regulated the expression of the three target genes and required bZIP2 as a dimerization partner in activating CAH8 and HLA3. Our results suggest that a CCM-mediated increase in the CO2 supply for photosynthesis is critical to minimize oxidative damage in microalgae, since slow gas diffusion in aqueous environments limits CO2 availability for photosynthesis, which can trigger ROS formation.
Collapse
Affiliation(s)
| | | | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | | | - Seungjun Shin
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul 133-791, South Korea
| | | | | |
Collapse
|
18
|
Çakirsoy I, Miyamoto T, Ohtake N. Physiology of microalgae and their application to sustainable agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:1005991. [PMID: 36466259 PMCID: PMC9712798 DOI: 10.3389/fpls.2022.1005991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Concern that depletion of fertilizer feedstocks, which are a finite mineral resource, threatens agricultural sustainability has driven the exploration of sustainable methods of soil fertilization. Given that microalgae, which are unicellular photosynthetic organisms, can take up nutrients efficiently from water systems, their application in a biological wastewater purification system followed by the use of their biomass as a fertilizer alternative has attracted attention. Such applications of microalgae would contribute to the accelerated recycling of nutrients from wastewater to farmland. Many previous reports have provided information on the physiological characteristics of microalgae that support their utility. In this review, we focus on recent achievements of studies on microalgal physiology and relevant applications and outline the prospects for the contribution of microalgae to the establishment of sustainable agricultural practices.
Collapse
Affiliation(s)
- Iffet Çakirsoy
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| |
Collapse
|
19
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
20
|
Tsuji Y, Kusi-Appiah G, Kozai N, Fukuda Y, Yamano T, Fukuzawa H. Characterization of a CO 2-Concentrating Mechanism with Low Sodium Dependency in the Centric Diatom Chaetoceros gracilis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:456-462. [PMID: 34109463 DOI: 10.1007/s10126-021-10037-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Microalgae induce a CO2-concentrating mechanism (CCM) to overcome CO2-limiting stress in aquatic environments by coordinating inorganic carbon (Ci) transporters and carbonic anhydrases (CAs). Two mechanisms have been suggested to facilitate Ci uptake from aqueous media: Na+-dependent HCO3- uptake by solute carrier (SLC) family transporters and accelerated dehydration of HCO3- to CO2 by external CA in model diatoms. However, studies on ecologically and industrially important diatoms including Chaetoceros gracilis, a common food source in aquacultures, are still limited. Here, we characterized the CCM of C. gracilis using inhibitors and growth dependency on Na+ and CO2. Addition of a membrane-impermeable SLC inhibitor, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), or the transient removal of Na+ from the culture medium did not impair photosynthetic affinity for Ci in CO2-limiting stress conditions, but addition of a membrane-impermeable CA inhibitor, acetazolamide, decreased Ci affinity to one-third of control cultures. In culture medium containing 0.23 mM Na+ C. gracilis grew photoautotrophically by aeration with air containing 5% CO2, but not with the air containing 0.04% CO2. These results suggested that C. gracilis utilizes external CAs in its CCM to elevate photosynthetic affinity for Ci rather than plasma-membrane SLC family transporters. In addition, it is possible that low level of Na+ may support the CCM in processes other than Ci-uptake at the plasma membrane specifically in CO2-limiting conditions. Our findings provide insights into the diversity of CCMs among diatoms as well as basic information to optimize culture conditions for industrial applications.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Noriko Kozai
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuri Fukuda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
21
|
Emrich-Mills TZ, Yates G, Barrett J, Girr P, Grouneva I, Lau CS, Walker CE, Kwok TK, Davey JW, Johnson MP, Mackinder LCM. A recombineering pipeline to clone large and complex genes in Chlamydomonas. THE PLANT CELL 2021; 33:1161-1181. [PMID: 33723601 PMCID: PMC8633747 DOI: 10.1093/plcell/koab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/18/2021] [Indexed: 05/10/2023]
Abstract
The ability to clone genes has greatly advanced cell and molecular biology research, enabling researchers to generate fluorescent protein fusions for localization and confirm genetic causation by mutant complementation. Most gene cloning is polymerase chain reaction (PCR)�or DNA synthesis-dependent, which can become costly and technically challenging as genes increase in size, particularly if they contain complex regions. This has been a long-standing challenge for the Chlamydomonas reinhardtii research community, as this alga has a high percentage of genes containing complex sequence structures. Here we overcame these challenges by developing a recombineering pipeline for the rapid parallel cloning of genes from a Chlamydomonas bacterial artificial chromosome collection. To generate fluorescent protein fusions for localization, we applied the pipeline at both batch and high-throughput scales to 203 genes related to the Chlamydomonas CO2 concentrating mechanism (CCM), with an overall cloning success rate of 77%. Cloning success was independent of gene size and complexity, with cloned genes as large as 23 kb. Localization of a subset of CCM targets confirmed previous mass spectrometry data, identified new pyrenoid components, and enabled complementation of mutants. We provide vectors and detailed protocols to facilitate easy adoption of this technology, which we envision will open up new possibilities in algal and plant research.
