1
|
Koschutnig K, Weber B, Fink A. Tidying up white matter: Neuroplastic transformations in sensorimotor tracts following slackline skill acquisition. Hum Brain Mapp 2024; 45:e26791. [PMID: 39524014 PMCID: PMC11551625 DOI: 10.1002/hbm.26791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated changes in white matter (WM) morphology following complex motor learning, that is, the learning to walk a slackline. A sample of young adults from the general population underwent brain imaging before the slackline intervention, after successful learning, and after a subsequent follow-up period by applying state-of-the-art measures for the assessment of micro- and macrostructural characteristics of WM fiber tracts (voxel-based and fixel-based). A randomly assigned control group (CG) was scanned at the same time points of assessment but received no intervention over the study period. Learning to walk a slackline resulted in manifold changes in WM morphology: (1) Whole brain fixel-based analyses revealed robust increases in the fiber cross-section in bundles closely associated with sensorimotor functions (e.g., superior longitudinal fasciculi, corticospinal tract); (2) The neurite orientation dispersion and density imaging (NODDI) parameters showed widespread decreases in overlapping fiber bundles. In the CG, no time-related WM changes were apparent at all. This well-controlled longitudinal intervention study provides substantial new evidence that learning a complex motor skill modulates fiber organization and fiber density in sensorimotor tracts.
Collapse
Affiliation(s)
- Karl Koschutnig
- Department of Psychology, MRI‐Lab GrazUniversity of GrazGrazAustria
- Present address:
MRI‐Lab Graz, University of Graz, Kopernikusgasse 24GrazAustria
| | | | - Andreas Fink
- Department of PsychologyUniversity of GrazGrazAustria
| |
Collapse
|
2
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
3
|
Canales-Rodríguez EJ, Pizzolato M, Zhou FL, Barakovic M, Thiran JP, Jones DK, Parker GJM, Dyrby TB. Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI. Magn Reson Med 2024; 91:2579-2596. [PMID: 38192108 DOI: 10.1002/mrm.29991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. THEORY AND METHODS A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images. RESULTS Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes. CONCLUSION The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.
Collapse
Affiliation(s)
- Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marco Pizzolato
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Feng-Lei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- MicroPhantoms Limited, Cambridge, UK
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d'Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Geoffrey J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London (UCL), London, UK
- Bioxydyn Limited, Manchester, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Xiong Y, Yang L, Wang C, Zhao C, Luo J, Wu D, Ouyang Y, de Thiebaut de Schotten M, Gong G. Cortical mapping of callosal connections in healthy young adults. Hum Brain Mapp 2024; 45:e26629. [PMID: 38379508 PMCID: PMC10879906 DOI: 10.1002/hbm.26629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
The corpus callosum (CC) is the principal white matter bundle supporting communication between the two brain hemispheres. Despite its importance, a comprehensive mapping of callosal connections is still lacking. Here, we constructed the first bidirectional population-based callosal connectional atlas between the midsagittal section of the CC and the cerebral cortex of the human brain by means of diffusion-weighted imaging tractography. The estimated connectional topographic maps within this atlas have the most fine-grained spatial resolution, demonstrate histological validity, and were reproducible in two independent samples. This new resource, a complete and comprehensive atlas, will facilitate the investigation of interhemispheric communication and come with a user-friendly companion online tool (CCmapping) for easy access and visualization of the atlas.
Collapse
Affiliation(s)
- Yirong Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Changtong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Di Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yiping Ouyang
- The Queen's University of Belfast Joint CollegeChina Medical UniversityShenyangChina
| | - Michel de Thiebaut de Schotten
- Brain Connectivity and Behaviour LaboratorySorbonne UniversitéParisFrance
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives‐UMR 5293, Centre National de la Recherche Scienti que, Commissariat à l'Energie AtomiqueUniversity of BordeauxBordeauxFrance
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDGMcGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
5
|
Novembre G, Lacal I, Benusiglio D, Quarta E, Schito A, Grasso S, Caratelli L, Caminiti R, Mayer AB, Iannetti GD. A Cortical Mechanism Linking Saliency Detection and Motor Reactivity in Rhesus Monkeys. J Neurosci 2024; 44:e0422232023. [PMID: 37949654 PMCID: PMC10851684 DOI: 10.1523/jneurosci.0422-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Rome 00161, Italy
| | - Irene Lacal
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077 Göttingen, Germany
| | - Diego Benusiglio
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- European Molecular Biology Laboratory (EMBL), Epigenetics and Neurobiology Unit, Rome 00015, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Andrea Schito
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Ludovica Caratelli
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | | | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London WC1E6BT, United Kingdom
| |
Collapse
|
6
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
7
|
Huynh KM, Wu Y, Ahmad S, Yap PT. Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:131-141. [PMID: 39129859 PMCID: PMC11315459 DOI: 10.1007/978-3-031-43993-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.
Collapse
Affiliation(s)
- Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| |
Collapse
|
8
|
Oliveira R, De Lucia M, Lutti A. Single-subject electroencephalography measurement of interhemispheric transfer time for the in-vivo estimation of axonal morphology. Hum Brain Mapp 2023; 44:4859-4874. [PMID: 37470446 PMCID: PMC10472916 DOI: 10.1002/hbm.26420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.
Collapse
Affiliation(s)
- Rita Oliveira
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Marzia De Lucia
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
9
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Mei Y, Wang W, Qiu D, Yuan Z, Bai X, Tang H, Zhang P, Zhang X, Zhang Y, Yu X, Sui B, Wang Y. Micro-structural white matter abnormalities in new daily persistent headache: a DTI study using TBSS analysis. J Headache Pain 2023; 24:80. [PMID: 37394419 DOI: 10.1186/s10194-023-01620-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND New daily persistent headache (NDPH) is a rare primary headache disorder characterized by daily and persistent sudden onset headaches. The pathogenesis of NDPH remains unclear, and there are few white matter imaging studies related to NDPH. The purpose of this study was to investigate the micro-structural abnormalities of white matter in NDPH and provided insights into the pathogenesis of this disease based on tract-based spatial statistics (TBSS). METHODS Twenty-one patients with NDPH and 25 healthy controls (HCs) were included in this study. T1 structural and diffusion magnetic resonance imaging (MRI) were acquired from all participants. Differences in the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between patients with NDPH and HCs were investigated using TBSS analysis. RESULTS Significantly decreased FA, increased MD and RD were found in patients with NDPH compared to HCs. White matter regions overlaid with decreased FA, increased MD and RD were found in 16 white matter tracts from the Johns Hopkins University ICBM-DTI-81 White-Matter Atlas and Johns Hopkins University White-Matter Tractography Atlas. Specifically, these white matter regions included the right anterior thalamic radiation (ATR), body of the corpus callosum (BCC), bilateral cingulum, left hippocampal cingulum (CGH), left corticospinal tract (CST), forceps major, fornix, left inferior fronto-occipital fasciculus (IFOF), bilateral inferior longitudinal fasciculus (ILF), left posterior limb of the internal capsule (PLIC), right retrolenticular part of the internal capsule (RPIC), splenium of the corpus callosum (SCC), right superior longitudinal fasciculus (SLF) and left uncinate fasciculus (UF). After Bonferroni correction, there were no correlations between the FA, MD, AD and RD values and the clinical characteristics of patients with NDPH (p > 0.05/96). CONCLUSION The results of our research indicated that patients with NDPH might have widespread abnormalities in the white matter of the brain.
