1
|
Lao H, Zhu Y, Yang M, Wang L, Tang J, Xiong H. Characteristics of spatial protein expression in the mouse cochlear sensory epithelia: Implications for age-related hearing loss. Hear Res 2024; 446:109006. [PMID: 38583350 DOI: 10.1016/j.heares.2024.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Hair cells in the cochlear sensory epithelia serve as mechanosensory receptors, converting sound into neuronal signals. The basal sensory epithelia are responsible for transducing high-frequency sounds, while the apex handles low-frequency sounds. Age-related hearing loss predominantly affects hearing at high frequencies and is indicative of damage to the basal sensory epithelia. However, the precise mechanism underlying this site-selective injury remains unclear. In this study, we employed a microscale proteomics approach to examine and compare protein expression in different regions of the cochlear sensory epithelia (upper half and lower half) in 1.5-month-old (normal hearing) and 6-month-old (severe high-frequency hearing loss without hair cell loss) C57BL/6J mice. A total of 2,386 proteins were detected, and no significant differences in protein expression were detected in the upper half of the cochlear sensory epithelia between the two age groups. The expression of 20 proteins in the lower half of the cochlear sensory epithelia significantly differed between the two age groups (e.g., MATN1, MATN4, and AQP1). Moreover, there were 311 and 226 differentially expressed proteins between the upper and lower halves of the cochlear sensory epithelia in 1.5-month-old and 6-month-old mice, respectively. The expression levels of selected proteins were validated by Western blotting. These findings suggest that the spatial differences in protein expression within the cochlear sensory epithelia may play a role in determining the susceptibility of cells at different sites of the cochlea to age-related damage.
Collapse
Affiliation(s)
- Huilin Lao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yafeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingshuo Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Davis S, Scott C, Oetjen J, Charles PD, Kessler BM, Ansorge O, Fischer R. Deep topographic proteomics of a human brain tumour. Nat Commun 2023; 14:7710. [PMID: 38001067 PMCID: PMC10673928 DOI: 10.1038/s41467-023-43520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Philip D Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
3
|
Coukos JS, Lee CW, Pillai KS, Shah H, Moellering RE. PARK7 Catalyzes Stereospecific Detoxification of Methylglyoxal Consistent with Glyoxalase and Not Deglycase Function. Biochemistry 2023; 62:3126-3133. [PMID: 37884446 PMCID: PMC10634309 DOI: 10.1021/acs.biochem.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.
Collapse
Affiliation(s)
- John S. Coukos
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Chris W. Lee
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kavya S. Pillai
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Hardik Shah
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Li R, Dong X, Chen S, Tan J, Chen X, Liu J, Wen T, Ru X. Tn antigen promotes breast cancer metastasis via impairment of CASC4. Cell Biol Int 2023; 47:1854-1867. [PMID: 37493437 DOI: 10.1002/cbin.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
Breast cancer is one of the most serious and deadly cancers in women worldwide, with distant metastases being the leading cause of death. Tn antigen, a tumor-associated carbohydrate antigen, was frequently detected in breast cancer, but its exact role in breast cancer metastasis has not been well elucidated. Here we investigated the impact of Tn antigen expression on breast cancer metastasis and its underlying mechanisms. The expression of Tn antigen was induced in two breast cancer cell lines by deleting T-synthase or Cosmc, both of which are required for normal O-glycosylation. It showed that Tn-expressing cancer cells promoted epithelial-mesenchymal transition (EMT) and metastatic features as compared to Tn(-) control cells both in vitro and in vivo. Mechanistically, we found that cancer susceptibility candidate 4 (CASC4), a heavily O-glycosylated protein, was significantly downregulated in both Tn(+) cells. Overexpression of CASC4 suppressed Tn-induced activation of EMT and cancer metastasis via inhibition of Cdc42 signaling. Furthermore, we confirmed that O-glycosylation is essential for the functional role of CASC4 because defective O-glycosylated CASC4 (mutant CASC4, which lacks nine O-glycosylation sites) exerted marginal metastatic-suppressing effects in comparison with WT CASC4. Collectively, these data suggest that Tn-mediated aberrant O-glycosylation contributes to breast cancer metastasis via impairment of CASC4 expression and function.
Collapse
Affiliation(s)
- Ruijun Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xichen Dong
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shibin Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingyu Tan
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiangyu Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoli Ru
- Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Xu W, Xiao Y, Zhao M, Zhu J, Wang Y, Wang W, Wang P, Meng H. Effective Treatment of Knee Osteoarthritis Using a Nano-Enabled Drug Acupuncture Technology in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302586. [PMID: 37555294 PMCID: PMC10558644 DOI: 10.1002/advs.202302586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/20/2023] [Indexed: 08/10/2023]
Abstract
A nano-enabled drug delivery acupuncture technology (nd-Acu) is developed that is based on traditional acupuncture needles where the stainless-steel surface is designed to deliver various payload molecules. To create the nd-Acu platform, an electrochemistry procedure is used to attach methyl salicylate-modified cyclodextrin in which the sugar rings allow the encapsulation of structurally defined single or multiple payload molecules via an inclusion complexation process. Drug loading and release profile are first studied using fluorescent dyes abiotically and at intact animal level. nd-Acu allows more efficient dye loading and time-dependent release compared to pristine needles without cyclodextrin modification. Subsequently, a proof-of-principle efficacy study is conducted using the platform to load a local anesthetic, lidocaine, for the treatment of knee osteoarthritis (KOA) in mice. It is demonstrated that lidocaine-laden nd-Acu can effectively alleviate pain, reduce inflammation, and slow down KOA development biochemically and histologically. Hypothesis-driven and proteomic approaches are utilized to investigate the working mechanisms of lidocaine nd-Acu, indicating that the therapeutic outcome is attributed to the in vivo modulation of the HMGB1/TLR4 signaling pathway. The study also obtained preliminary evidence suggesting the involvement of mitochondria as well as small GTPase such as cdc42 during the treatment by lidocaine nd-Acu.
Collapse
Affiliation(s)
- Wenjie Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing100010China
| | - Yu Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Jiahui Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Chongqing University of TechnologyChongqing400054China
| | - Yu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Chongqing University of TechnologyChongqing400054China
| | - Wenbin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Peng Wang
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing100010China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
6
|
Mathisen AF, Abadpour S, Legøy TA, Paulo JA, Ghila L, Scholz H, Chera S. Global proteomics reveals insulin abundance as a marker of human islet homeostasis alterations. Acta Physiol (Oxf) 2023; 239:e14037. [PMID: 37621186 PMCID: PMC10592125 DOI: 10.1111/apha.14037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
AIM The variation in quality between the human islet samples represents a major problem for research, especially when used as control material. The assays assessing the quality of human islets used in research are non-standardized and limited, with many important parameters not being consistently assessed. High-throughput studies aimed at characterizing the diversity and segregation markers among apparently functionally healthy islet preps are thus a requirement. Here, we designed a pilot study to comprehensively identify the diversity of global proteome signatures and the deviation from normal homeostasis in randomly selected human-isolated islet samples. METHODS By using Tandem Mass Tag 16-plex proteomics, we focused on the recurrently observed disparity in the detected insulin abundance between the samples, used it as a segregating parameter, and analyzed the correlated changes in the proteome signature and homeostasis by pathway analysis. RESULTS In this pilot study, we showed that insulin protein abundance is a predictor of human islet homeostasis and quality. This parameter is independent of other quality predictors within their acceptable range, thus being able to further stratify islets samples of apparent good quality. Human islets with low amounts of insulin displayed changes in their metabolic and signaling profile, especially in regard to energy homeostasis and cell identity maintenance. We further showed that xenotransplantation into diabetic hosts is not expected to improve the pre-transplantation signature, as it has a negative effect on energy balance, antioxidant activity, and islet cell identity. CONCLUSIONS Insulin protein abundance predicts significant changes in human islet homeostasis among random samples of apparently good quality.