Collapse
Affiliation(s)
- Tom Z Emrich-Mills
- Department of Biology, University of York, York YO10 5DD, UK
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Gary Yates
- Department of Biology, University of York, York YO10 5DD, UK
| | - James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | - Irina Grouneva
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chun Sing Lau
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Tsz Kam Kwok
- Department of Biology, University of York, York YO10 5DD, UK
| | - John W Davey
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthew P Johnson
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, UK
- Author for correspondence: (L.C.M.M.)
| |
Collapse
|
22
|
|
23
|
Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020. [DOI: 10.1007/s12038-020-00080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Kareya MS, Mariam I, Shaikh KM, Nesamma AA, Jutur PP. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO 2 in Microchloropsis gaditana NIES 2587. FRONTIERS IN PLANT SCIENCE 2020; 11:981. [PMID: 32719702 PMCID: PMC7348049 DOI: 10.3389/fpls.2020.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Photosynthetic organisms fix inorganic carbon through carbon capture machinery (CCM) that regulates the assimilation and accumulation of carbon around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, few constraints that govern the central carbon metabolism are regulated by the carbon capture and partitioning machinery. In order to divert the cellular metabolism toward lipids and/or biorenewables it is important to investigate and understand the molecular mechanisms of the CO2-driven carbon partitioning. In this context, strategies for enhancement of CO2 fixation which will increase the overall biomass and lipid yields, can provide clues on understanding the carbon assimilation pathway, and may lead to new targets for genetic engineering in microalgae. In the present study, we have focused on the physiological and metabolomic response occurring within marine oleaginous microalgae Microchloropsis gaditana NIES 2587, under the influence of very-low CO2 (VLC; 300 ppm, or 0.03%) and high CO2 (HC; 30,000 ppm, or 3% v/v). Our results demonstrate that HC supplementation in M. gaditana channelizes the carbon flux toward the production of long chain polyunsaturated fatty acids (LC-PUFAs) and also increases the overall biomass productivities (up to 2.0 fold). Also, the qualitative metabolomics has identified nearly 31 essential metabolites, among which there is a significant fold change observed in accumulation of sugars and alcohols such as galactose and phytol in VLC as compared to HC. In conclusion, our focus is to understand the entire carbon partitioning and metabolic regulation within these photosynthetic cell factories, which will be further evaluated through multiomics approach for enhanced productivities of biomass, biofuels, and bioproducts (B3).
Collapse
Affiliation(s)
| | | | | | | | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
25
|
Kono A, Chou TH, Radhakrishnan A, Bolla JR, Sankar K, Shome S, Su CC, Jernigan RL, Robinson CV, Yu EW, Spalding MH. Structure and function of LCI1: a plasma membrane CO 2 channel in the Chlamydomonas CO 2 concentrating mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1107-1126. [PMID: 32168387 PMCID: PMC7305984 DOI: 10.1111/tpj.14745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2 in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2 concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci ) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ci uptake systems. Fundamental to eukaryotic Ci uptake systems are Ci transporters/channels located in membranes of various cell compartments, which together facilitate the movement of Ci from the environment into the chloroplast, where primary CO2 assimilation occurs. Two putative plasma membrane Ci transporters, HLA3 and LCI1, are reportedly involved in active Ci uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3- transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full-length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss-of-function mutant to reveal the Ci species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2 uptake and that LCI1 likely functions as a plasma membrane CO2 channel, possibly a gated channel.