Collapse
Affiliation(s)
- Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, Neurosurgical Institute, Beijing, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, Neurosurgical Institute, Beijing, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
11
|
Choi S, Chen Y, Zeng H, Biswal B, Yu X. Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI. J Cereb Blood Flow Metab 2023; 43:1115-1129. [PMID: 36803280 PMCID: PMC10291453 DOI: 10.1177/0271678x231158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 02/23/2023]
Abstract
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
Collapse
Affiliation(s)
- Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yi Chen
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, NJIT, Newark, NJ, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
12
|
Pizzolato M, Canales-Rodríguez EJ, Andersson M, Dyrby TB. Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI. Med Image Anal 2023; 86:102767. [PMID: 36867913 DOI: 10.1016/j.media.2023.102767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons. At the same time, spherical averaging leads to a major simplification of the modeling by removing the need to explicitly account for the unknown distribution of axonal orientations. However, the spherically averaged signal acquired at strong diffusion weightings is not sensitive to the axial diffusivity, which cannot therefore be estimated although needed for modeling axons - especially in the context of multi-compartmental modeling. We introduce a new general method for the estimation of both the axial and radial axonal diffusivities at strong diffusion weightings based on kernel zonal modeling. The method could lead to estimates that are free from partial volume bias with gray matter or other isotropic compartments. The method is tested on publicly available data from the MGH Adult Diffusion Human Connectome project. We report reference values of axonal diffusivities based on 34 subjects, and derive estimates of axonal radii from only two shells. The estimation problem is also addressed from the angle of the required data preprocessing, the presence of biases related to modeling assumptions, current limitations, and future possibilities.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
13
|
Mapping myelin in white matter with T1-weighted/T2-weighted maps: discrepancy with histology and other myelin MRI measures. Brain Struct Funct 2023; 228:525-535. [PMID: 36692695 PMCID: PMC9944377 DOI: 10.1007/s00429-022-02600-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/18/2022] [Indexed: 01/25/2023]
Abstract
The ratio of T1-weighted/T2-weighted magnetic resonance images (T1w/T2w MRI) has been successfully applied at the cortical level since 2011 and is now one of the most used myelin mapping methods. However, no reports have explored the histological validity of T1w/T2w myelin mapping in white matter. Here we compare T1w/T2w with ex vivo postmortem histology and in vivo MRI methods, namely quantitative susceptibility mapping (QSM) and multi-echo T2 myelin water fraction (MWF) mapping techniques. We report a discrepancy between T1w/T2w myelin maps of the human corpus callosum and the histology and analyse the putative causes behind such discrepancy. T1w/T2w does not positively correlate with Luxol Fast Blue (LFB)-Optical Density but shows a weak to moderate, yet significant, negative correlation. On the contrary, MWF is strongly and positively correlated with LFB, whereas T1w/T2w and MWF maps are weakly negatively correlated. The discrepancy between T1w/T2w MRI maps, MWF and histological myelin maps suggests caution in using T1w/T2w as a white matter mapping method at the callosal level. While T1w/T2w imaging may correlate with myelin content at the cortical level, it is not a specific method to map myelin density in white matter.
Collapse
|
14
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
15
|
Bernardini A, Trovatelli M, Kłosowski MM, Pederzani M, Zani DD, Brizzola S, Porter A, Rodriguez Y Baena F, Dini D. Reconstruction of ovine axonal cytoarchitecture enables more accurate models of brain biomechanics. Commun Biol 2022; 5:1101. [PMID: 36253409 PMCID: PMC9576772 DOI: 10.1038/s42003-022-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
There is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports a systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibres, namely the corpus callosum, the fornix and the corona radiata, with the specific aim to map different regions of the tissue and provide essential information for the development of accurate models of brain biomechanics. Ovine samples are imaged using scanning electron microscopy combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution. Focus is placed on the characteristic cytological feature of the white matter: the axons and their alignment in the tissue. For each tract, a 3D reconstruction of relatively large volumes, including a significant number of axons, is performed and outer axonal ellipticity, outer axonal cross-sectional area and their relative perimeter are measured. The study of well-resolved microstructural features provides useful insight into the fibrous organization of the tissue, whose micromechanical behaviour is that of a composite material presenting elliptical tortuous tubular axonal structures embedded in the extra-cellular matrix. Drug flow can be captured through microstructurally-based models using 3D volumes, either reconstructed directly from images or generated in silico using parameters extracted from the database of images, leading to a workflow to enable physically-accurate simulations of drug delivery to the targeted tissue. Imaging and reconstruction of sheep brain axonal cytoarchitecture provides insight for brain biomechanics models that simulate drug delivery and other biological processes governed by interstitial fluid flow and transport.
Collapse
Affiliation(s)
- Andrea Bernardini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Marco Trovatelli
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | | | - Matteo Pederzani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Davide Danilo Zani
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Stefano Brizzola
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Alexandra Porter
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Alexandris AS, Wang Y, Frangakis CE, Lee Y, Ryu J, Alam Z, Koliatsos VE. Long-Term Changes in Axon Calibers after Injury: Observations on the Mouse Corticospinal Tract. Int J Mol Sci 2022; 23:7391. [PMID: 35806394 PMCID: PMC9266552 DOI: 10.3390/ijms23137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
White matter pathology is common across a wide spectrum of neurological diseases. Characterizing this pathology is important for both a mechanistic understanding of neurological diseases as well as for the development of neuroimaging biomarkers. Although axonal calibers can vary by orders of magnitude, they are tightly regulated and related to neuronal function, and changes in axon calibers have been reported in several diseases and their models. In this study, we utilize the impact acceleration model of traumatic brain injury (IA-TBI) to assess early and late changes in the axon diameter distribution (ADD) of the mouse corticospinal tract using Airyscan and electron microscopy. We find that axon calibers follow a lognormal distribution whose parameters significantly change after injury. While IA-TBI leads to 30% loss of corticospinal axons by day 7 with a bias for larger axons, at 21 days after injury we find a significant redistribution of axon frequencies that is driven by a reduction in large-caliber axons in the absence of detectable degeneration. We postulate that changes in ADD features may reflect a functional adaptation of injured neural systems. Moreover, we find that ADD features offer an accurate way to discriminate between injured and non-injured mice. Exploring injury-related ADD signatures by histology or new emerging neuroimaging modalities may offer a more nuanced and comprehensive way to characterize white matter pathology and may also have the potential to generate novel biomarkers of injury.
