1
|
Augustin M, Horn C, Ercanoglu MS, Bondet V, de Silva US, Suarez I, Chon SH, Nierhoff D, Zoufaly A, Wenisch C, Knops E, Heger E, Klein F, Duffy D, Müller-Trutwin M, Lehmann C. From Gut to Blood: Redistribution of Zonulin in People Living with HIV. Biomedicines 2024; 12:2316. [PMID: 39457626 PMCID: PMC11505231 DOI: 10.3390/biomedicines12102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Gastrointestinal mucosal damage due to human immunodeficiency virus (HIV) infection leads to microbial translocation and immune activation, contributing to the development of non-infectious comorbidities (NICM) in people living with HIV (PLWH). Additionally, persistent proviral HIV-1 in the gut-associated lymphatic tissue (GALT) can trigger immunological changes in the epithelial environment, impacting the mucosal barrier. However, the role of zonulin, a modulator of epithelial tight junctions in GALT during HIV infection, remains poorly understood. METHODS We measured zonulin in serum and intestinal tissue sections from five treatment-naive (HIV+NAIVE) and 10 cART-treated (HIV+cART) HIV+ individuals, along with 11 controls (CTRL). We compared zonulin levels with clinical characteristics, inflammatory markers (IFN-α, CXCR3, and PD-1), and the viral reservoir in peripheral blood (PB) and terminal ileum (TI). RESULTS Upon HIV infection, TI was found to harbor more HIV DNA than PB. Circulating zonulin levels were highest in HIV+NAIVE compared to HIV+cART or CTRL. Surprisingly, in the gut tissue sections, zonulin levels were higher in CTRL than in HIV+ individuals. Elevated circulating zonulin levels were found to be correlated with CD4+T-cell depletion in PB and TI, and with intestinal IFN-α. CONCLUSIONS The findings of this study indicate a shift in zonulin levels from the gut to the bloodstream in response to HIV infection. Furthermore, elevated systemic zonulin levels are associated with the depletion of intestinal CD4+ T cells and increased gut inflammation, suggesting a potential link between systemic zonulin and intestinal damage. Gaining insight into the regulation of gut tight junctions during HIV infection could offer valuable understanding for preventing NICM in PLWH.
Collapse
Affiliation(s)
- Max Augustin
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Carola Horn
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Meryem Seda Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France; (V.B.); (D.D.)
| | - Ute Sandaradura de Silva
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Isabelle Suarez
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral Surgery and Surgical Oncology, University Hospital Cologne, 50937 Cologne, Germany;
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, 50937 Cologne, Germany;
| | - Alexander Zoufaly
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Christoph Wenisch
- Department IV of Internal Medicine, Klinik Favoriten, Vienna Healthcare Group, 1100 Vienna, Austria; (A.Z.); (C.W.)
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; (M.S.E.); (E.K.); (E.H.); (F.K.)
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France; (V.B.); (D.D.)
| | - Michaela Müller-Trutwin
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, 75015 Paris, France;
| | - Clara Lehmann
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.H.); (U.S.d.S.); (I.S.)
- Center for Molecular Medicine Cologne (CMMC), 50937 Cologne, Germany
- German Center for Infection Research (DZIF), 50937 Cologne, Germany
| |
Collapse
|
2
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Macura B, Kiecka A, Szczepanik M. Intestinal permeability disturbances: causes, diseases and therapy. Clin Exp Med 2024; 24:232. [PMID: 39340718 PMCID: PMC11438725 DOI: 10.1007/s10238-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Nowadays, a pathological increase in the permeability of the intestinal barrier (the so-called leaky gut) is increasingly being diagnosed. This condition can be caused by various factors, mainly from the external environment. Damage to the intestinal barrier entails a number of adverse phenomena: dysbiosis, translocation of microorganisms deep into the intestinal tissue, immune response, development of chronic inflammation. These phenomena can ultimately lead to a vicious cycle that promotes the development of inflammation and further damage to the barrier. Activated immune cells in mucosal tissues with broken barriers can migrate to other organs and negatively affect their functioning. Damaged intestinal barrier can facilitate the development of local diseases such as irritable bowel disease, inflammatory bowel disease or celiac disease, but also the development of systemic inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, hepatitis, and lupus erythematosus, neurodegenerative or psychiatric conditions, or metabolic diseases such as diabetes or obesity. However, it must be emphasized that the causal links between a leaky gut barrier and the onset of certain diseases often remain unclear and require in-depth research. In light of recent research, it becomes crucial to prevent damage to the intestinal barrier, as well as to develop therapies for the barrier when it is damaged. This paper presents the current state of knowledge on the causes, health consequences and attempts to treat excessive permeability of the intestinal barrier.
Collapse
Affiliation(s)
- Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
4
|
Grover M, Vanuytsel T, Chang L. Intestinal Permeability in Disorders of Gut-Brain Interaction: From Bench to Bedside. Gastroenterology 2024:S0016-5085(24)05416-7. [PMID: 39236897 DOI: 10.1053/j.gastro.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Intestinal barrier function lies at a critical interface of a range of peripheral and central processes that influence disorders of gut-brain interactions (DGBI). Although rigorously tested, the role of barrier dysfunction in driving clinical phenotype of DGBI remains to be fully elucidated. In vitro, in vivo, and ex vivo strategies can test various aspects of the broader permeability and barrier mechanisms in the gut. Luminal mediators of host, bacterial, and dietary origin can influence the barrier function and a disrupted barrier can also influence the luminal milieu. Critical to our understanding is how barrier dysfunction is influenced by stress and other comorbidities that associate with DGBI and the crosstalk between barrier and neural, hormonal, and immune responses. Additionally, the microbiome's significant role in the communication between the brain and gut has led to the integrative model of a microbiome gut-brain axis with reciprocal interactions between brain networks and networks composed of multiple cells in the gut, including immune cells, enterochromaffin cells, gut microbiota and the derived luminal mediators. This review highlights the techniques for assessment of barrier function, appraises evidence for barrier dysfunction in DGBI including mechanistic studies in humans, as well as provides an overview of therapeutic strategies that can be used to directly or indirectly restore barrier function in DGBI patients.
Collapse
Affiliation(s)
- Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KULeuven, Leuven, Belgium
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
5
|
Ünal A, Ülfer G. Assessment of Serum Zonulin Levels in Individuals Diagnosed With Chronic Spontaneous Urticaria. Ann Dermatol 2024; 36:231-235. [PMID: 39082659 PMCID: PMC11291101 DOI: 10.5021/ad.24.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND There have been reports indicating a correlation between heightened intestinal permeability and many autoimmune and chronic inflammatory disorders. The involvement of autoimmunity is now recognized as a significant factor in the development of chronic spontaneous urticaria (CSU). Zonulin is an important biomarker that regulates tight junction permeability within cells in the gastrointestinal tract, hence facilitating intestinal permeability. OBJECTIVE To evaluate the correlation of CSU with intestinal permeability by measuring the serum levels of zonulin in patients diagnosed with CSU. METHODS The study included 60 patients diagnosed with CSU and 64 age- and sex-matched healthy individuals as controls. Levels of serum zonulin were determined using the ELISA method. RESULTS Although the serum zonulin value of the patients was higher compared to the controls, the difference did not reach a significant level (24.65±8.49 ng/ml vs. 21.03±7.36 ng/ml, p=0.077). The serum zonulin level had a significant correlation with the urticaria activity score in the CSU group (p=0.013). The results of the current study revealed that serum zonulin values significantly differed between patients with CSU and healthy controls. CONCLUSION This study is important in terms of being the first to investigate the serum zonulin levels in CSU. However, there is a need for further studies with larger patient groups.
Collapse
Affiliation(s)
- Alkım Ünal
- Department of Dermatology, Medical Faculty, Istanbul Medipol University, Istanbul, Turkey.
| | - Gözde Ülfer
- Department of Biochemistry, Medical Faculty, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
6
|
Hagemeyer H, Hellwinkel OJC, Plata-Bello J. Zonulin as Gatekeeper in Gut-Brain Axis: Dysregulation in Glioblastoma. Biomedicines 2024; 12:1649. [PMID: 39200114 PMCID: PMC11352073 DOI: 10.3390/biomedicines12081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Novel biomarkers and therapeutic strategies for glioblastoma, the most common malignant brain tumor with an extremely unfavorable prognosis, are urgently needed. Recent studies revealed a significant upregulation of the protein zonulin in glioblastoma, which correlates with patient survival. Originally identified as pre-haptoglobin-2, zonulin modulates both the intestinal barrier and the blood-brain barrier by disassembling tight junctions. An association of zonulin with various neuroinflammatory diseases has been observed. It can be suggested that zonulin links a putative impairment of the gut-brain barrier with glioblastoma carcinogenesis, leading to an interaction of the gut microbiome, the immune system, and glioblastoma. We therefore propose three interconnected hypotheses: (I) elevated levels of zonulin in glioblastoma contribute to its aggressiveness; (II) upregulated (serum-) zonulin increases the permeability of the microbiota-gut-brain barrier; and (III) this creates a carcinogenic and immunosuppressive microenvironment preventing the host from an effective antitumor response. The role of zonulin in glioblastoma highlights a promising field of research that could yield diagnostic and therapeutic options for glioblastoma patients and other diseases with a disturbed microbiota-gut-brain barrier.