Collapse
Affiliation(s)
- Andreas F. Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway
- Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway
- Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Colasante C, Bonilla-Martinez R, Berg T, Windhorst A, Baumgart-Vogt E. Peroxisomes during postnatal development of mouse endocrine and exocrine pancreas display cell-type- and stage-specific protein composition. Cell Tissue Res 2023:10.1007/s00441-023-03766-6. [PMID: 37126142 DOI: 10.1007/s00441-023-03766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Peroxisomal dysfunction unhinges cellular metabolism by causing the accumulation of toxic metabolic intermediates (e.g. reactive oxygen species, very -chain fatty acids, phytanic acid or eicosanoids) and the depletion of important lipid products (e.g. plasmalogens, polyunsaturated fatty acids), leading to various proinflammatory and devastating pathophysiological conditions like metabolic syndrome and age-related diseases including diabetes. Because the peroxisomal antioxidative marker enzyme catalase is low abundant in Langerhans islet cells, peroxisomes were considered scarcely present in the endocrine pancreas. Recently, studies demonstrated that the peroxisomal metabolism is relevant for pancreatic cell functionality. During the postnatal period, significant changes occur in the cell structure and the metabolism to trigger the final maturation of the pancreas, including cell proliferation, regulation of energy metabolism, and activation of signalling pathways. Our aim in this study was to (i) morphometrically analyse the density of peroxisomes in mouse endocrine versus exocrine pancreas and (ii) investigate how the distribution and the abundance of peroxisomal proteins involved in biogenesis, antioxidative defence and fatty acid metabolism change during pancreatic maturation in the postnatal period. Our results prove that endocrine and exocrine pancreatic cells contain high amounts of peroxisomes with heterogeneous protein content indicating that distinct endocrine and exocrine cell types require a specific set of peroxisomal proteins depending on their individual physiological functions. We further show that significant postnatal changes occur in the peroxisomal compartment of different pancreatic cells that are most probably relevant for the metabolic maturation and differentiation of the pancreas during the development from birth to adulthood.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Timm Berg
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Informatic, Justus Liebig University, Rudolf-Buchheim-Str. 6, 35392, Gießen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
9
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
10
|
Proteomic Profiling of Intra-Islet Features Reveals Substructure-Specific Protein Signatures. Mol Cell Proteomics 2022; 21:100426. [PMID: 36244662 PMCID: PMC9706166 DOI: 10.1016/j.mcpro.2022.100426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/11/2022] Open
Abstract
Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug-target interactions using existing protein/drug binding databases.
Collapse
|
11
|
Anapindi KDB, Romanova EV, Checco JW, Sweedler JV. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacol Rev 2022; 74:662-679. [PMID: 35710134 DOI: 10.1124/pharmrev.121.000423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - James W Checco
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| |
Collapse
|
12
|
Xia Y, Tang W, Qian X, Li X, Cheng F, Wang K, Zhang F, Zhang C, Li D, Song J, Zhang H, Zhao J, Yao A, Wu X, Wu C, Ji G, Liu X, Zhu F, Qin L, Xiao X, Deng Z, Kong X, Li S, Yu Y, Xi W, Deng W, Qi C, Liu H, Pu L, Wang P, Wang X. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase II clinical trial. J Immunother Cancer 2022; 10:jitc-2022-004656. [PMID: 35379737 PMCID: PMC8981365 DOI: 10.1136/jitc-2022-004656] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
ObjectiveThis study aimed to assess the efficacy and safety of camrelizumab plus apatinib in patients with resectable hepatocellular carcinoma (HCC) as neoadjuvant therapy.MethodsInitially, 20 patients with HCC were screened and 18 patients with resectable HCC were enrolled in this open-label, single-arm, phase II clinical trial. Patients received three cycles of neoadjuvant therapy including three doses of camrelizumab concurrent with apatinib for 21 days followed by surgery. Four to 8 weeks after surgery, patients received eight cycles of adjuvant therapy with camrelizumab in combination with apatinib. Major pathological reactions (MPR), complete pathological reactions (pCR), objective response rate (ORR), relapse-free survival (RFS), and adverse events (AE) were assessed. In addition, cancer tissue and plasma samples were collected before and after treatment, and genetic differences between responding and non-responding lesions were compared by tumor immune microenvironment (TIME) analysis, circulating tumor DNA (ctDNA) analysis and proteomics analysis.ResultsIn 18 patients with HCC who completed neoadjuvant therapy, 3 (16.7%) and 6 (33.3%) patients with HCC reached ORR based on Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and modified RECIST criteria, respectively. Of the 17 patients with HCC who received surgical resection, 3 (17.6%) patients with HCC reported MPR and 1 (5.9%) patient with HCC achieved pCR. The 1-year RFS rate of the enrolled patients was 53.85% (95% CI: 24.77% to 75.99%). Grade 3/4 AEs were reported in 3 (16.7%) of the 18 patients, with the most common AEs being rash (11.1%), hypertension (5.6%), drug-induced liver damage (5.6%), and neutropenia (5.6%) in the preoperative phase. The 289 NanoString panel RNA sequencing showed that TIME cell infiltration especially dendritic cells (DCs) infiltration was better in responding tumors than in non-responding tumors. Our results of ctDNA revealed a higher positive rate (100%) among patients with HCC with stage IIb–IIIa disease. When comparing patients with pCR/MPR and non-MPR, we observed more mutations in patients who achieved pCR/MPR at baseline (6 mutations vs 2.5 mutations, p=0.025). Patients who were ctDNA positive after adjuvant therapy presented a trend of shorter RFS than those who were ctDNA negative. Proteomic analysis suggested that abnormal glucose metabolism in patients with multifocal HCC might be related to different sensitivity of treatment in different lesions.ConclusionPerioperative camrelizumab plus apatinib displays a promising efficacy and manageable toxicity in patients with resectable HCC. DCs infiltration might be a predictive marker of response to camrelizumab and apatinib as well as patients’ recurrence. ctDNA as a compose biomarker can predict pathological response and relapse. Abnormal glucose metabolism in patients with multifocal HCC may be related to different sensitivity of treatment in different lesions.Trial registration numberNCT04297202.
