1
|
Tan X, Jing L, Neal SM, Gupta MC, Buchowski JM, Setton LA, Huebsch N. IGF-1 Peptide Mimetic-functionalized Hydrogels Enhance MSC Survival and Immunomodulatory Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600680. [PMID: 39005297 PMCID: PMC11244900 DOI: 10.1101/2024.06.27.600680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Human mesenchymal stem cells (MSCs) have demonstrated promise when delivered to damaged tissue or tissue defects for their cytokine secretion and inflammation modulation behaviors that can promote repair. Insulin-like growth factor 1 (IGF-1) has been shown to augment MSCs' viability and survival and promote their secretion of cytokines that signal to endogenous cells, in the treatment of myocardial infarction, wound healing, and age-related diseases. Biomaterial cell carriers can be functionalized with growth factor-mimetic peptides to enhance MSC function while promoting cell retention and minimizing off-target effects seen with direct administration of soluble growth factors. Here, we functionalized alginate hydrogels with three distinct IGF-1 peptide mimetics and the integrin-binding peptide, cyclic RGD. One IGF-1 peptide mimetic (IGM-3) was found to activate Akt signaling and support survival of serum-deprived MSCs. MSCs encapsulated in alginate hydrogels that presented both IGM-3 and cRGD showed a significant reduction in pro-inflammatory cytokine secretion when challenged with interleukin-1β. Finally, MSCs cultured within the cRGD/IGM-3 hydrogels were able to blunt pro-inflammatory gene expression of human primary cells from degenerated intervertebral discs. These studies indicate the potential to leverage cell adhesive and IGF-1 growth factor peptide mimetics together to control therapeutic secretory behavior of MSCs. Significance Statement Insulin-like growth factor 1 (IGF-1) plays a multifaceted role in stem cell biology and may promote proliferation, survival, migration, and immunomodulation for MSCs. In this study, we functionalized alginate hydrogels with integrin-binding and IGF-1 peptide mimetics to investigate their impact on MSC function. Embedding MSCs in these hydrogels enhanced their ability to reduce inflammatory cytokine production and promote anti-inflammatory gene expression in cells from degenerative human intervertebral discs exposed to proteins secreted by the MSC. This approach suggests a new way to retain and augment MSC functionality using IGF-1 peptide mimetics, offering an alternative to co-delivery of cells and high dose soluble growth factors for tissue repair and immune- system modulation.
Collapse
|
2
|
Selicharová I, Fabre B, Soledad Garre Hernández M, Lubos M, Pícha J, Voburka Z, Mitrová K, Jiráček J. Combinatorial Libraries of Bipodal Binders of the Insulin Receptor. ChemMedChem 2024; 19:e202400145. [PMID: 38445366 DOI: 10.1002/cmdc.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold. These constructs, evaluated in a resin bead-bound format, were designed to assess their binding to the insulin receptor. Despite notable nonspecific binding, our approach successfully generated and tested millions of compounds. Rigorous evaluations via flow cytometry and specific antibodies revealed peptide sequences with specific interactions at either receptor binding Site 1 or 2. Notably, these sequences bear similarity to peptides discovered through phage display by other researchers. This convergence of chemical and biological methods underscores nature's beauty, revealing general principles in peptide binding to the insulin receptor. Overall, our study deepens the understanding of molecular interactions in ligand binding to the insulin receptor, highlighting the challenges of targeting large proteins with small synthetic peptides.
Collapse
Affiliation(s)
- Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - María Soledad Garre Hernández
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Marta Lubos
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| |
Collapse
|
3
|
Zhang Y, Hung-Chieh Chou D. From Natural Insulin to Designed Analogs: A Chemical Biology Exploration. Chembiochem 2023; 24:e202300470. [PMID: 37800626 DOI: 10.1002/cbic.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Since its discovery in 1921, insulin has been at the forefront of scientific breakthroughs. From its amino acid sequencing to the revelation of its three-dimensional structure, the progress in insulin research has spurred significant therapeutic breakthroughs. In recent years, protein engineering has introduced innovative chemical and enzymatic methods for insulin modification, fostering the development of therapeutics with tailored pharmacological profiles. Alongside these advances, the quest for self-regulated, glucose-responsive insulin remains a holy grail in the field. In this article, we highlight the pivotal role of chemical biology in driving these innovations and discuss how it continues to shape the future trajectory of insulin research.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
4
|
Thomas A, Krombholz S, Breuer J, Walpurgis K, Thevis M. Insulin-mimetic peptides in sports drug testing. Drug Test Anal 2023; 15:1468-1476. [PMID: 37691519 DOI: 10.1002/dta.3572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Because of its influence on carbohydrate metabolism and, at the same time, anti-catabolic effects, the misuse of the peptide hormone insulin and its synthetic analogs is prohibited in sports at all times according to the regulations of the World Anti-Doping Agency (WADA). The biological effects of insulin and its analogs are mediated through binding to the insulin receptor, which was also found to be activated by different peptides structurally largely unrelated to insulin. Such insulin-mimetic peptides or selective-insulin receptor modulators (SIRMs) represent a novel class of potential performance-enhancing agents, which is currently not explicitly mentioned on the WADA Prohibited List. Within this research project, advanced solid-phase extraction (SPE) and liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS) were employed to develop a fast, reliable, and specific assay for the detection of the insulin-mimetic peptides S597 and S519 from plasma. Method validation demonstrated a detection limit of 0.5 ng/mL and successfully illustrated the applicability of the approach to routine sports drug testing programs. Moreover, sophisticated and comprehensive in vitro metabolism experiments were conducted, and several metabolic degradation products were identified, which will enhance the information generated from future analyses of doping control samples.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Sophia Krombholz
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Johanna Breuer
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
5
|
Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med 2023; 55:2147-2161. [PMID: 37779149 PMCID: PMC10618199 DOI: 10.1038/s12276-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The binding of insulin to the insulin receptor (IR) triggers a cascade of receptor conformational changes and autophosphorylation, leading to the activation of metabolic and mitogenic pathways. Recent advances in the structural and functional analyses of IR have revealed the conformations of the extracellular domains of the IR in inactive and fully activated states. However, the early activation mechanisms of this receptor remain poorly understood. The structures of partially activated IR in complex with aptamers provide clues for understanding the initial activation mechanism. In this review, we discuss the structural and functional features of IR complexed with various ligands and propose a model to explain the sequential activation mechanism. Moreover, we discuss the structures of IR complexed with biased agonists that selectively activate metabolic pathways and provide insights into the design of selective agonists and their clinical implications.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junhong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biomedical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
6
|
Lubos M, Pícha J, Selicharová I, Žák J, Buděšínský M, Mitrová K, Žáková L, Jiráček J. Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications. J Pept Sci 2023; 29:e3478. [PMID: 36633503 PMCID: PMC10909431 DOI: 10.1002/psc.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jíří Žák
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| |
Collapse
|
7
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
8
|
Park C, Zhang Y, Jung JU, Buron LD, Lin NP, Hoeg-Jensen T, Chou DHC. Antagonistic Insulin Derivative Suppresses Insulin-Induced Hypoglycemia. J Med Chem 2023. [PMID: 37227951 DOI: 10.1021/acs.jmedchem.3c00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Insulin derivatives provide new functions that are distinctive from native insulin. We investigated insulin modifications on the C-terminal A chain with insulin receptor (IR) peptide binders and presented a full and potent IR antagonist. We prepared insulin precursors featuring a sortase A (SrtA) recognition sequence, LPETGG, at the C-terminal A chain and used a SrtA-mediated ligation method to synthesize insulin derivatives. The insulin precursor exhibits full IR agonism potency, similar to native human insulin. We explored derivatives with linear IR binding peptides attached to the insulin C-terminal A chain. One insulin derivative with an IR binder (Ins-AC-S2) can fully antagonize IR activation by insulin, as confirmed by cell-based assays. This IR antagonist suppresses insulin-induced hypoglycemia in a streptozotocin-induced diabetic rat model. This study provides a new direction toward insulin antagonist development.
Collapse
Affiliation(s)
- Claire Park
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, California 94305, United States
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, California 94305, United States
| | - Jae Un Jung
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, California 94305, United States
| | - Line Due Buron
- Global Research Technologies, Novo Nordisk A/S, 2760 Maaloev, Denmark
| | - Nai-Pin Lin
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, California 94305, United States
| | | | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, California 94305, United States
| |
Collapse
|
9
|
Lin J, Selicharová I, Mitrová K, Fabre B, Miriyala VM, Lepšík M, Jiráček J, Hernández MSG. Targeting the insulin receptor with hormone and peptide dimers. J Pept Sci 2023; 29:e3461. [PMID: 36336650 DOI: 10.1002/psc.3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
10
|
Kim J, Yunn NO, Park M, Kim J, Park S, Kim Y, Noh J, Ryu SH, Cho Y. Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Nat Commun 2022; 13:6500. [PMID: 36310231 PMCID: PMC9618554 DOI: 10.1038/s41467-022-34292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/20/2022] [Indexed: 12/25/2022] Open
Abstract
Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron microscopy. The A62 agonist aptamer selectively activates metabolic signaling. In the absence of insulin, the two A62 aptamer agonists of IR adopt an insulin-accessible arrowhead conformation by mimicking site-1/site-2' insulin coordination. Insulin binding at one site triggers conformational changes in one protomer, but this movement is blocked in the other protomer by A62 at the opposite site. A62 binding captures two unique conformations of IR with a similar stalk arrangement, which underlie Tyr1150 mono-phosphorylation (m-pY1150) and selective activation for metabolic signaling. The A43 aptamer, a positive allosteric modulator, binds at the opposite side of the insulin-binding module, and stabilizes the single insulin-bound IR structure that brings two FnIII-3 regions into closer proximity for full activation. Our results suggest that spatial proximity of the two FnIII-3 ends is important for m-pY1150, but multi-phosphorylation of IR requires additional conformational rearrangement of intracellular domains mediated by coordination between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Junhong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Na-Oh Yunn
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Mangeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jihan Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Seongeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jeongeun Noh
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Sung Ho Ryu
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yunje Cho
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
11
|
Kirk NS, Chen Q, Wu YG, Asante AL, Hu H, Espinosa JF, Martínez-Olid F, Margetts MB, Mohammed FA, Kiselyov VV, Barrett DG, Lawrence MC. Activation of the human insulin receptor by non-insulin-related peptides. Nat Commun 2022; 13:5695. [PMID: 36171189 PMCID: PMC9519552 DOI: 10.1038/s41467-022-33315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
The human insulin receptor signalling system plays a critical role in glucose homeostasis. Insulin binding brings about extensive conformational change in the receptor extracellular region that in turn effects trans-activation of the intracellular tyrosine kinase domains and downstream signalling. Of particular therapeutic interest is whether insulin receptor signalling can be replicated by molecules other than insulin. Here, we present single-particle cryoEM structures that show how a 33-mer polypeptide unrelated to insulin can cross-link two sites on the receptor surface and direct the receptor into a signalling-active conformation. The 33-mer polypeptide engages the receptor by two helical binding motifs that are each potentially mimicable by small molecules. The resultant conformation of the receptor is distinct from—but related to—those in extant three-dimensional structures of the insulin-complexed receptor. Our findings thus illuminate unexplored pathways for controlling the signalling of the insulin receptor as well as opportunities for development of insulin mimetics. The regulation of plasma glucose levels is effected by insulin. Here, the authors reveal atomic detail of how peptides distinct from insulin bind to and activate the insulin receptor, with implications for design of small-molecule insulin mimetics.