Collapse
Affiliation(s)
- Hannah Hagemeyer
- Institut für Neuroimmunologie und Multiple Sklerose, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany;
| | - Olaf J. C. Hellwinkel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
| |
Collapse
|
7
|
Nemphos SM, Green HC, Prusak JE, Fell SL, Goff K, Varnado M, Didier K, Guy N, Moström MJ, Tatum C, Massey C, Barnes MB, Rowe LA, Allers C, Blair RV, Embers ME, Maness NJ, Marx PA, Grasperge B, Kaur A, De Paris K, Shaffer JG, Hensley-McBain T, Londono-Renteria B, Manuzak JA. Elevated Inflammation Associated with Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques. Viruses 2024; 16:1036. [PMID: 39066199 PMCID: PMC11281461 DOI: 10.3390/v16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.
Collapse
Affiliation(s)
- Sydney M. Nemphos
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Hannah C. Green
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - James E. Prusak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sallie L. Fell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Megan Varnado
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kaitlin Didier
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Natalie Guy
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Matilda J. Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Coty Tatum
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad Massey
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mary B. Barnes
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lori A. Rowe
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27559, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
8
|
Dimba NR, Mzimela N, Khathi A. Improved Gut Health May Be a Potential Therapeutic Approach for Managing Prediabetes: A Literature Review. Biomedicines 2024; 12:1275. [PMID: 38927482 PMCID: PMC11201806 DOI: 10.3390/biomedicines12061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Given the growing global threat and rising prevalence of type 2 diabetes mellitus (T2DM), addressing this metabolic disease is imperative. T2DM is preceded by prediabetes (PD), an intermediate hyperglycaemia that goes unnoticed for years in patients. Several studies have shown that gut microbial diversity and glucose homeostasis in PD or T2DM patients are affected. Therefore, this review aims to synthesize the existing literature to elucidate the association between high-calorie diets, intestinal permeability and their correlation with PD or T2DM. Moreover, it discusses the beneficial effects of different dietary interventions on improving gut health and glucose metabolism. The primary factor contributing to complications seen in PD or T2DM patients is the chronic consumption of high-calorie diets, which alters the gut microbial composition and increases the translocation of toxic substances from the intestinal lumen into the bloodstream. This causes an increase in inflammatory response that further impairs glucose regulation. Several dietary approaches or interventions have been implemented. However, only a few are currently in use and have shown promising results in improving beneficial microbiomes and glucose metabolism. Therefore, additional well-designed studies are still necessary to thoroughly investigate whether improving gut health using other types of dietary interventions can potentially manage or reverse PD, thereby preventing the onset of T2DM.
Collapse
Affiliation(s)
| | | | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville 4000, South Africa; (N.R.D.); (N.M.)
| |
Collapse
|
9
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Martínez-García MÁ, Quintero-Tobar A, de Lope Quiñones S, Insenser M, Fernández-Durán E, Escobar-Morreale HF, Luque-Ramírez M. Obesity and polycystic ovary syndrome influence on intestinal permeability at fasting, and modify the effect of diverse macronutrients on the gut barrier. Food Res Int 2024; 186:114338. [PMID: 38729719 DOI: 10.1016/j.foodres.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.
Collapse
Affiliation(s)
- M Ángeles Martínez-García
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Alejandra Quintero-Tobar
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Sara de Lope Quiñones
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Elena Fernández-Durán
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Héctor Francisco Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
11
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
12
|
Delanghe JR, Delrue C, Speeckaert R, Speeckaert MM. Unlocking the link between haptoglobin polymorphism and noninfectious human diseases: insights and implications. Crit Rev Clin Lab Sci 2024; 61:275-297. [PMID: 38013410 DOI: 10.1080/10408363.2023.2285929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Haptoglobin (Hp) is a polymorphic protein that was initially described as a hemoglobin (Hb)-binding protein. The major functions of Hp are to scavenge Hb, prevent iron loss, and prevent heme-based oxidation. Hp regulates angiogenesis, nitric oxide homeostasis, immune responses, and prostaglandin synthesis. Genetic polymorphisms in the Hp gene give rise to different phenotypes, including Hp 1-1, Hp 2-1, and Hp 2-2. Extensive research has been conducted to investigate the association between Hp polymorphisms and several medical conditions including cardiovascular disease, inflammatory bowel disease, cancer, transplantation, and hemoglobinopathies. Generally, the Hp 2-2 phenotype is associated with increased disease risk and poor outcomes. Over the years, the Hp 2 allele has spread under genetic pressures. Individuals with the Hp 2-2 phenotype generally exhibit lower levels of CD163 expression in macrophages. The decreased expression of CD163 may be associated with the poor antioxidant capacity in the serum of subjects carrying the Hp 2-2 phenotype. However, the Hp 1-1 phenotype may confer protection in some cases. The Hp1 allele has strong antioxidant, anti-inflammatory, and immunomodulatory properties. It is important to note that the benefits of the Hp1 allele may vary depending on genetic and environmental factors as well as the specific disease or condition under consideration. Therefore, the Hp1 allele may not necessarily confer advantages in all situations, and its effects may be context-dependent. This review highlights the current understanding of the role of Hp polymorphisms in cardiovascular disease, inflammatory bowel disease, cancer, transplantation, hemoglobinopathies, and polyuria.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
13
|
Liu Q, Wang Z, Sun S, Nemes J, Brenner LA, Hoisington A, Skotak M, LaValle CR, Ge Y, Carr W, Haghighi F. Association of Blast Exposure in Military Breaching with Intestinal Permeability Blood Biomarkers Associated with Leaky Gut. Int J Mol Sci 2024; 25:3549. [PMID: 38542520 PMCID: PMC10971443 DOI: 10.3390/ijms25063549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP.
Collapse
Affiliation(s)
- Qingkun Liu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shengnan Sun
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jeffrey Nemes
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Lisa A. Brenner
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Andrew Hoisington
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA
| | - Maciej Skotak
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Christina R. LaValle
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Yongchao Ge
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
14
|
Chmielińska M, Olesińska M, Felis-Giemza A, Paradowska-Gorycka A, Palej K, Rejmer-Szcześniak J, Szukiewicz D. Predictors of treatment failure of non-steroidal anti-inflammatory drugs in patients with axial spondyloarthritis with focus on haptoglobin, haptoglobin polymorphism and zonulin. Rheumatol Int 2024; 44:483-495. [PMID: 37847388 DOI: 10.1007/s00296-023-05484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
According to the Assessment of SpondyloArthritis International Society-European Alliance of Associations for Rheumatology (ASAS-EULAR) recommendations for the management of axial spondyloarthritis (axSpA), patients should undergo at least two courses of non-steroidal anti-inflammatory drugs (NSAIDs) therapy. In our study, we enrolled axSpA patients both at onset and in a flare who had already been treated with NSAIDs ineffectively. Subsequently, according to the recommendations, they received modified NSAID treatment as another attempt to the first-line drug therapy and were monitored from there. We aimed to identify risk factors for treatment failure after 4 weeks (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score ≥ 4) especially amongst zonulin and haptoglobin concentrations, and haptoglobin polymorphism. Treatment failure was observed in 71% of patients, and the following variables were contributed for occurrence of this state: higher zonulin levels, ankylosing spondylitis, X-ray sacroiliitis, magnetic resonance imaging sacroiliitis, long duration of symptoms, high BASDAI, and high value of spinal pain intensity on visual analogue scale. In addition, the following positive correlations were found: haptoglobin concentration with C-reactive protein (r = 0.56; p = 0.0004), and erythrocyte sedimentation rate (r = 0.62; p < 0.0001), as well as between zonulin levels and white blood count (r = 0.5; p = 0.0003). The results of the study presented the identified factors related to the standard treatment failure in axSpA, amongst them zonulin levels. They might be applied to point out the patients for whom the search for a more appropriate method of treatment should be considered.
Collapse
Affiliation(s)
- Magdalena Chmielińska
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004, Warsaw, Poland.
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland.
| | - Marzena Olesińska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Anna Felis-Giemza
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Karolina Palej
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Julita Rejmer-Szcześniak
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004, Warsaw, Poland
| |
Collapse
|
15
|
Martínez Gallego MÁ, Crespo Sánchez MG, Serrano Olmedo MG, Buño Soto A, Álvarez Casasempere S, Nozal P, Martínez-Ojinaga E, Molina Arias M, Losantos-García I, Molero-Luis M. Trends in Faecal Zonulin Concentrations in Paediatric Patients with Celiac Disease at Baseline and on a Gluten-Free Diet: Exploring Correlations with Other Faecal Biomarkers. Nutrients 2024; 16:684. [PMID: 38474812 DOI: 10.3390/nu16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Celiac disease (CeD) is an autoimmune condition triggered by gluten in genetically predisposed individuals, affecting all ages. Intestinal permeability (IP) is crucial in the pathogenesis of CeD and it is primarily governed by tight junctions (TJs) that uphold the intestinal barrier's integrity. The protein zonulin plays a critical role in modulating the permeability of TJs having emerged as a potential non-invasive biomarker to study IP. The importance of this study lies in providing evidence for the usefulness of a non-invasive tool in the study of IP both at baseline and in the follow-up of paediatric patients with CeD. In this single-centre prospective observational study, we explored the correlation between faecal zonulin levels and others faecal and serum biomarkers for monitoring IP in CeD within the paediatric population. We also aimed to establish reference values for faecal zonulin in the paediatric population. We found that faecal zonulin and calprotectin values are higher at the onset of CeD compared with the control population. Specifically, the zonulin levels were 347.5 ng/mL as opposed to 177.7 ng/mL in the control population (p = 0.001), while calprotectin levels were 29.8 μg/g stool compared to 13.9 μg/g stool (p = 0.029). As the duration without gluten consumption increased, a significant reduction in faecal zonulin levels was observed in patients with CeD (348.5 ng/mL vs. 157.1 ng/mL; p = 0.002), along with a decrease in the prevalence of patients with vitamin D insufficiency (88.9% vs. 77.8%). We conclude that faecal zonulin concentrations were higher in the patients with active CeD compared with healthy individuals or those following a gluten-free diet (GFD). The significant decrease in their values over the duration of the GFD suggests the potential use of zonulin as an additional tool in monitoring adherence to a GFD.