Collapse
Affiliation(s)
- Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaofeng Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ke Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Donghua Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jie Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Aihua Yao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Guwei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xisheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lang Qin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Xiao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Si Li
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Yangyang Yu
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Wenjing Xi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Wanglong Deng
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Chuang Qi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Hanyuan Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
13
|
Sandbaumhüter FA, Nezhyva M, Eriksson O, Engberg A, Kreuger J, Andrén PE, Jansson ET. Well-Plate μFASP for Proteomic Analysis of Single Pancreatic Islets. J Proteome Res 2022; 21:1167-1174. [PMID: 35293755 PMCID: PMC8981318 DOI: 10.1021/acs.jproteome.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filter-aided sample preparation (FASP) is widely used in bottom-up proteomics for tryptic digestion. However, the sample recovery yield of this method is limited by the amount of the starting material. While ∼100 ng of digested protein is sufficient for thorough protein identification, proteomic information gets lost with a protein content <10 μg due to incomplete peptide recovery from the filter. We developed and optimized a flexible well-plate μFASP device and protocol that is suitable for an ∼1 μg protein sample. In 1 μg of HeLa digest, we identified 1295 ± 10 proteins with μFASP followed by analysis with liquid chromatography-mass spectrometry. In contrast, only 524 ± 5 proteins were identified with the standard FASP protocol, while 1395 ± 4 proteins were identified in 20 μg after standard FASP as a benchmark. Furthermore, we conducted a combined peptidomic and proteomic study of single pancreatic islets with well-plate μFASP. Here, we separated neuropeptides and digested the remaining on-filter proteins for bottom-up proteomic analysis. Our results indicate inter-islet heterogeneity for the expression of proteins involved in glucose catabolism, pancreatic hormone processing, and secreted peptide hormones. We consider our method to provide a useful tool for proteomic characterization of samples where the biological material is scarce. All proteomic data are available under DOI: 10.6019/PXD029039.
Collapse
Affiliation(s)
| | - Mariya Nezhyva
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala 751 23, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala 751 23, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala 751 23, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala 751 24, Sweden
| | - Erik T Jansson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
14
|
Kruse ARS, Spraggins JM. Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry. Front Physiol 2022; 13:837773. [PMID: 35222094 PMCID: PMC8874197 DOI: 10.3389/fphys.2022.837773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Collapse
Affiliation(s)
- Angela R. S. Kruse
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Jeffrey M. Spraggins,
| |
Collapse
|
15
|
Tserga A, Pouloudi D, Saulnier-Blache JS, Stroggilos R, Theochari I, Gakiopoulou H, Mischak H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10020216. [PMID: 35203426 PMCID: PMC8869654 DOI: 10.3390/biomedicines10020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. Results: LC–MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and β-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. Conclusion: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Despoina Pouloudi
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Irene Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | | | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Manousos Makridakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| |
Collapse
|
16
|
Mizusawa N, Harada N, Iwata T, Ohigashi I, Itakura M, Yoshimoto K. Identification of protease serine S1 family member 53 as a mitochondrial protein in murine islet beta cells. Islets 2022; 14:1-13. [PMID: 34636707 PMCID: PMC8812782 DOI: 10.1080/19382014.2021.1982325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to identify genes that are specifically expressed in pancreatic islet β-cells (hereafter referred to as β-cells). Large-scale complementary DNA-sequencing analysis was performed for 3,429 expressed sequence tags derived from murine MIN6 β-cells, through homology comparisons using the GenBank database. Three individual ESTs were found to code for protease serine S1 family member 53 (Prss53). Prss53 mRNA is processed into both a short and long form, which encode 482 and 552 amino acids, respectively. Transient overexpression of myc-tagged Prss53 in COS-7 cells showed that Prss53 was strongly associated with the luminal surfaces of organellar membranes and that it underwent signal peptide cleavage and N-glycosylation. Immunoelectron microscopy and western blotting revealed that Prss53 localized to mitochondria in MIN6 cells. Short hairpin RNA-mediated Prss53 knockdown resulted in Ppargc1a downregulation and Ucp2 and Glut2 upregulation. JC-1 staining revealed that the mitochondria were depolarized in Prss53-knockdown MIN6 cells; however, no change was observed in glucose-stimulated insulin secretion. Our results suggest that mitochondrial Prss53 expression plays an important role in maintaining the health of β-cells.
Collapse
Affiliation(s)
- Noriko Mizusawa
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
- CONTACT Noriko Mizusawa Department of Oral Bioscience, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-Kuramoto-cho, Tokushima City770-8504, Japan
| | - Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, Shimane, Japan
| | - Takeo Iwata
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Mitsuo Itakura
- Division of Genetic Information, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Katsuhiko Yoshimoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
17
|
Liu J, Liu D, Wu X, Pan C, Wang S, Ma L. TMT Quantitative Proteomics Analysis Reveals the Effects of Transport Stress on Iron Metabolism in the Liver of Chicken. Animals (Basel) 2021; 12:ani12010052. [PMID: 35011158 PMCID: PMC8749932 DOI: 10.3390/ani12010052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Transport stress (TS) can impact the physiology and psychology of broilers, and this can be an important factor affecting liver iron metabolism in broilers. By establishing a transport model group, broilers (n = 144) reared under the same conditions were allocated into six groups and transported duration for 0, 0.5, 1, 2, 4, and 6 h. The results showed that the enrichment of iron content in the liver was the highest at a transport duration of 4 h, so the effect of transport duration of 4 h on iron metabolism was further investigated using TMT quantitative proteomic analysis. It was found that TS caused the enrichment of iron ions in the liver, TMT identified FTH1, IREB2, and HEPH as key proteins affecting iron metabolism, and key genes regulating iron homeostasis were validated using RT-PCR. Abstract Abnormal iron metabolism can cause oxidative stress in broilers, and transport stress (TS) may potentially influence iron metabolism. However, the mechanisms by which TS affects iron metabolism are unclear. This study used quantitative proteome analysis based on tandem mass tag (TMT) to investigate the effects of TS on liver iron metabolism in broilers. Broilers (n = 24) reared under the same conditions were selected randomly into the transported group for 4 h (T2) and non-transported group (T1). Results showed that the serum iron level and total iron-binding capacity of broilers in the T2 were significantly higher than those in the T1 (p < 0.05). The liver iron content of broilers in the T2 (0.498 ± 0.058 mg·gprot−1) was significantly higher than that in the T1 (0.357 ± 0.035 mg·gprot−1), and the iron-stained sections showed that TS caused the enrichment of iron in the liver. We identified 1139 differentially expressed proteins (DEPs). Twelve DEPs associated with iron metabolism were identified, of which eight were up-regulated, and four were down-regulated in T2 compared with T1. Prediction of the protein interaction network for DEPs showed that FTH1, IREB2, and HEPH play vital roles in this network. The results provide new insights into the effects of TS on broilers’ liver iron metabolism.
Collapse
Affiliation(s)
- Jun Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Dunhua Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- School of Food & Wine, Ningxia University, Yinchuan 750021, China;
- Correspondence: or ; Tel.: +86-13995288707
| | - Xun Wu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China;
| | - Cuili Pan
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China; (C.P.); (S.W.)
