1
|
Zhang Y, Zheng M, Lei G, Da H, Xiao Q, Wei Q, Ke S, Hu X, Zhu D. Distinct prefrontal cortex alterations in confirmed and suspected depression individuals with different perceived stress during an emotional autobiographical memory task: One fNIRS investigation. J Affect Disord 2024:S0165-0327(24)01784-1. [PMID: 39490673 DOI: 10.1016/j.jad.2024.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Previous research showed that perceived stress was strongly linked to depression, little is known about the underlying neurological mechanism of different depression subtypes with different perceived stress, and there is currently no classification of stress-based subtypes of depression. This study aimed at using fNIRS to uncover the neuromechanism of confirmed and suspected depression with different perceived stress, hence providing neurobiological evidence for the classification of stress-based depression subtypes. It is a significant target for effective depression treatment. METHOD The study included 551 young adults: 256 healthy control individuals, 62 confirmed depression patients, and 233 suspected depression participants. A 53-channel fNIRS imaging system was used to gather the average oxyhemoglobin level in the PFC during EAMT. RESULTS Compared with HC, confirmed and suspected depression group show significant lower hemodynamic activation in right frontal lobe of frame under high loss of control. Confirmed depression with high sense of tension had higher activation than with high loss of control in right dlPFC, while for suspected depression, the activation with high sense of tension was lower than with high loss of control in left broca's area (BA) and front polar cortex (FPC). CONCLUSION All perceived stresses were not equal in their impacts on different depression types. The confirmed and suspected depression were two different depression subtypes sharing distinct activation pattern under different perceived stress in PFC, which may be an important target for stress-linked psychopathology. Depression can be further classified precisely based on stress. fNIRS can provide neuroimaging evidence for classification of stress-based depression subtypes.
Collapse
Affiliation(s)
- Yan Zhang
- School of Education and Science, Huazhong University of Science and Technology, China
| | - Minxiao Zheng
- School of Education and Science, Huazhong University of Science and Technology, China; School of education, Jianghan University, China.
| | - Guanghui Lei
- School of Education and Science, Huazhong University of Science and Technology, China
| | - Hui Da
- School of Education and Science, Huazhong University of Science and Technology, China
| | - Qiang Xiao
- Department of Neurology, Hospital of Huazhong University of Science and Technology, China
| | - Qiang Wei
- School of education, Jianghan University, China
| | | | - Xiaoyi Hu
- Student affairs department, Hubei Engineering University, China
| | - Dongmei Zhu
- School of education, Jianghan University, China.
| |
Collapse
|
2
|
Wu H, Lu B, Zhang Y, Li T. Differences in prefrontal cortex activation in Chinese college students with different severities of depressive symptoms: A large sample of functional near-infrared spectroscopy (fNIRS) findings. J Affect Disord 2024; 350:521-530. [PMID: 38237870 DOI: 10.1016/j.jad.2024.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/23/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Previous studies proposed that functional near-infrared spectroscopy (fNIRS) can be used to distinguish between not only different severities of depressive symptoms but also different subgroups of depression, such as anxious and non-anxious depression, bipolar and unipolar depression, and melancholia and non-melancholia depression. However, the differences in brain haemodynamic activation between depression subgroups (such as confirmed depression [CD] and suspected depression [SD]) with different symptom severities and the possible correlation between symptom severity and haemodynamic activation in specific brain regions using fNIRS have yet to be clarified. METHODS The severity of depression symptoms was classified using the Hospital Anxiety and Depression scale (HADS) and the Mini International Neuropsychiatric Interview by psychiatrists. We recruited 654 patients with depression who had varying severities of depressive symptoms, including 276 with SD and 378 with CD, and 317 with HCs from among Chinese college students. The 53-channel fNIRS was used to detect the cerebral hemodynamic difference of the three groups during the VFT (verbal fluency task). RESULTS Compared with the HC, region-specific fNIRS leads indicate CD patients had significant lower haemodynamic activation in three particular prefrontal regions: 1) right dorsolateral prefrontal cortex (DLPFC), 2) bilateral frontopolar cortex (FPC), and 3) right Broca's area (BA). SD vs. HC comparisons revealed only significant lower haemodynamic activation in the right FPC area. Compared to SD patients, CD patients exhibited decreased hemodynamic activation changes in the right DLPFC and the right BA. Correlation analysis established a significant negative correlation between the hemodynamic changes in the bilateral FPC and the severity of depressive symptoms. CONCLUSIONS The right DLPFC and right BA are expected to be physiological mechanisms to distinguish depression subgroups (CD, SD) with different symptom severities. The haemodynamic changes in the bilateral FPC was nagatively associated with the symptom severity of depression.
Collapse
Affiliation(s)
- Huifen Wu
- School of Education and psychology, Hubei Engineering University, Xiaogan, China
| | - Baoquan Lu
- School of Education and psychology, Hubei Engineering University, Xiaogan, China.
| | - Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan, China.
| | - Taiping Li
- School of Education and psychology, Hubei Engineering University, Xiaogan, China.
| |
Collapse
|
3
|
Dai YF, Zhong XK, Gao XY, Huang C, Leng WW, Chen HZ, Jiang CH. Aerobic fitness as a moderator of acute aerobic exercise effects on executive function. Cereb Cortex 2024; 34:bhae141. [PMID: 38602740 DOI: 10.1093/cercor/bhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
This study aimed to investigate the moderating role of aerobic fitness on the effect of acute exercise on improving executive function from both behavioral and cerebral aspects. Thirty-four young individuals with motor skills were divided into high- and low-fitness groups based on their maximal oxygen uptake. Both groups completed 30 min of moderate-intensity aerobic exercise on a power bike. Executive function tests (Flanker, N-back, More-odd-shifting) were performed before and after exercise and functional near-infrared spectroscopy was used to monitor prefrontal cerebral blood flow changes during the tasks. The results indicated significant differences between the two groups regarding executive function. Participants with lower aerobic fitness performed better than their higher fitness counterparts in inhibitory control and working memory, but not in cognitive flexibility. This finding suggests that the aerobic fitness may moderate the extent of cognitive benefits gained from acute aerobic exercise. Furthermore, the neuroimaging data indicated negative activation in the frontopolar area and dorsolateral prefrontal cortex in response to three complex tasks. These findings underscore the importance of considering individual aerobic fitness when assessing the cognitive benefits of exercise and could have significant implications for tailoring fitness programs to enhance cognitive performance.
Collapse
Affiliation(s)
- Yuan-Fu Dai
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Xiao-Ke Zhong
- College of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou, Fujian, 350108, China
| | - Xiao-Yan Gao
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Chen Huang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Wen-Wu Leng
- Xinyu No. 4 Middle School, No. 328, North Lake West Road, Chengbei Street, Yushui District, Xinyu, Jiangxi, 338099, China
| | - Han-Zhe Chen
- Tianjin No. 2 High School, No. 109, Kunwei Road, Hebei District, Tianjin, 300143, China
| | - Chang-Hao Jiang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
4
|
Shadpour S, Shafqat A, Toy S, Jing Z, Attwood K, Moussavi Z, Shafiei SB. Developing cognitive workload and performance evaluation models using functional brain network analysis. NPJ AGING 2023; 9:22. [PMID: 37803137 PMCID: PMC10558559 DOI: 10.1038/s41514-023-00119-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
Cognition, defined as the ability to learn, remember, sustain attention, make decisions, and solve problems, is essential in daily activities and in learning new skills. The purpose of this study was to develop cognitive workload and performance evaluation models using features that were extracted from Electroencephalogram (EEG) data through functional brain network and spectral analyses. The EEG data were recorded from 124 brain areas of 26 healthy participants conducting two cognitive tasks on a robot simulator. The functional brain network and Power Spectral Density features were extracted from EEG data using coherence and spectral analyses, respectively. Participants reported their perceived cognitive workload using the SURG-TLX questionnaire after each exercise, and the simulator generated actual performance scores. The extracted features, actual performance scores, and subjectively assessed cognitive workload values were used to develop linear models for evaluating performance and cognitive workload. Furthermore, the Pearson correlation was used to find the correlation between participants' age, performance, and cognitive workload. The findings demonstrated that combined EEG features retrieved from spectral analysis and functional brain networks can be used to evaluate cognitive workload and performance. The cognitive workload in conducting only Matchboard level 3, which is more challenging than Matchboard level 2, was correlated with age (0.54, p-value = 0.01). This finding may suggest playing more challenging computer games are more helpful in identifying changes in cognitive workload caused by aging. The findings could open the door for a new era of objective evaluation and monitoring of cognitive workload and performance.
Collapse
Affiliation(s)
- Saeed Shadpour
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ambreen Shafqat
- Intelligent Cancer Care Laboratory, Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Serkan Toy
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Zhe Jing
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Zahra Moussavi
- Department of Electrical and Computer Engineering & Biomedical Engineering Program and Department of Psychiatry, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| | - Somayeh B Shafiei
- Intelligent Cancer Care Laboratory, Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
5
|
Stice E, Yokum S, Rohde P, Gau J, Shaw H. Evidence that a novel transdiagnostic eating disorder treatment reduces reward region response to the thin beauty ideal and high-calorie binge foods. Psychol Med 2023; 53:2252-2262. [PMID: 34635191 DOI: 10.1017/s0033291721004049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Findings from brain imaging studies with small samples can show limited reproducibility. Thus, we tested whether the evidence that a transdiagnostic eating disorder treatment reduces responsivity of brain valuation regions to thin models and high-calorie binge foods, the intervention targets, from a smaller earlier trial emerged when we recruited additional participants. METHODS Women with DSM-5 eating disorders (N = 138) were randomized to the dissonance-based body project treatment (BPT) or a waitlist control condition and completed functional magnetic resonance imaging (fMRI) scans assessing neural response to thin models and high-calorie foods at pretest and posttest. RESULTS BPT v. control participants showed significantly greater reductions in responsivity of regions implicated in reward valuation (caudate) and attentional motivation (precuneus) to thin v. average-weight models, echoing findings from the smaller sample. Data from this larger sample also provided novel evidence that BPT v. control participants showed greater reductions in responsivity of regions implicated in reward valuation (ventrolateral prefrontal cortex) and food craving (hippocampus) to high-calorie binge foods v. low-calorie foods, as well as significantly greater reductions in eating disorder symptoms, abstinence from binge eating and purging behaviors, palatability ratings for high calorie foods, monetary value for high-calorie binge foods, and significantly greater increases in attractiveness ratings of average weight models. CONCLUSIONS Results from this larger sample provide evidence that BPT reduces valuation of the thin ideal and high-calorie binge foods, the intervention targets, per objective brain imaging data, and produces clinically meaningful reductions in eating pathology.