Collapse
Affiliation(s)
| | | | | | - Antonio Buño Soto
- Department of Laboratory Medicine, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Pilar Nozal
- Department of Immunology, La Paz University Hospital, 28046 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER U754), 28046 Madrid, Spain
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Eva Martínez-Ojinaga
- Paediatric Gastroenterology and Nutrition Service, La Paz University Hospital, 28046 Madrid, Spain
| | - Manuel Molina Arias
- Paediatric Gastroenterology and Nutrition Service, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Marta Molero-Luis
- Department of Laboratory Medicine, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
16
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea I, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct intestinal microbial signatures linked to accelerated systemic and intestinal biological aging. MICROBIOME 2024; 12:31. [PMID: 38383483 PMCID: PMC10882811 DOI: 10.1186/s40168-024-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.
Collapse
Affiliation(s)
- Shalini Singh
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Maliha W Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Shivanjali Shankaran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Zlata R Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Simona A Bambi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Aaron R Goldman
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Joao L L C Azevedo
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alan L Landay
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | | | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Zhu X, Zhang C, Feng S, He R, Zhang S. Intestinal microbiota regulates the gut-thyroid axis: the new dawn of improving Hashimoto thyroiditis. Clin Exp Med 2024; 24:39. [PMID: 38386169 PMCID: PMC10884059 DOI: 10.1007/s10238-024-01304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Intestinal microbiota plays an indispensable role in the host's innate immune system, which may be related to the occurrence of many autoimmune diseases. Hashimoto thyroiditis (HT) is one of the most common autoimmune diseases, and there is plenty of evidence indicating that HT may be related to genetics and environmental triggers, but the specific mechanism has not been proven clearly. Significantly, the composition and abundance of intestinal microbiota in patients with HT have an obvious difference. This phenomenon led us to think about whether intestinal microbiota can affect the progress of HT through some mechanisms. By summarizing the potential mechanism of intestinal microflora in regulating Hashimoto thyroiditis, this article explores the possibility of improving HT by regulating intestinal microbiota and summarizes relevant biomarkers as therapeutic targets, which provide new ideas for the clinical diagnosis and treatment of Hashimoto thyroiditis.
Collapse
Affiliation(s)
- Xiaxin Zhu
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310018, People's Republic of China
| | - Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
18
|
Roque A, Pereira SG. Bacteria: Potential Make-or-Break Determinants of Celiac Disease. Int J Mol Sci 2024; 25:2090. [PMID: 38396767 PMCID: PMC10889687 DOI: 10.3390/ijms25042090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024] Open
Abstract
Celiac disease is an autoimmune disease triggered by dietary gluten in genetically susceptible individuals that primarily affects the small intestinal mucosa. The sole treatment is a gluten-free diet that places a social and economic burden on patients and fails, in some, to lead to symptomatic or mucosal healing. Thus, an alternative treatment has long been sought after. Clinical studies on celiac disease have shown an association between the presence of certain microbes and disease outcomes. However, the mechanisms that underlie the effects of microbes in celiac disease remain unclear. Recent studies have employed disease models that have provided insights into disease mechanisms possibly mediated by bacteria in celiac disease. Here, we have reviewed the bacteria and related mechanisms identified so far that might protect from or incite the development of celiac disease. Evidence indicates bacteria play a role in celiac disease and it is worth continuing to explore this, particularly since few studies, to the best of our knowledge, have focused on establishing a mechanistic link between bacteria and celiac disease. Uncovering host-microbe interactions and their influence on host responses to gluten may enable the discovery of pathogenic targets and development of new therapeutic or preventive approaches.
Collapse
Affiliation(s)
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic of Leiria, 2410-541 Leiria, Portugal;
| |
Collapse
|
19
|
Zhang J, Ren X, Wang S, Liu R, Shi B, Dong H, Wu Q. Microbial interventions in yak colibacillosis: Lactobacillus-mediated regulation of intestinal barrier. Front Cell Infect Microbiol 2024; 14:1337439. [PMID: 38390621 PMCID: PMC10883308 DOI: 10.3389/fcimb.2024.1337439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The etiology of Escherichia coli in yaks, along with its drug resistance, results in economic losses within the yak breeding industry. The utilization of lactic acid bacteria treatment has emerged as a viable alternative to antibiotics in managing colibacillosis. Methods To elucidate the therapeutic mechanisms of Lactobacillus against Escherichia coli-induced intestinal barrier damage in yaks, we employed yak epithelial cells as the experimental model and established a monolayer epithelial barrier using Transwell. The study encompassed four groups: a control group, a model group (exposed to E. coli O78), a low-dose Lactobacillus group (E. coli O78 + 1 × 105CFU LAB), and a high-dose Lactobacillus group (E. coli O78 + 1 × 107CFU LAB). Various techniques, including transmembrane resistance measurement, CFU counting, RT-qPCR, and Western Blot, were employed to assess indicators related to cell barrier permeability and tight junction integrity. Results In the Model group, Escherichia coli O78 significantly compromised the permeability and tight junction integrity of the yak epithelial barrier. It resulted in decreased transmembrane resistance, elevated FD4 flux, and bacterial translocation. Furthermore, it downregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while upregulating the mRNA expression and protein expression of FABP2 and Zonulin, thereby impairing intestinal barrier function. Contrastingly, Lactobacillus exhibited a remarkable protective effect. It substantially increased transmembrane resistance, mitigated FD4 flux, and reduced bacterial translocation. Moreover, it significantly upregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while downregulating the mRNA and protein expression of FABP2 and Zonulin. Notably, high-dose LAB demonstrated superior regulatory effects compared to the low-dose LAB group. Discussion In conclusion, our findings suggest that Lactobacillus holds promise in treating yak colibacillosis by enhancing mucin and tight junction protein expression. Furthermore, we propose that Lactobacillus achieves these effects through the regulation of Zonulin.
Collapse
Affiliation(s)
- Jingbo Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiaoli Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
20
|
Gudi RR, Johnson BM, Gaudreau MC, Sun W, Ball L, Vasu C. Intestinal permeability and inflammatory features of juvenile age correlate with the eventual systemic autoimmunity in lupus-prone female SWR × NZB F1 (SNF1) mice. Immunology 2024; 171:235-249. [PMID: 37947218 PMCID: PMC10842200 DOI: 10.1111/imm.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
The incidence of systemic lupus erythematosus (SLE) is about nine times higher in women than in men, and the underlying mechanisms that contribute to this gender bias are not fully understood. Previously, using lupus-prone (SWR × NZB)F1 (SNF1) mice, we have shown that the intestinal immune system could play a role in the initiation and progression of disease in SLE, and depletion of gut microbiota produces more pronounced disease protection in females than in males. Here, we show that the gut permeability features of lupus-prone female SNF1 mice at juvenile ages directly correlate with the expression levels of pro-inflammatory factors, faecal IgA abundance and nAg reactivity and the eventual systemic autoantibody levels and proteinuria onset. Furthermore, we observed that the disease protection achieved in female SNF1 mice upon depletion of gut microbiota correlates with the diminished gut inflammatory protein levels, intestinal permeability and circulating microbial DNA levels. However, faecal microbiota transplant from juvenile male and females did not result in modulation of gut inflammatory features or permeability. Overall, these observations suggest that the early onset of intestinal inflammation, systemic autoantibody production and clinical stage disease in lupus-prone females is linked to higher gut permeability in them starting at as early as juvenile age. While the higher gut permeability in juvenile lupus-prone females is dependent on the presence of gut microbes, it appears to be independent of the composition of gut microbiota.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wei Sun
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Ball
- Department of Pharmacology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
21
|
Repossi R, Martín-Ramírez R, Gómez-Bernal F, Medina L, Fariña-Jerónimo H, González-Fernández R, Martín-Vasallo P, Plata-Bello J. Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma. Cancers (Basel) 2024; 16:356. [PMID: 38254845 PMCID: PMC10814510 DOI: 10.3390/cancers16020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma, the deadliest adult brain tumor, poses a significant therapeutic challenge with a dismal prognosis despite current treatments. Zonulin, a protein influencing tight junctions and barrier functions, has gained attention for its diverse roles in various diseases. This study aimed to preliminarily analyze the circulating and tumor zonulin levels, evaluating their impact on disease prognosis and clinical-radiological factors. Additionally, we investigated in vitro zonulin expression in different glioblastoma cell lines under two different conditions. The study comprised 34 newly diagnosed glioblastoma patients, with blood samples collected before treatment for zonulin and haptoglobin analysis. Tumor tissue samples from 21 patients were obtained for zonulin expression. Clinical, molecular, and radiological data were collected, and zonulin protein levels were assessed using ELISA and Western blot techniques. Furthermore, zonulin expression was analyzed in vitro in three glioblastoma cell lines cultured under standard and glioma-stem-cell (GSC)-specific conditions. High zonulin expression in glioblastoma tumors correlated with larger preoperative contrast enhancement and edema volumes. Patients with high zonulin levels showed a poorer prognosis (progression-free survival [PFS]). Similarly, elevated serum levels of zonulin were associated with a trend of shorter PFS. Higher haptoglobin levels correlated with MGMT methylation and longer PFS. In vitro, glioblastoma cell lines expressed zonulin under standard cell culture conditions, with increased expression in tumorsphere-specific conditions. Elevated zonulin levels in both the tumor and serum of glioblastoma patients were linked to a poorer prognosis and radiological signs of increased disruption of the blood-brain barrier. In vitro, zonulin expression exhibited a significant increase in tumorspheres.