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China; (C.P.); (S.W.)
| | - Lu Ma
- Department of Business Management, Shizuishan Institute of Industry and Trade, Shizuishan 753000, China;
| |
Collapse
|
18
|
Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, Lyu Q, Ma L, Tang Y, Hu Y, Miao K, Zhao H, Tian J, An L. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem 2021; 298:101456. [PMID: 34861240 PMCID: PMC8733267 DOI: 10.1016/j.jbc.2021.101456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Well-orchestrated maternal–fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal–fetal cross talk. Herein, focusing on ligand–receptor complexes and coupled pathways at the maternal–fetal interface in sheep, we provide the first comprehensive proteomic map of ligand–receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand–receptor pathway cascades at the maternal–fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus–endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingji Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lizhu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yawen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yupei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Wollen KL, Hagen L, Vågbø CB, Rabe R, Iveland TS, Aas PA, Sharma A, Sporsheim B, Erlandsen HO, Palibrk V, Bjørås M, Fonseca DM, Mosammaparast N, Slupphaug G. ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. J Transl Med 2021; 19:287. [PMID: 34217309 PMCID: PMC8254245 DOI: 10.1186/s12967-021-02948-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. Methods Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. Results MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. Conclusions Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02948-6.
Collapse
Affiliation(s)
- Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Renana Rabe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Hilde O Erlandsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Davi M Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway. .,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway.
| |
Collapse
|
21
|
Mao Y, Wang X, Huang P, Tian R. Spatial proteomics for understanding the tissue microenvironment. Analyst 2021; 146:3777-3798. [PMID: 34042124 DOI: 10.1039/d1an00472g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human body comprises rich populations of cells, which are arranged into tissues and organs with diverse functionalities. These cells exhibit a broad spectrum of phenotypes and are often organized as a heterogeneous but sophisticatedly regulated ecosystem - tissue microenvironment, inside which every cell interacts with and is reciprocally influenced by its surroundings through its life span. Therefore, it is critical to comprehensively explore the cellular machinery and biological processes in the tissue microenvironment, which is best exemplified by the tumor microenvironment (TME). The past decade has seen increasing advances in the field of spatial proteomics, the main purpose of which is to characterize the abundance and spatial distribution of proteins and their post-translational modifications in the microenvironment of diseased tissues. Herein, we outline the achievements and remaining challenges of mass spectrometry-based tissue spatial proteomics. Exciting technology developments along with important biomedical applications of spatial proteomics are highlighted. In detail, we focus on high-quality resources built by scalpel macrodissection-based region-resolved proteomics, method development of sensitive sample preparation for laser microdissection-based spatial proteomics, and antibody recognition-based multiplexed tissue imaging. In the end, critical issues and potential future directions for spatial proteomics are also discussed.
Collapse
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. and Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China and Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Peiwu Huang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Zakaria A, Berthault C, Cosson B, Jung V, Guerrera IC, Rachdi L, Scharfmann R. Glucose treatment of human pancreatic β-cells enhances translation of mRNAs involved in energetics and insulin secretion. J Biol Chem 2021; 297:100839. [PMID: 34051232 PMCID: PMC8253965 DOI: 10.1016/j.jbc.2021.100839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Glucose-mediated signaling regulates the expression of a limited number of genes in human pancreatic β-cells at the transcriptional level. However, it is unclear whether glucose plays a role in posttranscriptional RNA processing or translational control of gene expression. Here, we asked whether glucose affects posttranscriptional steps and regulates protein synthesis in human β-cell lines. We first showed the involvement of the mTOR pathway in glucose-related signaling. We also used the surface sensing of translation technique, based on puromycin incorporation into newly translated proteins, to demonstrate that glucose treatment increased protein translation. Among the list of glucose-induced proteins, we identified the proconvertase PCSK1, an enzyme involved in the proteolytic conversion of proinsulin to insulin, whose translation was induced within minutes following glucose treatment. We finally performed global proteomic analysis by mass spectrometry to characterize newly translated proteins upon glucose treatment. We found enrichment in proteins involved in translation, glycolysis, TCA metabolism, and insulin secretion. Taken together, our study demonstrates that, although glucose minorly affects gene transcription in human β-cells, it plays a major role at the translational level.
Collapse
Affiliation(s)
- Albatoul Zakaria
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris, Paris, France
| | - Claire Berthault
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris, Paris, France
| | - Bertrand Cosson
- Epigenetics and Cell Fate Center, CNRS UMR 7216, Université de Paris, Paris, France
| | - Vincent Jung
- Plateforme protéomique Necker, INSERM US24/CNRS UMS3633, Université de Paris, Structure Fédérative de Recherche Necker, Paris, France
| | - Ida Chiara Guerrera
- Plateforme protéomique Necker, INSERM US24/CNRS UMS3633, Université de Paris, Structure Fédérative de Recherche Necker, Paris, France
| | - Latif Rachdi
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris, Paris, France.
| | - Raphael Scharfmann
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris, Paris, France.
| |
Collapse
|
23
|
In silico approach to predict pancreatic β-cells classically secreted proteins. Biosci Rep 2021; 40:222021. [PMID: 32003782 PMCID: PMC7024845 DOI: 10.1042/bsr20193708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic β-cells, residents of the islets of Langerhans, are the unique insulin-producers in the body. Their physiology is a topic of intensive studies aiming to understand the biology of insulin production and its role in diabetes pathology. However, investigations about these cells' subset of secreted proteins, the secretome, are surprisingly scarce and a list describing islet/β-cell secretome upon glucose-stimulation is not yet available. In silico predictions of secretomes are an interesting approach that can be employed to forecast proteins likely to be secreted. In this context, using the rationale behind classical secretion of proteins through the secretory pathway, a Python tool capable of predicting classically secreted proteins was developed. This tool was applied to different available proteomic data (human and rodent islets, isolated β-cells, β-cell secretory granules, and β-cells supernatant), filtering them in order to selectively list only classically secreted proteins. The method presented here can retrieve, organize, search and filter proteomic lists using UniProtKB as a central database. It provides analysis by overlaying different sets of information, filtering out potential contaminants and clustering the identified proteins into functional groups. A range of 70-92% of the original proteomes analyzed was reduced generating predicted secretomes. Islet and β-cell signal peptide-containing proteins, and endoplasmic reticulum-resident proteins were identified and quantified. From the predicted secretomes, exemplary conservational patterns were inferred, as well as the signaling pathways enriched within them. Such a technique proves to be an effective approach to reduce the horizon of plausible targets for drug development or biomarkers identification.
Collapse
|
24
|
Ye X, Wang J, Qiao Z, Yang D, Wang J, Abudureyimu A, Yang K, Feng Y, Ma Z, Liu Z. Quantitative proteomic analysis of MDCK cell adhesion. Mol Omics 2020; 17:121-129. [PMID: 33201162 DOI: 10.1039/d0mo00055h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MDCK cells are a key reagent in modern vaccine production. As MDCK cells are normally adherent, creation of suspension cells for vaccine production using genetic engineering approaches is highly desirable. However, little is known regarding the mechanisms and effectors underlying MDCK cell adhesion. In this study, we performed a comparative analysis of whole protein levels between MDCK adhesion and suspension cells using an iTRAQ-based (isobaric tags for relative and absolute quantitation) proteomics approach. We found that expression of several proteins involved in cell adhesion exhibit reduced expression in suspension cells, including at the mRNA level. Proteins whose expression was reduced in suspension cells include cadherin 1 (CDH1), catenin beta-1 (CTNNB1), and catenin alpha-1 (CTNNA1), which are involved in intercellular adhesion; junction plakoglobin (JUP), desmoplakin (DSP), and desmoglein 3 (DSG3), which are desmosome components; and transglutaminase 2 (TGM2) and alpha-actinin-1 (ACTN1), which regulate the adhesion between cells and the extracellular matrix. A functional verification experiment showed that inhibition of E-cadherin significantly reduced intercellular adhesion of MDCK cells. E-Cadherin did not significantly affect the proliferation of MDCK cells and the replication of influenza virus. These findings reveal possible mechanisms underlying adhesion of MDCK cells and will guide the creation of MDCK suspension cells by genetic engineering.