Collapse
Affiliation(s)
- Alfredo Kono
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Present address: WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Abhijith Radhakrishnan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Present address: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jani Reddy Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, South Park Road, OX1 3QZ, UK
| | - Kannan Sankar
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Sayane Shome
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Present address: Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, South Park Road, OX1 3QZ, UK
| | - Edward W. Yu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Present address: Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Martin H. Spalding
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA 50011, USA
- To whom correspondence should be addressed.
| |
Collapse
|
26
|
Kono A, Spalding MH. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO 2 uptake under low CO 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1127-1141. [PMID: 32248584 DOI: 10.1111/tpj.14761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/16/2020] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5-5% CO2 ), a low CO2 (0.03-0.4% CO2 ) and a very low CO2 (< 0.02% CO2 ) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2 -concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3- uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci , HCO3- or CO2 , that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss-of-function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2 , especially above air-level CO2 , and that any LCI1 role in very low CO2 is minimal.
Collapse
Affiliation(s)
- Alfredo Kono
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
27
|
Hennacy JH, Jonikas MC. Prospects for Engineering Biophysical CO 2 Concentrating Mechanisms into Land Plants to Enhance Yields. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:461-485. [PMID: 32151155 PMCID: PMC7845915 DOI: 10.1146/annurev-arplant-081519-040100] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
28
|
Toyokawa C, Yamano T, Fukuzawa H. Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO 2-Concentrating Mechanism in Green Algae. PLANT PHYSIOLOGY 2020; 182:1883-1893. [PMID: 32041908 PMCID: PMC7140920 DOI: 10.1104/pp.19.01587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
Aquatic photosynthetic organisms induce a CO2-concentrating mechanism (CCM) to overcome the difficulty of acquiring inorganic carbon under CO2-limiting conditions. As part of the CCM, the CO2-fixing enzyme Rubisco is enriched in the pyrenoid located in the chloroplast, and, in many green algae, several thick starch plates surround the pyrenoid to form a starch sheath. In Chlamydomonas reinhardtii, low-CO2-inducible protein B (LCIB), which is an essential factor for the CCM, displays altered cellular localization in response to a decrease in environmental CO2 concentration, moving from dispersed throughout the chloroplast stroma to around the pyrenoid. However, the mechanism behind LCIB migration remains poorly understood. Here, we report the characteristics of an Isoamylase1-less mutant (4-D1), which shows aberrant LCIB localization and starch sheath formation. Under very-low-CO2 conditions, 4-D1 showed retarded growth, lower photosynthetic affinities against inorganic carbon, and a decreased accumulation level of the HCO3 - transporter HLA3. The aberrant localization of LCIB was also observed in another starch-sheathless mutant sta11-1, but not in sta2-1, which possesses a thinned starch sheath. These results suggest that the starch sheath around the pyrenoid is required for the correct localization of LCIB and for the operation of CCM.
Collapse
Affiliation(s)
- Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
29
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
30
|
Vikramathithan J, Hwangbo K, Lim JM, Lim KM, Kang DY, Park YI, Jeong WJ. Overexpression of Chlamydomonas reinhardtii LCIA (CrLCIA) gene increases growth of Nannochloropsis salina CCMP1776. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Momayyezi M, McKown AD, Bell SCS, Guy RD. Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:831-844. [PMID: 31816145 DOI: 10.1111/tpj.14638] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 05/24/2023]
Abstract
Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO2↔HCO3- equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction-diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane-bound compartments, for example aquaporins, are suggested to trigger a CO2 -sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shannon C S Bell
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
32
|
Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level. Metab Eng 2019; 54:96-108. [DOI: 10.1016/j.ymben.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
|
33
|
Terentyev VV, Shukshina AK, Shitov AV. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:582-590. [DOI: 10.1016/j.bbabio.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
|
34
|
Tirumani S, Gothandam KM, J Rao B. Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. PROTOPLASMA 2019; 256:117-130. [PMID: 29987443 DOI: 10.1007/s00709-018-1283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Carbon concentrating mechanism (CCM) and photorespiration (PR) are interlinked and co-regulated in Chlamydomonas reinhardtii, but conditions where co-regulation alters are not sufficiently explored. Here, we uncover that PR gene transcripts, like CCM transcripts, are induced even in the dark when both processes are not active. Such diurnal cycles show that transcript levels peak in the middle of 12 h day, decline by early part of 12-h dark followed by their onset again at mid-dark. Interestingly, the onset in the mid-dark phase is sensitive to high CO2, implying that the active carbon sensing mechanism operates even in the dark. The rhythmic alterations of both CCM and PR transcript levels are unlinked to circadian clock: the "free-running state" reveals no discernible rhythmicity in transcript changes. Only continuous light leads to high transcript levels but no detectable transcripts were observed in continuous dark. Asynchronous continuous light cultures, upon shifting to low from high CO2 exhibit only transient induction of PR transcripts/proteins while CCM transcript induction is stable, indicating the loss of co-regulation between PR and CCM gene transcription. Lastly, we also describe that both CCM and PR transcripts/proteins are induced in low CO2 even in mixotrophic cultures, but only in high light, the same being attenuated in high CO2, implying that high light is a mandatory "trigger" for CCM and PR induction in low CO2 mixotrophy. Our study provides comprehensive analyses of conditions where CCM and PR were differently regulated, setting a paradigm for a detailed mechanistic probing of these responses.