Collapse
Affiliation(s)
- Athanasios S. Alexandris
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Yiqing Wang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | | | - Youngrim Lee
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Zahra Alam
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Hu Y, Jia Z, Zhang L, Zhang Z, Li H, Tan Z, Lv S, von Deneen KM, Duan S, Cui G, Nie Y, Zhang Y. White-matter microstructural alterations in patients with functional constipation: A tract-based spatial statistics study. Neurogastroenterol Motil 2022; 34:e14338. [PMID: 35195324 DOI: 10.1111/nmo.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Highly prevalent functional constipation (FC) belongs to the category of functional gastrointestinal disorders. Neuroimaging studies have demonstrated brain functional and morphometric changes in patients with FC. However, whether FC is associated with white-matter (WM) microstructural alterations remains unclear. METHODS Diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) were introduced to investigate WM microstructural changes as calculated by fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD) in 26 FC patients and 31 healthy controls. KEY RESULTS Patients with FC relative to healthy controls had significantly decreased FA with increased MD/RD in the genu (GCC) and body (BCC) of the corpus callosum, right cingulum (Cing), bilateral anterior corona radiata (ACR), bilateral superior corona radiata (SCR), and left posterior corona radiata (PCR) (pFWE < 0.05). Between-group difference was only in the left SCR and PCR when regressing out anxiety and depression as covariates. CONCLUSIONS AND INFERENCES These WM tracts are mainly responsible for sensory and emotional information communication and corresponding functional integration; thus, our findings indicate an association between FC and WM microstructural abnormalities in regions involved with visceral afferent and emotional-arousal processing. Alterations in WM microstructures including the CC, cingulum, and ACR are more related to psychological symptoms than constipation, which might have greater impact on brain structures.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhenzhen Jia
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Lei Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shuai Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Shijun Duan
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
18
|
Yang L, Zhao C, Xiong Y, Zhong S, Wu D, Peng S, Thiebaut de Schotten M, Gong G. Callosal Fiber Length Scales with Brain Size According to Functional Lateralization, Evolution, and Development. J Neurosci 2022; 42:3599-3610. [PMID: 35332080 PMCID: PMC9053854 DOI: 10.1523/jneurosci.1510-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Brain size significantly impacts the organization of white matter fibers. Fiber length scaling, the degree to which fiber length varies according to brain size, was overlooked. We investigated how fiber lengths within the corpus callosum, the most prominent white matter tract, vary according to brain size. The results showed substantial variation in length scaling among callosal fibers, replicated in two large healthy cohorts (∼2000 human subjects, including both sexes). The underscaled callosal fibers mainly connected the precentral gyrus and parietal cortices, whereas the overscaled callosal fibers mainly connected the prefrontal cortices. The variation in such length scaling was biologically meaningful: larger scaling corresponded to larger neurite density index but smaller fractional anisotropy values; cortical regions connected by the callosal fibers with larger scaling were more lateralized functionally as well as phylogenetically and ontogenetically more recent than their counterparts. These findings highlight an interaction between interhemispheric communication and organizational and adaptive principles underlying brain development and evolution.SIGNIFICANCE STATEMENT Brain size varies across evolution, development, and individuals. Relative to small brains, the neural fiber length in large brains is inevitably increased, but the degree of such increase may differ between fiber tracts. Such a difference, if it exists, is valuable for understanding adaptive neural principles in large versus small brains during evolution and development. The present study showed a substantial difference in the length increase between the callosal fibers that connect the two hemispheres, replicated in two large healthy cohorts. Together, our study demonstrates that reorganization of interhemispheric fibers length according to brain size is intrinsically related to fiber composition, functional lateralization, cortical myelin content, and evolutionary and developmental expansion.
Collapse
Affiliation(s)
- Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yirong Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suyu Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris 75006, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, University of Bordeaux, Bordeaux 33405, France
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
19
|
Oliveira R, Pelentritou A, Di Domenicantonio G, De Lucia M, Lutti A. In vivo Estimation of Axonal Morphology From Magnetic Resonance Imaging and Electroencephalography Data. Front Neurosci 2022; 16:874023. [PMID: 35527816 PMCID: PMC9070985 DOI: 10.3389/fnins.2022.874023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We present a novel approach that allows the estimation of morphological features of axonal fibers from data acquired in vivo in humans. This approach allows the assessment of white matter microscopic properties non-invasively with improved specificity. Theory The proposed approach is based on a biophysical model of Magnetic Resonance Imaging (MRI) data and of axonal conduction velocity estimates obtained with Electroencephalography (EEG). In a white matter tract of interest, these data depend on (1) the distribution of axonal radius [P(r)] and (2) the g-ratio of the individual axons that compose this tract [g(r)]. P(r) is assumed to follow a Gamma distribution with mode and scale parameters, M and θ, and g(r) is described by a power law with parameters α and β. Methods MRI and EEG data were recorded from 14 healthy volunteers. MRI data were collected with a 3T scanner. MRI-measured g-ratio maps were computed and sampled along the visual transcallosal tract. EEG data were recorded using a 128-lead system with a visual Poffenberg paradigm. The interhemispheric transfer time and axonal conduction velocity were computed from the EEG current density at the group level. Using the MRI and EEG measures and the proposed model, we estimated morphological properties of axons in the visual transcallosal tract. Results The estimated interhemispheric transfer time was 11.72 ± 2.87 ms, leading to an average conduction velocity across subjects of 13.22 ± 1.18 m/s. Out of the 4 free parameters of the proposed model, we estimated θ – the width of the right tail of the axonal radius distribution – and β – the scaling factor of the axonal g-ratio, a measure of fiber myelination. Across subjects, the parameter θ was 0.40 ± 0.07 μm and the parameter β was 0.67 ± 0.02 μm−α. Conclusion The estimates of axonal radius and myelination are consistent with histological findings, illustrating the feasibility of this approach. The proposed method allows the measurement of the distribution of axonal radius and myelination within a white matter tract, opening new avenues for the combined study of brain structure and function, and for in vivo histological studies of the human brain.
Collapse
|
20
|
Mollon JD, Takahashi C, Danilova MV. What kind of network is the brain? Trends Cogn Sci 2022; 26:312-324. [PMID: 35216895 DOI: 10.1016/j.tics.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
The different areas of the cerebral cortex are linked by a network of white matter, comprising the myelinated axons of pyramidal cells. Is this network a neural net, in the sense that representations of the world are embodied in the structure of the net, its pattern of nodes, and connections? Or is it a communications network, where the same physical substrate carries different information from moment to moment? This question is part of the larger question of whether the brain is better modeled by connectionism or by symbolic artificial intelligence (AI), but we review it in the specific context of the psychophysics of stimulus comparison and the format and protocol of information transmission over the long-range tracts of the brain.
Collapse
Affiliation(s)
- John D Mollon
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; I.P. Pavlov Institute of Physiology, St. Petersburg, Russia.
| | - Chie Takahashi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Marina V Danilova
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; I.P. Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
21
|
Mordhorst L, Morozova M, Papazoglou S, Fricke B, Oeschger JM, Tabarin T, Rusch H, Jäger C, Geyer S, Weiskopf N, Morawski M, Mohammadi S. Towards a representative reference for MRI-based human axon radius assessment using light microscopy. Neuroimage 2022; 249:118906. [PMID: 35032659 DOI: 10.1016/j.neuroimage.2022.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.
Collapse
Affiliation(s)
- Laurin Mordhorst
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Maria Morozova
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sebastian Papazoglou
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Fricke
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Malte Oeschger
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thibault Tabarin
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henriette Rusch
- Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Geyer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| | - Markus Morawski
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
22
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
23
|
Andersson M, Pizzolato M, Kjer HM, Skodborg KF, Lundell H, Dyrby TB. Does powder averaging remove dispersion bias in diffusion MRI diameter estimates within real 3D axonal architectures? Neuroimage 2021; 248:118718. [PMID: 34767939 DOI: 10.1016/j.neuroimage.2021.118718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Noninvasive estimation of axon diameter with diffusion MRI holds the potential to investigate the dynamic properties of the brain network and pathology of neurodegenerative diseases. Recent studies use powder averaging to account for complex white matter architectures, but these have not been validated for real axonal geometries from regions that contain fibre crossings. Here, we present 120-304μm long segmented axons from X-ray nano-holotomography volumes of a splenium and crossing fibre region of a vervet monkey brain. We show that the axons in the complex crossing fibre region, which contains callosal, association, and corticospinal connections, are larger and exhibit a wider distribution than those of the splenium region. To accurately estimate the axon diameter in these regions, therefore, sensitivity to a wide range of diameters is required. We demonstrate how the q-value, b-value, signal-to-noise ratio and the assumed intra-axonal parallel diffusivity influence the range of measurable diameters with powder average approaches. Furthermore, we show how Gaussian distributed noise results in a wider range of measurable diameter at high b-values than Rician distributed noise, even at high signal-to-noise ratios of 100. The number of gradient directions is also shown to impose a lower bound on measurable diameter. Our results indicate that axon diameter estimation can be performed with only few b-shells, and that additional shells do not improve the accuracy of the estimate. For strong gradients available on human Connectom and preclinical scanners, Monte Carlo simulations of diffusion confirm that powder averaging techniques succeed in providing accurate estimates of axon diameter across a range of sequence parameters and diffusion times, even in complex white matter architectures. At relatively low b-values, the diameter estimate becomes sensitive to axonal microdispersion and the intra-axonal parallel diffusivity shows time dependency at both in vivo and ex vivo intrinsic diffusivities.