Collapse
Affiliation(s)
- Xuanqing Ye
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fang F, Zhao Q, Chu H, Liu M, Zhao B, Liang Z, Zhang L, Li G, Wang L, Qin J, Zhang Y. Molecular Dynamics Simulation-assisted Ionic Liquid Screening for Deep Coverage Proteome Analysis. Mol Cell Proteomics 2020; 19:1724-1737. [PMID: 32675193 PMCID: PMC8015004 DOI: 10.1074/mcp.tir119.001827] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/08/2020] [Indexed: 11/06/2022] Open
Abstract
In-depth coverage of proteomic analysis could enhance our understanding to the mechanism of the protein functions. Unfortunately, many highly hydrophobic proteins and low-abundance proteins, which play critical roles in signaling networks, are easily lost during sample preparation, mainly attributed to the fact that very few extractants can simultaneously satisfy the requirements on strong solubilizing ability to membrane proteins and good enzyme compatibility. Thus, it is urgent to screen out ideal extractant from the huge compound libraries in a fast and effective way. Herein, by investigating the interior mechanism of extractants on the membrane proteins solubilization and trypsin compatibility, a molecular dynamics simulation system was established as complement to the experimental procedure to narrow down the scope of candidates for proteomics analysis. The simulation data shows that the van der Waals interaction between cation group of ionic liquid and membrane protein is the dominant factor in determining protein solubilization. In combination with the experimental data, 1-dodecyl-3-methylimidazolium chloride (C12Im-Cl) is on the shortlist for the suitable candidates from comprehensive aspects. Inspired by the advantages of C12Im-Cl, an ionic liquid-based filter-aided sample preparation (i-FASP) method was developed. Using this strategy, over 3,300 proteins were confidently identified from 103 HeLa cells (∼100 ng proteins) in a single run, an improvement of 53% over the conventional FASP method. Then the i-FASP method was further successfully applied to the label-free relative quantitation of human liver cancer and para-carcinoma tissues with obviously improved accuracy, reproducibility and coverage than the commonly used urea-based FASP method. The above results demonstrated that the i-FASP method could be performed as a versatile tool for the in-depth coverage proteomic analysis of biological samples.
Collapse
Affiliation(s)
- Fei Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, Beijing, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences, Beijing, China; Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| |
Collapse
|
26
|
Kalita B, Bano S, Vavachan VM, Taunk K, Seshadri V, Rapole S. Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140469. [DOI: 10.1016/j.bbapap.2020.140469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
27
|
Sigdel TK, Piehowski PD, Roy S, Liberto J, Hansen JR, Swensen AC, Zhao R, Zhu Y, Rashmi P, Schroeder A, Damm I, Sur S, Luo J, Yang Y, Qian WJ, Sarwal MM. Near-Single-Cell Proteomics Profiling of the Proximal Tubular and Glomerulus of the Normal Human Kidney. Front Med (Lausanne) 2020; 7:499. [PMID: 33072769 PMCID: PMC7533534 DOI: 10.3389/fmed.2020.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular assessments at the single cell level can accelerate biological research by providing detailed assessments of cellular organization and tissue heterogeneity in both disease and health. The human kidney has complex multi-cellular states with varying functionality, much of which can now be completely harnessed with recent technological advances in tissue proteomics at a near single-cell level. We discuss the foundational steps in the first application of this mass spectrometry (MS) based proteomics method for analysis of sub-sections of the normal human kidney, as part of the Kidney Precision Medicine Project (KPMP). Using ~30-40 laser captured micro-dissected kidney cells, we identified more than 2,500 human proteins, with specificity to the proximal tubular (PT; n = 25 proteins) and glomerular (Glom; n = 67 proteins) regions of the kidney and their unique metabolic functions. This pilot study provides the roadmap for application of our near-single-cell proteomics workflow for analysis of other renal micro-compartments, on a larger scale, to unravel perturbations of renal sub-cellular function in the normal kidney as well as different etiologies of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Paul D. Piehowski
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Sudeshna Roy
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane Liberto
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Joshua R. Hansen
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Adam C. Swensen
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Priyanka Rashmi
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew Schroeder
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Izabella Damm
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Swastika Sur
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Minnie M. Sarwal
- Division of MultiOrgan Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Tran DT, Pottekat A, Mir SA, Loguercio S, Jang I, Campos AR, Scully KM, Lahmy R, Liu M, Arvan P, Balch WE, Kaufman RJ, Itkin-Ansari P. Unbiased Profiling of the Human Proinsulin Biosynthetic Interaction Network Reveals a Role for Peroxiredoxin 4 in Proinsulin Folding. Diabetes 2020; 69:1723-1734. [PMID: 32457219 PMCID: PMC7372081 DOI: 10.2337/db20-0245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
The β-cell protein synthetic machinery is dedicated to the production of mature insulin, which requires the proper folding and trafficking of its precursor, proinsulin. The complete network of proteins that mediate proinsulin folding and advancement through the secretory pathway, however, remains poorly defined. Here we used affinity purification and mass spectrometry to identify, for the first time, the proinsulin biosynthetic interaction network in human islets. Stringent analysis established a central node of proinsulin interactions with endoplasmic reticulum (ER) folding factors, including chaperones and oxidoreductases, that is remarkably conserved in both sexes and across three ethnicities. The ER-localized peroxiredoxin PRDX4 was identified as a prominent proinsulin-interacting protein. In β-cells, gene silencing of PRDX4 rendered proinsulin susceptible to misfolding, particularly in response to oxidative stress, while exogenous PRDX4 improved proinsulin folding. Moreover, proinsulin misfolding induced by oxidative stress or high glucose was accompanied by sulfonylation of PRDX4, a modification known to inactivate peroxiredoxins. Notably, islets from patients with type 2 diabetes (T2D) exhibited significantly higher levels of sulfonylated PRDX4 than islets from healthy individuals. In conclusion, we have generated the first reference map of the human proinsulin interactome to identify critical factors controlling insulin biosynthesis, β-cell function, and T2D.
Collapse
Affiliation(s)
- Duc T Tran
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anita Pottekat
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Saiful A Mir
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | - Insook Jang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | - Kathleen M Scully
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Reyhaneh Lahmy
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ming Liu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Department of Endocrinology and Metabolism, Tianjin Medical University, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
- Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| |
Collapse
|
29
|
Thurmond DC, Gaisano HY. Recent Insights into Beta-cell Exocytosis in Type 2 Diabetes. J Mol Biol 2020; 432:1310-1325. [PMID: 31863749 PMCID: PMC8061716 DOI: 10.1016/j.jmb.2019.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 01/26/2023]
Abstract
As one of the leading causes of morbidity and mortality worldwide, diabetes affects an estimated 422 million adults, and it is expected to continue expanding such that by 2050, 30% of the U.S. population will become diabetic within their lifetime. Out of the estimated 422 million people currently afflicted with diabetes worldwide, about 5% have type 1 diabetes (T1D), while the remaining ~95% of diabetics have type 2 diabetes (T2D). Type 1 diabetes results from the autoimmune-mediated destruction of functional β-cell mass, whereas T2D results from combinatorial defects in functional β-cell mass plus peripheral glucose uptake. Both types of diabetes are now believed to be preceded by β-cell dysfunction. T2D is increasingly associated with numerous reports of deficiencies in the exocytosis proteins that regulate insulin release from β-cells, specifically the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE protein's functionality is further regulated by a variety of accessory factors such as Sec1/Munc18 (SM), double C2-domain proteins (DOC2), and additional interacting proteins at the cell surface that influence the fidelity of insulin release. As new evidence emerges about the detailed mechanisms of exocytosis, new questions and controversies have come to light. This emerging information is also contributing to dialogue in the islet biology field focused on how to correct the defects in insulin exocytosis. Herein we present a balanced review of the role of exocytosis proteins in T2D, with thoughts on novel strategies to protect functional β-cell mass.