Collapse
Affiliation(s)
- Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Paul Rohde
- Oregon Research Institute, Eugene, OR, USA
| | - Jeff Gau
- Oregon Research Institute, Eugene, OR, USA
| | - Heather Shaw
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Yang H, Vu T, Long Q, Calhoun V, Adali T. Identification of Homogeneous Subgroups from Resting-State fMRI Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063264. [PMID: 36991975 PMCID: PMC10051904 DOI: 10.3390/s23063264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/12/2023]
Abstract
The identification of homogeneous subgroups of patients with psychiatric disorders can play an important role in achieving personalized medicine and is essential to provide insights for understanding neuropsychological mechanisms of various mental disorders. The functional connectivity profiles obtained from functional magnetic resonance imaging (fMRI) data have been shown to be unique to each individual, similar to fingerprints; however, their use in characterizing psychiatric disorders in a clinically useful way is still being studied. In this work, we propose a framework that makes use of functional activity maps for subgroup identification using the Gershgorin disc theorem. The proposed pipeline is designed to analyze a large-scale multi-subject fMRI dataset with a fully data-driven method, a new constrained independent component analysis algorithm based on entropy bound minimization (c-EBM), followed by an eigenspectrum analysis approach. A set of resting-state network (RSN) templates is generated from an independent dataset and used as constraints for c-EBM. The constraints present a foundation for subgroup identification by establishing a connection across the subjects and aligning subject-wise separate ICA analyses. The proposed pipeline was applied to a dataset comprising 464 psychiatric patients and discovered meaningful subgroups. Subjects within the identified subgroups share similar activation patterns in certain brain areas. The identified subgroups show significant group differences in multiple meaningful brain areas including dorsolateral prefrontal cortex and anterior cingulate cortex. Three sets of cognitive test scores were used to verify the identified subgroups, and most of them showed significant differences across subgroups, which provides further confirmation of the identified subgroups. In summary, this work represents an important step forward in using neuroimaging data to characterize mental disorders.
Collapse
Affiliation(s)
- Hanlu Yang
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Trung Vu
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Qunfang Long
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
7
|
Zhang L, Li Q, Du Y, Gao Y, Bai T, Ji GJ, Tian Y, Wang K. Effect of high-definition transcranial direct current stimulation on improving depression and modulating functional activity in emotion-related cortical-subcortical regions in bipolar depression. J Affect Disord 2023; 323:570-580. [PMID: 36503046 DOI: 10.1016/j.jad.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Preliminary studies have suggested that transcranial direct current stimulation (tDCS) is effective for bipolar depression, However, brain correlates of the depression alleviating are unclear. To determine the efficacy and safety of tDCS as an add-on treatment for patients with bipolar depression and further to identify the effect of tDCS on the resting-state brain activities, we recruited fifty patients with bipolar depression to complete the double-blind, sham-controlled and randomized clinical trial. Fourteen sessions of tDCS were performed once a day for 14 days. The anode was placed over F3 with return electrodes placed at FP1, FZ, C3 and F7. Regional homogeneity (ReHo) was examined on 50 patients with bipolar depression before and after 14-day active or sham tDCS. Patients in the active group showed significantly superior alleviating the depression symptoms compared with those receiving sham. The active group after 14-day active tDCS showed increased ReHo values in the orbitofrontal cortex and middle frontal gyrus and decreased ReHo values in subcortical structures including hippocampus, parahippocampa gyrus, amygdala, putamen and lentiform nucleus. The reduction of depression severity showed positive correlation of increased ReHo values in the orbitofrontal cortex and middle frontal gyrus and negative correlation of altered ReHo values in the putamen and lentiform. TDCS was an effective and safe add-on intervention for this small bipolar depression sample. The reduction of depression induced by tDCS is associated with a modulation of neural synchronization in the cortical and subcortical structures (ReHo values) within an emotion-related brain network.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Qun Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yuan Du
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yue Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; Brain Disorders and Neuromodulation Research Centre, Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Neurology, First Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Neurology, First Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
| |
Collapse
|
8
|
Chen Y, Chaudhary S, Li CSR. Shared and distinct neural activity during anticipation and outcome of win and loss: A meta-analysis of the monetary incentive delay task. Neuroimage 2022; 264:119764. [PMID: 36427755 PMCID: PMC9837714 DOI: 10.1016/j.neuroimage.2022.119764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Reward and punishment motivate decision making and behavioral changes. Numerous studies have examined regional activities during anticipation and outcome of win and loss in the monetary incentive delay task (MIDT). However, the great majority of studies reported findings of anticipation or outcome and of win or loss alone. It remains unclear how the neural correlates share and differentiate amongst these processes. We conducted an Activation Likelihood Estimation meta-analysis of 81 studies of the MIDT (5,864 subjects), including 24 published since the most recent meta-analysis, to identify and, with conjunction and subtraction, contrast regional responses to win anticipation, loss anticipation, win outcome, and loss outcome. Win and loss anticipation engaged a shared network of bilateral anterior insula (AI), striatum, thalamus, supplementary motor area (SMA), and precentral gyrus. Win and loss outcomes did not share regional activities. Win and loss outcome each engaged higher activity in medial orbitofrontal cortex (mOFC) and dorsal anterior cingulate cortex. Bilateral striatum and right occipital cortex responded to both anticipation and outcome of win, and right AI to both phases of loss. Win anticipation vs. outcome engaged higher activity in bilateral AI, striatum, SMA and precentral gyrus and right thalamus, and lower activity in bilateral mOFC and posterior cingulate cortex as well as right inferior frontal and angular gyri. Loss anticipation relative to outcome involved higher activity in bilateral striatum and left AI. These findings collectively suggest shared and distinct regional responses during monetary wins and losses. Delineating the neural correlates of these component processes may facilitate empirical research of motivated behaviors and dysfunctional approach and avoidance in psychopathology.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Harel EV, Shetreet E, Tennyson R, Fava M, Bar M. Constricted semantic relations in acute depression. J Affect Disord 2022; 311:565-571. [PMID: 35597474 DOI: 10.1016/j.jad.2022.05.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has been suggested that mood influences the breadth of associated information available for retrieval, with positive mood broadening and negative mood constricting the scope of associations. In this study, we asked whether this mood-associations connection is related to controlled processes which were linked to clinical symptoms in depression. METHODS We used the semantic priming paradigm, which allows the dissociation of automatic and controlled processes by using short and long intervals between prime and target words. We further examined whether the strength of semantic relations (weak or strong) influence the priming effects in both neurotypical and depressed individuals. RESULTS Experiment 1, testing neurotypical individuals, showed priming effects for strong semantically-related words regardless of interval length, but priming effects for weak semantically-related words were smaller in short intervals than in long intervals. Experiment 2, testing depressed individuals in long intervals, showed smaller priming effects for weak semantically-related words than shown by neurotypicals, but priming effects for strong semantically-related words which were comparable between the groups. LIMITATIONS This study cannot determine the source for the differences in priming effects between depressed individuals and neurotypicals, and further studies are needed. CONCLUSIONS This is the first study to show priming impairments in depressed individuals. We discuss our results in light of leading theories concerning cognitive impairment in depression, as well as the newly emerged field of digital psychiatry.
Collapse
Affiliation(s)
- Eiran Vadim Harel
- Beer Yaakov Mental Health Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Einat Shetreet
- Depratment of Linguistics, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel.
| | - Robert Tennyson
- Department of Anthropology, University of Washington, Seattle, WA, USA; Center for Studies of Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Maurizio Fava
- Division of Clinical Research, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Moshe Bar
- Gonda Center for Brain Research, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Wiehler A, Branzoli F, Adanyeguh I, Mochel F, Pessiglione M. A neuro-metabolic account of why daylong cognitive work alters the control of economic decisions. Curr Biol 2022; 32:3564-3575.e5. [PMID: 35961314 DOI: 10.1016/j.cub.2022.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 12/22/2022]
Abstract
Behavioral activities that require control over automatic routines typically feel effortful and result in cognitive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cognitive control, objectified by more impulsive decisions. However, the origins of such control cost inflation with cognitive work are heavily debated. Here, we suggest a neuro-metabolic account: the cost would relate to the necessity of recycling potentially toxic substances accumulated during cognitive control exertion. We validated this account using magnetic resonance spectroscopy (MRS) to monitor brain metabolites throughout an approximate workday, during which two groups of participants performed either high-demand or low-demand cognitive control tasks, interleaved with economic decisions. Choice-related fatigue markers were only present in the high-demand group, with a reduction of pupil dilation during decision-making and a preference shift toward short-delay and little-effort options (a low-cost bias captured using computational modeling). At the end of the day, high-demand cognitive work resulted in higher glutamate concentration and glutamate/glutamine diffusion in a cognitive control brain region (lateral prefrontal cortex [lPFC]), relative to low-demand cognitive work and to a reference brain region (primary visual cortex [V1]). Taken together with previous fMRI data, these results support a neuro-metabolic model in which glutamate accumulation triggers a regulation mechanism that makes lPFC activation more costly, explaining why cognitive control is harder to mobilize after a strenuous workday.
Collapse
Affiliation(s)
- Antonius Wiehler
- Motivation, Brain and Behavior Lab, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research (CENIR), Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Universités, Inserm U1127, CNRS U7225, Paris, France; Department of Psychiatry, Service Hospitalo-Universitaire, Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France; Sorbonne Universités, Inserm U1127, CNRS U7225, Paris, France.
| | - Francesca Branzoli
- Center for NeuroImaging Research (CENIR), Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Universités, Inserm U1127, CNRS U7225, Paris, France
| | - Isaac Adanyeguh
- Sorbonne Universités, Inserm U1127, CNRS U7225, Paris, France
| | - Fanny Mochel
- Sorbonne Universités, Inserm U1127, CNRS U7225, Paris, France; Assistance Publique - hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Genetics, Paris, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior Lab, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research (CENIR), Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Universités, Inserm U1127, CNRS U7225, Paris, France; Department of Psychiatry, Service Hospitalo-Universitaire, Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
11
|
Bègue I, Brakowski J, Seifritz E, Dagher A, Tobler PN, Kirschner M, Kaiser S. Cerebellar and cortico-striatal-midbrain contributions to reward-cognition processes and apathy within the psychosis continuum. Schizophr Res 2022; 246:85-94. [PMID: 35728420 DOI: 10.1016/j.schres.2022.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
Negative symptoms in the psychosis continuum are linked to impairments in reward processing and cognitive function. Processes at the interface of reward processing and cognition and their relation to negative symptoms remain little studied, despite evidence suggestive of integration in mechanisms and neural circuitry. Here, we investigated brain activation during reward-dependent modulation of working memory (WM) and their relationship to negative symptoms in subclinical and early stages of the psychosis continuum. We included 27 persons with high schizotypal personality traits and 23 patients with first episode psychosis as well as 27 healthy controls. Participants underwent functional magnetic resonance imaging while performing an established 2-back WM task with two reward levels (5 CHF vs. no reward), which allowed us to assess common reward-cognition regions through whole-brain conjunction analyses and to investigate relations with clinical scores of negative symptoms. As expected for behavior, reward facilitated performance while cognitive load diminished it. At the neural level, the conjunction of high reward and high cognitive load contrasts across the psychosis continuum showed increased hemodynamic activity in the thalamus and the cerebellar vermis. During high cognitive load, more severe apathy but not diminished expression in the psychosis continuum was associated with reduced activity in right lateral orbitofrontal cortex, midbrain, posterior vermal cerebellum, caudate and lateral parietal cortex. Our results suggest that hypoactivity in the cerebellar vermis and the cortical-striatal-midbrain-circuitry in the psychosis continuum relates to apathy possibly via impaired flexible cognitive resource allocation for effective goal pursuit.