Collapse
Affiliation(s)
- Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Marco Pizzolato
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Katrine Forum Skodborg
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
24
|
Meijer A, Pouwels PJW, Smith J, Visscher C, Bosker RJ, Hartman E, Oosterlaan J, Königs M. The relationship between white matter microstructure, cardiovascular fitness, gross motor skills, and neurocognitive functioning in children. J Neurosci Res 2021; 99:2201-2215. [PMID: 34019710 PMCID: PMC8453576 DOI: 10.1002/jnr.24851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022]
Abstract
Recent evidence indicates that both cardiovascular fitness and gross motor skill performance are related to enhanced neurocognitive functioning in children by influencing brain structure and functioning. This study investigates the role of white matter microstructure in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy children. In total 92 children (mean age 9.1 years, range 8.0-10.7) were included in this study. Cardiovascular fitness and gross motor skill performance were assessed using performance-based tests. Neurocognitive functioning was assessed using computerized tests (working memory, inhibition, interference control, information processing, and attention). Diffusion tensor imaging was used in combination with tract-based spatial statistics to assess white matter microstructure as defined by fractional anisotropy (FA), axial and radial diffusivity (AD, RD). The results revealed positive associations of both cardiovascular fitness and gross motor skills with neurocognitive functioning. Information processing and motor response inhibition were associated with FA in a cluster located in the corpus callosum. Within this cluster, higher cardiovascular fitness and better gross motor skills were both associated with greater FA, greater AD, and lower RD. No mediating role was found for FA in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning. The results indicate that cardiovascular fitness and gross motor skills are related to neurocognitive functioning as well as white matter microstructure in children. However, this study provides no evidence for a mediating role of white matter microstructure in these relationships.
Collapse
Affiliation(s)
- Anna Meijer
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Petra J. W. Pouwels
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Joanne Smith
- Center for Human Movement SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Chris Visscher
- Center for Human Movement SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Roel J. Bosker
- Groningen Institute for Educational ResearchUniversity of GroningenGroningenThe Netherlands
| | - Esther Hartman
- Center for Human Movement SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Emma Neuroscience GroupEmma Children’s Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Marsh Königs
- Emma Neuroscience GroupEmma Children’s Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
25
|
Barakovic M, Girard G, Schiavi S, Romascano D, Descoteaux M, Granziera C, Jones DK, Innocenti GM, Thiran JP, Daducci A. Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Front Neurosci 2021; 15:646034. [PMID: 34211362 PMCID: PMC8239216 DOI: 10.3389/fnins.2021.646034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
In the central nervous system of primates, several pathways are characterized by different spectra of axon diameters. In vivo methods, based on diffusion-weighted magnetic resonance imaging, can provide axon diameter index estimates non-invasively. However, such methods report voxel-wise estimates, which vary from voxel-to-voxel for the same white matter bundle due to partial volume contributions from other pathways having different microstructure properties. Here, we propose a novel microstructure-informed tractography approach, COMMITAxSize, to resolve axon diameter index estimates at the streamline level, thus making the estimates invariant along trajectories. Compared to previously proposed voxel-wise methods, our formulation allows the estimation of a distinct axon diameter index value for each streamline, directly, furnishing a complementary measure to the existing calculation of the mean value along the bundle. We demonstrate the favourable performance of our approach comparing our estimates with existing histologically-derived measurements performed in the corpus callosum and the posterior limb of the internal capsule. Overall, our method provides a more robust estimation of the axon diameter index of pathways by jointly estimating the microstructure properties of the tissue and the macroscopic organisation of the white matter connectivity.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriel Girard
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Simona Schiavi
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Computer Science, University of Verona, Verona, Italy
| | - David Romascano
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Giorgio M. Innocenti
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Brain and Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
26
|
Veraart J, Raven EP, Edwards LJ, Weiskopf N, Jones DK. The variability of MR axon radii estimates in the human white matter. Hum Brain Mapp 2021; 42:2201-2213. [PMID: 33576105 PMCID: PMC8046139 DOI: 10.1002/hbm.25359] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The noninvasive quantification of axonal morphology is an exciting avenue for gaining understanding of the function and structure of the central nervous system. Accurate non-invasive mapping of micron-sized axon radii using commonly applied neuroimaging techniques, that is, diffusion-weighted MRI, has been bolstered by recent hardware developments, specifically MR gradient design. Here the whole brain characterization of the effective MR axon radius is presented and the inter- and intra-scanner test-retest repeatability and reproducibility are evaluated to promote the further development of the effective MR axon radius as a neuroimaging biomarker. A coefficient-of-variability of approximately 10% in the voxelwise estimation of the effective MR radius is observed in the test-retest analysis, but it is shown that the performance can be improved fourfold using a customized along-tract analysis.
Collapse
Affiliation(s)
- Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Erika P. Raven
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
| | - Luke J. Edwards
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Nikolaus Weiskopf
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth SciencesLeipzig UniversityLeipzigGermany
| | - Derek K. Jones
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| |
Collapse
|
27
|
Westerhausen R, Fjell AM, Kompus K, Schapiro SJ, Sherwood CC, Walhovd KB, Hopkins WD. Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees (Pan troglodytes) and humans. J Comp Neurol 2021; 529:1584-1596. [PMID: 32978976 PMCID: PMC7987726 DOI: 10.1002/cne.25039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The human corpus callosum exhibits substantial atrophy in old age, which is stronger than what would be predicted from parallel changes in overall brain anatomy. To date, however, it has not been conclusively established whether this accentuated decline represents a common feature of brain aging across species, or whether it is a specific characteristic of the aging human brain. In the present cross-sectional study, we address this question by comparing age-related difference in corpus callosum morphology of chimpanzees and humans. For this purpose, we measured total midsagittal area and regional thickness of the corpus callosum from T1-weighted MRI data from 213 chimpanzees, aged between 9 and 54 years. The results were compared with data drawn from a large-scale human sample which was age-range matched using two strategies: (a) matching by chronological age (human sample size: n = 562), or (b) matching by accounting for differences in longevity and various maturational events between the species (i.e., adjusted human age range: 13.6 to 80.9 years; n = 664). Using generalized additive modeling to fit and compare aging trajectories, we found significant differences between the two species. The chimpanzee aging trajectory compared with the human trajectory was characterized by a slower increase from adolescence to middle adulthood, and by a lack of substantial decline from middle to old adulthood, which, however, was present in humans. Thus, the accentuated decline of the corpus callosum found in aging humans is not a universal characteristic of the aging brain, and appears to be human-specific.