Collapse
Affiliation(s)
- Roberta Repossi
- Neurogenetics of Rare Disease Group, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
| | - Rita Martín-Ramírez
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Fuensanta Gómez-Bernal
- Department of Biochemistry, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Lilian Medina
- Department of Biochemistry, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Helga Fariña-Jerónimo
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| | - Rebeca González-Fernández
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Pablo Martín-Vasallo
- Department of Molecular Biology, Faculty of Biology, University of La Laguna, 38320 La Laguna, Spain
| | - Julio Plata-Bello
- Clinical Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 S/C de Tenerife, Spain
| |
Collapse
|
22
|
Tonyalı NV, Arslan B, Sucu ST, Sarsmaz K, İbanoğlu MC, Örgül G, Aktemur G, Yücel A, Şahin D. Does Second Trimester Maternal Serum Zonulin Level Predict Gestational Diabetes Mellitus? J Clin Med 2024; 13:394. [PMID: 38256529 PMCID: PMC10816522 DOI: 10.3390/jcm13020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Zonulin, a protein that regulates intestinal permeability, has attracted attention as a potential biomarker for GDM. Therefore, this study aims to investigate whether there are differences in zonulin levels between the GDM group and control groups, especially between those receiving different treatments (diet and insulin). Based on this idea, we included 90 patients with a gestational age between 24 and 28 weeks in our study. While GDM was not detected in 33 of these patients, as a result of OGTT, 57 patients were diagnosed with GDM and these patients were followed throughout their pregnancy. Gestational diabetes was diagnosed by an OGTT performed between 24 and 28 weeks of gestation according to American Diabetes Association (ADA) standards. During follow-up, GDM patients were divided into two groups according to whether they required insulin treatment. Plasma zonulin levels were determined using enzyme-linked immunosorbent assay (ELISA) techniques. The GDM group had significantly higher plasma zonulin levels than the control group (p < 0.005). According to our research, zonulin may be a non-invasive biomarker involved in the etiology of GDM. Large-scale research on this topic is still needed.
Collapse
Affiliation(s)
- Nazan Vanlı Tonyalı
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Ankara Etlik City Hospital, Ankara 06010, Turkey;
| | - Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 42130 Mölndal, Sweden;
| | - Serap Topkara Sucu
- Department of Obstetrics and Gynecology, Health Sciences University Ankara Etlik City Hospital, Ankara 06010, Turkey;
| | - Kemal Sarsmaz
- Department of Obstetrics and Gynecology, Manisa Celal Bayar University, Manisa 45120, Turkey;
| | - Müjde Can İbanoğlu
- Department of Obstetrics and Gynecology, Etlik Zübeyde Hanım Gynecology Training and Research Hospital, Ankara 06010, Turkey;
| | - Gökçen Örgül
- Department of Obstetrics and Gynecology, Selçuk University, Konya 42100, Turkey;
| | - Gizem Aktemur
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Ankara Etlik City Hospital, Ankara 06010, Turkey;
| | - Aykan Yücel
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Ankara Bilkent City Hospital, Ankara 06800, Turkey; (A.Y.); (D.Ş.)
| | - Dilek Şahin
- Department of Obstetrics and Gynecology, Division of Perinatology, Health Sciences University Ankara Bilkent City Hospital, Ankara 06800, Turkey; (A.Y.); (D.Ş.)
| |
Collapse
|
23
|
Fasano A, Matera M. Probiotics to Prevent Celiac Disease and Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:95-111. [PMID: 39060733 DOI: 10.1007/978-3-031-58572-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The incidence of chronic inflammatory diseases (CIDs) is dramatically increasing in the developed world, resulting in an increased burden of disease in childhood. Currently, there are limited effective strategies for treating or preventing these conditions. To date, myriads of cross-sectional studies have described alterations in the composition of the gut microbiota in a variety of disease states, after the disease has already occurred. We suggest that to mechanically link these microbiome changes with disease pathogenesis, a prospective cohort design is needed to capture changes that precede or coincide with disease onset and symptoms. In addition, these prospective studies must integrate microbiological, metagenomic, meta transcriptomic and metabolomic data with minimal and standardized clinical and environmental metadata that allow to correctly compare and interpret the results of the analysis of the human microbiota in order to build a system-level model of the interactions between the host and the development of the disease. The creation of new biological computational models thus constructed will allow us to finally move from the detection of simple elements of "association" to the identification of elements of real "causality" allowing to provide a mechanistic approach to the exploration of the development of CIDs.This can only be done when these diseases are studied as complex biological networks. In this chapter we discuss the current knowledge regarding the contribution of the microbiome to CID in childhood, focusing on celiac disease and inflammatory bowel disease, with the overall aim of identifying pathways to shift research from descriptive to mechanistic approaches. We then examine how some components of the microbiota, through epigenetic reprogramming, can start the march from genetic predisposition to clinical expression of CIDs, thus opening up new possibilities for intervention, through microbiota therapy targeting the manipulation of the composition and function of the microbiota, for future applications of precision medicine and primary prevention.
Collapse
Affiliation(s)
- Alessio Fasano
- Research Centre for Immunology and Mucosal Biology and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children - Harvard Medical School, Boston, USA, MA.
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition, Mass General for Children - Harvard Medical School, Boston, MA, USA.
| | - Mariarosaria Matera
- Neonatologist, Neurodevelopmental Clinics and Pediatric Clinical Microbiomic - Misericordia Hospital, Grosseto, Italy
| |
Collapse
|
24
|
VanElzakker MB, Tillman EM, Yonker LM, Ratai EM, Georgiopoulos AM. Neuropsychiatric adverse effects from CFTR modulators deserve a serious research effort. Curr Opin Pulm Med 2023; 29:603-609. [PMID: 37655981 PMCID: PMC10552811 DOI: 10.1097/mcp.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This review highlights the problem of neuropsychiatric adverse effects (AEs) associated with elexacaftor/tezacaftor/ivacaftor (ETI), current suboptimal mitigation approaches, a novel testable mechanistic hypothesis, and potential solutions requiring further research. RECENT FINDINGS Studies show that a minority of persons with cystic fibrosis (PwCF) initiating cystic fibrosis transmembrane conductance regulator (CFTR) modulators experience neuropsychiatric AEs including worsening mood, cognition, anxiety, sleep, and suicidality. The GABA-A receptor is a ligand-gated chloride channel, and magnetic resonance spectroscopy neuroimaging studies have shown that reduced GABA expression in rostral anterior cingulate cortex is associated with anxiety and depression. Recent research details the impact of peripheral inflammation and the gut-brain axis on central neuroinflammation. Plasma ETI concentrations and sweat chloride have been evaluated in small studies of neuropsychiatric AEs but not validated to guide dose titration or correlated with pharmacogenomic variants or safety/efficacy. SUMMARY Although ETI is well tolerated by most PwCF, some experience debilitating neuropsychiatric AEs. In some cases, these AEs may be driven by modulation of CFTR and chloride transport within the brain. Understanding biological mechanisms is a critical next step in identifying which PwCF are likely to experience AEs, and in developing evidence-based strategies to mitigate them, while retaining modulator efficacy.
Collapse
|
25
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea IV, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct Intestinal Microbial Signatures Linked to Accelerated Biological Aging in People with HIV. RESEARCH SQUARE 2023:rs.3.rs-3492242. [PMID: 37961645 PMCID: PMC10635386 DOI: 10.21203/rs.3.rs-3492242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.
Collapse
|
27
|
Yazici D, Cagan E, Tan G, Li M, Do E, Kucukkase OC, Simsek A, Kizmaz MA, Bozkurt T, Aydin T, Heider A, Rückert B, Brüggen MC, Dhir R, O'Mahony L, Akdis M, Nadeau KC, Budak F, Akdis CA, Ogulur I. Disrupted epithelial permeability as a predictor of severe COVID-19 development. Allergy 2023; 78:2644-2658. [PMID: 37422701 DOI: 10.1111/all.15800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND An impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID-19. METHODS Levels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID-19 patients and 49 healthy controls. RESULTS Significantly high levels of circulating bacterial DNA were detected in severe COVID-19 cases. In mild COVID-19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID-19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID-19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6. CONCLUSION Our results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Eren Cagan
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
- Department of Pediatric Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Evan Do
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Ozan C Kucukkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abdurrahman Simsek
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tugce Bozkurt
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tamer Aydin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ferah Budak
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
28
|
Donmez-Altuntas H, Sahin Ergul S, Altin-Celik P, Bulut K, Eci Roglu H, Uzen R, Sahin GG, Ozer NT, Temel S, Arikan TB, Esmaoglu A, Yuksel RC, Sungur M, Gundogan K. Gut barrier protein levels in serial blood samples from critically ill trauma patients during and after intensive care unit stay. Eur J Trauma Emerg Surg 2023; 49:2203-2213. [PMID: 37296330 DOI: 10.1007/s00068-023-02298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE In an effort to better manage critically ill patients hospitalised in the intensive care unit (ICU) after experiencing multiple traumas, the present study aimed to assess whether plasma levels of intestinal epithelial cell barrier proteins, including occludin, claudin-1, junctional adhesion molecule (JAM-1), tricellulin and zonulin, could be used as novel biomarkers. Additional potential markers such as intestinal fatty acid-binding protein (I-FABP), D-lactate, lipopolysaccharide (LPS) and citrulline were also evaluated. We also aimed to determine the possible relationships between the clinical, laboratory, and nutritional status of patients and the measured marker levels. METHODS Plasma samples from 29 patients (first, second, fifth and tenth days in the ICU and on days 7, 30 and 60 after hospital discharge) and 23 controls were subjected to commercial enzyme-linked immunosorbent assay (ELISA) testing. RESULTS On first day (admission) and on the second day, plasma I-FABP, D-lactate, citrulline, occludin, claudin-1, tricellulin and zonulin levels were high in trauma patients and positively correlated with lactate, C-reactive protein (CRP), number of days of ICU hospitalisation, Acute Physiology and Chronic Health Evaluation II (APACHE II) score and daily Sequential Organ Failure Assessment (SOFA) scores (P < 0.05-P < 0.01). CONCLUSION The results of the present study showed that occludin, claudin-1, tricellulin and zonulin proteins, as well as I-FABP, D-lactate and citrulline, may be used as promising biomarkers for the evaluation of disease severity in critically ill trauma patients, despite the complexity of the analysis of various barrier markers. However, our results should be supported by future studies.