Collapse
Affiliation(s)
- Indrit Bègue
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Switzerland.
| | - Janis Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Switzerland
| | - Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Switzerland
| |
Collapse
|
12
|
Cho YT, Moujaes F, Schleifer CH, Starc M, Ji JL, Santamauro N, Adkinson B, Kolobaric A, Flynn M, Krystal JH, Murray JD, Repovs G, Anticevic A. Reward and loss incentives improve spatial working memory by shaping trial-by-trial posterior frontoparietal signals. Neuroimage 2022; 254:119139. [PMID: 35346841 PMCID: PMC9264479 DOI: 10.1016/j.neuroimage.2022.119139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 10/29/2022] Open
Abstract
Integrating motivational signals with cognition is critical for goal-directed activities. The mechanisms that link neural changes with motivated working memory continue to be understood. Here, we tested how externally cued and non-cued (internally represented) reward and loss impact spatial working memory precision and neural circuits in human subjects using fMRI. We translated the classic delayed-response spatial working memory paradigm from non-human primate studies to take advantage of a continuous numeric measure of working memory precision, and the wealth of translational neuroscience yielded by these studies. Our results demonstrated that both cued and non-cued reward and loss improved spatial working memory precision. Visual association regions of the posterior prefrontal and parietal cortices, specifically the precentral sulcus (PCS) and intraparietal sulcus (IPS), had increased BOLD signal during incentivized spatial working memory. A subset of these regions had trial-by-trial increases in BOLD signal that were associated with better working memory precision, suggesting that these regions may be critical for linking neural signals with motivated working memory. In contrast, regions straddling executive networks, including areas in the dorsolateral prefrontal cortex, anterior parietal cortex and cerebellum displayed decreased BOLD signal during incentivized working memory. While reward and loss similarly impacted working memory processes, they dissociated during feedback when money won or avoided in loss was given based on working memory performance. During feedback, the trial-by-trial amount and valence of reward/loss received was dissociated amongst regions such as the ventral striatum, habenula and periaqueductal gray. Overall, this work suggests motivated spatial working memory is supported by complex sensory processes, and that the IPS and PCS in the posterior frontoparietal cortices may be key regions for integrating motivational signals with spatial working memory precision.
Collapse
Affiliation(s)
- Youngsun T Cho
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, Child Study Center, 230 South Frontage Road, New Haven, CT, 06519, USA; Connecticut Mental Health Center, Clinical Neuroscience Research Unit, 34 Park Street, 3rd floor, New Haven, CT, 06519, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA.
| | - Flora Moujaes
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Charles H Schleifer
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | | | - Jie Lisa Ji
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Nicole Santamauro
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Brendan Adkinson
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Antonija Kolobaric
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Morgan Flynn
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - John H Krystal
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, NIAAA Center for Translational Neuroscience of Alcoholism, 34 Park Street, 3rd floor, New Haven, CT 06519 USA
| | - John D Murray
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA; Yale University, Department of Physics, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Grega Repovs
- University of Ljubljana, Department of Psychology
| | - Alan Anticevic
- Yale University, Department of Psychiatry, 300 George Street, Suite 901, New Haven, CT, 06511, USA; Connecticut Mental Health Center, Clinical Neuroscience Research Unit, 34 Park Street, 3rd floor, New Haven, CT, 06519, USA; Yale University, Interdepartmental Neuroscience Program, Yale University Neuroscience Program, P.O. Box 208074, New Haven, CT, 06520, USA; University of Zagreb, University Psychiatric Hospital Vrapce; Yale University, Department of Psychology, Box 208205, New Haven, CT, 06520-8205, USA; Yale University, NIAAA Center for Translational Neuroscience of Alcoholism, 34 Park Street, 3rd floor, New Haven, CT 06519 USA.
| |
Collapse
|
13
|
Reward Value Enhances Sequence Monitoring Ramping Dynamics as Ending Rewards Approach in the Rostrolateral Prefrontal Cortex. eNeuro 2022; 9:ENEURO.0003-22.2022. [PMID: 35168953 PMCID: PMC8906790 DOI: 10.1523/eneuro.0003-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Many fundamental human behaviors contain multiple sequences performed to reach a desired outcome, such as cooking. Reward is inherently associated with sequence completion and has been shown to generally enhance cognitive control. However, the impact of reward on cognitive sequence processing remains unexplored. To address this key question, we focused on the rostrolateral prefrontal cortex (RLPFC). This area is necessary and exhibits increasing (“ramping”) activation during sequences, a dynamic that may be related to reward processing in other brain regions. To separate these dynamics, we designed a task where reward was only provided after multiple four-item sequences (“iterations”), rather than each individual sequence. Using fMRI in humans, we investigated three possible interactions of reward and sequential control signals in RLPFC: (1) with the visibility of sequential cues, i.e., memory; (2) equally across individual sequence iterations; and (3) differently across individual sequence iterations (e.g., increasing as reward approaches). Evidence from previous, nonsequential cognitive control experiments suggested that reward would uniformly change RLPFC activity across iterations and may depend on the visibility of cues. However, we found the influence of reward on RLPFC ramping increased across sequence iterations and did not interact with memory. These results suggest an active, predictive, and distinctive role for RLPFC in sequence monitoring and integration of reward information, consistent with extant literature demonstrating similar accelerating reward-related dopamine dynamics in regions connected to RLPFC. These results have implications for understanding sequential behavior in daily life, and when they go awry in disorders such as addiction.
Collapse
|
14
|
Gonçalves SF, Ryan M, Niehaus CE, Chaplin TM. Affect-Related Brain Activity and Adolescent Substance Use: A Systematic Review. Curr Behav Neurosci Rep 2022; 9:11-26. [PMID: 37009067 PMCID: PMC10062006 DOI: 10.1007/s40473-021-00241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Purpose of review This review aims to summarize the research on brain activity during affective processing (i.e., reward, negative emotional stimuli, loss) and adolescent substance use (SU). Recent findings Most research revealed links between altered neural activity in midcingulo-insular, frontoparietal and other network regions and adolescent SU. Increased recruitment of midcingulo-insular regions-particularly the striatum-to positive affective stimuli (e.g., monetary reward) was most often associated with initiation and low-level use of substances, whereas decreased recruitment of these regions was most often associated with SUD and higher risk SU. In regards to negative affective stimuli, most research demonstrated increased recruitment of midcingulo-insular network regions. There is also evidence that these associations may be sex-specific. Summary Future research should employ longitudinal designs that assess affect-related brain activity prior to and following SU initiation and escalation. Moreover, examining sex as as moderating variable may help clarify if affective neural risk factors are sex-specific.
Collapse
Affiliation(s)
- Stefanie F. Gonçalves
- Department of Psychology, George Mason University,
Fairfax, Virginia, 22030, United States
| | - Mary Ryan
- Department of Psychology, George Mason University,
Fairfax, Virginia, 22030, United States
| | - Claire E. Niehaus
- Department of Psychology, George Mason University,
Fairfax, Virginia, 22030, United States
| | - Tara M. Chaplin
- Department of Psychology, George Mason University,
Fairfax, Virginia, 22030, United States
| |
Collapse
|
15
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Hypothalamic Functional Connectivity and Apathy in People with Alzheimer's Disease and Cognitively Normal Healthy Controls. J Alzheimers Dis 2022; 90:1615-1628. [PMID: 36314209 PMCID: PMC10064487 DOI: 10.3233/jad-220708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Earlier studies have described the neural markers of apathy in Alzheimer's disease (AD) and mild cognitive impairment (MCI), but few focused on the motivation circuits. Here, we targeted hypothalamus, a hub of the motivation circuit. OBJECTIVE To examine hypothalamic resting state functional connectivity (rsFC) in relation to apathy. METHODS We performed whole-brain regression of hypothalamic rsFC against Apathy Evaluation Scale (AES) total score and behavioral, cognitive, and emotional subscores in 29 patients with AD/MCI and 28 healthy controls (HC), controlling for age, sex, education, cognitive status, and depression. We evaluated the results at a corrected threshold and employed path analyses to assess possible interaction between hypothalamic rsFCs, apathy and depression/memory. Finally, we re-examined the findings in a subsample of amyloid-β-verified AD. RESULTS AES total score correlated negatively with hypothalamic precuneus (PCu)/posterior cingulate cortex (PCC) and positively with left middle temporal gyrus (MTG) and supramarginal gyrus rsFCs. Behavioral subscore correlated negatively with hypothalamic PCu/PCC and positively with middle frontal gyrus rsFC. Cognitive subscore correlated positively with hypothalamic MTG rsFC. Emotional subscore correlated negatively with hypothalamic calcarine cortex rsFC. In path analyses, hypothalamic-PCu/PCC rsFC negatively modulated apathy and, in turn, depression. The model where hypothalamic MTG rsFC and memory independently modulated apathy also showed a good fit. The findings of diminished hypothalamic-PCu/PCC rsFC in relation to apathy and, in turn, depression were confirmed in amyloid-verified AD. CONCLUSION The findings together support a role of altered hypothalamic connectivity in relation to apathy and depression, and modulation of apathy by memory dysfunction.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Medicine & Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Liu W, Liu L, Cheng X, Ge H, Hu G, Xue C, Qi W, Xu W, Chen S, Gao R, Rao J, Chen J. Functional Integrity of Executive Control Network Contributed to Retained Executive Abilities in Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:710172. [PMID: 34899264 PMCID: PMC8664557 DOI: 10.3389/fnagi.2021.710172] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is considered to be a transitional state between normal aging and Alzheimer's dementia (AD). Recent studies have indicated that executive function (EF) declines during MCI. However, only a limited number of studies have investigated the neural basis of EF deficits in MCI. Herein, we investigate the changes of regional brain spontaneous activity and functional connectivity (FC) of the executive control network (ECN) between high EF and low EF groups. Methods: According to EF composite score (ADNI-EF) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we divided MCI into two groups, including the MCI-highEF group and MCI-lowEF group. Resting-state functional MRI was utilized to investigate the fractional amplitude of low-frequency fluctuation (fALFF) and ECN functional connectivity across 23 healthy controls (HC), 11 MCI-highEF, and 14 MCI-lowEF participants. Moreover, a partial correlation analysis was carried out to examine the relationship between altered fALFF or connectivity of the ECN and the ADNI-EF. Results: Compared to HC, the MCI-highEF participants demonstrated increased fALFF in the left superior temporal gyrus (STG), as well as decreased fALFF in the right precentral gyrus, right postcentral gyrus, and left middle frontal gyrus (MFG). The MCI-lowEF participants demonstrated increased fALFF in the cerebellar vermis and decreased fALFF in the left MFG. Additionally, compared to HC, the MCI-highEF participants indicated no significant difference in connectivity of the ECN. Furthermore, the MCI-lowEF participants showed increased ECN FC in the left cuneus and left MFG, as well as decreased ECN functional connectivity in the right parahippocampal gyrus (PHG). Notably, the altered fALFF in the left MFG was positively correlated to ADNI-EF, while the altered fALFF in cerebellar vermis is negatively correlated with ADNI-EF across the two MCI groups and the HC group. Altered ECN functional connectivity in the right PHG is negatively correlated to ADNI-EF, while altered ECN functional connectivity in the left cuneus is negatively correlated to ADNI-EF across the three groups. Conclusions: Our current study demonstrates the presence of different patterns of regional brain spontaneous activity and ECN FC in the MCI-highEF group and MCI-lowEF group. Furthermore, the ECN FC of the MCI-highEF group was not disrupted, which may contribute to retained EF in MCI.