Collapse
Affiliation(s)
- S Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - K M Gothandam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Basuthkar J Rao
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
- Indian Institute of Science Education and Research, Karkambadi Road, Mangalam (B.O.), Tirupati, AP, 517507, India.
| |
Collapse
|
35
|
Yamano T, Toyokawa C, Fukuzawa H. High-resolution suborganellar localization of Ca 2+-binding protein CAS, a novel regulator of CO 2-concentrating mechanism. PROTOPLASMA 2018; 255:1015-1022. [PMID: 29372336 DOI: 10.1007/s00709-018-1208-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 05/19/2023]
Abstract
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
36
|
Richter LV, Mansfeldt CB, Kuan MM, Cesare AE, Menefee ST, Richardson RE, Ahner BA. Altered Microbiome Leads to Significant Phenotypic and Transcriptomic Differences in a Lipid Accumulating Chlorophyte. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6854-6863. [PMID: 29750518 DOI: 10.1021/acs.est.7b06581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Given the challenges facing the economically favorable production of products from microalgae, understanding factors that might impact productivity rates including growth rates and accumulation of desired products, for example, triacylglycerols (TAG) for biodiesel feedstock, remains critical. Although operational parameters such as media composition and reactor design can clearly effect growth rates, the role of microbe-microbe interactions is just beginning to be elucidated. In this study an oleaginous marine algae Chlorella spp. C596 culture is shown to be better described as a microbial community. Perturbations to this microbial community showed a significant impact on phenotypes including sustained differences in growth rate and TAG accumulation of 2.4 and 2.5 fold, respectively. Characterization of the associated community using Illumina 16S rRNA amplicon and random shotgun transcriptomic analyses showed that the fast growth rate correlated with two specific bacterial species ( Ruegeria and Rhodobacter spp). The transcriptomic response of the Chlorella species revealed that the slower growing algal consortium C596-S1 upregulated genes associated with photosynthesis and resource scavenging and decreased the expression of genes associated with transcription and translation relative to the initial C596-R1. Our studies advance the appreciation of the effects microbiomes can have on algal growth in bioreactors and suggest that symbiotic interactions are involved in a range of critical processes including nitrogen, carbon cycling, and oxidative stress.