Collapse
Affiliation(s)
- René Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, Norway
- Institute of Psychology, University of Tartu, Estonia
| | - Steven J. Schapiro
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
- Department of Experimental Medicine, University of Copenhagen, Denmark
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - William D. Hopkins
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
28
|
Chen J, Sun D, Shi Y, Jin W, Wang Y, Xi Q, Ren C. Altered static and dynamic voxel-mirrored homotopic connectivity in subacute stroke patients: a resting-state fMRI study. Brain Imaging Behav 2021; 15:389-400. [PMID: 32125611 DOI: 10.1007/s11682-020-00266-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sixty-four subacute stroke patients and 55 age-matched healthy controls (HCs) underwent a resting-state functional magnetic resonance imaging scan using an echo-planar imaging sequence and high-resolution sagittal T1-weighted images using a three-dimensional magnetization-prepared rapid gradient echo sequence. Static and dynamic voxel-mirrored homotopic connectivity (VMHC) was computed, respectively. The relationships between the clinical measures, including National Institutes of Health Stroke Scale (NIHSS), illness duration, Fugl-Meyer assessment for upper and lower extremities (FMA-total) and size of lesion volume, and the static/ dynamic VMHC variability alterations in stroke patients were calculated. The stroke patients showed significantly increased static VMHC in the corpus callosum, middle occipital gyrus and inferior parietal gyrus, and decreased static VMHC in the inferior temporal gyrus and precentral gyrus (PreCG) compared with those of HCs. For dynamic VMHC variability, increased dynamic VMHC variability in the inferior temporal gyrus and PreCG was detected in stroke patients relative to that in HCs. Correlation analysis exhibited that significant negative correlations were shown between the FMA scores and dynamic VMHC variability in PreCG. The present study suggests that combined static and dynamic VMHC could be helpful to evaluate the motor function of stroke patients and understand the intrinsic differences of inter-hemispheric coordination after stroke.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Department of Neurology, Zhongshan Hospital Affiliated to Fudan University, Xuhui District, Shanghai, China
| | - Dalong Sun
- Division of Gastroenterology, Department of Internal Medicine, Zhongshan Hospital Affiliated to Fudan University, Xuhui District, Shanghai, China
| | - Yonghui Shi
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanbin Wang
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Chuancheng Ren
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. .,Departments of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Corpus callosum morphology across the lifespan in baboons (Papio anubis): A cross-sectional study of relative mid-sagittal surface area and thickness. Neurosci Res 2021; 171:19-26. [PMID: 33744333 DOI: 10.1016/j.neures.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
The corpus callosum enables integration and coordination of cognitive processing between the cerebral hemispheres. In the aging human brain, these functions are affected by progressive axon and myelin deteriorations, reflected as atrophy of the midsagittal corpus callosum in old age. In non-human primates, these degenerative processes are less pronounced as previous morphometric studies on capuchin monkey, rhesus monkeys, and chimpanzees do not find old-age callosal atrophy. In the present study, we extend these previous findings by studying callosal development of the olive baboon (Papio anubis) across the lifespan and compare it to chimpanzee and human data. For this purpose, total relative (to forebrain volume) midsagittal area, subsectional area, and regional thickness of the corpus callosum were assessed in 91 male and female baboons using non-invasive MRI-based morphometry. The studied age range was 2.5-26.6 years and lifespan trajectories were fitted using general additive modelling. Relative area of the total and anterior corpus callosum showed a positive linear trajectory. That is, both measures increased slowly but continuously from childhood into old age, and no decline was observed in old age. Thus, comparable with all other non-human primates studied to-date, baboons do not show callosal atrophy in old age. This observation lends supports to the notion that atrophy of the corpus callosum is a unique characteristic of human brain aging.
Collapse
|
30
|
Bortoletto M, Bonzano L, Zazio A, Ferrari C, Pedullà L, Gasparotti R, Miniussi C, Bove M. Asymmetric transcallosal conduction delay leads to finer bimanual coordination. Brain Stimul 2021; 14:379-388. [PMID: 33578035 DOI: 10.1016/j.brs.2021.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
It has been theorized that hemispheric dominance and more segregated information processing have evolved to overcome long conduction delays through the corpus callosum (transcallosal conduction delay - TCD) but that this may still impact behavioral performance, mostly in tasks requiring high timing accuracy. Nevertheless, a thorough understanding of the temporal features of interhemispheric communication is lacking. Here, we aimed to assess the relationship between TCD and behavioral performance with a noninvasive directional cortical measure of TCD obtained from transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) in the motor system. Twenty-one healthy right-handed subjects were tested. TEPs were recorded during an ipsilateral silent period (iSP) paradigm and integrated with diffusion tensor imaging (DTI) and an in-phase bimanual thumb-opposition task. Linear mixed models were applied to test relationships between measures. We found TEP indexes of transcallosal communication at ∼15 ms both after primary motor cortex stimulation (M1-P15) and after dorsal premotor cortex stimulation (dPMC-P15). Both M1-and dPMC-P15 were predicted by mean diffusivity in the callosal body. Moreover, M1-P15 was positively related to iSP. Importantly, M1-P15 latency was linked to bimanual coordination with direction-dependent effects, so that asymmetric TCD was the best predictor of bimanual coordination. Our findings support the idea that transcallosal timing in signal transmission is essential for interhemispheric communication and can impact the final behavioral outcome. However, they challenge the view that a short conduction delay is always beneficial. Rather, they suggest that the effect of the conduction delay may depend on the direction of information flow.
Collapse
Affiliation(s)
- Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Statistics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ludovico Pedullà
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences, And Public Health, Section of Neuroradiology, University of Brescia, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.
| |
Collapse
|
31
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
32
|
Andersson M, Kjer HM, Rafael-Patino J, Pacureanu A, Pakkenberg B, Thiran JP, Ptito M, Bech M, Bjorholm Dahl A, Andersen Dahl V, Dyrby TB. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure-function relationship. Proc Natl Acad Sci U S A 2020; 117:33649-33659. [PMID: 33376224 PMCID: PMC7777205 DOI: 10.1073/pnas.2012533117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.
Collapse
Affiliation(s)
- Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark;
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen, Denmark
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
- Department of Neuroscience, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Bech
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark;
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Garcia-Saldivar P, Garimella A, Garza-Villarreal EA, Mendez FA, Concha L, Merchant H. PREEMACS: Pipeline for preprocessing and extraction of the macaque brain surface. Neuroimage 2020; 227:117671. [PMID: 33359348 DOI: 10.1016/j.neuroimage.2020.117671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Accurate extraction of the cortical brain surface is critical for cortical thickness estimation and a key element to perform multimodal imaging analysis, where different metrics are integrated and compared in a common space. While brain surface extraction has become widespread practice in human studies, several challenges unique to neuroimaging of non-human primates (NHP) have hindered its adoption for the study of macaques. Although, some of these difficulties can be addressed at the acquisition stage, several common artifacts can be minimized through image preprocessing. Likewise, there are several image analysis pipelines for human MRIs, but very few automated methods for extraction of cortical surfaces have been reported for NHPs and none have been tested on data from diverse sources. We present PREEMACS, a pipeline that standardizes the preprocessing of structural MRI images (T1- and T2-weighted) and carries out an automatic surface extraction of the macaque brain. Building upon and extending pre-existing tools, the first module performs volume orientation, image cropping, intensity non-uniformity correction, and volume averaging, before skull-stripping through a convolutional neural network. The second module performs quality control using an adaptation of MRIqc method to extract objective quality metrics that are then used to determine the likelihood of accurate brain surface estimation. The third and final module estimates the white matter (wm) and pial surfaces from the T1-weighted volume (T1w) using an NHP customized version of FreeSurfer aided by the T2-weighted volumes (T2w). To evaluate the generalizability of PREEMACS, we tested the pipeline using 57 T1w/T2w NHP volumes acquired at 11 different sites from the PRIME-DE public dataset. Results showed an accurate and robust automatic brain surface extraction from images that passed the quality control segment of our pipeline. This work offers a robust, efficient and generalizable pipeline for the automatic standardization of MRI surface analysis on NHP.