Collapse
Affiliation(s)
- Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Cheng
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Run Gao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhou Q, Jiang Z, Ding J. Reward Expectation Differentially Modulates Global and Local Spatial Working Memory Accuracy. Front Psychol 2021; 12:744400. [PMID: 34721223 PMCID: PMC8554088 DOI: 10.3389/fpsyg.2021.744400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Although it has been suggested that reward expectation affects the performance of spatial working memory tasks, controversial results have been found in previous experiments. Hence, it is still unclear to what extent reward expectation has an effect on working memory. To clarify this question, a memory-guided saccade task was applied, in which participants were instructed to retain and reconstruct a temporospatial sequence of four locations by moving their eyes in each trial. The global- and local-level spatial working memory accuracies were calculated to determine the reward effect on the global and local level of processing in spatial working memory tasks. Although high reward expectation enhanced the encoding of spatial information, the percentage of trials in which the cued location was correctly fixated decreased with increment of reward expectation. The reconstruction of the global temporospatial sequence was enhanced by reward expectation, whereas the local reconstruction performance was not affected by reward. Furthermore, the improvements in local representations of uncued locations and local sequences were at the cost of the representation of cued locations. The results suggest that the reward effect on spatial working memory is modulated by the level of processing, which supports the flexible resource theory during maintenance.
Collapse
Affiliation(s)
- Qingjie Zhou
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Zanzan Jiang
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Jinhong Ding
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
18
|
Reduced Semantic Context and Signal-to-Noise Ratio Increase Listening Effort As Measured Using Functional Near-Infrared Spectroscopy. Ear Hear 2021; 43:836-848. [PMID: 34623112 DOI: 10.1097/aud.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Understanding speech-in-noise can be highly effortful. Decreasing the signal-to-noise ratio (SNR) of speech increases listening effort, but it is relatively unclear if decreasing the level of semantic context does as well. The current study used functional near-infrared spectroscopy to evaluate two primary hypotheses: (1) listening effort (operationalized as oxygenation of the left lateral PFC) increases as the SNR decreases and (2) listening effort increases as context decreases. DESIGN Twenty-eight younger adults with normal hearing completed the Revised Speech Perception in Noise Test, in which they listened to sentences and reported the final word. These sentences either had an easy SNR (+4 dB) or a hard SNR (-2 dB), and were either low in semantic context (e.g., "Tom could have thought about the sport") or high in context (e.g., "She had to vacuum the rug"). PFC oxygenation was measured throughout using functional near-infrared spectroscopy. RESULTS Accuracy on the Revised Speech Perception in Noise Test was worse when the SNR was hard than when it was easy, and worse for sentences low in semantic context than high in context. Similarly, oxygenation across the entire PFC (including the left lateral PFC) was greater when the SNR was hard, and left lateral PFC oxygenation was greater when context was low. CONCLUSIONS These results suggest that activation of the left lateral PFC (interpreted here as reflecting listening effort) increases to compensate for acoustic and linguistic challenges. This may reflect the increased engagement of domain-general and domain-specific processes subserved by the dorsolateral prefrontal cortex (e.g., cognitive control) and inferior frontal gyrus (e.g., predicting the sensory consequences of articulatory gestures), respectively.
Collapse
|
19
|
Li Y, Zhang L, Zhang R, Xu T, Feng T. The Neural Basis Linking Achievement Motivation With Procrastination: Left Precuneus Connectivity With Right Anterior Cingulate Cortex. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2021; 48:1382-1392. [PMID: 34407664 DOI: 10.1177/01461672211040677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Procrastination adversely affects individual's learning, working, health, and well-being, which troubles many people around the world. Previous studies have indicated that people with higher achievement motivation tend to have less procrastination. However, how achievement motivation is linked with procrastination at the neural level is still poorly understood. Here, we adopted the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to study this issue. The VBM analysis revealed that higher achievement motivation was correlated with larger gray matter volumes in left precuneus (lPre). Furthermore, the RSFC results showed that the functional connectivity between lPre and right anterior cingulate cortex (rACC) was positively associated with achievement motivation and negatively correlated with procrastination. More importantly, a mediation analysis demonstrated that achievement motivation fully mediated the relation between lPre-rACC connectivity and procrastination. These findings suggested that lPre-rACC coupling might be the neural correlate underlying the association between achievement motivation and procrastination.
Collapse
Affiliation(s)
- Yuhua Li
- Southwest University, Chongqing, China
| | | | | | - Ting Xu
- Southwest University, Chongqing, China
| | - Tingyong Feng
- Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| |
Collapse
|
20
|
Shashidhara S, Erez Y. Reward motivation increases univariate activity but has limited effect on coding of task-relevant information across the frontoparietal cortex. Neuropsychologia 2021; 160:107981. [PMID: 34332993 PMCID: PMC8434417 DOI: 10.1016/j.neuropsychologia.2021.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022]
Abstract
Selection and integration of information based on current goals is fundamental for goal-directed behavior. Reward motivation has been shown to improve behavioral performance, yet the neural mechanisms that link motivation and control processes, and in particular its effect on context-dependent information processing, remain unclear. We used functional magnetic resonance imaging (fMRI) in 24 human volunteers (13 females) to test whether reward motivation enhances the coding of task-relevant information across the frontoparietal cortex, as would be predicted based on previous experimental evidence and theoretical accounts. In a cued target detection task, participants detected whether an object from a cued visual category was present in a subsequent display. The combination of the cue and the object visual category determined the behavioral status of the objects. To manipulate reward motivation, half of all trials offered the possibility of a monetary reward. We observed an increase with reward in overall univariate activity across the frontoparietal control network when the cue and subsequent object were presented. Multivariate pattern analysis (MVPA) showed that behavioral status information for the objects was conveyed across the network. However, in contrast to our prediction, reward did not increase the discrimination between behavioral status conditions in the stimulus epoch of a trial when object information was processed depending on a current context. In the high-level general-object visual region, the lateral occipital complex, the representation of behavioral status was driven by visual differences and was not modulated by reward. Our study provides useful evidence for the limited effects of reward motivation on task-related neural representations and highlights the necessity to unravel the diverse forms and extent of these effects. Reward motivation leads to increased activity in the frontoparietal control network. Task-relevant information is coded across the control network. Reward does not increase coding of behavioral relevance of task information. Visual category coding in the general-object region does not increase with reward.
Collapse
Affiliation(s)
- Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Yaara Erez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| |
Collapse
|
21
|
Wang J, Li Y, Wang S, Guo W, Ye H, Shi J, Luo J. Transcranial Direct Current Stimulation (tDCS) over the Frontopolar Cortex (FPC) Alters the Demand for Precommitment. Behav Brain Res 2021; 414:113487. [PMID: 34302873 DOI: 10.1016/j.bbr.2021.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/24/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
Caving into temptation leads to deviation from the planned path, which reduces our performance, adds trouble to our daily life, and can even bring about psychiatric disorders. Precommitment is an effective way to remedy the failure of willpower by removing the tempting short-term option. This paper aims to test the neural mechanisms of precommitment through a monetary task that excluded the interference of heterogeneous individual preferences and complements present researches. We examined whether transcranial direct current stimulation (tDCS) over the frontopolar cortex (FPC) could affect the demand for precommitment. The participants were required to make a decision regarding whether they were willing to precommit to binding later-lar ger rewards and remove the sooner-smaller rewards. Three conditions, including no precommitment, loose precommitment and strict precommitment, were established to perform a comprehensive investigation. We found that tDCS over the FPC altered the demand for precommitment in the condition involving loose precommitment with the control of delay discounting, specifically, anodal stimulation led to more precommitment, whereas cathodal stimulation reduced the demand for precommitment. Our findings established a causal correlation between the FPC and willingness to precommit and suggested a feasible method to enhance self-control in addition to exercising willpower.
Collapse
Affiliation(s)
- Jinjin Wang
- School of Economics, Zhejiang University, Hangzhou, China; Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Yuzhen Li
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China; Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Siqi Wang
- Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China; School of Economics, Zhejiang Gongshang University, Hangzhou, China
| | - Wenmin Guo
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China; Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Hang Ye
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China; Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jinchuan Shi
- School of Economics, Zhejiang University, Hangzhou, China
| | - Jun Luo
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China; Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China.
| |
Collapse
|
22
|
Freund MC, Etzel JA, Braver TS. Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends Cogn Sci 2021; 25:622-638. [PMID: 33895065 PMCID: PMC8279005 DOI: 10.1016/j.tics.2021.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/07/2023]
Abstract
Cognitive control relies on distributed and potentially high-dimensional frontoparietal task representations. Yet, the classical cognitive neuroscience approach in this domain has focused on aggregating and contrasting neural measures - either via univariate or multivariate methods - along highly abstracted, 1D factors (e.g., Stroop congruency). Here, we present representational similarity analysis (RSA) as a complementary approach that can powerfully inform representational components of cognitive control theories. We review several exemplary uses of RSA in this regard. We further show that most classical paradigms, given their factorial structure, can be optimized for RSA with minimal modification. Our aim is to illustrate how RSA can be incorporated into cognitive control investigations to shed new light on old questions.