Collapse
Affiliation(s)
- Nicholas S Kirk
- WEHI, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Qi Chen
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Yingzhe Ginger Wu
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - Haitao Hu
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Juan F Espinosa
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas, Madrid, 28108, Spain
| | - Francisco Martínez-Olid
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas, Madrid, 28108, Spain
| | | | - Faiz A Mohammed
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - David G Barrett
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Michael C Lawrence
- WEHI, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
12
|
Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun 2022; 13:5594. [PMID: 36151101 PMCID: PMC9508239 DOI: 10.1038/s41467-022-33274-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
Collapse
|
13
|
Nielsen J, Brandt J, Boesen T, Hummelshøj T, Slaaby R, Schluckebier G, Nissen P. Structural investigations of full-length insulin receptor dynamics and signalling. J Mol Biol 2022; 434:167458. [DOI: 10.1016/j.jmb.2022.167458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022]
|
14
|
Zhang F, Altindis E, Kahn CR, DiMarchi RD, Gelfanov V. A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Mol Metab 2021; 53:101316. [PMID: 34400347 PMCID: PMC8621328 DOI: 10.1016/j.molmet.2021.101316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Natural sources of molecular diversity remain of utmost importance as a reservoir of proteins and peptides with unique biological functions. We recently identified such a family of viral insulin-like peptides (VILPs). We sought to advance the chemical methods in synthesis to explore the structure-function relationship within these VILPs, and the molecular basis for differential biological activities relative to human IGF-1 and insulin. METHODS Optimized chemical methods in synthesis were established for a set of VILPs and related analogs. These modified forms included the substitution of select VILP chains with those derived from human insulin and IGF-1. Each peptide was assessed in vitro for agonism and antagonism at the human insulin and the human insulin-like growth factor 1 receptor (IGF-1R). RESULTS We report here that one of these VILPs, lymphocystis disease virus-1 (LCDV1)-VILP, has the unique property to be a potent and full antagonist of the IGF-1R. We demonstrate the coordinated importance of the B- and C-chains of the VILP in regulating this activity. Moreover, mutation of the glycine following the first cysteine in the B-chain of IGF-1 to serine, in concert with substitution to the connecting peptide of LCDV1-VILP, converted native IGF-1 to a high potency antagonist. CONCLUSIONS The results reveal novel aspects in ligand-receptor interactions at the IGF-1 receptor and identify a set of antagonists of potential medicinal importance.
Collapse
Affiliation(s)
- Fa Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| | - Vasily Gelfanov
- Novo Nordisk Research Center, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| |
Collapse
|
15
|
Ashraf A, Palakkott A, Ayoub MA. Anti-Insulin Receptor Antibodies in the Pathology and Therapy of Diabetes Mellitus. Curr Diabetes Rev 2021; 17:198-206. [PMID: 32496987 DOI: 10.2174/1573399816666200604122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is recognized as the most common and the world's fastest-growing chronic disease with severe complications leading to increased mortality. Many strategies exist for the management of DM and its control, including treatment with insulin and insulin analogs, oral hypoglycemic therapy such as insulin secretion stimulators and insulin sensitizers, and diet and physical training. Over the years, many types of drugs and molecules with an interesting pharmacological diversity have been developed and proposed for their anti-diabetic potential. Such molecules target diverse key receptors, enzymes, and regulatory/signaling proteins known to be directly or indirectly involved in the pathophysiology of DM. Among them, insulin receptor (IR) is undoubtedly the target of choice for its central role in insulin-mediated glucose homeostasis and its utilization by the major insulin-sensitive tissues such as skeletal muscles, adipose tissue, and the liver. In this review, we focus on the implication of antibodies targeting IR in the pathology of DM as well as the recent advances in the development of IR antibodies as promising anti-diabetic drugs. The challenge still entails development of more powerful, highly selective, and safer anti-diabetic drugs.
Collapse
Affiliation(s)
- Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Multipodal insulin mimetics built on adamantane or proline scaffolds. Bioorg Chem 2020; 107:104548. [PMID: 33358613 DOI: 10.1016/j.bioorg.2020.104548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 μM) than proline-derived compounds (Kd values of 15-38 μM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.