Collapse
Affiliation(s)
| | - Serap Sahin Ergul
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Pinar Altin-Celik
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Kadir Bulut
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Hamiyet Eci Roglu
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- Health Services Vocational School, Alanya Alaaddin Keykubat University, 07425, Antalya, Turkey
| | - Ramazan Uzen
- Department of Medical Biology, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Gulsah Gunes Sahin
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
- Department of Nutrition and Dietetics, School of Health Sciences, Cappadocia University, 50000, Nevşehir, Turkey
| | - Nurhayat Tugra Ozer
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
- 100/2000 CoHE PhD Scholarship Program, Institute of Health Sciences, 38030, Kayseri, Turkey
| | - Sahin Temel
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Turkmen Bahadir Arikan
- Department of General Surgery, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Aliye Esmaoglu
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Recep Civan Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Murat Sungur
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Medical Faculty, Erciyes University, 38030, Kayseri, Turkey
| |
Collapse
|
29
|
Kamilova AT, Azizova GK, Poddighe D, Umarnazarova ZE, Abdullaeva DA, Geller SI, Azimova ND. Celiac Disease in Uzbek Children: Insights into Disease Prevalence and Clinical Characteristics in Symptomatic Pediatric Patients. Diagnostics (Basel) 2023; 13:3066. [PMID: 37835809 PMCID: PMC10572208 DOI: 10.3390/diagnostics13193066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND A few studies on pediatric Celiac Disease (CD) are available from Central Asia. Recent immunogenetic research has highlighted that the HLA-DQ2/8 genetic predisposition to CD as well as the dietary intake of gluten in this geographical area, are comparable to other regions of the world where CD prevalence is known to be 1% or higher. METHODS This is a prospective and cross-sectional study investigating the prevalence and clinical characteristics of CD in symptomatic children referred to the pediatric gastroenterology department of a tertiary hospital in Uzbekistan from 1 September 2021, until 31 July 2022. In addition to collecting the relevant information related to clinical manifestations and laboratory analyses from the clinical files, a specific survey was also administered to patients' guardians. Serological, histopathological, and immunogenetic parameters specific to CD, fecal zonulin, and pancreatic elastases were assessed in CD patients. RESULTS The study population consisted of 206 children. Overall, almost all of them (n = 192; 93.2%) were referred because of gastrointestinal manifestations, which were associated with extra-gastrointestinal manifestations in most cases (n = 153; 74.3%); a minority (n = 14; 6.8%) was mainly referred due short stature and/or growth failure only. Among all of these study participants, CD was diagnosed in 11 children (5.3%). Notably, although diarrhea was similarly reported in CD and non-CD patients, watery diarrhea (type 7 according to the Bristol stool scale) was much more frequently and significantly observed in the former group. All of these CD patients showed anti-tTG IgA 10 times higher than the upper normal limit, except one child with lower serum levels of total IgA; however, all of them received a diagnostic confirmation by histopathological analysis due to the lack of EMA testing in the country. Notably, most CD children (82%) showed a Marsh III histological grading. Around half patients (54.5%) showed zonulin values above the reference range, whereas none showed insufficient levels of pancreatic elastase. However, no correlation or association between zonulin and clinical, laboratory, histopathological, and immunogenetic parameters was found. CONCLUSIONS This study may further suggest a relevant prevalence of CD in Uzbek children, based on this partial picture emerging from symptomatic patients only. Additionally, we highlighted the prevalence of typical CD forms with watery diarrhea, which should strongly support a full diagnostic work-up for CD in the local clinical setting. The high levels of anti-tTG IgA and high Marsh grade might also lead us to speculate a significant diagnostic delay despite the classical clinical expression of CD.
Collapse
Affiliation(s)
- Altinoy T. Kamilova
- Gastroenterology Department, Pediatric Republican Specialized Scientific-Practical Medical Center of the Ministry of Health of Republic of Uzbekistan, Tashkent 100179, Uzbekistan; (A.T.K.); (G.K.A.); (Z.E.U.); (D.A.A.); (S.I.G.); (N.D.A.)
| | - Gulnoza K. Azizova
- Gastroenterology Department, Pediatric Republican Specialized Scientific-Practical Medical Center of the Ministry of Health of Republic of Uzbekistan, Tashkent 100179, Uzbekistan; (A.T.K.); (G.K.A.); (Z.E.U.); (D.A.A.); (S.I.G.); (N.D.A.)
| | - Dimitri Poddighe
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| | - Zulkhumar E. Umarnazarova
- Gastroenterology Department, Pediatric Republican Specialized Scientific-Practical Medical Center of the Ministry of Health of Republic of Uzbekistan, Tashkent 100179, Uzbekistan; (A.T.K.); (G.K.A.); (Z.E.U.); (D.A.A.); (S.I.G.); (N.D.A.)
| | - Dilrabo A. Abdullaeva
- Gastroenterology Department, Pediatric Republican Specialized Scientific-Practical Medical Center of the Ministry of Health of Republic of Uzbekistan, Tashkent 100179, Uzbekistan; (A.T.K.); (G.K.A.); (Z.E.U.); (D.A.A.); (S.I.G.); (N.D.A.)
| | - Svetlana I. Geller
- Gastroenterology Department, Pediatric Republican Specialized Scientific-Practical Medical Center of the Ministry of Health of Republic of Uzbekistan, Tashkent 100179, Uzbekistan; (A.T.K.); (G.K.A.); (Z.E.U.); (D.A.A.); (S.I.G.); (N.D.A.)
| | - Noiba D. Azimova
- Gastroenterology Department, Pediatric Republican Specialized Scientific-Practical Medical Center of the Ministry of Health of Republic of Uzbekistan, Tashkent 100179, Uzbekistan; (A.T.K.); (G.K.A.); (Z.E.U.); (D.A.A.); (S.I.G.); (N.D.A.)
| |
Collapse
|
30
|
Wang YM, Abdullah S, Luebbering N, Langenberg L, Duell A, Lake K, Lane A, Hils B, Vazquez Silva O, Trapp M, Nalapareddy K, Koo J, Denson LA, Jodele S, Haslam DB, Faubion WA, Davies SM, Khandelwal P. Intestinal permeability in patients undergoing stem cell transplantation correlates with systemic acute phase responses and dysbiosis. Blood Adv 2023; 7:5137-5151. [PMID: 37083597 PMCID: PMC10480541 DOI: 10.1182/bloodadvances.2023009960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study objective was to quantify peri-HSCT intestinal permeability changes using the modified LR assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin, and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were increased at day +7 but returned to baseline at day +30 in most patients (P = .014). Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms (P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated and may identify transplant recipients who are more likely to experience adverse outcomes.
Collapse
Affiliation(s)
- YunZu Michele Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sheyar Abdullah
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexandra Duell
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kelly Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian Hils
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ormarie Vazquez Silva
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Monica Trapp
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lee A. Denson
- University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - David B. Haslam
- University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
31
|
Chen Y, Tseng SH, Chen CY, Tsai YH. Application of Intestinal Barrier Molecules in the Diagnosis of Acute Cellular Rejection After Intestinal Transplantation. Transpl Int 2023; 36:11595. [PMID: 37745643 PMCID: PMC10514359 DOI: 10.3389/ti.2023.11595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Diagnosing acute rejection after intestinal transplantation currently heavily relies on histopathological analysis of graft biopsies. However, the invasive risks associated with ileoscopic examination and the inaccessibility for biopsy after ileostomy closure hinder real-time detection of rejection responses. Molecules comprising the intestinal barrier have been identified as physiological and molecular biomarkers for various bowel conditions and systemic diseases. To investigate the potential of barrier function-related molecules in diagnosing rejection after intestinal transplantation, plasma samples were collected longitudinally from transplant recipients. The samples were categorized into "indeterminate for rejection (IND)" and "acute rejection (AR)" groups based on clinical diagnoses at each time point. The longitudinal association between plasma levels of these barrier function-related molecules and acute rejection was analyzed using the generalized estimating equations (GEE) method. Logistic GEE models revealed that plasma levels of claudin-3, occludin, sIgA, and zonulin were independent variables correlated with the clinical diagnosis of acute rejection. The subsequent prediction model demonstrated moderate ability in discriminating between IND and AR samples, with a sensitivity of 76.0%, specificity of 89.2%, and accuracy of 84.6%. In conclusion, monitoring plasma levels of claudin-3, occludin, sIgA, and zonulin shows great potential in aiding the diagnosis of acute rejection after intestinal transplantation.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yen Chen
- Medicine and Institute of Emergency and Critical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Association for the Study of Small Intestinal Diseases, Taoyuan, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
32
|
Boschetti E, Caio G, Cervellati C, Costanzini A, Rosta V, Caputo F, De Giorgio R, Zuliani G. Serum zonulin levels are increased in Alzheimer's disease but not in vascular dementia. Aging Clin Exp Res 2023; 35:1835-1843. [PMID: 37337075 PMCID: PMC10460299 DOI: 10.1007/s40520-023-02463-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Zonulin is involved in the integrity and functioning of both intestinal-epithelial barrier and blood-brain barrier (BBB) by regulating tight junction molecular assembly. AIM Since changes in microbiota and BBB may play a role in neurodegenerative disorders, we aimed to determine whether serum zonulin levels change in older patients affected by different types of dementia or mild cognitive impairment (MCI). METHODS We evaluated serum zonulin levels in patients with late-onset AD (LOAD), vascular dementia (VAD), MIXED (AD + VAD) dementia, amnestic MCI, and in healthy controls. RESULTS Compared with controls, serum zonulin increased in LOAD, MIXED dementia, and aMCI but not in VAD, independent of potential confounders (ANCOVA p = 0.01; LOAD vs controls, p = 0.01; MIXED vs. controls, p = 0.003; aMCI vs. controls, p = 0.04). Notably, aMCI converting to dementia showed significantly higher levels of zonulin compared with stable aMCI (p = 0.04). Serum zonulin inversely correlated with the standardized Mini-Mental State Examination (MMSE) score (p < 0.05), regardless of potential confounders. DISCUSSION We found increased serum zonulin levels in patients with aMCI, LOAD and MIXED dementia, but not in VAD; moreover, zonulin levels were higher in aMCI converting to AD compared with stable ones. CONCLUSIONS Our findings suggest that a dysregulation of intestinal-epithelial barrier and/or BBB may be an early specific event in AD-related neurodegeneration.