Collapse
Affiliation(s)
- Pamela Garcia-Saldivar
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México
| | - Arun Garimella
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México; International Institute of Information Technology, Hyderabad, India
| | - Eduardo A Garza-Villarreal
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México
| | - Felipe A Mendez
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México.
| | - Hugo Merchant
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001 Querétaro, Querétaro, México.
| |
Collapse
|
34
|
Novikov DS. The present and the future of microstructure MRI: From a paradigm shift to normal science. J Neurosci Methods 2020; 351:108947. [PMID: 33096152 DOI: 10.1016/j.jneumeth.2020.108947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a paradigm shift within the biomedical imaging community. However, what feels like an ongoing revolution in MRI, has been conceptually experienced in physics decades ago; from this point of view, our current developments can be seen as Thomas Kuhn's "normal science" stage of progress. While the concept of model-based quantification below the nominal imaging resolution is not new, its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. This disconnect calls for communicating the progress of tissue microstructure MR imaging to its potential users. Here, a number of recent research developments are outlined in terms of the overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A variety of diffusion models and phenomena are summarized on the phase diagram of diffusion MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
36
|
Xu Q, Hu Z, Yang F, Bernhardt BC, Zhang Q, Stufflebeaskm SM, Zhang Z, Lu G. Resting state signal latency assesses the propagation of intrinsic activations and estimates anti-epileptic effect of levetiracetam in Rolandic epilepsy. Brain Res Bull 2020; 162:125-131. [PMID: 32535220 DOI: 10.1016/j.brainresbull.2020.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We assessed the potential of resting-state fMRI lag analysis (RSLA) in detecting epileptic activation and in estimating anti-epileptic effects of Levetiracetam (LEV) in Rolandic epilepsy. METHODS Forty-three children with Rolandic epilepsy underwent simultaneous EEG-fMRI. They were grouped into LEV vs drug-naïve groups according to their medication, and into patients who showed or did not show central-temporal spike (CTS) discharges during scans. We calculated the lag structure of rs-fMRI for all patients and assessed interactions with drug (LEV vs. drug-naïve) and CTS status (CTS vs. no-CTS). We furthermore assessed correlations between lag values and number of CTS and medication conditions. RESULTS RSLA analysis indicated earlier intrinsic activations in bilateral Rolandic areas when CTS occurred. More frequent epileptic discharges were correlated with earlier intrinsic activations (r=-0.46, p = 0.03 left Rolandic). Patients with LEV therapy, on the other hand, displayed delayed intrinsic activity in Rolandic areas compared to drug-naïve patients CONCLUSION: Our RSLA analysis indicated an association between centro-temporal spikes and earlier hemodynamic activations in epileptogenic regions in Rolandic epilepsy, which were counteracted by LEV treatment. As it allows for the mapping of propagation features of intrinsic activity and drug-effects, our findings suggest potential of lag based analyses in detecting focus localization and estimating treatment effects.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China; College Of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing 210029, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Steven M Stufflebeaskm
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China; College Of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Thapaliya K, Vegh V, Bollmann S, Barth M. Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters. Front Neurosci 2020; 14:271. [PMID: 32457565 PMCID: PMC7206227 DOI: 10.3389/fnins.2020.00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Quantitative assessment of tissue microstructure is important in studying human brain diseases and disorders. Ultra-high field magnetic resonance imaging (MRI) data obtained using a multi-echo gradient echo sequence have been shown to contain information on myelin, axonal, and extracellular compartments in tissue. Quantitative assessment of water fraction, relaxation time (T2*), and frequency shift using multi-compartment models has been shown to be useful in studying white matter properties via specific tissue parameters. It remains unclear how tissue parameters vary with model selection based on 7T multiple echo time gradient-recalled echo (GRE) MRI data. We applied existing signal compartment models to the corpus callosum and investigated whether a three-compartment model can be reduced to two compartments and still resolve white matter parameters [i.e., myelin water fraction (MWF) and g-ratio]. We show that MWF should be computed using a three-compartment model in the corpus callosum, and the g-ratios obtained using three compartment models are consistent with previous reports. We provide results for other parameters, such as signal compartment frequency shifts.
Collapse
Affiliation(s)
- Kiran Thapaliya
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Battaglia-Mayer A. A Brief History of the Encoding of Hand Position by the Cerebral Cortex: Implications for Motor Control and Cognition. Cereb Cortex 2020; 29:716-731. [PMID: 29373634 DOI: 10.1093/cercor/bhx354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Encoding hand position by the cerebral cortex is essential not only for the neural representation of the body image but also for different actions based on eye-hand coordination. These include reaching for visual objects as well as complex movement sequences, such as tea-making, tool use, and object construction, among many others. All these functions depend on a continuous refreshing of the hand position representation, relying on both predictive signaling and afferent information. The hand position influence on neural activity in the parietofrontal system, together with eye position signals, are the basic elements of an eye-hand matrix from which all the above functions can emerge and could be regarded as key features of a network with several entry points, command nodes and outflow pathways, as confirmed by the discovery of a direct parietospinal projection for the control of hand action. The integrity of this system is crucial for daily life, as testified by the consequences of cortical lesions, spanning from severe paralysis to complex forms of apraxia. In this review, I will sketch my personal understanding of the scientific and conceptual trajectory of a line of investigation with many unexpected influences on cortical function and disease, from motor behavior to cognition.
Collapse
|
39
|
Innocenti GM, Caminiti R, Rouiller EM, Knott G, Dyrby TB, Descoteaux M, Thiran JP. Diversity of Cortico-descending Projections: Histological and Diffusion MRI Characterization in the Monkey. Cereb Cortex 2020; 29:788-801. [PMID: 29490005 DOI: 10.1093/cercor/bhx363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/30/2017] [Indexed: 01/16/2023] Open
Abstract
The axonal composition of cortical projections originating in premotor, supplementary motor (SMA), primary motor (a4), somatosensory and parietal areas and descending towards the brain stem and spinal cord was characterized in the monkey with histological tract tracing, electron microscopy (EM) and diffusion MRI (dMRI). These 3 approaches provided complementary information. Histology provided accurate assessment of axonal diameters and size of synaptic boutons. dMRI revealed the topography of the projections (tractography), notably in the internal capsule. From measurements of axon diameters axonal conduction velocities were computed. Each area communicates with different diameter axons and this generates a hierarchy of conduction delays in this order: a4 (the shortest), SMA, premotor (F7), parietal, somatosensory, premotor F4 (the longest). We provide new interpretations for i) the well-known different anatomical and electrophysiological estimates of conduction velocity; ii) why conduction delays are probably an essential component of the cortical motor command; and iii) how histological and dMRI tractography can be integrated.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Retzius vág 8, Stockholm, Sweden.,Brain and Mind Institute, EPFL, Lausanne, Switzerland.,EPFL-STI-IEL-LTS5, Station 11, Lausanne, Switzerland
| | - Roberto Caminiti
- Dipartimento di Fisiologia e Farmacologia, SAPIENZA Universitá di Roma, Piazzale Aldo Moro 5, Roma, Italy
| | - Eric M Rouiller
- Department of Medicine, Swiss Primate Competence Center for Research, Fribourg Cognition Center, University of Fribourg, Ch du Musee 5, Fribourg, Switzerland
| | - Graham Knott
- BioEM Facility, Faculty of Life Sciences, EPFL SV PTECH PTBIOEM AI 0143 Station 19, Lausanne, Switzerland
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Capital Region, Denmark
| | - Maxime Descoteaux
- Department of Computer Science, Sherbrooke Connectivity Imaging Laboratory (SCIL), Centre de Recherche CHUS, Sherbrooke University, 2500 Boul, Québec, Canada
| | - Jean-Philippe Thiran
- EPFL-STI-IEL-LTS5, Station 11, Lausanne, Switzerland.,Department of Radiology, University Hospital Center (CHUV), University of Lausanne (UNIL), Ecole Polytechnique Fédérale de Lausanne (EPFL) Signal Processing Lab (LTS5) EPFL-STI-IEL-LTS5 Station 11, Lausanne, Switzerland
| |
Collapse
|
40
|
Afzali M, Aja-Fernández S, Jones DK. Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Magn Reson Med 2020; 84:1579-1591. [PMID: 32080890 PMCID: PMC7318161 DOI: 10.1002/mrm.28191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Purpose It has been shown, theoretically and in vivo, that using the Stejskal‐Tanner pulsed‐gradient, or linear tensor encoding (LTE), and in tissue exhibiting a “stick‐like” diffusion geometry, the direction‐averaged diffusion‐weighted MRI signal at high b‐values (