Collapse
Affiliation(s)
- Michael C Freund
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO 63130, USA
| | - Joset A Etzel
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO 63130, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO 63130, USA; Department of Radiology, Washington University in St Louis, School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University in St Louis, School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
23
|
Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:215-235. [PMID: 31872334 DOI: 10.3758/s13415-019-00763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reward learning is a ubiquitous cognitive mechanism guiding adaptive choices and behaviors, and when impaired, can lead to considerable mental health consequences. Reward-related functional neuroimaging studies have begun to implicate networks of brain regions essential for processing various peripheral influences (e.g., risk, subjective preference, delay, social context) involved in the multifaceted reward processing construct. To provide a more complete neurocognitive perspective on reward processing that synthesizes findings across the literature while also appreciating these peripheral influences, we used emerging meta-analytic techniques to elucidate brain regions, and in turn networks, consistently engaged in distinct aspects of reward processing. Using a data-driven, meta-analytic, k-means clustering approach, we dissociated seven meta-analytic groupings (MAGs) of neuroimaging results (i.e., brain activity maps) from 749 experimental contrasts across 176 reward processing studies involving 13,358 healthy participants. We then performed an exploratory functional decoding approach to gain insight into the putative functions associated with each MAG. We identified a seven-MAG clustering solution that represented dissociable patterns of convergent brain activity across reward processing tasks. Additionally, our functional decoding analyses revealed that each of these MAGs mapped onto discrete behavior profiles that suggested specialized roles in predicting value (MAG-1 & MAG-2) and processing a variety of emotional (MAG-3), external (MAG-4 & MAG-5), and internal (MAG-6 & MAG-7) influences across reward processing paradigms. These findings support and extend aspects of well-accepted reward learning theories and highlight large-scale brain network activity associated with distinct aspects of reward processing.
Collapse
|
24
|
Wei P, Ji L. Reward expectation modulates N2pc for target selection: Electrophysiological evidence. Psychophysiology 2021; 58:e13837. [PMID: 33931867 DOI: 10.1111/psyp.13837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022]
Abstract
In an electrophysiological experiment, we investigated the effect of reward expectation on the localized attentional interference effect using a cue-target paradigm, while event-related potentials (ERPs) were recorded. A cue indicating the reward condition of each trial (incentive vs. non-incentive) was followed by the presentation of a search array containing two target items. Participants were asked to decide whether the two shape singletons (two triangles, two rectangles, or one triangle and one rectangle) among a set of circles were the same shape. Moreover, we manipulated the distance between the two targets to be adjacent to each other (Separation 1) or further apart (Separation 3 and Separation 5). Behavioral results revealed a larger reward facilitation effect for the larger target separation conditions. The N2pc component locked to the target display exhibited an interaction between reward expectation and the distance between the two targets. For non-incentive trials, the N2pc amplitude increased as the separation between the two targets increased; however, for incentive trials, the N2pc showed comparable amplitudes in the different target separation conditions. These results indicate that reward expectation regulated attentional focus to better resolve the competition between representation and selection of the two targets for acquiring possible reward outcomes.
Collapse
Affiliation(s)
- Ping Wei
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Liyan Ji
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
25
|
Minosse S, Picchi E, Di Giuliano F, Sarmati L, Teti E, Pistolese CA, Lanzafame S, Di Ciò F, Guerrisi M, Andreoni M, Floris R, Toschi N, Garaci F. Functional brain network reorganization in HIV infection. J Neuroimaging 2021; 31:796-808. [PMID: 33900655 DOI: 10.1111/jon.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE To investigate the reorganization of the central nervous system provided by resting state-functional MRI (rs-fMRI), graph-theoretical analysis, and a newly developed functional brain network disruption index in patients with human immunodeficiency virus (HIV) infection. METHODS Forty HIV-positive patients without neurological impairment and 20 age- and sex-matched healthy controls underwent rs-fMRI at 3T; blood sampling was obtained the same day to evaluate biochemical variables (absolute, relative, and nadir CD4 T-lymphocytes value and plasmatic HIV-RNA). From fMRI data, disruption indices, as well as global and local graph theoretical measures, were estimated and examined for group differences (HIV vs. controls) as well as for associations with biochemical variables (HIV only). Finally, all data (global and local graph-theoretical measures, disruption indices, and biochemical variables) were tested for putative differences across three patient groups based on the duration of combined antiretroviral therapy (cART). RESULTS Brain function of HIV patients appeared to be deeply reorganized as compared to normal controls. The disruption index showed significant negative association with relative CD4 values, and a positive significant association between plasmatic HIV-RNA and local graph-theoretical metrics in the left lingual gyrus and the right lobule IV and V of right cerebellar hemisphere was also observed. Finally, a differential distribution of HIV clinical biomarkers and several brain metrics was observed across cART duration groups. CONCLUSION Our study demonstrates that rs-fMRI combined with advanced graph theoretical analysis and disruption indices is able to detect early and subtle functional changes of brain networks in HIV patients.
Collapse
Affiliation(s)
- Silvia Minosse
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Eliseo Picchi
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Diseases, Tor Vergata University, Rome, Italy
| | - Elisabetta Teti
- Clinical Infectious Diseases, Tor Vergata University, Rome, Italy
| | - Chiara Adriana Pistolese
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Simona Lanzafame
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Ciò
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Guerrisi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Andreoni
- Clinical Infectious Diseases, Tor Vergata University, Rome, Italy
| | - Roberto Floris
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,San Raffaele Cassino, Frosinone, Italy
| |
Collapse
|
26
|
Arsalidou M, Vijayarajah S, Sharaev M. Basal ganglia lateralization in different types of reward. Brain Imaging Behav 2021; 14:2618-2646. [PMID: 31927758 DOI: 10.1007/s11682-019-00215-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reward processing is a fundamental human activity. The basal ganglia are recognized for their role in reward processes; however, specific roles of the different nuclei (e.g., nucleus accumbens, caudate, putamen and globus pallidus) remain unclear. Using quantitative meta-analyses we assessed whole-brain and basal ganglia specific contributions to money, erotic, and food reward processing. We analyzed data from 190 fMRI studies which reported stereotaxic coordinates of whole-brain, within-group results from healthy adult participants. Results showed concordance in overlapping and distinct cortical and sub-cortical brain regions as a function of reward type. Common to all reward types was concordance in basal ganglia nuclei, with distinct differences in hemispheric dominance and spatial extent in response to the different reward types. Food reward processing favored the right hemisphere; erotic rewards favored the right lateral globus pallidus and left caudate body. Money rewards engaged the basal ganglia bilaterally including its most anterior part, nucleus accumbens. We conclude by proposing a model of common reward processing in the basal ganglia and separate models for money, erotic, and food rewards.
Collapse
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Psychology, Faculty of Health, York University, Toronto, ON, Canada.
| | - Sagana Vijayarajah
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| |
Collapse
|
27
|
Li H, Wu D, Yang J, Xie S, Luo J, Chang C. A Functional Near-Infrared Spectroscopy Examination of the Neural Correlates of Cognitive Shifting in Dimensional Change Card Sort Task. Front Hum Neurosci 2021; 14:561223. [PMID: 33551771 PMCID: PMC7859114 DOI: 10.3389/fnhum.2020.561223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
This study aims to examine the neural correlates of cognitive shifting during the Dimensional Change Card Sort Task (DCCS) task with functional near-infrared spectroscopy. Altogether 49 children completed the DCCS tasks, and 25 children (Mage = 68.66, SD = 5.3) passing all items were classified into the Switch group. Twenty children (M age = 62.05, SD = 8.13) committing more than one perseverative errors were grouped into the Perseverate group. The Switch group had Brodmann Area (BA) 9 and 10 activated in the pre-switch period and BA 6, 9, 10, 40, and 44 in the post-switch period. In contrast, the Perseverate group had BA 9 and 10 activated in the pre-switch period and BA 8, 9, 10 in the post-switch period. The general linear model results afford strong support to the "V-shape curve" hypothesis by identifying a significant decrease-increase cycle in BA 9 and 44, the neural correlations of cognitive shifting.
Collapse
Affiliation(s)
- Hui Li
- School of Education, Macquarie University, Sydney, NSW, Australia
| | - Dandan Wu
- School of Education, Macquarie University, Sydney, NSW, Australia
| | - Jinfeng Yang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Sha Xie
- Normal College, Shenzhen University, Shenzhen, China
| | - Jiutong Luo
- Faculty of Education, Beijing Normal University, Beijing, China
| | - Chunqi Chang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Zhang J, Zhang J, Ren H, Liu Q, Du Z, Wu L, Sai L, Yuan Z, Mo S, Lin X. A Look Into the Power of fNIRS Signals by Using the Welch Power Spectral Estimate for Deception Detection. Front Hum Neurosci 2021; 14:606238. [PMID: 33536888 PMCID: PMC7848231 DOI: 10.3389/fnhum.2020.606238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging technologies have improved our understanding of deception and also exhibit their potential in revealing the origins of its neural mechanism. In this study, a quantitative power analysis method that uses the Welch power spectrum estimation of functional near-infrared spectroscopy (fNIRS) signals was proposed to examine the brain activation difference between the spontaneous deceptive behavior and controlled behavior. The power value produced by the model was applied to quantify the activity energy of brain regions, which can serve as a neuromarker for deception detection. Interestingly, the power analysis results generated from the Welch spectrum estimation method demonstrated that the spontaneous deceptive behavior elicited significantly higher power than that from the controlled behavior in the prefrontal cortex. Meanwhile, the power findings also showed significant difference between the spontaneous deceptive behavior and controlled behavior, indicating that the reward system was only involved in the deception. The proposed power analysis method for processing fNIRS data provides us an additional insight to understand the cognitive mechanism of deception.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Houhua Ren
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Qihong Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Zhengcong Du
- School of Information Science and Technology, Xichang University, Xichang, China
| | - Lan Wu
- Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Liyang Sai
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Site Mo
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiaohong Lin
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
29
|
Rovetti J, Goy H, Nurgitz R, Russo FA. Comparing verbal working memory load in auditory and visual modalities using functional near-infrared spectroscopy. Behav Brain Res 2021; 402:113102. [PMID: 33422594 DOI: 10.1016/j.bbr.2020.113102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/29/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
The verbal identity n-back task is commonly used to assess verbal working memory (VWM) capacity. Only three studies have compared brain activation during the n-back when using auditory and visual stimuli. The earliest study, a positron emission tomography study of the 3-back, found no differences in VWM-related brain activation between n-back modalities. In contrast, two subsequent functional magnetic resonance imaging (fMRI) studies of the 2-back found that auditory VWM was associated with greater left dorsolateral prefrontal cortex (DL-PFC) activation than visual VWM, perhaps suggesting that auditory VWM requires more cognitive effort than its visual counterpart. The current study aimed to assess whether DL-PFC activation (i.e., cognitive effort) differs by VWM modality. To do this, 16 younger adults completed an auditory and visual n-back, both at four levels of VWM load. Concurrently, activation of the PFC was measured using functional near-infrared spectroscopy (fNIRS), a silent neuroimaging method. We found that DL-PFC activation increased with VWM load, but it was not affected by VWM modality or the interaction between load and modality. This supports the view that both VWM modalities require similar cognitive effort, and perhaps that previous fMRI results were an artefact of scanner noise. We also found that, across conditions, DL-PFC activation was positively correlated with reaction time. This may further support DL-PFC activation as an index of cognitive effort, and fNIRS as a method to measure it.