Collapse
Affiliation(s)
- Lubna V Richter
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Michael M Kuan
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Alexandra E Cesare
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Stephen T Menefee
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Ruth E Richardson
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Beth A Ahner
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
37
|
Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci 2018; 19:E1352. [PMID: 29751549 PMCID: PMC5983714 DOI: 10.3390/ijms19051352] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/09/2023] Open
Abstract
Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs, HCO₃− may further contribute to carbon concentration mechanisms (CCM). This is especially relevant in the CO₂-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of terrestrial plants can also benefit from CCM as evidenced by the evolution of C₄ and Crassulacean Acid Metabolism (CAM). The presence of HCO₃− in all organisms leads to more questions regarding the mechanisms of uptake and membrane transport in these different biological systems. This review aims to provide an overview of the transport and metabolic processes related to HCO₃− in microalgae, macroalgae, seagrasses, and terrestrial plants. HCO₃− transport in cyanobacteria and human cells is much better documented and is included for comparison. We further comment on the metabolic roles of HCO₃− in plants by focusing on the diversity and functions of carbonic anhydrases and PEP carboxylases as well as on the signaling role of CO₂/HCO₃− in stomatal guard cells. Plant responses to excess soil HCO₃− is briefly addressed. In conclusion, there are still considerable gaps in our knowledge of HCO₃− uptake and transport in plants that hamper the development of breeding strategies for both more efficient CCM and better HCO₃− tolerance in crop plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - José Antonio Fernández
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Lourdes Rubio
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Laura Pérez
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Joana Terés
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
38
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
39
|
Chen HH, Jiang JG. Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8099-8110. [PMID: 28838232 DOI: 10.1021/acs.jafc.7b03495] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microalgae lipids have attracted great attention in the world as a result of their potential use for biodiesel productions. Microalgae are cultivated in photoautotrophic conditions in most cases, but several species are able to grow under heterotrophic conditions, in which microalgae are cultivated in the dark where the cell growth and reproduction are supported by organic carbons. This perspective is covering the related studies concerning the difference between hetero- and autotrophic cultivation of microalgae. The auto- and heterotrophic central carbon metabolic pathways in microalgae are described, and the catalyzing reactions of several key metabolic enzymes and their corresponding changes in the protein level are summarized. Under adverse environmental conditions, such as nutrient deprivation, microalgae have the ability to highly store energy by forming triacylglycerol (TAG), the reason for which is analyzed. In addition, the biosynthesis of fatty acids and TAGs and their difference between auto- and heterotrophic conditions are compared at the molecular level. The positive regulatory enzymes, such as glucose transporter protein, fructose-1,6-bisphosphate aldolase, and glycerol-3-phosphate dehydrogenase, and the negative regulation enzymes, such as triose phosphate isomerase, played a crucial role in the lipid accumulation auto- and heterotrophic conditions.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
40
|
Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 2017; 7:8034. [PMID: 28808314 PMCID: PMC5556115 DOI: 10.1038/s41598-017-08515-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
Contamination by mercury (Hg) is a worldwide concern because of Hg toxicity and biomagnification in aquatic food webs. Nevertheless, bioavailability and cellular toxicity pathways of inorganic (IHg) and methyl-Hg (MeHg) remain poorly understood. We analyzed the uptake, transcriptomic, and physiological responses in the microalga Chlamydomonas reinhardtii exposed to IHg or MeHg. Bioavailability of MeHg was up to 27× higher than for IHg. Genes involved in cell processes, energy metabolism and transport were dysregulated by both Hg species. Physiological analysis revealed an impact on photosynthesis and reduction–oxidation reaction metabolism. Nevertheless, MeHg dysregulated a larger number of genes and with a stronger fold-change than IHg at equivalent intracellular concentration. Analysis of the perturbations of the cell’s functions helped to derive a detailed mechanistic understanding of differences in cellular handling of IHg and MeHg resulting in MeHg having a stronger impact. This knowledge is central for the prediction of impact of toxicants on organisms.
Collapse
|
41
|
Machingura MC, Bajsa-Hirschel J, Laborde SM, Schwartzenburg JB, Mukherjee B, Mukherjee A, Pollock SV, Förster B, Price GD, Moroney JV. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3879-3890. [PMID: 28633328 PMCID: PMC5853530 DOI: 10.1093/jxb/erx189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 05/22/2023]
Abstract
The supply of inorganic carbon (Ci) at the site of fixation by Rubisco is a key parameter for efficient CO2 fixation in aquatic organisms including the green alga, Chlamydomonas reinhardtii. Chlamydomonas reinhardtii cells, when grown on limiting CO2, have a CO2-concentrating mechanism (CCM) that functions to concentrate CO2 at the site of Rubisco. Proteins thought to be involved in inorganic carbon uptake have been identified and localized to the plasma membrane or chloroplast envelope. However, current CCM models suggest that additional molecular components are involved in Ci uptake. In this study, the gene Cia8 was identified in an insertional mutagenesis screen and characterized. The protein encoded by Cia8 belongs to the sodium bile acid symporter subfamily. Transcript levels for this gene were significantly up-regulated when the cells were grown on low CO2. The cia8 mutant exhibited reduced growth and reduced affinity for Ci when grown in limiting CO2 conditions. Prediction programs localize this protein to the chloroplast. Ci uptake and the photosynthetic rate, particularly at high external pH, were reduced in the mutant. The results are consistent with the model that CIA8 is involved in Ci uptake in C. reinhardtii.