Collapse
|
17
|
Jackson CB, Richard AS, Ojha A, Conkright KA, Trimarchi JM, Bailey CC, Alpert MD, Kay MA, Farzan M, Choe H. AAV vectors engineered to target insulin receptor greatly enhance intramuscular gene delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:496-506. [PMID: 33313337 PMCID: PMC7710509 DOI: 10.1016/j.omtm.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Adeno-associated virus (AAV) is one of the most commonly used vectors for gene therapy, and the applications for AAV-delivered therapies are numerous. However, the current state of technology is limited by the low efficiency with which most AAV vectors transduce skeletal muscle tissue. We demonstrate that vector efficiency can be enhanced by modifying the AAV capsid with a peptide that binds a receptor highly expressed in muscle tissue. When an insulin-mimetic peptide, S519, previously characterized for its high affinity to insulin receptor (IR), was inserted into the capsid, the AAV9 transduction efficiency of IR-expressing cell lines as well as differentiated primary human muscle cells was dramatically enhanced. This vector also exhibited efficient transduction of mouse muscle in vivo, resulting in up to 18-fold enhancement over AAV9. Owing to its superior transduction efficiency in skeletal muscle, we named this vector “enhanced AAV9” (eAAV9). We also found that the modification enhanced the transduction efficiency of several other AAV serotypes. Together, these data show that AAV transduction of skeletal muscle can be improved by targeting IR. They also show the broad utility of this modular strategy and suggest that it could also be applied to next-generation vectors that have yet to be engineered.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, 269 Campus Dr. Rm 2105, Stanford, CA 94305, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
18
|
Stitziel NO, Kanter JE, Bornfeldt KE. Emerging Targets for Cardiovascular Disease Prevention in Diabetes. Trends Mol Med 2020; 26:744-757. [PMID: 32423639 PMCID: PMC7395866 DOI: 10.1016/j.molmed.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Type 1 and type 2 diabetes mellitus (T1DM and T2DM) increase the risk of atherosclerotic cardiovascular disease (CVD), resulting in acute cardiovascular events, such as heart attack and stroke. Recent clinical trials point toward new treatment and prevention strategies for cardiovascular complications of T2DM. New antidiabetic agents show unexpected cardioprotective benefits. Moreover, genetic and reverse translational strategies have revealed potential novel targets for CVD prevention in diabetes, including inhibition of apolipoprotein C3 (APOC3). Modeling and pharmacology-based approaches to improve insulin action provide additional potential strategies to combat CVD. The development of new strategies for improved diabetes and lipid control fuels hope for future prevention of CVD associated with diabetes.
Collapse
Affiliation(s)
- Nathan O Stitziel
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jenny E Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Fabre B, Pícha J, Selicharová I, Žáková L, Chrudinová M, Hajduch J, Jiráček J. Probing Tripodal Peptide Scaffolds as Insulin and IGF-1 Receptor Ligands. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Jan Hajduch
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| |
Collapse
|
20
|
Pícha J, Fabre B, Buděšínský M, Hajduch J, Abdellaoui M, Jiráček J. Tri-Orthogonal Scaffolds for the Solid-Phase Synthesis of Peptides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Pícha
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Jan Hajduch
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Mehdi Abdellaoui
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2 16610 Praha 6 Czech Republic
| |
Collapse
|
21
|
Kanter JE, Kramer F, Barnhart S, Duggan JM, Shimizu-Albergine M, Kothari V, Chait A, Bouman SD, Hamerman JA, Hansen BF, Olsen GS, Bornfeldt KE. A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes 2018; 67:946-959. [PMID: 29483182 PMCID: PMC5909997 DOI: 10.2337/db17-0744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6Chi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Shelley Barnhart
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jeffrey M Duggan
- Department of Immunology, University of Washington, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | | | - Jessica A Hamerman
- Department of Immunology, University of Washington, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | - Bo F Hansen
- Insulin Biology Department, Novo Nordisk A/S, Måløv, Denmark
| | - Grith S Olsen
- Insulin Biology Department, Novo Nordisk A/S, Måløv, Denmark
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Pathology, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
22
|
Yunn NO, Kim J, Kim Y, Leibiger I, Berggren PO, Ryu SH. Mechanistic understanding of insulin receptor modulation: Implications for the development of anti-diabetic drugs. Pharmacol Ther 2018; 185:86-98. [DOI: 10.1016/j.pharmthera.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Macháčková K, Chrudinová M, Radosavljević J, Potalitsyn P, Křížková K, Fábry M, Selicharová I, Collinsová M, Brzozowski AM, Žáková L, Jiráček J. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation. Biochemistry 2018; 57:2373-2382. [DOI: 10.1021/acs.biochem.7b01260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Květoslava Křížková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, The Czech Academy of Sciences, Flemingovo n. 2, 166 37 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
24
|
Brandt SJ, Mayer JP, Ford J, Gelfanov VM, DiMarchi RD. Controlled intramolecular antagonism as a regulator of insulin receptor maximal activity. Peptides 2018; 100:18-23. [PMID: 29412818 DOI: 10.1016/j.peptides.2017.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
In the treatment of insulin-dependent diabetes the risk of a fatal insulin overdose is a persistent fear to most patients. In order to potentially reduce the risk of overdose, we report the design, synthesis, and biochemical characterization of a set of insulin analogs designed to be fractionally reduced in maximal agonism at the insulin receptor isoforms. These analogs consist of native insulin that is site-specifically conjugated to a peptide-based insulin receptor antagonist. The structural refinement of the antagonist once conjugated to insulin provided a set of partial agonists exhibiting between 25 and 70% of the maximal agonism of native insulin at the two insulin receptor isoforms, with only slight differences in inherent potency. These rationally-designed partial agonists provide an approach to interrogate whether control of maximal activity can provide glycemic control with reduced hypoglycemic risk.