Collapse
Affiliation(s)
- Joseph Rovetti
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| | - Huiwen Goy
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| | - Rebecca Nurgitz
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| | - Frank A Russo
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
30
|
Yang J, Wu D, Luo J, Xie S, Chang C, Li H. Neural Correlates of Mental Rotation in Preschoolers With High or Low Working Memory Capacity: An fNIRS Study. Front Psychol 2020; 11:568382. [PMID: 33362634 PMCID: PMC7758205 DOI: 10.3389/fpsyg.2020.568382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
This study explored the differentiated neural correlates of mental rotation (MR) in preschoolers with high and low working memory capacity using functional near-infrared spectroscopy (fNIRS). Altogether 38 Chinese preschoolers (M = 5.0 years, SD = 0.69 years) completed the Working Memory Capacity (WMC) test, the Mental Rotation (MR), and its Control tasks (without MR). They were divided into High-WMC (N1 = 9) and Low-WMC (N2 = 18) groups based on the WMC scores. The behavioral and fNIRS results indicated that: (1) there were no significant differences in MR task performance between the High-WMC (Mmr = 23.44, SD = 0.88) and Low-WMC group (Mmr = 23.67, SD = 0.59); (2) the Low-WMC group activated BA6, BA8, BA 9, and BA 44, whereas the High-WMC group activated BA8, BA10 and BA 44 during mental rotation; (3) significant differences were found in the activation of BA44 and BA9 between the High-WMC and Low-WMC groups during mental rotation; and (4) the High-WMC and Low-WMC groups differed significantly in the activation of BA 9 and BA10 during the control tasks, indicating that both areas might be responsible for the group differences in working memory.
Collapse
Affiliation(s)
| | - Dandan Wu
- Macquarie University, Sydney, NSW, Australia
| | - Jiutong Luo
- The University of Hong Kong, Pokfulam, Hong Kong
| | - Sha Xie
- The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Hui Li
- Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
31
|
Monetary incentives have only limited effects on auditory distraction: evidence for the automaticity of cross-modal attention capture. PSYCHOLOGICAL RESEARCH 2020; 85:2997-3009. [PMID: 33340342 PMCID: PMC8476381 DOI: 10.1007/s00426-020-01455-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
The duplex-mechanism account of auditory distraction postulates that two distinct forms of auditory distraction can be distinguished by whether or not they can be cognitively controlled. While the interference-by-process component of auditory distraction is postulated to be automatic and independent of cognitive control, the stimulus-aspecific attention capture by auditory deviants and the stimulus-specific attentional diversion by auditorily presented distractor sentences should be suppressed by increased task engagement. Here we test whether incentive-induced changes in task engagement affect the disruption of serial recall by auditory deviants (Experiment 1) and distractor sentences (Experiment 2). Monetary incentives substantially affected recall performance in both experiments. However, the incentive-induced changes in task engagement had only limited effects on auditory distraction. In Experiment 2, increased task engagement was associated with a small decrease of distraction relative to a quiet condition, but strong effects of auditory distraction on performance persisted in conditions of high task engagement in both experiments. Most importantly, and in contrast to the predictions of the duplex-mechanism account, the effects of stimulus-aspecific attention capture (Experiment 1) and stimulus-specific attentional diversion (Experiment 2) remained unaffected by incentive-induced changes in task engagement. These findings are consistent with an automatic-capture account according to which only the processes responsible for the deliberate memorization of the target items are dependent on controlled mental effort while the attention capture by auditory deviants and the attentional diversion by distractor speech are largely automatic.
Collapse
|
32
|
Song F, Zhan Y, Ford JC, Cai DC, Fellows AM, Shan F, Song P, Chen G, Soli SD, Shi Y, Buckey JC. Increased Right Frontal Brain Activity During the Mandarin Hearing-in-Noise Test. Front Neurosci 2020; 14:614012. [PMID: 33390894 PMCID: PMC7773781 DOI: 10.3389/fnins.2020.614012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose Previous studies have revealed increased frontal brain activation during speech comprehension in background noise. Few, however, used tonal languages. The normal pattern of brain activation during a challenging speech-in-nose task using a tonal language remains unclear. The Mandarin Hearing-in-Noise Test (HINT) is a well-established test for assessing the ability to interpret speech in background noise. The current study used Mandarin HINT (MHINT) sentences and functional magnetic resonance imaging (fMRI) to assess brain activation with MHINT sentences. Methods Thirty native Mandarin-speaking subjects with normal peripheral hearing were recruited. Functional MRI was performed while subjects were presented with either HINT “clear” sentences with low-level background noise [signal-to-noise ratio (SNR) = +3 dB] or “noisy” sentences with high-level background noise (SNR = −5 dB). Subjects were instructed to answer with a button press whether a visually presented target word was included in the sentence. Brain activation between noisy and clear sentences was compared. Activation in each condition was also compared to a resting, no sentence presentation, condition. Results Noisy sentence comprehension showed increased activity in areas associated with tone processing and working memory, including the right superior and middle frontal gyri [Brodmann Areas (BAs) 46, 10]. Reduced activity with noisy sentences was seen in auditory, language, memory and somatosensory areas, including the bilateral superior and middle temporal gyri, left Heschl’s gyrus (BAs 21, 22), right temporal pole (BA 38), bilateral amygdala-hippocampus junction, and parahippocampal gyrus (BAs 28, 35), left inferior parietal lobule extending to left postcentral gyrus (BAs 2, 40), and left putamen. Conclusion Increased frontal activation in the right hemisphere occurred when comprehending noisy spoken sentences in Mandarin. Compared to studies using non-tonal languages, this activation was strongly right-sided and involved subregions not previously reported. These findings may reflect additional effort in lexical tone perception in this tonal language. Additionally, this continuous fMRI protocol may offer a time-efficient way to assess group differences in brain activation with a challenging speech-in-noise task.
Collapse
Affiliation(s)
- Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yi Zhan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - James C Ford
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Department of Psychiatry, Dartmouth-Hitchcock, Lebanon, NH, United States
| | - Dan-Chao Cai
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Abigail M Fellows
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pengrui Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochao Chen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | | | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jay C Buckey
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
33
|
Kober SE, Wood G, Kiili K, Moeller K, Ninaus M. Game-based learning environments affect frontal brain activity. PLoS One 2020; 15:e0242573. [PMID: 33211780 PMCID: PMC7676717 DOI: 10.1371/journal.pone.0242573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Inclusion of game elements in learning environments to increase motivation and learning outcome is becoming increasingly popular. However, underlying mechanisms of game-based learning have not been studied sufficiently yet. In the present study, we investigated effects of game-based learning environments on a neurofunctional level. In particular, 59 healthy adults completed a game-based version (including game elements such as a narrative and virtual incentives) as well as a non-game-based version of a number line estimation task, to improve fractional knowledge, while their brain activity was monitored using near-infrared spectroscopy. Behavioral performance was comparable across the two versions, although there was a tendency that less errors were made in the game-based version. However, subjective user experience differed significantly between versions. Participants rated the game-based version as more attractive, novel, and stimulating but less efficient than the non-game-based version. Additionally, positive affect was reported to be higher while engaging in the game-based as compared to the non-game-based task version. Corroborating these user reports, we identified increased brain activation in areas associated with emotion and reward processing while playing the game-based version, which might be driven by rewarding elements of the game-based version. Moreover, frontal areas associated with attention were also more activated in the game-based version of the task. Hence, we observed converging evidence on a user experience and neurofunctional level indicating that the game-based version was more rewarding as well as emotionally and attentionally engaging. These results underscore the potential of game-based learning environments to promote more efficient learning by means of attention and reward up-tuning.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- * E-mail:
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Kristian Kiili
- Faculty of Education and Culture, Tampere University, Tampere, Finland
| | - Korbinian Moeller
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- LEAD Graduate School & Research Network, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Manuel Ninaus
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
| |
Collapse
|
34
|
Tetereva A, Kartashov S, Ivanitsky A, Martynova O. Variance and Scale-Free Properties of Resting-State Blood Oxygenation Level-Dependent Signal After Fear Memory Acquisition and Extinction. Front Hum Neurosci 2020; 14:509075. [PMID: 33192382 PMCID: PMC7581738 DOI: 10.3389/fnhum.2020.509075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Recently, the dynamic properties of brain activity rather than its stationary values have attracted more interest in clinical applications. It has been shown that brain signals exhibit scale-free dynamics or long-range temporal correlations (LRTC) that differ between rest and cognitive tasks in healthy controls and clinical groups. Little is known about how fear-inducing tasks may influence dispersion and the LRTC of subsequent resting-state brain activity. In this study, we aimed to explore the changes in the variance and scale-free properties of the brain’s blood oxygenation level-dependent (BOLD) signal during the resting-state sessions before and after fear learning and fear memory extinction. During a 1-h break between magnetic resonance imaging (MRI) scanning, 23 healthy, right-handed volunteers experienced a fear extinction procedure, followed by Pavlovian fear conditioning that included partial reinforcement using mild electrical stimulation. We extracted the average time course of the BOLD signal from 245 regions of interest (ROIs) taken from the resting-state functional atlas. The variance of the BOLD signal and the Hurst exponent (H), which reflects the scale-free dynamic, were compared in the resting states before and after fear learning and fear memory extinction. After fear extinction, six ROIs showed a difference in H at the uncorrected level of significance, including areas associated with fear processing. H decreased during fear extinction but then became higher than before fear learning, specifically in areas related to the fear extinction network (FEN). However, activity in the other ROIs restored the H to its initial level. The variance of the BOLD signal in six ROIs demonstrated a significant increase from initial rest to the post-task rest. A limited number of ROIs showed changes in both H and variance. Our results imply that the variability and scale-free properties of the BOLD signal might serve as additional indicators of changes in spontaneous brain activity related to recent experience.
Collapse
Affiliation(s)
- Alina Tetereva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | - Alexey Ivanitsky
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia.,Centre for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
35
|
Resting EEG Asymmetry Markers of Multiple Facets of the Behavioral Approach System: A LORETA Analysis. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previously published models of frontal activity linked high relative left frontal activity to the behavioral approach system (BAS) and impulsivity. Additionally, these models did not account for BAS facets encompassing the anticipation of reward, i.e., goal-driven persistence (BAS–GDP) and reward interest (BAS–RI), from those that deal with the actual hedonic experience of reward, i.e., reward reactivity (BAS–RR) and impulsivity (BAS–I). Using resting electroencephalographic (EEG) recordings, the source localization (LORETA) method allowed us to calculate the hemispheric asymmetry of the current density within the alpha band (7.5–13 Hz) in ten regions of interest. Compared to low BAS subtrait scorers, high BAS subtrait scorers (except for BAS–I) were correlated with greater relative left-sided activity in the superior frontal gyrus (BA10). Further, an isolated effective coherence (iCOH) analysis of the beta activity (21 Hz) disclosed that high impulsive scorers as compared to low impulsive ones had higher connectivity between the superior frontal gyrus and middle temporal gyrus, which was not compensated for by enhanced inhibitory alpha (11 Hz) connectivity between these regions. For the beta frequency, we also found in highly impulsive individuals that (i) both left and right middle temporal lobes directly influenced the activity of the left and right superior frontal lobes, and (ii) a clear decoupling between left and right superior frontal lobes. These findings could indicate reduced control by the supervisory system in more impulsive individuals.