7000<b<10000s/mm2) follows a power‐law, decaying as
1/b. It has also been shown, theoretically, that for planar tensor encoding (PTE), the direction‐averaged diffusion‐weighted MRI signal decays as 1/b. We aimed to confirm this theoretical prediction in vivo. We then considered the direction‐averaged signal for arbitrary b‐tensor shapes and different tissue substrates to look for other conditions under which a power‐law exists. Methods We considered the signal decay for high b‐values for encoding geometries ranging from 2‐dimensional PTE, through isotropic or spherical tensor encoding to LTE. When a power‐law behavior was suggested, this was tested using in silico simulations and, when appropriate, in vivo using ultra‐strong (300 mT/m) gradients. Results Our in vivo results confirmed the predicted 1/b power law for PTE. Moreover, our analysis showed that using an axisymmetric b‐tensor a power‐law only exists under very specific conditions: (a) “stick‐like” tissue geometry and purely LTE or purely PTE waveforms; and (b) "pancake‐like" tissue geometry and a purely LTE waveform. Conclusions A complete analysis of the power‐law dependencies of the diffusion‐weighted signal at high b‐values has been performed. Only three specific forms of encoding result in a power‐law dependency, pure linear and pure PTE when the tissue geometry is “stick‐like” and pure LTE when the tissue geometry is "pancake‐like". The different exponents of these encodings could be used to provide independent validation of the presence of different tissue geometries in vivo.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Santiago Aja-Fernández
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,Laboratorio de Procesado de Imagen, ETSI Telecomunicación Edificio de las Nuevas Tecnologías, Universidad de Valladolid, Valladolid, Spain
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Nonivasive quantification of axon radii using diffusion MRI. eLife 2020; 9:e49855. [PMID: 32048987 PMCID: PMC7015669 DOI: 10.7554/elife.49855] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Axon caliber plays a crucial role in determining conduction velocity and, consequently, in the timing and synchronization of neural activation. Noninvasive measurement of axon radii could have significant impact on the understanding of healthy and diseased neural processes. Until now, accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity of the MRI signal to micron-sized axons. Here, we show how - when confounding factors such as extra-axonal water and axonal orientation dispersion are eliminated - heavily diffusion-weighted MRI signals become sensitive to axon radii. However, diffusion MRI is only capable of estimating a single metric, the effective radius, representing the entire axon radius distribution within a voxel that emphasizes the larger axons. Our findings, both in rodents and humans, enable noninvasive mapping of critical information on axon radii, as well as resolve the long-standing debate on whether axon radii can be quantified.
Collapse
Affiliation(s)
- Jelle Veraart
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
- imec-Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| | - Daniel Nunes
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| | - Umesh Rudrapatna
- CUBRIC, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Els Fieremans
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
| | - Derek K Jones
- CUBRIC, School of PsychologyCardiff UniversityCardiffUnited Kingdom
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
| | - Noam Shemesh
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| |
Collapse
|
42
|
Wang S, Jiaerken Y, Yu X, Shen Z, Luo X, Hong H, Sun J, Xu X, Zhang R, Zhou Y, Lou M, Huang P, Zhang M. Understanding the association between psychomotor processing speed and white matter hyperintensity: A comprehensive multi-modality MR imaging study. Hum Brain Mapp 2019; 41:605-616. [PMID: 31675160 PMCID: PMC7267958 DOI: 10.1002/hbm.24826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
Cognitive processing speed is crucial for human cognition and declines with aging. White matter hyperintensity (WMH), a common sign of WM vascular damage in the elderly, is closely related to slower psychomotor processing speed. In this study, we investigated the association between WMH and psychomotor speed changes through a comprehensive assessment of brain structural and functional features. Multi-modal MRIs were acquired from 60 elderly adults. Psychomotor processing speeds were assessed using the Trail Making Test Part A (TMT-A). Linear regression analyses were performed to assess the associations between TMT-A and brain features, including WMH volumes in five cerebral regions, diffusivity parameters in the major WM tracts, regional gray matter volume, and brain activities across the whole brain. Hierarchical regression analysis was used to demonstrate the contribution of each index to slower psychomotor processing speed. Linear regression analysis demonstrated that WMH volume in the occipital lobe and fractional anisotropy of the forceps major, an occipital association tract, were associated with TMT-A. Besides, resting-state brain activities in the visual cortex connected to the forceps major were associated with TMT-A. Hierarchical regression showed fractional anisotropy of the forceps major and regional brain activities were significant predictors of TMT-A. The occurrence of WMH, combined with the disruption of passing-through fiber integrity and altered functional activities in areas connected by this fiber, are associated with a decline of psychomotor processing speed. While the causal relationship of this WMH-Tract-Function-Behavior link requires further investigation, this study enhances our understanding of these complex mechanisms.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Zhang Y, Cai L, Fan K, Fan B, Li N, Gao W, Yang X, Ma J. The Spatial and Temporal Characters of Demyelination and Remyelination in the Cuprizone Animal Model. Anat Rec (Hoboken) 2019; 302:2020-2029. [PMID: 31251832 DOI: 10.1002/ar.24216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/03/2019] [Accepted: 03/23/2019] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is the most common central nervous system disease due to demyelination in young adults, and currently, there is no cure. Some experimental animal models were generated to mimic specific aspects of MS pathological characteristics. Among them, the cuprizone (CPZ)-induced mouse demyelination model presents heterogeneous pathologies with both focal and diffuse lesions. Considering that MS is a progressive disease, it is important to study the spatial and temporal characters of de- and remyelination in MS animal models. However, such data especially in some brain regions such as lateral septal area, fimbria of hippocampus, and hippocampus are still lacking. In this study, we investigated the alterations of myelin in these areas in parallel to the changes in corpus callosum using coronal sections. We found that the progression of demyelinating varied in different brain regions in C57BL/6J mice treated with CPZ for 1 to 5 weeks. This result suggests that each brain region has a distinct sensitivity to CPZ intoxication. Interestingly, activated microglia appeared not only in the active demyelinating areas but also in the non-myelinolysis regions. After CPZ withdrawal, significant remyelination was started in corpus callosum as early as 3 days. The completion of remyelination in the entire brain regions took 3 weeks. Our study detailed characterized the dynamics of myelin alterations and microglial status in the brain of the CPZ model. This information is valuable to facilitate further MS studies utilizing the CPZ model. Anat Rec, 302:2020-2029, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lin Cai
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Bin Fan
- General Surgery, Liaoyang Central Hospital, Liaoyang, Liaoning, 111000, China
| | - Ning Li
- General Surgery, Wafangdian Central Hospital, Wafangdian, Liaoning, 116300, China
| | - Wenting Gao
- Institute of Gene Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xiaohan Yang
- Liaoning provincial key laboratory of brain diseases, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
44
|
Abstract
Integrated information theory (IIT) describes consciousness as information integrated across highly differentiated but irreducible constituent parts in a system. However, in a complex dynamic system such as the brain, the optimal conditions for large integrated information systems have not been elucidated. In this study, we hypothesized that network criticality, a balanced state between a large variation in functional network configuration and a large constraint on structural network configuration, may be the basis of the emergence of a large Φ¯, a surrogate of integrated information. We also hypothesized that as consciousness diminishes, the brain loses network criticality and Φ¯ decreases. We tested these hypotheses with a large-scale brain network model and high-density electroencephalography (EEG) acquired during various levels of human consciousness under general anesthesia. In the modeling study, maximal criticality coincided with maximal Φ¯. The EEG study demonstrated an explicit relationship between Φ¯, criticality, and level of consciousness. The conscious resting state showed the largest Φ¯ and criticality, whereas the balance between variation and constraint in the brain network broke down as the response rate dwindled. The results suggest network criticality as a necessary condition of a large Φ¯ in the human brain.