Collapse
Affiliation(s)
- Sara J Brandt
- Institute for Diabetes and Obesity, Helmholtz Center D-85748 Munich, Germany; Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - John P Mayer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - James Ford
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, United States
| | - Vasily M Gelfanov
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States; Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana, 46241, United States
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States; Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana, 46241, United States.
| |
Collapse
|
25
|
Hossain MA, Bathgate RAD. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorg Med Chem 2017; 26:2827-2841. [PMID: 28988628 DOI: 10.1016/j.bmc.2017.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Peptidomimetics are designed to overcome the poor pharmacokinetics and pharmacodynamics associated with the native peptide or protein on which they are based. The design of peptidomimetics starts from developing structure-activity relationships of the native ligand-target pair that identify the key residues that are responsible for the biological effect of the native peptide or protein. Then minimization of the structure and introduction of constraints are applied to create the core active site that can interact with the target with high affinity and selectivity. Developing peptidomimetics is not trivial and often challenging, particularly when peptides' interaction mechanism with their target is complex. This review will discuss the challenges of developing peptidomimetics of therapeutically important insulin superfamily peptides, particularly those which have two chains (A and B) and three disulfide bonds and whose receptors are known, namely insulin, H2 relaxin, H3 relaxin, INSL3 and INSL5.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
26
|
Ye L, Maji S, Sanghera N, Gopalasingam P, Gorbunov E, Tarasov S, Epstein O, Klein-Seetharaman J. Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discov Today 2017; 22:1092-1102. [PMID: 28476537 DOI: 10.1016/j.drudis.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
Recently, major progress has been made in uncovering the mechanisms of how insulin engages its receptor and modulates downstream signal transduction. Here, we present in detail the current structural knowledge surrounding the individual components of the complex, binding sites, and dynamics during the activation process. A novel kinase triggering mechanism, the 'bow-arrow model', is proposed based on current knowledge and computational simulations of this system, in which insulin, after its initial interaction with binding site 1, engages with site 2 between the fibronectin type III (FnIII)-1 and -2 domains, which changes the conformation of FnIII-3 and eventually translates into structural changes across the membrane. This model provides a new perspective on the process of insulin binding to its receptor and, thus, could lead to future novel drug discovery efforts.
Collapse
Affiliation(s)
- Libin Ye
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Suvrajit Maji
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Narinder Sanghera
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Piraveen Gopalasingam
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Evgeniy Gorbunov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Sergey Tarasov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Oleg Epstein
- The Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St, 125315 Moscow, Russian Federation
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
27
|
Mohammadiarani H, Vashisth H. Insulin mimetic peptide S371 folds into a helical structure. J Comput Chem 2017; 38:1158-1166. [DOI: 10.1002/jcc.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Accepted: 01/07/2017] [Indexed: 01/26/2023]
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering; University of New Hampshire; Durham New Hampshire
| |
Collapse
|
28
|
Fabre B, Pícha J, Vaněk V, Selicharová I, Chrudinová M, Collinsová M, Žáková L, Buděšínský M, Jiráček J. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor. ACS COMBINATORIAL SCIENCE 2016; 18:710-722. [PMID: 27936668 DOI: 10.1021/acscombsci.6b00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.
Collapse
Affiliation(s)
- Benjamin Fabre
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Václav Vaněk
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| |
Collapse
|
29
|
Lawrence CF, Margetts MB, Menting JG, Smith NA, Smith BJ, Ward CW, Lawrence MC. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor. J Biol Chem 2016; 291:15473-81. [PMID: 27281820 DOI: 10.1074/jbc.m116.732180] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/06/2022] Open
Abstract
Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor.
Collapse
Affiliation(s)
- Callum F Lawrence
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Mai B Margetts
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - John G Menting
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia, and
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia, and
| | - Colin W Ward
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael C Lawrence
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
Fan Z, Cui X, Wei D, Liu W, Li B, He H, Ye H, Zhu N, Wei X. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy. Sci Rep 2016; 6:25353. [PMID: 27150264 PMCID: PMC4858656 DOI: 10.1038/srep25353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 10(6) M(-1)). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.
Collapse
Affiliation(s)
- Zhichao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | - Xiaojun Cui
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Cell Death and Survival Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Buhong Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huamao Ye
- Department of Urology, Changhai Hospital, Second Military University, Shanghai, China
| | - Naishuo Zhu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Abstract
Insulin remains indispensable in the treatment of diabetes, but its use is hampered by its narrow therapeutic index. Although advances in peptide chemistry and recombinant DNA-based macromolecule synthesis have enabled the synthesis of structurally optimized insulin analogues, the growing epidemics of obesity and diabetes have emphasized the need for diabetes therapies that are more efficacious, safe and convenient. Accordingly, a broad set of drug candidates, targeting hyperglycaemia plus other disease abnormalities, is now progressing through the clinic. The development of an insulin therapy that is responsive to glucose concentration remains an ultimate goal, with initial prototypes now reaching the proof-of-concept stage. Simultaneously, the first alternatives to injectable delivery have progressed to registration.