Collapse
|
36
|
Schulz E, Stankewitz A, Winkler AM, Irving S, Witkovský V, Tracey I. Ultra-high-field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain. eLife 2020; 9:55028. [PMID: 32876049 PMCID: PMC7498261 DOI: 10.7554/elife.55028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated how the attenuation of pain with cognitive interventions affects brain connectivity using neuroimaging and a whole brain novel analysis approach. While receiving tonic cold pain, 20 healthy participants performed three different pain attenuation strategies during simultaneous collection of functional imaging data at seven tesla. Participants were asked to rate their pain after each trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity strength change of brain data. Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to brain regions long associated with pain processing, the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.
Collapse
Affiliation(s)
- Enrico Schulz
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anderson M Winkler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovský
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Yu H, Li ML, Li YF, Li XJ, Meng Y, Liang S, Li Z, Guo W, Wang Q, Deng W, Ma X, Coid J, Li DT. Anterior cingulate cortex, insula and amygdala seed-based whole brain resting-state functional connectivity differentiates bipolar from unipolar depression. J Affect Disord 2020; 274:38-47. [PMID: 32469830 DOI: 10.1016/j.jad.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The frontal-limbic circuit is hypothesized as sub-serving emotional regulation. We performed whole brain resting-state functional connectivity (rs-FC) analysis by studying the key hubs of frontal-limbic circuit: anterior cingulate cortex (ACC), bilateral insula subregions, bilateral amygdala (Amy) as seeds, separately, to discriminate bipolar depression (BipD) from unipolar depression (UniD). METHODS We compared seed-based rs-FC of the frontal-limbic seeds with whole brain among 23 BipD participants; 23 age, gender, and depression severity matched patients with UniD, and 23 healthy controls (HCs). We also used support vector machine learning to study classification based on the rs-FC of ACC, bilateral insula subregions, and bilateral Amy seeds with whole brain. RESULTS BipD showed increased rs-FC between the left ventral anterior insula (vAI) seed and the left anterior supramarginal gyrus (aSMG) and left postcentral gyrus, as well as increased rs-FC between left amygdala seed and the left aSMG when compared to HCs and UniD. Compared to UniD, BipD was associated with increased rs-FC between right dorsal anterior insula seed and right superior frontal gyrus, as well as increased rs-FC between left posterior insula seed and right precentral gyrus and right thalamus. Combined rs-FC of ACC, bilateral insula subregions and bilateral Amy seeds with the whole brain discriminated BipD from UniD with an accuracy of 91.30%. CONCLUSIONS Rs-FC of the emotional regulation circuit is more widely disturbed in BipD than UniD. Using rs-FC with this circuit may lead to further developments in diagnostic decision-making.
Collapse
Affiliation(s)
- Hua Yu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yin-Fei Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Jing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yajing Meng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Sugai Liang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhe Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjun Guo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jeremy Coid
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - D Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China; Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
|
39
|
Sripada C, Angstadt M, Rutherford S, Taxali A, Shedden K. Toward a "treadmill test" for cognition: Improved prediction of general cognitive ability from the task activated brain. Hum Brain Mapp 2020; 41:3186-3197. [PMID: 32364670 PMCID: PMC7375130 DOI: 10.1002/hbm.25007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/02/2023] Open
Abstract
General cognitive ability (GCA) refers to a trait-like ability that contributes to performance across diverse cognitive tasks. Identifying brain-based markers of GCA has been a longstanding goal of cognitive and clinical neuroscience. Recently, predictive modeling methods have emerged that build whole-brain, distributed neural signatures for phenotypes of interest. In this study, we employ a predictive modeling approach to predict GCA based on fMRI task activation patterns during the N-back working memory task as well as six other tasks in the Human Connectome Project dataset (n = 967), encompassing 15 task contrasts in total. We found tasks are a highly effective basis for prediction of GCA: The 2-back versus 0-back contrast achieved a 0.50 correlation with GCA scores in 10-fold cross-validation, and 13 out of 15 task contrasts afforded statistically significant prediction of GCA. Additionally, we found that task contrasts that produce greater frontoparietal activation and default mode network deactivation-a brain activation pattern associated with executive processing and higher cognitive demand-are more effective in the prediction of GCA. These results suggest a picture analogous to treadmill testing for cardiac function: Placing the brain in a more cognitively demanding task state significantly improves brain-based prediction of GCA.
Collapse
Affiliation(s)
- Chandra Sripada
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Mike Angstadt
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Saige Rutherford
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Aman Taxali
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Kerby Shedden
- Department of StatisticsUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
40
|
Plastic frontal pole cortex structure related to individual persistence for goal achievement. Commun Biol 2020; 3:194. [PMID: 32346052 PMCID: PMC7189238 DOI: 10.1038/s42003-020-0930-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Persistent goal-directed behaviours result in achievements in many fields. However, the underlying neural mechanisms of persistence and the methods that enhance the neuroplasticity underlying persistence, remain unclear. We here demonstrate that the structural properties of the frontal pole cortex (FPC) before tasks contain information that can classify Achievers and Non-achievers (goal-directed persistence) participating in three tasks that differ in time scale (hours to months) and task domains (cognitive, language, and motor learning). We also found that most Achievers exhibit experience-dependent neuroplastic changes in the FPC after completing language and motor learning tasks. Moreover, we confirmed that a coaching strategy that used subgoals modified goal-directed persistence and increased the likelihood of becoming an Achiever. Notably, we discovered that neuroplastic changes in the FPC were facilitated by the subgoal strategy, suggesting that goal-striving, using effective coaching, optimizes the FPC for goal persistence. Hosoda et al. study the neurobiological underpinnings of goal pursuit and persistence. They use MRI data and identify areas in the frontal pole cortex that could predict performance on various tasks. They also show that coaching results in neuroplastic remodeling that increases the likelihood of goal persistence.
Collapse
|
41
|
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41:3253-3265. [PMID: 32311207 PMCID: PMC7375103 DOI: 10.1002/hbm.25012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Frangou S, Kington J, Raymont V, Shergill SS. Examining ventral and dorsal prefrontal function in bipolar disorder: A functional magnetic resonance imaging study. Eur Psychiatry 2020; 23:300-8. [PMID: 17656073 DOI: 10.1016/j.eurpsy.2007.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 05/12/2007] [Accepted: 05/25/2007] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral lines of research suggest both dorsal and ventral prefrontal cortical dysfunction in bipolar disorder (BD). We used functional magnetic resonance imaging to compare patterns of brain activation in remitted BD patients and controls whilst performing tasks selected for their relative specificity in engaging either the dorsal (n-back sequential-letter working memory task) or ventral (gambling task) PFC. Seven BD patients were selected from participants of the Maudsley Bipolar Disorder Project on the basis of clinical remission, absence of cognitive deficits, and monotherapy with mood stabilisers. Subjects were individually matched by gender, age, and IQ to an equal number of healthy controls. In the n-back task, group differences were only present in response to increasing memory load. Patients did not show the predicted dynamic response in the dorsal PFC, but had increased activation in the parietal cortices. During the gambling task, controls showed significant activation in the ventral and dorsal PFC; this was attenuated in BD patients where increased activation was seen in lateral temporal and polar regions. Our findings suggest that there are trait abnormalities in dorsal and ventral PFC function in BD that may be more pronounced during tasks that rely on ventral–dorsal PFC interaction.
Collapse
Affiliation(s)
- Sophia Frangou
- Section of Neurobiology of Psychosis, Institute of Psychiatry, Kings College London, De Crespigny Park, London, UK.
| | | | | | | |
Collapse
|
43
|
Jones NP, Schlund M, Kerestes R, Ladouceur CD. Emotional Interference in Early Adolescence: Positive Reinforcement Modulates the Behavioral and Neural Effects of Negative Emotional Distracters. Cereb Cortex 2020; 30:2642-2657. [PMID: 31812998 PMCID: PMC7175015 DOI: 10.1093/cercor/bhz266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Limited research has examined functioning within fronto-limbic systems subserving the resistance to emotional interference in adolescence despite evidence indicating that alterations in these systems are implicated in the developmental trajectories of affective disorders. This study examined the functioning of fronto-limbic systems subserving emotional interference in early adolescence and whether positive reinforcement could modulate these systems to promote resistance to emotional distraction. Fifty healthy early adolescents (10-13 years old) completed an emotional delayed working memory (WM) paradigm in which no distractors (fixation crosshair) and emotional distracters (neutral and negative images) were presented with and without positive reinforcement for correct responses. WM accuracy decreased with negative distracters relative to neutral distracters and no distracters, and activation increased in amygdala and prefrontal cortical (PFC) regions (ventrolateral, dorsomedial, ventromedial, and subgenual anterior cingulate) with negative distracters compared with those with no distracters. Reinforcement improved performance and reduced activation in the amygdala, dorsomedial PFC, and ventrolateral PFC. Decreases in amygdala activation to negative distracters due to reinforcement mediated observed decreases in reaction times. These findings demonstrate that healthy adolescents recruit similar fronto-limbic systems subserving emotional interference as adults and that positive reinforcement can modulate fronto-limbic systems to promote resistance to emotional distraction.
Collapse
Affiliation(s)
- Neil P Jones
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Schlund
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Rebecca Kerestes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Cubillo A, Makwana AB, Hare TA. Differential modulation of cognitive control networks by monetary reward and punishment. Soc Cogn Affect Neurosci 2020; 14:305-317. [PMID: 30690563 PMCID: PMC6399610 DOI: 10.1093/scan/nsz006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/01/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Incentives are primary determinants of if and how well an organism will perform a given behavior. Here, we examined how incentive valence and magnitude influence task switching, a critical cognitive control process, and test the predictions that the anterior cingulate cortex (ACC) and the ventral striatum (vStr) function as key nodes linking motivation and control systems in the brain. Our results indicate that reward and punishment incentives have both common and distinct effects on cognitive control at the behavioral and neurobiological levels. For example, reward incentives led to greater activity in the ACC during the engagement of control relative to punishments. Furthermore, the neural responses to reward and punishment differed as a function of individual sensitivity to each incentive valence. Functional connectivity analyses suggest a role for vStr in signaling motivational value during cognitive control and as a potential link between motivation and control networks. Overall, our findings suggest that similar changes in observed behavior (e.g. response accuracy) under reward and punishment incentives are mediated by, at least partially, distinct neurobiological substrates.