Collapse
Affiliation(s)
- Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, CA, USA.
| | | |
Collapse
|
30
|
Chloride transporters and channels in β-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 2020; 47:1843-1855. [PMID: 31697318 PMCID: PMC6925527 DOI: 10.1042/bst20190513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.
Collapse
|
31
|
Yang Q, Fu W, Wang Y, Miao K, Zhao H, Wang R, Guo M, Wang Z, Tian J, An L. The proteome of IVF-induced aberrant embryo-maternal crosstalk by implantation stage in ewes. J Anim Sci Biotechnol 2020; 11:7. [PMID: 31956410 PMCID: PMC6958772 DOI: 10.1186/s40104-019-0405-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background Implantation failure limits the success of in vitro fertilization and embryo transfer (IVF-ET). Well-organized embryo-maternal crosstalk is essential for successful implantation. Previous studies mainly focused on the aberrant development of in vitro fertilized (IVF) embryos. In contrast, the mechanism of IVF-induced aberrant embryo-maternal crosstalk is not well defined. Results In the present study, using ewes as the model, we profiled the proteome that features aberrant IVF embryo-maternal crosstalk following IVF-ET. By comparing in vivo (IVO) and IVF conceptuses, as well as matched endometrial caruncular (C) and intercaruncular (IC) areas, we filtered out 207, 295, and 403 differentially expressed proteins (DEPs) in each comparison. Proteome functional analysis showed that the IVF conceptuses were characterized by the increased abundance of energy metabolism and proliferation-related proteins, and the decreased abundance of methyl metabolism-related proteins. In addition, IVF endometrial C areas showed the decreased abundance of endometrial remodeling and redox homeostasis-related proteins; while IC areas displayed the aberrant abundance of protein homeostasis and extracellular matrix (ECM) interaction-related proteins. Based on these observations, we propose a model depicting the disrupted embryo-maternal crosstalk following IVF-ET: Aberrant energy metabolism and redox homeostasis of IVF embryos, might lead to an aberrant endometrial response to conceptus-derived pregnancy signals, thus impairing maternal receptivity. In turn, the suboptimal uterine environment might stimulate a compensation effect of the IVF conceptuses, which was revealed as enhanced energy metabolism and over-proliferation. Conclusion Systematic proteomic profiling provides insights to understand the mechanisms that underlie the aberrant IVF embryo-maternal crosstalk. This might be helpful to develop practical strategies to prevent implantation failure following IVF-ET.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Rui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Min Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhilong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
32
|
Li S, Fang X, Han S, Zhu T, Zhu H. Differential Proteome Analysis of Hybrid Bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) Under Fungal Stress (Arthrinium phaeospermum). Sci Rep 2019; 9:18681. [PMID: 31822726 PMCID: PMC6904554 DOI: 10.1038/s41598-019-55229-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, TMT (tandem mass tag)-labeled quantitative protein technology combined with LC–MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) was used to isolate and identify the proteins of the hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) and the bamboo inoculated with the pathogenic fungi Arthrinium phaeospermum. A total of 3320 unique peptide fragments were identified after inoculation with either A. phaeospermum or sterile water, and 1791 proteins were quantified. A total of 102 differentially expressed proteins were obtained, of which 66 differential proteins were upregulated and 36 downregulated in the treatment group. Annotation and enrichment analysis of these peptides and proteins using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases with bioinformatics software showed that the differentially expressed protein functional annotation items were mainly concentrated on biological processes and cell components. The LC–PRM/MS (liquid chromatography-parallel reaction monitoring/mass spectrometry) quantitative analysis technique was used to quantitatively analyze 11 differential candidate proteins obtained by TMT combined with LC–MS/MS. The up–down trend of 10 differential proteins in the PRM results was consistent with that of the TMT quantitative analysis. The coincidence rate of the two results was 91%, which confirmed the reliability of the proteomic results. Therefore, the differentially expressed proteins and signaling pathways discovered here may be the further concern for the bamboo-pathogen interaction studies.
Collapse
Affiliation(s)
- Shujiang Li
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Hanmingyue Zhu
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| |
Collapse
|
33
|
Nakayasu ES, Qian WJ, Evans-Molina C, Mirmira RG, Eizirik DL, Metz TO. The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Rev Proteomics 2019; 16:569-582. [PMID: 31232620 PMCID: PMC6628911 DOI: 10.1080/14789450.2019.1634548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage. Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review. Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
34
|
Qadir MMF, Álvarez-Cubela S, Klein D, Lanzoni G, García-Santana C, Montalvo A, Pláceres-Uray F, Mazza EMC, Ricordi C, Inverardi LA, Pastori RL, Domínguez-Bendala J. P2RY1/ALK3-Expressing Cells within the Adult Human Exocrine Pancreas Are BMP-7 Expandable and Exhibit Progenitor-like Characteristics. Cell Rep 2019; 22:2408-2420. [PMID: 29490276 PMCID: PMC5905712 DOI: 10.1016/j.celrep.2018.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Treatment of human pancreatic non-endocrine tissue with Bone Morphogenetic Protein 7 (BMP-7) leads to the formation of glucose-responsive β-like cells. Here, we show that BMP-7 acts on extrainsular cells expressing PDX1 and the BMP receptor activin-like kinase 3 (ALK3/BMPR1A). In vitro lineage tracing indicates that ALK3+ cell populations are multipotent. PDX1+/ALK3+ cells are absent from islets but prominently represented in the major pancreatic ducts and pancreatic duct glands. We identified the purinergic receptor P2Y1 (P2RY1) as a surrogate surface marker for PDX1. Sorted P2RY1+/ALK3bright+ cells form BMP-7-expandable colonies characterized by NKX6.1 and PDX1 expression. Unlike the negative fraction controls, these colonies can be differentiated into multiple pancreatic lineages upon BMP-7 withdrawal. RNA-seq further corroborates the progenitor-like nature of P2RY1+/ALK3bright+ cells and their multilineage differentiation potential. Our studies confirm the existence of progenitor cells in the adult human pancreas and suggest a specific anatomical location within the ductal and glandular networks.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Abelardo Montalvo
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fabiola Pláceres-Uray
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Camillo Ricordi
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology & Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biomedical Engineering, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luca Alessandro Inverardi
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology & Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology & Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Prentice BM, Hart NJ, Phillips N, Haliyur R, Judd A, Armandala R, Spraggins JM, Lowe CL, Boyd KL, Stein RW, Wright CV, Norris JL, Powers AC, Brissova M, Caprioli RM. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 2019; 62:1036-1047. [PMID: 30955045 PMCID: PMC6553460 DOI: 10.1007/s00125-019-4855-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 μm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.