Collapse
Affiliation(s)
- Marylou C Machingura
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Susan M Laborde
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Bratati Mukherjee
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Ananya Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Steve V Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Correspondence:
| |
Collapse
|
42
|
Tsuji Y, Mahardika A, Matsuda Y. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3949-3958. [PMID: 28398591 PMCID: PMC5853789 DOI: 10.1093/jxb/erx102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 05/07/2023]
Abstract
The acquisition of dissolved inorganic carbon (DIC) in CO2-limited seawater is a central issue to understand in marine primary production. We previously demonstrated the occurrence of direct HCO3- uptake by solute carrier (SLC) 4 transporters in a diatom, a major marine primary producer. Homologs of SLC are found in both centric and pennate marine diatoms, suggesting that SLC transporters are generally conserved. Here, the generality of SLC-mediated DIC uptake in diatoms was examined using an SLC inhibitor, diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), and an inhibitor of external carbonic anhydrase, acetazolamide. DIDS suppressed high-DIC-affinity photosynthesis in the pennate diatom Phaeodactylum tricornutum and the centric diatom Chaetoceros muelleri, but there was no effect on either the pennate Cylindrotheca fusiformis or the centric Thalassiosira pseudonana. Interestingly, the DIC affinity of DIDS-insensitive strains was sensitive to treatment with up to 100 μM acetazolamide, displaying a 2-4-fold increase in K0.5[DIC]. In contrast, acetazolamide did not affect the DIDS-sensitive group. These results indicate the occurrence of two distinct strategies for DIC uptake-one primarily facilitated by SLC and the other being passive CO2 entry facilitated by external carbonic anhydrase. The phylogenetic independence of these strategies suggests that environmental demands drove the evolution of distinct DIC uptake mechanisms in diatoms.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| | - Anggara Mahardika
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| |
Collapse
|
43
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
44
|
Jin S, Sun J, Wunder T, Tang D, Cousins AB, Sze SK, Mueller-Cajar O, Gao YG. Structural insights into the LCIB protein family reveals a new group of β-carbonic anhydrases. Proc Natl Acad Sci U S A 2016; 113:14716-14721. [PMID: 27911826 PMCID: PMC5187666 DOI: 10.1073/pnas.1616294113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquatic microalgae have evolved diverse CO2-concentrating mechanisms (CCMs) to saturate the carboxylase with its substrate, to compensate for the slow kinetics and competing oxygenation reaction of the key photosynthetic CO2-fixing enzyme rubisco. The limiting CO2-inducible B protein (LCIB) is known to be essential for CCM function in Chlamydomonas reinhardtii To assign a function to this previously uncharacterized protein family, we purified and characterized a phylogenetically diverse set of LCIB homologs. Three of the six homologs are functional carbonic anhydrases (CAs). We determined the crystal structures of LCIB and limiting CO2-inducible C protein (LCIC) from C. reinhardtii and a CA-functional homolog from Phaeodactylum tricornutum, all of which harbor motifs bearing close resemblance to the active site of canonical β-CAs. Our results identify the LCIB family as a previously unidentified group of β-CAs, and provide a biochemical foundation for their function in the microalgal CCMs.