Collapse
Affiliation(s)
- Ana Cubillo
- Department of Economics, University of Zurich, Zürich, Switzerland
| | - Aidan B Makwana
- Department of Economics, University of Zurich, Zürich, Switzerland
| | - Todd A Hare
- Department of Economics, University of Zurich, Zürich, Switzerland
| |
Collapse
|
45
|
Xin Y, Xu P, Aleman A, Luo Y, Feng T. Intrinsic prefrontal organization underlies associations between achievement motivation and delay discounting. Brain Struct Funct 2020; 225:511-518. [PMID: 31932869 DOI: 10.1007/s00429-019-01982-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/30/2019] [Indexed: 01/30/2023]
Abstract
Achievement motivation is a core component of human decision making. However, neural mechanisms that link achievement motivation and intertemporal choice have not yet been elucidated. Here, we examined neural pathways underlying the relationship between achievement motivation and intertemporal choice using a delay discounting task and resting-state functional magnetic resonance imaging on 86 healthy subjects. Behaviorally, delay discounting rate was positively correlated with achievement motivation. Functional coupling of the dorsolateral prefrontal cortex (dlPFC) with the medial prefrontal cortex (mPFC), medial orbitofrontal cortex and ventral striatum was positively correlated with achievement motivation. Notably, the mediation analysis showed that the impact of achievement motivation on delay discounting was mediated by intrinsic connectivity between the dlPFC and mPFC. Our findings suggest that intrinsic organization within the prefrontal cortex plays a key role in linking achievement motivation and intertemporal choice.
Collapse
Affiliation(s)
- Yuanyuan Xin
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AW, Groningen, The Netherlands
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.,Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AW, Groningen, The Netherlands
| | - André Aleman
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AW, Groningen, The Netherlands
| | - Yuejia Luo
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China. .,Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China.
| | - Tingyong Feng
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, 400715, China. .,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
46
|
Langenecker SA, Kling LR, Crane NA, Gorka SM, Nusslock R, Damme KSF, Weafer J, de Wit H, Phan KL. Anticipation of monetary reward in amygdala, insula, caudate are predictors of pleasure sensitivity to d-Amphetamine administration. Drug Alcohol Depend 2020; 206:107725. [PMID: 31757518 PMCID: PMC6980714 DOI: 10.1016/j.drugalcdep.2019.107725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Drug addiction and dependence continue as an unresolved source of morbidity and mortality. Two approaches to identifying risk for abuse and addiction are psychopharmacological challenge studies and neuroimaging experiments. The present study combined these two approaches by examining associations between self-reported euphoria or liking after a dose of d-amphetamine and neural-based responses to anticipation of a monetary reward. METHODS Healthy young adults (N = 73) aged 19 and 26, without any history of alcohol/substance dependence completed four laboratory sessions in which they received oral d-amphetamine (20 mg) or placebo, and completed drug effect questionnaires. On a separate session they underwent a functional magnetic resonance imaging scan while they completed a monetary incentive delay task. During the task, we recorded neural signal related to anticipation of winning $5 or $1.50 compared to winning no money (WinMoney-WinZero), in reward related regions. RESULTS Liking of amphetamine during the drug sessions was related to differences in activation during the WinMoney-WinZero conditions - in the amygdala (positive), insula (negative) and caudate (negative). In posthoc analyses, liking of amphetamine was also positively correlated with activation of the amygdala during anticipation of large rewards and negatively related to activation of the left insula to both small and large anticipated rewards. CONCLUSIONS These findings suggest that individual differences in key regions of the reward network are related to rewarding subjective effects of a stimulant drug. To further clarify these relationships, future pharmacofMRI studies could probe the influence of amphetamine at the neural level during reward anticipation.
Collapse
Affiliation(s)
- Scott A Langenecker
- Department of Psychiatry, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA; Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA.
| | - Leah R Kling
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA
| | - Natania A Crane
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA
| | - Stephanie M Gorka
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Billings Hospital, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Harriet de Wit
- Department of Psychology, University of Kentucky, 171 Funkhouser Drive Lexington, KY 40506-0044, USA
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA; Mental Health Service Line, Jesse Brown VA Medical Center, 820 S Damen Ave, Chicago, IL 60612, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, OSU Harding Hospital, 1670 Upham Drive, Suite 130, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Frömer R, Dean Wolf CK, Shenhav A. Goal congruency dominates reward value in accounting for behavioral and neural correlates of value-based decision-making. Nat Commun 2019; 10:4926. [PMID: 31664035 PMCID: PMC6820735 DOI: 10.1038/s41467-019-12931-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
When choosing between options, whether menu items or career paths, we can evaluate how rewarding each one will be, or how congruent it is with our current choice goal (e.g., to point out the best option or the worst one.). Past decision-making research interpreted findings through the former lens, but in these experiments the most rewarding option was always most congruent with the task goal (choosing the best option). It is therefore unclear to what extent expected reward vs. goal congruency can account for choice value findings. To deconfound these two variables, we performed three behavioral studies and an fMRI study in which the task goal varied between identifying the best vs. the worst option. Contrary to prevailing accounts, we find that goal congruency dominates choice behavior and neural activity. We separately identify dissociable signals of expected reward. Our findings call for a reinterpretation of previous research on value-based choice. Decision-making research has confounded the reward value of options with their goal-congruency, as the task goal was always to pick the most rewarding option. Here, authors separately asked participants to select the least rewarding of a set of options, revealing a dominant role for goal congruency.
Collapse
Affiliation(s)
- Romy Frömer
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Carolyn K Dean Wolf
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
48
|
Gaillard C, Guillod M, Ernst M, Torrisi S, Federspiel A, Schoebi D, Recabarren RE, Ouyang X, Mueller-Pfeiffer C, Horsch A, Homan P, Wiest R, Hasler G, Martin-Soelch C. Striatal responsiveness to reward under threat-of-shock and working memory load: A preliminary study. Brain Behav 2019; 9:e01397. [PMID: 31557426 PMCID: PMC6790302 DOI: 10.1002/brb3.1397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Reward and stress are important determinants of motivated behaviors. Striatal regions play a crucial role in both motivation and hedonic processes. So far, little is known on how cognitive effort interacts with stress to modulate reward processes. This study examines how cognitive effort (load) interacts with an unpredictable acute stressor (threat-of-shock) to modulate motivational and hedonic processes in healthy adults. MATERIALS AND METHODS A reward task, involving stress with unpredictable mild electric shocks, was conducted in 23 healthy adults aged 20-37 (mean age: 24.7 ± 0.9; 14 females) during functional magnetic resonance imaging (fMRI). Manipulation included the use of (a) monetary reward for reinforcement, (b) threat-of-shock as the stressor, and (c) a spatial working memory task with two levels of difficulty (low and high load) for cognitive load. Reward-related activation was investigated in a priori three regions of interest, the nucleus accumbens (NAcc), caudate nucleus, and putamen. RESULTS During anticipation, threat-of-shock or cognitive load did not affect striatal responsiveness to reward. Anticipated reward increased activation in the ventral and dorsal striatum. During feedback delivery, both threat-of-shock and cognitive effort modulated striatal activation. Higher working memory load blunted NAcc responsiveness to reward delivery, while stress strengthened caudate nucleus reactivity regardless reinforcement or load. CONCLUSIONS These findings provide initial evidence that both stress and cognitive load modulate striatal responsiveness during feedback delivery but not during anticipation in healthy adults. Of clinical importance, sustained stress exposure might go along with dysregulated arousal, increasing therefore the risk for the development of maladaptive incentive-triggered motivation. This study brings new insight that might help to build a framework to understand common stress-related disorders, given that these psychiatric disorders involve disturbances of the reward system, cognitive deficits, and abnormal stress reactivity.
Collapse
Affiliation(s)
- Claudie Gaillard
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Matthias Guillod
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD
| | - Salvatore Torrisi
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD
| | - Andrea Federspiel
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dominik Schoebi
- Unit of Clinical Family Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Romina E Recabarren
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Xinyi Ouyang
- iBM Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Christoph Mueller-Pfeiffer
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antje Horsch
- Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.,Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
| | - Philipp Homan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, New York, NY
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Bern, Bern, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Chantal Martin-Soelch
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
49
|
Kumarasinghe K, Kasabov N, Taylor D. Deep learning and deep knowledge representation in Spiking Neural Networks for Brain-Computer Interfaces. Neural Netw 2019; 121:169-185. [PMID: 31568895 DOI: 10.1016/j.neunet.2019.08.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This paper argues that Brain-Inspired Spiking Neural Network (BI-SNN) architectures can learn and reveal deep in time-space functional and structural patterns from spatio-temporal data. These patterns can be represented as deep knowledge, in a partial case in the form of deep spatio-temporal rules. This is a promising direction for building new types of Brain-Computer Interfaces called Brain-Inspired Brain-Computer Interfaces (BI-BCI). A theoretical framework and its experimental validation on deep knowledge extraction and representation using SNN are presented. RESULTS The proposed methodology was applied in a case study to extract deep knowledge of the functional and structural organisation of the brain's neural network during the execution of a Grasp and Lift task. The BI-BCI successfully extracted the neural trajectories that represent the dorsal and ventral visual information processing streams as well as its connection to the motor cortex in the brain. Deep spatiotemporal rules on functional and structural interaction of distinct brain areas were then used for event prediction in BI-BCI. SIGNIFICANCE The computational framework can be used for unveiling the topological patterns of the brain and such knowledge can be effectively used to enhance the state-of-the-art in BCI.
Collapse
Affiliation(s)
- Kaushalya Kumarasinghe
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand; Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand.
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
50
|
Colouring perception: Package colour cues affect neural responses to sweet dairy drinks in reward and inhibition related regions. Appetite 2019; 142:104378. [PMID: 31326440 DOI: 10.1016/j.appet.2019.104378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Extrinsic product cues such as package colour may change product perception and perceived reward value during product evaluation. Healthier foods (i.e., 'light', sugar- or fat-reduced) often have different packages than regular products, e.g., they may be less vibrantly coloured. People vary in their degree of health-interest and self-control ability and may be affected differently by package colour. This study assesses the extent to which package colour and participant characteristics interact and influence product perception and brain responses. Thirty-four healthy females performed a functional MRI task in which they viewed four differently coloured packages (regular vs. healthier; differing in brightness and saturation levels) with or without simultaneously tasting a either a regular or a healthier calorie-reduced drink. Results indicate main effects of package and taste and a package*taste interaction effect. Compared to healthier packages viewing regular packages enhanced activation in region implicated in inhibitory control (inferior frontal gyrus) and a reward-related region (striatum), the latter even more so as participants' health interest increased (r = 0.43, p = 0.01). Incongruent package-taste combinations decreased activation in the orbitofrontal cortex (OFC, a region implicated in reward representation) compared to congruent combinations. Tasting the healthier compared to regular product enhanced activation in the middle and superior frontal gyrus, which are implicated in inhibitory control, as well as the striatum and OFC, suggesting a cognitively driven preference for the healthier product. In conclusion, this paper provides evidence for the conditions under which package colour and taste properties modulate neural correlates related to reward and inhibition. Individual differences in health-interest and impulsivity influence package- and taste-related neural correlates and thus underscore the importance of taking participant characteristics into account in food research.
Collapse
|