Collapse
Affiliation(s)
- Boone M Prentice
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Phillips
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Judd
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Radhika Armandala
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Spraggins
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Cindy L Lowe
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelli L Boyd
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Christopher V Wright
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy L Norris
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Caprioli
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
36
|
Davis S, Scott C, Ansorge O, Fischer R. Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain. J Proteome Res 2019; 18:1787-1795. [PMID: 30768908 PMCID: PMC6456870 DOI: 10.1021/acs.jproteome.8b00981] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While nearly comprehensive proteome
coverage can be achieved from
bulk tissue or cultured cells, the data usually lacks spatial resolution.
As a result, tissue based proteomics averages protein abundance across
multiple cell types and/or localizations. With proteomics platforms
lacking sensitivity and throughput to undertake deep single-cell proteome
studies in order to resolve spatial or cell type dependent protein
expression gradients within tissue, proteome analysis has been combined
with sorting techniques to enrich for certain cell populations. However,
the spatial resolution and context is lost after cell sorting. Here,
we report an optimized method for the proteomic analysis of neurons
isolated from post-mortem human brain by laser capture microdissection
(LCM). We tested combinations of sample collection methods, lysis
buffers and digestion methods to maximize the number of identifications
and quantitative performance, identifying 1500 proteins from 60 000
μm2 of 10 μm thick cerebellar molecular layer
with excellent reproducibility. To demonstrate the ability of our
workflow to resolve cell type specific proteomes within human brain
tissue, we isolated sets of individual Betz and Purkinje cells. Both
neuronal cell types are involved in motor coordination and were found
to express highly specific proteomes to a depth of 2800 to 3600 proteins.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , Roosevelt Drive , Oxford , OX3 7FZ , U.K
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences , University of Oxford, John Radcliffe Hospital , Oxford , OX3 9DU , U.K
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences , University of Oxford, John Radcliffe Hospital , Oxford , OX3 9DU , U.K
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , Roosevelt Drive , Oxford , OX3 7FZ , U.K
| |
Collapse
|
37
|
Zhang L, Lanzoni G, Battarra M, Inverardi L, Zhang Q. Label-Free LC-MS/MS Strategy for Comprehensive Proteomic Profiling of Human Islets Collected Using Laser Capture Microdissection from Frozen Pancreata. Methods Mol Biol 2019; 1871:253-264. [PMID: 30276744 DOI: 10.1007/978-1-4939-8814-3_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus is caused by either loss of pancreatic islets β-cells (Type 1 Diabetes, T1D), insufficient insulin release in the islet β-cells coupled with insulin resistance in target tissues (Type 2 Diabetes, T2D), or impaired insulin release (genetic forms of diabetes and, possibly, T1D subtypes). The investigation of the islet proteome could elucidate facets of the pathogenesis of diabetes. Enzymatically isolated and cultured (EIC) islets are frequently used to investigate biochemical signaling pathways that could trigger β-cell changes and death in diabetes. However, they cannot fully reflect the natural protein composition and disease process of in vivo islets due to the stress from isolation procedures and in vitro culture. The laser capture microdissection method employs a high-energy laser source to separate the desired cells from the remaining tissue section in an environment which is well conserved and close to the natural condition. Here, we describe a label-free proteomic workflow of laser capture microdissected (LCM) human islets from fresh-frozen pancreas sections of cadaveric donors to obtain an accurate and unbiased profile of the pancreatic islet proteome. The workflow includes preparation of frozen tissue section, staining and dehydration, LCM islets collection, islet protein digestion, label-free Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), database search, and statistical analysis.
Collapse
Affiliation(s)
- Lina Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Matteo Battarra
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, USA. .,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
38
|
Miraee-Nedjad S, Sims PFG, Schwartz JM, Doig AJ. Effect of IAPP on the proteome of cultured Rin-5F cells. BMC BIOCHEMISTRY 2018; 19:9. [PMID: 30419808 PMCID: PMC6233276 DOI: 10.1186/s12858-018-0099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022]
Abstract
Background Islet amyloid polypeptide (IAPP) or amylin deposits can be found in the islets of type 2 diabetes patients. The peptide is suggested to be involved in the etiology of the disease through formation of amyloid deposits and destruction of β islet cells, though the underlying molecular events leading from IAPP deposition to β cell death are still largely unknown. Results We used OFFGEL™ proteomics to study how IAPP exposure affects the proteome of rat pancreatic insulinoma Rin-5F cells. The OFFGEL™ methodology is highly effective at generating quantitative data on hundreds of proteins affected by IAPP, with its accuracy confirmed by In Cell Western and Quantitative Real Time PCR results. Combining data on individual proteins identifies pathways and protein complexes affected by IAPP. IAPP disrupts protein synthesis and degradation, and induces oxidative stress. It causes decreases in protein transport and localization. IAPP disrupts the regulation of ubiquitin-dependent protein degradation and increases catabolic processes. IAPP causes decreases in protein transport and localization, and affects the cytoskeleton, DNA repair and oxidative stress. Conclusions Results are consistent with a model where IAPP aggregates overwhelm the ability of a cell to degrade proteins via the ubiquitin system. Ultimately this leads to apoptosis. IAPP aggregates may be also toxic to the cell by causing oxidative stress, leading to DNA damage or by decreasing protein transport. The reversal of any of these effects, perhaps by targeting proteins which alter in response to IAPP, may be beneficial for type II diabetes. Electronic supplementary material The online version of this article (10.1186/s12858-018-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Miraee-Nedjad
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul F G Sims
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
39
|
Lim R, Barker G, Lappas M. PARK7 regulates inflammation-induced pro-labour mediators in myometrial and amnion cells. Reproduction 2018; 155:207-218. [PMID: 29358306 DOI: 10.1530/rep-17-0604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023]
Abstract
Preterm birth is a prevalent cause of neonatal deaths worldwide. Inflammation has been implicated in spontaneous preterm birth involved in the processes of uterine contractility and membrane rupture. Parkinson protein 7 (PARK7) has been found to play an inflammatory role in non-gestational tissues. The aims of this study were to determine the expression of PARK7 in myometrium and fetal membranes with respect to term labour onset and to elucidate the effect of PARK7 silencing in primary myometrium and amnion cells on pro-inflammatory and pro-labour mediators. PARK7 mRNA expression was higher in term myometrium and fetal membranes from women in labour compared to non-labouring samples and in amnion from preterm deliveries with chorioamnionitis. In human primary myometrial cells transfected with PARK7 siRNA (siPARK7), there was a significant decrease in IL1B, TNF, fsl-1 and poly(I:C)-induced expression of pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2), adhesion molecule ICAM1, prostaglandin PGF2α and its receptor PTGFR. Similarly, amnion cells transfected with siPARK7 displayed a decrease in IL1B-induced expression of IL6, CXCL8 and ICAM1. In myometrial cells transfected with siPARK7, there was a significant reduction of NF-κB RELA transcriptional activity when stimulated with fsl-1, flagellin and poly(I:C), but not with IL1B or TNF. Collectively, our novel data describe a role for PARK7 in regulating inflammation-induced pro-inflammatory and pro-labour mediators in human myometrial and amnion cells.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia.,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia.,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia .,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
40
|
Abstract
INTRODUCTION Nanoproteomics, which is defined as quantitative proteome profiling of small populations of cells (<5000 cells), can reveal critical information related to rare cell populations, hard-to-obtain clinical specimens, and the cellular heterogeneity of pathological tissues. Areas covered: We present a brief review of the recent technological advances in nanoproteomics. These advances include new technologies or approaches covering major areas of proteomics workflow ranging from sample isolation, sample processing, high-resolution separations, to MS instrumentation. Expert commentary: We comment on the current state of nanoproteomics and discuss perspectives on both future technological directions and potential enabling applications.