Collapse
Affiliation(s)
- Elisa Boschetti
- Cellular Signalling Laboratory, Department of Biomedical and Neuro Motor Sciences (DIBINEM), Institute of Human Anatomy, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Gaus OV, Livzan MA. Zonulin levels are associated with cortisol, dopamine, and serotonin levels in irritable bowel syndrome. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:37-48. [DOI: 10.31146/1682-8658-ecg-212-4-37-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Increase intestinal permeability is one of the main mechanisms for the development of irritable bowel syndrome (IBS). The role of stress and nutrition factors is considered as key modifiable factors contributing to the development of increase intestinal permeability. Purpose of the study: to evaluate the content of a marker of increased intestinal permeability (zonulin in feces) in relation to dietary habits, levels of anxiety and depression, levels of stress hormones (cortisol in saliva) and neurotransmitters (serotonin in blood serum, dopamine in blood plasma) in patients with IBS. Materials and methods: an open cohort prospective study was conducted with the inclusion of 263 patients with an established diagnosis of IBS. The control group consisted of 40 healthy volunteers. All individuals included in the study were assessed for diet and eating habits, the severity of anxiety and depression, including the level of specific anxiety in relation to gastrointestinal symptoms, and quality of life. In addition, the levels of cortisol in the morning and evening portions of saliva, serum serotonin, plasma dopamine and fecal zonulin were assessed. Results: in patients with IBS, the marker of increased intestinal permeability (zonulin in feces) is closely related to the nature of nutrition, anxiety levels, cortisol and serotonin secretion, and is also associated with the development of abdominal pain, diarrhea, and the severity of the disease.
Collapse
|
34
|
Rath T, Atreya R, Neurath MF. A spotlight on intestinal permeability and inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2023; 17:893-902. [PMID: 37606514 DOI: 10.1080/17474124.2023.2242772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The intestinal barrier is a multi-faced structure lining the surface of the intestinal mucosa of the GI tract. To exert its main functions as a physical and immunological defense barrier, several components of the intestinal barrier act in a concerted and cooperative manner. AREAS COVERED Herein, we first introduce to the basic organization of the intestinal barrier and then summarize different methods to assess barrier function in and ex vivo. Finally, we provide an in-depth overview of the relevance of intestinal barrier dysfunction in inflammatory bowel diseases. EXPERT OPINION In parallel to a more fundamental understanding of the intestinal barrier as a key component for intestinal integrity is the notion that intestinal barrier defects are associated with a variety of diseases such as inflammatory bowel diseases. Recent research has fueled and perpetuated the concept that barrier defects are critical components of disease development, disease behavior, and potentially also an area of therapeutic intervention in IBD patients. Although being far away from standard, new technologies can be used to easily assess barrier healing in IBD and to derive clinical consequences from these findings such as more accurate forecasting of future disease behavior or the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Timo Rath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Raja Atreya
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
35
|
Juul FE, Hov JER, Trøseid M, Johnsen PH, Valeur J. [Gut microbiota and intestinal disease –a sober warning]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2023; 143:23-0121. [PMID: 37376933 DOI: 10.4045/tidsskr.23.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
|
36
|
Morishita K, Kondo J, Sakon D, Hayashibara A, Tamura I, Shimizu K, Takamatsu S, Murata K, Kamada Y, Miyoshi E. Prohaptoglobin is a possible prognostic biomarker for colorectal cancer. Biochem Biophys Res Commun 2023; 672:72-80. [PMID: 37343317 DOI: 10.1016/j.bbrc.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Fucosylated haptoglobin is a novel glycan biomarker for colorectal and other cancers, while the significance of its precursor, prohaptoglobin (proHp), remains to be elucidated. In this study, we investigated whether proHp can be a colorectal cancer (CRC) biomarker and the biological functions of proHp in CRC using 10-7G, a monoclonal antibody recently developed in our laboratory. MATERIALS AND METHODS Serum proHp level in 74 patients with CRC was semi-quantified by western blotting, and 5-year recurrence-free survival and overall survival were analyzed for groups stratified by proHp status (high vs. low). We also performed immunohistochemical analyses of 17 CRC tissue sections using 10-7G mAb. The biological functions of proHp were evaluated by overexpressing proHp in CRC cell lines. RESULTS Serum proHp correlated with the clinical stage and poorer prognosis of CRC. In the primary CRC sections, immune cells were stained positive for 10-7G in ∼50% of the cases. Overexpression of proHp in HCT116 human CRC cells induced epithelial-mesenchymal transition-like changes and promoted cell migration in CRC cells. CONCLUSION We provide evidence for the first time that proHp has potential as a prognostic biomarker for CRC and demonstrated specific biological activities of proHp.
Collapse
Affiliation(s)
- Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Sakon
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ayumu Hayashibara
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikumi Tamura
- Medical Systems Research & Development Center, Medical Systems Business Div. FUJIFILM Corporation, Amagasaki, Hyogo, Japan
| | - Kayoko Shimizu
- Medical Systems Research & Development Center, Medical Systems Business Div. FUJIFILM Corporation, Amagasaki, Hyogo, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohei Murata
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
37
|
Yang Q, Zhao Y, Zhao X, Sun S, Chen Y, Chen J, Zou D, Zhang L. Exploring the potential targets of Biling Weitong Granules on visceral hypersensitivity through integration of network pharmacology and in vivo analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023:116701. [PMID: 37257703 DOI: 10.1016/j.jep.2023.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/13/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Biling Weitong Granules(BLWTG) are a newly developed traditional Chinese medicine prescription based on the ancient prescription Jinlingzi San and Zuojin Wan. It is used for the treatment of functional gastrointestinal disorders (FGIDs) featured as visceral hypersensitivity(VH). However, its active ingredients and protein targets involved still remain unknown. AIM OF THE STUDY To explore the potential targets of BLWTG for the treatment of visceral hypersensitivity. MATERIALS AND METHODS Active components and their protein targets of BLWTG were screened from TCMSP database and the component-target network were constructed with Cytoscape software. Irritable bowel syndrome (IBS) was the representative disease in this study and information on its linked pathways was obtained from NCBI, Drugbank and Genecard. Target pathways of BLWTG were analyzed through KEGG to verify the correlation with IBS related pathways.Then, the VH mouse models was induced by maternal separation(MS), randomly divided into normal saline(NS),BLWTG1(low-dosage) and BLWTG2(high-dosage) group. After intervention, threshold intensity of colorectal distension (CRD) and body weight were measured to evaluate relief of IBS symptoms. Elisa was performed to evaluate 5-HT concentration changes of colon tissues. Flow cytometry was performed to assess changes of colon eosinophils and mast cells proportion. Transcriptome sequencing was employed to analyze changes of pathways and differential genes. RESULTS 199 protein targets and 132 active components of BLWTG were identified. KEGG analysis revealed the overlap between BLWTG target pathways and IBS related pathways such as neuroactive ligand-receptor interaction, tryptophan metabolism and inflammatory reaction. 34 genes were not only BLWTG target proteins but also recognized targets for treating IBS. After maternal separation(MS), the mice showed a significant decrease in threshold intensity of CRD, a progressive decrease in body weight and an increase of 5-HT concentration of colon tissue. The proportion of mast cells and eosinophils in the colon increased. Differential genes including Hp,Ido1 and Aqp7 were significantly increased in MS mice group and IBS-related pathways were upregulated. After treatment of BLWTG, threshold intensity of CRD and body weight were significantly improved and IBS related pathways were downregulated. In addition, among BLWTG protein targets, Il1b,Tnf,Adrb1 and Nos2 were found upregulated in MS + NS mice and downregulated after BLWTG intervention through combination of transcriptome sequencing. CONCLUSIONS In maternal separation-induced mouse models, BLWTG could alleviate visceral hypersensitivity, possibly through downregulation of 5-HT concentration and eosinophils and mast cells proportion in colon and critical pathways such as neuroactive ligand-receptor pathway. Potential targets of BLWTG including Il1b,Tnf,Adrb1 and Nos2 were found through integration of network pharmacology database and transcriptome sequencing, providing evidence for further study on mechanisms underlying visceral hypersensitivity.