Collapse
|
32
|
Wu M, Dai G, Yao J, Hoyt S, Wang L, Mu J. Potentiation of insulin-mediated glucose lowering without elevated hypoglycemia risk by a small molecule insulin receptor modulator. PLoS One 2015; 10:e0122012. [PMID: 25799496 PMCID: PMC4370409 DOI: 10.1371/journal.pone.0122012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR) signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1), was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin’s effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin’s effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.
Collapse
Affiliation(s)
- Margaret Wu
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Ge Dai
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Jun Yao
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Scott Hoyt
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Liangsu Wang
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - James Mu
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
- * E-mail:
| |
Collapse
|
33
|
Vashisth H. Theoretical and computational studies of peptides and receptors of the insulin family. MEMBRANES 2015; 5:48-83. [PMID: 25680077 PMCID: PMC4384091 DOI: 10.3390/membranes5010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Pierre De Meyts
- Department of Diabetes Biology; Novo Nordisk A/S; Måløv Denmark
- De Meyts R&D Consulting; Kraainem; Belgium
| |
Collapse
|
35
|
Rajapaksha H, Forbes BE. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes. Front Endocrinol (Lausanne) 2015; 6:107. [PMID: 26217307 PMCID: PMC4493403 DOI: 10.3389/fendo.2015.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His(4), Tyr(15), Thr(49), Ile(51)) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.
Collapse
Affiliation(s)
- Harinda Rajapaksha
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Briony E. Forbes
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Bedford Park, SA, Australia
- *Correspondence: Briony E. Forbes, Department of Medical Biochemistry, Flinders University of South Australia, C/O Flinders Medical Centre, Flinders Drive, Bedford Park, SA 5042, Australia,
| |
Collapse
|
36
|
Kim S, Kim D, Lee Y, Jeon H, Lee BH, Jon S. Conversion of Low-Affinity Peptides to High-Affinity Peptide Binders by Using a β-Hairpin Scaffold-Assisted Approach. Chembiochem 2014; 16:43-6. [DOI: 10.1002/cbic.201402450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/27/2022]
|
37
|
Vashisth H. Flexibility in the insulin receptor ectodomain enables docking of insulin in crystallographic conformation observed in a hormone-bound microreceptor. MEMBRANES 2014; 4:730-46. [PMID: 25309993 PMCID: PMC4289863 DOI: 10.3390/membranes4040730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/11/2022]
Abstract
Insulin binding to the insulin receptor (IR) is the first key step in initiating downstream signaling cascades for glucose homeostasis in higher organisms. The molecular details of insulin recognition by IR are not yet completely understood, but a picture of hormone/receptor interactions at one of the epitopes (Site 1) is beginning to emerge from recent structural evidence. However, insulin-bound structures of truncated IR suggest that crystallographic conformation of insulin cannot be accommodated in the full IR ectodomain due to steric overlap of insulin with the first two type III fibronectin domains (F1 and F2), which are contributed to the insulin binding-pocket by the second subunit in the IR homodimer. A conformational change in the F1-F2 pair has thus been suggested. In this work, we present an all-atom structural model of complex of insulin and the IR ectodomain, where no structural overlap of insulin with the receptor domains (F1 and F2) is observed. This structural model was arrived at by flexibly fitting parts of our earlier insulin/IR all-atom model into the simulated density maps of crystallized constructs combined with conformational sampling from apo-IR solution conformations. Importantly, our experimentally-consistent model helps rationalize yet unresolved Site.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham,NH 03824, USA.
| |
Collapse
|
38
|
Lee J, Miyazaki M, Romeo GR, Shoelson SE. Insulin receptor activation with transmembrane domain ligands. J Biol Chem 2014; 289:19769-77. [PMID: 24867955 DOI: 10.1074/jbc.m114.578641] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Complementary surfaces are buried when peptide hormones, growth factors, or cytokines bind and activate cellular receptors. Although these extended surfaces provide high affinity and specificity to the interactions, they also present great challenges to the design of small molecules that might either mimic or antagonize the process. We show that the insulin receptor (IR) and downstream signals can be activated by targeting a site outside of its ligand-binding domain. A 24-residue peptide having the IR transmembrane (TM) domain sequence activates IR, but not related growth factor receptors, through specific interactions with the receptor TM domain. Like insulin-dependent activation, IR-TM requires that IR have a competent ATP-binding site and kinase activation loop. IR-TM also activates mutated receptors from patients with severe insulin resistance, which do not respond to insulin. These results show that IR can be activated through a pathway that bypasses its canonical ligand-binding domain.