Collapse
Affiliation(s)
- Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jian Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Desong Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99163
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| |
Collapse
|
45
|
Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa SI, Tokutsu R, Takahashi Y, Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:12586-12591. [PMID: 27791081 PMCID: PMC5098658 DOI: 10.1073/pnas.1606519113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic activity in CO2-limiting conditions by sensing environmental CO2 and light availability. Previously, a novel high-CO2-requiring mutant, H82, defective in the induction of the CCM, was isolated. A homolog of calcium (Ca2+)-binding protein CAS, originally found in Arabidopsis thaliana, was disrupted in H82 cells. Although Arabidopsis CAS is reported to be associated with stomatal closure or immune responses via a chloroplast-mediated retrograde signal, the relationship between a Ca2+ signal and the CCM associated with the function of CAS in an aquatic environment is still unclear. In this study, the introduction of an intact CAS gene into H82 cells restored photosynthetic affinity for inorganic carbon, and RNA-seq analyses revealed that CAS could function in maintaining the expression levels of nuclear-encoded CO2-limiting-inducible genes, including the HCO3- transporters high-light activated 3 (HLA3) and low-CO2-inducible gene A (LCIA). CAS changed its localization from dispersed across the thylakoid membrane in high-CO2 conditions or in the dark to being associated with tubule-like structures in the pyrenoid in CO2-limiting conditions, along with a significant increase of the fluorescent signals of the Ca2+ indicator in the pyrenoid. Chlamydomonas CAS had Ca2+-binding activity, and the perturbation of intracellular Ca2+ homeostasis by a Ca2+-chelator or calmodulin antagonist impaired the accumulation of HLA3 and LCIA. These results suggest that Chlamydomonas CAS is a Ca2+-mediated regulator of CCM-related genes via a retrograde signal from the pyrenoid in the chloroplast to the nucleus.
Collapse
Affiliation(s)
- Lianyong Wang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shunsuke Takane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
46
|
Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:237-245. [PMID: 26950638 DOI: 10.1016/j.scitotenv.2016.02.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25 μM of atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using "omics" techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain.
| |
Collapse
|
47
|
Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I, Kaplan A. The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. THE NEW PHYTOLOGIST 2016; 210:1229-43. [PMID: 26853530 DOI: 10.1111/nph.13870] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 05/24/2023]
Abstract
Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route which minimizes singlet oxygen formation and the resulting photoinhibition. The light-harvesting antenna is very small and carotene composition is hardly affected by excess illumination. Instead of succumbing to photodamage, C. ohadii activates additional means to dissipate excess light energy. It undergoes major structural, compositional and physiological changes, leading to a large rise in photosynthetic rate, lipids and carbohydrate content and inorganic carbon cycling. The ability of C. ohadii to avoid photodamage relies on a modified function of PSII and the dissipation of excess reductants downstream of the photosynthetic reaction centers. The biotechnological potential as a gene source for crop plant improvement is self-evident.
Collapse
Affiliation(s)
- Haim Treves
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Isaac Kedem
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Simon M Berkowicz
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Alessandra Norici
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Itzhak Ohad
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
48
|
Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1302-15. [PMID: 26538195 PMCID: PMC5102585 DOI: 10.1111/pbi.12497] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 05/13/2023]
Abstract
Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Doreen Feike
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
49
|
Kobayashi N, Barnes A, Jensen T, Noel E, Andlay G, Rosenberg JN, Betenbaugh MJ, Guarnieri MT, Oyler GA. Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales. BIORESOURCE TECHNOLOGY 2015; 198:246-255. [PMID: 26398668 DOI: 10.1016/j.biortech.2015.08.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Chlorella species from the UTEX collection, classified by rDNA-based phylogenetic analysis, were screened based on biomass and lipid production in different scales and modes of culture. The lead candidate strains of C. sorokiniana UTEX 1230 and C. vulgaris UTEX 395 and 259 were compared between conditions of vigorous aeration with filtered atmospheric air and 3% CO2 shake-flask cultivation. The biomass of UTEX 1230 produced 2 times higher at 652 mg L(-1) dry weight under both ambient CO2 vigorous aeration and 3% CO2 conditions, while UTEX 395 and 259 under 3% CO2 increased to 3 times higher at 863 mg L(-1) dry weight than ambient CO2 vigorous aeration. The triacylglycerol contents of UTEX 395 and 259 increased more than 30 times to 30% dry weight with 3% CO2, indicating that additional CO2 is essential for both biomass and lipid accumulation in UTEX 395 and 259.
Collapse
Affiliation(s)
- Naoko Kobayashi
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, United States
| | - Austin Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, United States
| | - Travis Jensen
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, United States
| | - Eric Noel
- School of Biological Science, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68588, United States
| | - Gunjan Andlay
- Synaptic Research, 1448 South Rolling Road, Baltimore, MD 21227, United States
| | - Julian N Rosenberg
- Department of Chemical & Biomolecular Engineering, John Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, John Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - George A Oyler
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, United States; Department of Chemical & Biomolecular Engineering, John Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Synaptic Research, 1448 South Rolling Road, Baltimore, MD 21227, United States
| |
Collapse
|
50
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|