Collapse
Affiliation(s)
- Qidi Yang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Xiangyu Zhao
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Sishen Sun
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Yifei Chen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Jiayin Chen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| | - Ling Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
| |
Collapse
|
38
|
Mouchati C, Durieux JC, Zisis SN, Labbato D, Rodgers MA, Ailstock K, Reinert BL, Funderburg NT, McComsey GA. Increase in gut permeability and oxidized ldl is associated with post-acute sequelae of SARS-CoV-2. Front Immunol 2023; 14:1182544. [PMID: 37251403 PMCID: PMC10217362 DOI: 10.3389/fimmu.2023.1182544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Background Post-acute sequelae of SARS-CoV-2 (PASC) is marked by persistent or newly developing symptoms beyond 4 weeks of infection. Investigating gut integrity, oxidized lipids and inflammatory markers is important for understanding PASC pathogenesis. Methods A cross-sectional study including COVID+ with PASC, COVID+ without PASC, and COVID-negative (COVID-) participants. We measured plasma markers by enzyme-linked immunosorbent assay to assess intestinal permeability (ZONULIN), microbial translocation (lipopolysaccharide-binding protein or LBP), systemic inflammation (high-sensitivity C-reactive protein or hs-CRP), and oxidized low-density lipoprotein (Ox-LDL). Results 415 participants were enrolled in this study; 37.83% (n=157) had prior COVID diagnosis and among COVID+, 54% (n=85) had PASC. The median zonulin among COVID- was 3.37 (IQR: 2.13, 4.91) mg/mL, 3.43 (IQR: 1.65, 5.25) mg/mL among COVID+ no PASC, and highest [4.76 (IQR: 3.2, 7.35) mg/mL] among COVID+ PASC+ (p<.0001). The median ox-LDL among COVID- was 47.02 (IQR: 35.52, 62.77) U/L, 57.24 (IQR: 40.7, 75.37) U/L among COVID+ No PASC, and the highest [76.75 (IQR: 59.95, 103.28) U/L] among COVID+ PASC+ (p<.0001). COVID+ PASC+ was positively associated with zonulin (p=0.0002) and ox-LDL (p<.0001), and COVID- was negatively associated with ox-LDL (p=0.01), compared to COVID+ No PASC. Every unit increase in zonulin was associated with 44% higher predicted odds of having PASC [aOR: 1.44 (95%CI: 1.1, 1.9)] and every one-unit increase in ox-LDL was associated with more than four-fold increased odds of having PASC [aOR: 2.44 (95%CI: 1.67, 3.55)]. Conclusions PASC is associated with increased gut permeability and oxidized lipids. Further studies are needed to clarify whether these relationships are causal which could lead to targeted therapeutics.
Collapse
Affiliation(s)
- Christian Mouchati
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jared C. Durieux
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sokratis N. Zisis
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Danielle Labbato
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Michael A. Rodgers
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Kate Ailstock
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Brian L. Reinert
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Nicholas T. Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Grace A. McComsey
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
39
|
Aguilera J, Kaushik A, Cauwenberghs N, Heider A, Ogulur I, Yazici D, Smith E, Alkotob S, Prunicki M, Akdis CA, Nadeau KC. Granzymes, IL-16, and poly(ADP-ribose) polymerase 1 increase during wildfire smoke exposure. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100093. [PMID: 37539354 PMCID: PMC10399148 DOI: 10.1016/j.jacig.2023.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Background Given the increasing prevalence of wildfires worldwide, understanding the effects of wildfire air pollutants on human health-particularly in specific immunologic pathways-is crucial. Exposure to air pollutants is associated with cardiorespiratory disease; however, immune and epithelial barrier alterations require further investigation. Objective We sought to determine the impact of wildfire smoke exposure on the immune system and epithelial barriers by using proteomics and immune cell phenotyping. Methods A San Francisco Bay area cohort (n = 15; age 30 ± 10 years) provided blood samples before (October 2019 to March 2020; air quality index = 37) and during (August 2020; air quality index = 80) a major wildfire. Exposure samples were collected 11 days (range, 10-12 days) after continuous exposure to wildfire smoke. We determined alterations in 506 proteins, including zonulin family peptide (ZFP); immune cell phenotypes by cytometry by time of flight (CyTOF); and their interrelationship using a correlation matrix. Results Targeted proteomic analyses (n = 15) revealed a decrease of spondin-2 and an increase of granzymes A, B, and H, killer cell immunoglobulin-like receptor 3DL1, IL-16, nibrin, poly(ADP-ribose) polymerase 1, C1q TNF-related protein, fibroblast growth factor 19, and von Willebrand factor after 11 days' average continuous exposure to smoke from a large wildfire (P < .05). We also observed a large correlation cluster between immune regulation pathways (IL-16, granzymes A, B, and H, and killer cell immunoglobulin-like receptor 3DL1), DNA repair [poly(ADP-ribose) 1, nibrin], and natural killer cells. We did not observe changes in ZFP levels suggesting a change in epithelial barriers. However, ZFP was associated with immune cell phenotypes (naive CD4+, TH2 cells). Conclusion We observed functional changes in critical immune cells and their proteins during wildfire smoke exposure. Future studies in larger cohorts or in firefighters exposed to wildfire smoke should further assess immune changes and intervention targets.
Collapse
Affiliation(s)
- Juan Aguilera
- the Center for Community Health Impact, University of Texas Health Science Center School of Public Health, El Paso
| | - Abhinav Kaushik
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
| | - Nicholas Cauwenberghs
- the Department of Cardiovascular Sciences, Hypertension and Cardiovascular Epidemiology Research Unit, KU Leuven, Leuven
| | - Anja Heider
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Duygu Yazici
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Eric Smith
- the David Geffen School of Medicine at University of California, Los Angeles
| | | | - Mary Prunicki
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
| | - Cezmi A. Akdis
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
- the Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos
| | - Kari C. Nadeau
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
- the Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston
| |
Collapse
|
40
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
41
|
The Role of Probiotics in Inflammation Associated with Major Surgery: A Narrative Review. Nutrients 2023; 15:nu15061331. [PMID: 36986061 PMCID: PMC10059922 DOI: 10.3390/nu15061331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Gut microbiota is well-known for its ability to maintain intestinal homeostasis. However, the disruption of this homeostasis, known as dysbiosis, leads to multiple consequences, including local and systemic inflammation. Surgery-induced inflammation is a major concern for patients, as it leads to many infectious and non-infectious complications. Objective: The purpose of this review was to explore the role of probiotics and symbiotics in surgery-induced inflammation and to determine if their use is effective in combatting inflammation and its complications Methods and Materials: A literature search was conducted, and articles published only in English, until December 2022 were included. The results are reported in the form of a narrative review. Results: The perioperative use of probiotics and/or symbiotics results in lower risk of infectious complications, including reduced rates of surgical site infections, respiratory and urinary tract infections, shorter hospital stays, and fewer days of antibiotic administration. It also contributes to reducing non-infectious complications, as it mitigates systemic and local inflammation via maintenance of the intestinal barrier, improves intestinal mobility, and is associated with lower rates of postoperative pain and anastomotic leak. Conclusions: Restoring gut microbiota after disruptions caused by surgery may accelerate local healing processes, attenuate systemic inflammation, and may thus prove beneficial to certain populations.
Collapse
|
42
|
Konno T, Martinez EE, Ji J, Miranda-Ribera A, Fiorentino MR, Fasano A. Human coagulation factor X and CD5 antigen-like are potential new members of the zonulin family proteins. Biochem Biophys Res Commun 2023; 638:127-133. [PMID: 36446155 PMCID: PMC9797450 DOI: 10.1016/j.bbrc.2022.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Zonulin is a physiologic epithelial and endothelial permeability modulator. Zonulin increases antigen trafficking from the gut lumen into the bloodstream and in between body compartments, a mechanism linked to many chronic inflammatory diseases. Upon its initial discovery, it was noted that zonulin was not a single protein, but rather a family of structurally and functionally related proteins referred to as the zonulin family proteins (ZFPs). ZFPs are members of the mannose associated serine proteases (MASP) family and are the result of high mutation rates leading to many zonulin polymorphisms. Pre-haptoglobin 2, the precursor of haptoglobin 2, was identified as the first eukaryotic member of the ZFPs, and properdin, a key positive regulator of the alternative pathway, as a second member. In this study, we report two additional proteins that are likely ZFPs. Human coagulation factor X (FX) and CD5 antigen-like (CD5L). Both FX and CD5L recombinant proteins were detected by anti-zonulin antibody in Western immunoblot analysis, and both proteins decreased epithelial barrier competency of Caco-2 cell monolayers as established by the Trans Epithelial Electrical Resistance (TEER) assay. These results indicate that FX and CD5L have structural and functional similarities with previously identified ZFPs and, therefore, can be considered new members of this family of proteins.