Collapse
Affiliation(s)
- Jongsoon Lee
- From the Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Masaya Miyazaki
- From the Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Giulio R Romeo
- From the Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Steven E Shoelson
- From the Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
39
|
Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 2013; 31:805. [PMID: 24338270 DOI: 10.1007/s12032-013-0805-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Insulin and insulin-like growth factor (IGF) signaling system, commonly known for fine-tuning numerous biological processes, has lately made its mark as a much sought-after therapeutic targets for diabetes and cancer. These receptors make an attractive anticancer target owing to their overexpression in variety of cancer especially in prostate and breast cancer. Inhibitors of IGF signaling were subjected to clinical cancer trials with the main objective to confirm the effectiveness of these receptors as a therapeutic target. However, the results that these trials produced proved to be disappointing as the role played by the cross talk between IGF and insulin receptor (IR) signaling pathways at the receptor level or at downstream signaling level became more lucid. Therapeutic strategy for IGF-1R and IR inhibition mainly encompasses three main approaches namely receptor blockade with monoclonal antibodies, tyrosine kinase inhibition (ATP antagonist and non-ATP antagonist), and ligand neutralization via monoclonal antibodies targeted to ligand or recombinant IGF-binding proteins. Other drug-discovery approaches are employed to target IGF-1R, and IR includes antisense oligonucleotides and recombinant IGF-binding proteins. However, therapies with monoclonal antibodies and tyrosine kinase inhibition targeting the IGF-1R are not evidenced to be satisfactory as expected. Factors that are duly held responsible for the unsuccessfulness of these therapies include (a) the existence of the IR isoform A overexpressed on a variety of cancers, enhancing the mitogenic signals to the nucleus leading to the endorsement of cell growth, (b) IGF-1R and IR that form hybrid receptors sensitive to the stimulation of all three IGF axis ligands, and (c) IGF-1R and IR that also have the potential to form hybrid receptors with other tyrosine kinase to potentiate the cellular transformation, tumorigenesis, and tumor vascularization. This mini review is a concerted effort to explore and fathom the well-recognized roles of the IRA signaling system in human cancer phenotype and the main strategies that have been so far evaluated to target the IR and IGF-1R.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | | | |
Collapse
|
40
|
Abstract
Insulin-secreting pancreatic β-cells are essential regulators of mammalian metabolism. The absence of functional β-cells leads to hyperglycemia and diabetes, making patients dependent on exogenously supplied insulin. Recent insights into β-cell development, combined with the discovery of pluripotent stem cells, have led to an unprecedented opportunity to generate new β-cells for transplantation therapy and drug screening. Progress has also been made in converting terminally differentiated cell types into β-cells using transcriptional regulators identified as key players in normal development, and in identifying conditions that induce β-cell replication in vivo and in vitro. Here, we summarize what is currently known about how these strategies could be utilized to generate new β-cells and highlight how further study into the mechanisms governing later stages of differentiation and the acquisition of functional capabilities could inform this effort.
Collapse
Affiliation(s)
- Felicia W Pagliuca
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
41
|
Vashisth H, Abrams CF. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element. Proteins 2013; 81:1017-30. [PMID: 23348915 DOI: 10.1002/prot.24255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/11/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Abstract
Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
42
|
Abstract
Screening extracts and drug entities for antidiabetic bioactivity is essentially limited to animal models as the processes leading to hyperglycemia and the complications of diabetes involve more than one organ. Further, in vitro results seldom translate into meaningful in vivo outcomes especially in a disease such as Diabetes Mellitus. In vivo studies on specialized animal models have allowed great progress in tailoring research questions towards individualized genetic and biochemical contributors and their effect on the pathogenesis of the disease processes. Various disease models have been used either through genetic-manipulation (transgenic models) or through chemical induction (disease-induced models). Although there is a surplus of animal models (spontaneous and induced) to study Type I and Type II diabetes, there is no ideal or standard model for studying the individualized effects of various classes of antidiabetic drugs. Rodents, most commonly rats and mice, have been used by researchers as animal models of the disease and both normoglycemic and diabetic animals are used to assess the antidiabetic activities of drugs or extracts under investigation. Screening for antidiabetic activities can be achieved by measuring a wide range of biomarkers and end points including blood glucose and insulin levels.
Collapse
Affiliation(s)
- Rima Caccetta
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | | |
Collapse
|
43
|
Knudsen L, Hansen BF, Jensen P, Pedersen TÅ, Vestergaard K, Schäffer L, Blagoev B, Oleksiewicz MB, Kiselyov VV, De Meyts P. Agonism and antagonism at the insulin receptor. PLoS One 2012; 7:e51972. [PMID: 23300584 PMCID: PMC3531387 DOI: 10.1371/journal.pone.0051972] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/14/2012] [Indexed: 11/29/2022] Open
Abstract
Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed.
Collapse
Affiliation(s)
- Louise Knudsen
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu R, Jiang B, Yu H, Chaput JC. Generating DNA synbodies from previously discovered peptides. Chembiochem 2011; 12:1813-7. [PMID: 21692159 PMCID: PMC3390916 DOI: 10.1002/cbic.201100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Liu
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301, Fax: (+1) (480) 727-6947
| | - Bing Jiang
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301, Fax: (+1) (480) 727-6947
| | - Hanyang Yu
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301, Fax: (+1) (480) 727-6947
| | - John C. Chaput
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301, Fax: (+1) (480) 727-6947
| |
Collapse
|
45
|
Sajid W, Kulahin N, Schluckebier G, Ribel U, Henderson HR, Tatar M, Hansen BF, Svendsen AM, Kiselyov VV, Nørgaard P, Wahlund PO, Brandt J, Kohanski RA, Andersen AS, De Meyts P. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J Biol Chem 2010; 286:661-73. [PMID: 20974844 DOI: 10.1074/jbc.m110.156018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.