Collapse
|
45
|
Culjat M, Milošević NJ. Callosal septa express guidance cues and are paramedian guideposts for human corpus callosum development. J Anat 2019; 235:670-686. [PMID: 31070791 PMCID: PMC6704273 DOI: 10.1111/joa.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The early development and growth of the corpus callosum are supported by several midline transient structures in mammals that include callosal septa (CS), which are present only in the second half of gestation in humans. Here we provide new data that support the guidance role of CS in corpus callosum development, derived from the analysis of 46 postmortem fetal brains, ranging in age from 16 to 40 post conception weeks (PCW). Using immunohistochemical methods, we show the expression pattern of guidance cues ephrinA4 and neogenin, extracellular protein fibronectin, as well as non-activated microglia in the CS. We found that the dynamic changes in expression of guidance cues, cellular and extracellular matrix constituents in the CS correlate well with the growth course of the corpus callosum at midsagittal level. The CS reach and maintain their developmental maximum between 20 and 26 PCW and can be visualized as hypointense structures in the ventral callosal portion with ex vivo (in vitro) T2-weighted 3T magnetic resonance imaging (MRI). The maximum of septal development overlaps with an increase in the callosal midsagittal area, whereas the slow, gradual resolution of CS coincides with a plateau of midsagittal callosal growth. The recognition of CS existence in human fetal brain and the ability to visualize them by ex vivoMRI attributes a potential diagnostic value to these transient structures, as advancement in imaging technologies will likely also enable in vivoMRI visualization of the CS in the near future.
Collapse
Affiliation(s)
- Marko Culjat
- MedStar Georgetown University HospitalWashingtonDCUSA
| | | |
Collapse
|
46
|
Chapeton JI, Haque R, Wittig JH, Inati SK, Zaghloul KA. Large-Scale Communication in the Human Brain Is Rhythmically Modulated through Alpha Coherence. Curr Biol 2019; 29:2801-2811.e5. [PMID: 31422882 DOI: 10.1016/j.cub.2019.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Recent evidence has suggested that coherent neuronal oscillations may serve as a gating mechanism for flexibly modulating communication between brain regions. For this to occur, such oscillations should be robust and coherent between brain regions that also demonstrate time-locked correlations, with time delays that match the phase delays of the coherent oscillations. Here, by analyzing functional connectivity in both the time and frequency domains, we demonstrate that alpha oscillations satisfy these constraints and are well suited for modulating communication over large spatial scales in the human brain. We examine intracranial EEG in the human temporal lobe and find robust alpha oscillations that are coherent between brain regions with center frequencies that are consistent within each individual participant. Regions demonstrating coherent narrowband oscillations also exhibit time-locked broadband correlations with a consistent time delay, a requirement for an efficient communication channel. The phase delays of the coherent alpha oscillations match the time delays of the correlated components, and importantly, both broadband correlations and neuronal spiking activity are modulated by the phase of the oscillations. These results are specific to the alpha band and build upon emerging evidence suggesting that alpha oscillations may play an active role in cortical function. Our data therefore provide evidence that large-scale communication in the human brain may be rhythmically modulated by alpha oscillations.
Collapse
Affiliation(s)
- Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafi Haque
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - John H Wittig
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara K Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Battaglia-Mayer A, Caminiti R. Corticocortical Systems Underlying High-Order Motor Control. J Neurosci 2019; 39:4404-4421. [PMID: 30886016 PMCID: PMC6554627 DOI: 10.1523/jneurosci.2094-18.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Cortical networks are characterized by the origin, destination, and reciprocity of their connections, as well as by the diameter, conduction velocity, and synaptic efficacy of their axons. The network formed by parietal and frontal areas lies at the core of cognitive-motor control because the outflow of parietofrontal signaling is conveyed to the subcortical centers and spinal cord through different parallel pathways, whose orchestration determines, not only when and how movements will be generated, but also the nature of forthcoming actions. Despite intensive studies over the last 50 years, the role of corticocortical connections in motor control and the principles whereby selected cortical networks are recruited by different task demands remain elusive. Furthermore, the synaptic integration of different cortical signals, their modulation by transthalamic loops, and the effects of conduction delays remain challenging questions that must be tackled to understand the dynamical aspects of parietofrontal operations. In this article, we evaluate results from nonhuman primate and selected rodent experiments to offer a viewpoint on how corticocortical systems contribute to learning and producing skilled actions. Addressing this subject is not only of scientific interest but also essential for interpreting the devastating consequences for motor control of lesions at different nodes of this integrated circuit. In humans, the study of corticocortical motor networks is currently based on MRI-related methods, such as resting-state connectivity and diffusion tract-tracing, which both need to be contrasted with histological studies in nonhuman primates.
Collapse
Affiliation(s)
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, 00185 Rome, Italy, and
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
48
|
Ginsburger K, Matuschke F, Poupon F, Mangin JF, Axer M, Poupon C. MEDUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres. Neuroimage 2019; 193:10-24. [DOI: 10.1016/j.neuroimage.2019.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
|
49
|
Lee HH, Yaros K, Veraart J, Pathan JL, Liang FX, Kim SG, Novikov DS, Fieremans E. Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct Funct 2019; 224:1469-1488. [PMID: 30790073 PMCID: PMC6510616 DOI: 10.1007/s00429-019-01844-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Tissue microstructure modeling of diffusion MRI signal is an active research area striving to bridge the gap between macroscopic MRI resolution and cellular-level tissue architecture. Such modeling in neuronal tissue relies on a number of assumptions about the microstructural features of axonal fiber bundles, such as the axonal shape (e.g., perfect cylinders) and the fiber orientation dispersion. However, these assumptions have not yet been validated by sufficiently high-resolution 3-dimensional histology. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a random-walker (RaW)-based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed by a segmentation based on human annotations initiated with conventional machine-learning-based carving, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated MRI-relevant estimates of size-related parameters (inner axonal diameter, its distribution, along-axon variation, and myelin g-ratio), and orientation-related parameters (fiber orientation distribution and its rotational invariants; dispersion angle). The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, while the reported diameter exceeds those in other mouse brain studies. Furthermore, we calculated how these quantities would evolve in actual diffusion MRI experiments as a function of diffusion time, thereby providing a coarse-graining window on the microstructure, and showed that the orientation-related metrics have negligible diffusion time-dependence over clinical and pre-clinical diffusion time ranges. However, the MRI-measured inner axonal diameters, dominated by the widest cross sections, effectively decrease with diffusion time by ~ 17% due to the coarse-graining over axonal caliber variations. Furthermore, our 3d measurement showed that there is significant variation of the diameter along the axon. Hence, fiber orientation dispersion estimated from MRI should be relatively stable, while the "apparent" inner axonal diameters are sensitive to experimental settings, and cannot be modeled by perfectly cylindrical axons.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA.
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA.
| | - Katarina Yaros
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Jelle Veraart
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Jasmine L Pathan
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Feng-Xia Liang
- Department of Cell Biology and Microscopy Core, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Sungheon G Kim
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Dmitry S Novikov
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Els Fieremans
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| |
Collapse
|
50
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|