Collapse
Affiliation(s)
- Takumi Konno
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Enid E Martinez
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jian Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Alba Miranda-Ribera
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital-East, 16th Street, Building 114 (M/S 114-3503), Charlestown, MA, 02114-4404, USA.
| |
Collapse
|
43
|
Ouyang J, Yan J, Zhou X, Isnard S, Harypursat V, Cui H, Routy JP, Chen Y. Relevance of biomarkers indicating gut damage and microbial translocation in people living with HIV. Front Immunol 2023; 14:1173956. [PMID: 37153621 PMCID: PMC10160480 DOI: 10.3389/fimmu.2023.1173956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The intestinal barrier has the daunting task of allowing nutrient absorption while limiting the entry of microbial products into the systemic circulation. HIV infection disrupts the intestinal barrier and increases intestinal permeability, leading to microbial product translocation. Convergent evidence has shown that gut damage and an enhanced level of microbial translocation contribute to the enhanced immune activation, the risk of non-AIDS comorbidity, and mortality in people living with HIV (PLWH). Gut biopsy procedures are invasive, and are not appropriate or feasible in large populations, even though they are the gold standard for intestinal barrier investigation. Thus, validated biomarkers that measure the degree of intestinal barrier damage and microbial translocation are needed in PLWH. Hematological biomarkers represent an objective indication of specific medical conditions and/or their severity, and should be able to be measured accurately and reproducibly via easily available and standardized blood tests. Several plasma biomarkers of intestinal damage, i.e., intestinal fatty acid-binding protein (I-FABP), zonulin, and regenerating islet-derived protein-3α (REG3α), and biomarkers of microbial translocation, such as lipopolysaccharide (LPS) and (1,3)-β-D-Glucan (BDG) have been used as markers of risk for developing non-AIDS comorbidities in cross sectional analyses and clinical trials, including those aiming at repair of gut damage. In this review, we critically discuss the value of different biomarkers for the estimation of gut permeability levels, paving the way towards developing validated diagnostic and therapeutic strategies to repair gut epithelial damage and to improve overall disease outcomes in PLWH.
Collapse
Affiliation(s)
- Jing Ouyang
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, BC, Canada
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|
44
|
Crosstalk between Resveratrol and Gut Barrier: A Review. Int J Mol Sci 2022; 23:ijms232315279. [PMID: 36499603 PMCID: PMC9739931 DOI: 10.3390/ijms232315279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area.
Collapse
|
45
|
Ardalan M, Ahmadian E, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Bastami M, Bagheri Y, Zununi Vahed F, Shoja MM, Zununi Vahed S. Microbiota and glomerulonephritis: An immunological point of view. Am J Med Sci 2022; 364:695-705. [PMID: 35870511 DOI: 10.1016/j.amjms.2022.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/26/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023]
Abstract
Glomerular injury is the major cause of chronic kidney diseases (CKD) worldwide and is characterized by proteinuria. Glomerulonephritis (GN) has a wide spectrum of etiologies, the intensity of glomerular damage, histopathology, and clinical outcomes that can be associated with the landscape of the nephritogenic immune response. Beyond impaired immune responses and genetic factors, recent evidence indicates that microbiota can be contributed to the pathogenesis of GN and patients' outcomes by impacting many aspects of the innate and adaptive immune systems. It is still unknown whether dysbiosis induces GN or it is a secondary effect of the disease. Several factors such as drugs and nutritional problems can lead to dysbiosis in GN patients. It has been postulated that gut dysbiosis activates immune responses, promotes a state of systemic inflammation, and produces uremic toxins contributing to kidney tissue inflammation, apoptosis, and subsequent proteinuric nephropathy. In this review, the impact of gastrointestinal tract (GI) microbiota on the pathogenesis of the primary GN will be highlighted. The application of therapeutic interventions based on the manipulation of gut microbiota with special diets and probiotic supplementation can be effective in GN.
Collapse
Affiliation(s)
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | |
Collapse
|
46
|
Abril AG, Villa TG, Sánchez-Pérez Á, Notario V, Carrera M. The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. Int J Mol Sci 2022; 23:14333. [PMID: 36430811 PMCID: PMC9696009 DOI: 10.3390/ijms232214333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| |
Collapse
|
47
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
48
|
Hernández-Solis A, Güemes-González AM, Ruiz-Gómez X, Álvarez-Maldonado P, Castañeda-Casimiro J, Flores-López A, Ramírez-Guerra MA, Muñoz-Miranda O, Madera-Sandoval RL, Arriaga-Pizano LA, Nieto-Patlán A, Estrada-Parra S, Pérez-Tapia SM, Serafín-López J, Chacón-Salinas R, Escobar-Gutiérrez A, Soria-Castro R, Ruiz-Sánchez BP, Wong-Baeza I. IL-6, IL-10, sFas, granulysin and indicators of intestinal permeability as early biomarkers for a fatal outcome in COVID-19. Immunobiology 2022; 227:152288. [PMID: 36209721 PMCID: PMC9527226 DOI: 10.1016/j.imbio.2022.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.
Collapse
Affiliation(s)
- Alejandro Hernández-Solis
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Azmavet M Güemes-González
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ximena Ruiz-Gómez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pablo Álvarez-Maldonado
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Jessica Castañeda-Casimiro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Argelia Flores-López
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Martha Alicia Ramírez-Guerra
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Omar Muñoz-Miranda
- Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Ruth L Madera-Sandoval
- Unidad de Investigación Médica en Inmunoquímica, Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Lourdes A Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alejandro Nieto-Patlán
- Departamento de Genética, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, TX, USA.
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Mexico City, Mexico; Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (l+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT. Mexico City, Mexico
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alejandro Escobar-Gutiérrez
- Coordinación de Investigaciones Inmunológicas, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaria de Salud, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Patricia Ruiz-Sánchez
- Facultad de Medicina. Universidad Westhill, Mexico City, Mexico; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
49
|
Daneshvar M, Yadegari A, Ribaldone DG, Hasanzadeh M, Djafarian K. Zonulin levels in complicated pregnancy: a systematic review and meta-analysis. J OBSTET GYNAECOL 2022; 42:2621-2628. [PMID: 36094006 DOI: 10.1080/01443615.2022.2114822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zonulin is a novel biomarker of intestinal permeability. The existing data suggest that upregulation of zonulin might be linked to systemic inflammation and pregnancy complications. A systematic search was performed in medical electronic databases to identify eligible studies that reported circulating zonulin levels in complicated pregnancies compared to controls. Eight studies with 1196 serum samples of pregnant women were included in the systematic review. Meta-analysis on four studies revealed a significant increase in serum zonulin in women with Gestational diabetes mellitus (GDM) compared to healthy controls (Cohen's d = 2.06; 95% Confidence Interval (CI): 0.15, 3.98). By pooling four studies that investigated zonulin levels in Hypertensive disorders of pregnancy (HDP), higher zonulin concentrations were found in cases, while the difference was not significant (Cohen's d = 0.86; 95% CI: -0.04, 1.75). Current evidence suggests that higher levels of zonulin during pregnancy seem to be associated with inflammation-related complications, including GDM and HDP.Impact StatementWhat is already known on this subject? Increased zonulin levels are considered as a marker of intestinal hyper-permeability. Upregulation of zonulin and concurrent systemic inflammation, are known to be associated with some pregnancy complications.What do the results of this study add? We performed a meta-analysis to evaluate changes in serum zonulin levels in pregnancies complicated with Gestational diabetes mellitus (GDM), Hypertensive disorders of pregnancy (HDP), and Intrahepatic cholestasis of pregnancy (ICP). According to our results, zonulin levels were significantly higher in complicated pregnancies than in normal pregnancies, particularly for GDM.What are the implications of these findings for clinical practice and/or further research? Our findings revealed a probable association between increased zonulin levels and inflammation-related complications during pregnancy. Moreover, zonulin could serve as a reliable diagnostic clinical biomarker to identify (or predict) complications during pregnancy. Further studies are needed to examine the clinical accuracy of zonulin for detecting pregnancy-related complications.
Collapse
Affiliation(s)
- Mojtaba Daneshvar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Anahita Yadegari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohaddeseh Hasanzadeh
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Nutrition, Islamic Azad University, Sarvestan Branch, Sarvestan, Iran
| | - Kurosh Djafarian
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Clinical Nutrition, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Wang Z, Wang X, Zhao X, Hu Z, Sun D, Wu D, Xing Y. Causal relationship between bipolar disorder and inflammatory bowel disease: A bidirectional two-sample mendelian randomization study. Front Genet 2022; 13:970933. [PMID: 36204313 PMCID: PMC9531165 DOI: 10.3389/fgene.2022.970933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Growing evidence suggests a bidirectional association between bipolar disorder (BD) and inflammatory bowel disease (IBD); however, observational studies are prone to confounding, making causal inference and directional determination of these associations difficult.Methods: We performed bidirectional two-sample Mendelian randomization (MR) and selected single nucleotide polymorphisms (SNPs) associated with BD and IBD as instrumental variables (IV). SNPs and genetic associations with BD and IBD were obtained from the latest genome-wide association studies (GWAS) in Europeans (BD: cases/controls: 20352/31358; IBD: 12882/21770; Crohn’s disease (CD): 5,956/14927; ulcerative colitis (UC): 6968/20464). The inverse-variance-weighted method was the major method used in MR analyses. MR-Egger, weight mode, simple mode, and weighted median were used for quality control.Results: Genetically predicted BD (per log-odds ratio increase) was significantly positively associated with risk of IBD (OR: 1.18, 95% CI: 1.04–1.33), and UC (OR = 1.19, 95% CI: 1.05–1.35), but not CD (OR = 1.18, 95% CI: 0.95–1.48). The validation analysis found that combined OR of IBD, CD, and UC increased per log-OR of BD were 1.16(95% CI: 1.02–1.31), 1.20(95% CI: 0.98–1.48) 1.17(95% CI: 1.02–1.35), respectively. In contrast, no causal relationship was identified between genetically influenced IBD and BD.Conclusion: Our results confirm a causal relationship between BD and IBD, which may influence clinical decisions on the management of BD patients with intestinal symptoms. Although the reverse MR results did not support a causal effect of IBD on BD, the effect of the IBD active period on BD remains to be further investigated.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinyu Wang
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xushi Zhao
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhaoliang Hu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Dongwei Sun
- Department of International Special Medical Center, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Donglei Wu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yanan Xing
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
- *Correspondence: Yanan Xing, , orcid.org/0000-0002-9944-7675
| |
Collapse
|