Collapse
Affiliation(s)
- Waseem Sajid
- Receptor Systems Biology Laboratory, Insulin and Incretin Biology, Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats. Biochem Biophys Res Commun 2010; 398:260-5. [PMID: 20599729 DOI: 10.1016/j.bbrc.2010.06.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022]
Abstract
Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ( approximately 18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15day, 10nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARgamma) agonist pioglitazone significantly (P<0.001) restored S961 induced hyperglycemia (196.73+/-16.32 vs. 126.37+/-27.07 mg/dl) and glucose intolerance (approximately 78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.
Collapse
|
47
|
Diehnelt CW, Shah M, Gupta N, Belcher PE, Greving MP, Stafford P, Johnston SA. Discovery of high-affinity protein binding ligands--backwards. PLoS One 2010; 5:e10728. [PMID: 20502719 PMCID: PMC2873402 DOI: 10.1371/journal.pone.0010728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/13/2010] [Indexed: 12/31/2022] Open
Abstract
Background There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. Methodology/Principal Findings We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards – i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a Kd<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. Conclusions/Significance This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach.
Collapse
Affiliation(s)
- Chris W. Diehnelt
- Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Miti Shah
- Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Nidhi Gupta
- Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Paul E. Belcher
- Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Matthew P. Greving
- Center for BioOptical Nanotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Phillip Stafford
- Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Stephen Albert Johnston
- Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
48
|
Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci U S A 2010; 107:6771-6. [PMID: 20348418 DOI: 10.1073/pnas.1001813107] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal segment of the human insulin receptor alpha-chain (designated alphaCT) is critical to insulin binding as has been previously demonstrated by alanine scanning mutagenesis and photo-cross-linking. To date no information regarding the structure of this segment within the receptor has been available. We employ here the technique of thermal-factor sharpening to enhance the interpretability of the electron-density maps associated with the earlier crystal structure of the human insulin receptor ectodomain. The alphaCT segment is now resolved as being engaged with the central beta-sheet of the first leucine-rich repeat (L1) domain of the receptor. The segment is alpha-helical in conformation and extends 11 residues N-terminal of the classical alphaCT segment boundary originally defined by peptide mapping. This tandem structural element (alphaCT-L1) thus defines the intact primary insulin-binding surface of the apo-receptor. The structure, together with isothermal titration calorimetry data of mutant alphaCT peptides binding to an insulin minireceptor, leads to the conclusion that putative "insulin-mimetic" peptides in the literature act at least in part as mimics of the alphaCT segment as well as of insulin. Photo-cross-linking by novel bifunctional insulin derivatives demonstrates that the interaction of insulin with the alphaCT segment and the L1 domain occurs in trans, i.e., these components of the primary binding site are contributed by alternate alpha-chains within the insulin receptor homodimer. The tandem structural element defines a new target for the design of insulin agonists for the treatment of diabetes mellitus.
Collapse
|
49
|
Nakamura T, Takahashi H, Takahashi M, Shimba N, Suzuki EI, Shimada I. Direct Determination of the Insulin−Insulin Receptor Interface Using Transferred Cross-Saturation Experiments. J Med Chem 2010; 53:1917-22. [DOI: 10.1021/jm901099v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takefumi Nakamura
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Hideo Takahashi
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Mitsuo Takahashi
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Nobuhisa Shimba
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Ei-ichiro Suzuki
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Ichio Shimada
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
- The Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
50
|
Menting JG, Ward CW, Margetts MB, Lawrence MC. A thermodynamic study of ligand binding to the first three domains of the human insulin receptor: relationship between the receptor alpha-chain C-terminal peptide and the site 1 insulin mimetic peptides. Biochemistry 2009; 48:5492-500. [PMID: 19459609 DOI: 10.1021/bi900261q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-terminal segment of the insulin receptor (IR) alpha-chain plays a critical role in insulin binding. This 16-residue peptide together with the central beta-sheet of the receptor L1 domain forms one of the insulin binding surfaces of the IR monomer. Here we use isothermal titration calorimetry to assay directly the binding of the IR alphaCT peptide to an IR construct (IR485) consisting of the three N-terminal domains of the receptor monomer. Our measurements show further that the binding of the IR alphaCT peptide to IR485 competes with the binding of a prototypical "Site 1" insulin mimetic peptide to the same receptor fragment. The competitive nature of their binding appears to be reflected in a previously undetected sequence similarity between the IR alphaCT peptide and the Site 1 mimetic peptide. In contrast, a prototypical "Site 2" peptide has very limited affinity for IR485. Taken together, these results complement our recent observation that there is a possible structural relationship between these mimetic peptides and insulin itself. They also add support to the view that the segment of unexplained electron density lying on the surface of the central beta-sheet of the L1 domain in the IR ectodomain crystal structure arises from the IR alphaCT peptide. Finally, we show that mutation of the critical IR alphaCT peptide residue Phe714 to alanine does not affect the peptide's affinity for IR485 and conclude that the resultant loss of insulin binding with this mutation results from loss of interaction of the phenylalanine side chain with insulin.
Collapse
Affiliation(s)
- John G Menting
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|