Collapse
Affiliation(s)
- Ying Zhu
- a Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland , WA , USA
| | - Paul D Piehowski
- b Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Ryan T Kelly
- a Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- b Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
41
|
Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. Commun Biol 2018; 1:103. [PMID: 30271983 PMCID: PMC6123794 DOI: 10.1038/s42003-018-0107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
There is an unmet technical challenge for mass spectrometry (MS)-based proteomic analysis of single mammalian cells. Quantitative proteomic analysis of single cells has been previously achieved by antibody-based immunoassays but is limited by the availability of high-quality antibodies. Herein we report a facile targeted MS-based proteomics method, termed cPRISM-SRM (carrier-assisted high-pressure, high-resolution separations with intelligent selection and multiplexing coupled to selected reaction monitoring), for reliable analysis of low numbers of mammalian cells. The method capitalizes on using “carrier protein” to assist processing of low numbers of cells with minimal loss, high-resolution PRISM separation for target peptide enrichment, and sensitive SRM for protein quantification. We have demonstrated that cPRISM-SRM has sufficient sensitivity to quantify proteins expressed at ≥200,000 copies per cell at the single-cell level and ≥3000 copies per cell in 100 mammalian cells. We envision that with further improvement cPRISM-SRM has the potential to move toward targeted MS-based single-cell proteomics. Tujin Shi et al. report a mass spectrometry-based proteomics approach, cPRISM-SRM, that allows for accurate quantification of proteins in small numbers of mammalian cells through the use of a carrier protein to prevent sample loss. The sensitivity of cPRISM-SRM allows for measurement of the 2500 most abundant proteins in a human cell.
Collapse
|
42
|
Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans. Sci Rep 2018; 8:9979. [PMID: 29967323 PMCID: PMC6028636 DOI: 10.1038/s41598-018-28019-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ex vivo expansion and differentiation of human pancreatic β-cell are enabling steps of paramount importance for accelerating the development of therapies for diabetes. The success of regenerative strategies depends on their ability to reproduce the chemical and biophysical properties of the microenvironment in which β-cells develop, proliferate and function. In this paper we focus on the biophysical properties of the extracellular environment and exploit the cluster-assembled zirconia substrates with tailored roughness to mimic the nanotopography of the extracellular matrix. We demonstrate that β-cells can perceive nanoscale features of the substrate and can convert these stimuli into mechanotransductive processes which promote long-term in vitro human islet culture, thus preserving β-cell differentiation and function. Proteomic and quantitative immunofluorescence analyses demonstrate that the process is driven by nanoscale topography, via remodelling of the actin cytoskeleton and nuclear architecture. These modifications activate a transcriptional program which stimulates an adaptive metabolic glucose response. Engineered cluster-assembled substrates coupled with proteomic approaches may provide a useful strategy for identifying novel molecular targets for treating diabetes mellitus and for enhancing tissue engineering in order to improve the efficacy of islet cell transplantation therapies.
Collapse
|
43
|
Danne-Rasche N, Coman C, Ahrends R. Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid Coverage, Measurement Sensitivity, and Linear Dynamic Range. Anal Chem 2018; 90:8093-8101. [PMID: 29792796 DOI: 10.1021/acs.analchem.8b01275] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nano-liquid chromatography (nLC)-nanoelectrospray (NSI) is one of the cornerstones of mass-spectrometry-based bioanalytics. Nevertheless, the application of nLC is not yet prevalent in lipid analyses. In this study, we established a reproducible nLC separation for global lipidomics and describe the merits of using such a miniaturized system for lipid analyses. In order to enable comprehensive lipid analyses that is not restricted to specific lipid classes, we particularly optimized sample preparation conditions and reversed-phase separation parameters. We further benchmarked the developed nLC system to a commonly used high flow HPLC/ESI MS system in terms of lipidome coverage and sensitivity. The comparison revealed an intensity gain between 2 and 3 orders of magnitude for individual lipid classes and an increase in the linear dynamic range of up to 2 orders of magnitude. Furthermore, the analysis of the yeast lipidome using nLC/NSI resulted in more than a 3-fold gain in lipid identifications. All in all, we identified 447 lipids from the core phospholipid lipid classes (PA, PE, PC, PS, PG, and PI) in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Niklas Danne-Rasche
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V , Otto-Hahn-Str. 6b , 44227 Dortmund , Germany
| |
Collapse
|
44
|
Höhne M, Frese CK, Grahammer F, Dafinger C, Ciarimboli G, Butt L, Binz J, Hackl MJ, Rahmatollahi M, Kann M, Schneider S, Altintas MM, Schermer B, Reinheckel T, Göbel H, Reiser J, Huber TB, Kramann R, Seeger-Nukpezah T, Liebau MC, Beck BB, Benzing T, Beyer A, Rinschen MM. Single-nephron proteomes connect morphology and function in proteinuric kidney disease. Kidney Int 2018; 93:1308-1319. [PMID: 29530281 DOI: 10.1016/j.kint.2017.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
In diseases of many parenchymatous organs, heterogeneous deterioration of individual functional units determines the clinical prognosis. However, the molecular characterization at the level of such individual subunits remains a technological challenge that needs to be addressed in order to better understand pathological mechanisms. Proteinuric glomerular kidney diseases are frequent and assorted diseases affecting a fraction of glomeruli and their draining tubules to variable extents, and for which no specific treatment exists. Here, we developed and applied a mass spectrometry-based methodology to investigate heterogeneity of proteomes from individually isolated nephron segments from mice with proteinuric kidney disease. In single glomeruli from two different mouse models of sclerotic glomerular disease, we identified a coherent protein expression module consisting of extracellular matrix protein deposition (reflecting glomerular sclerosis), glomerular albumin (reflecting proteinuria) and LAMP1, a lysosomal protein. This module was associated with a loss of podocyte marker proteins while genetic ablation of LAMP1-correlated lysosomal proteases could ameliorate glomerular damage in vivo. Furthermore, proteomic analyses of individual glomeruli from patients with genetic sclerotic and non-sclerotic proteinuric diseases revealed increased abundance of lysosomal proteins, in combination with a decreased abundance of mutated gene products. Thus, altered protein homeostasis (proteostasis) is a conserved key mechanism in proteinuric kidney diseases. Moreover, our technology can capture intra-individual variability in diseases of the kidney and other tissues at a sub-biopsy scale.
Collapse
Affiliation(s)
- Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Christian K Frese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatrics, Division of Pediatric Nephrology, University Hospital of Cologne, Cologne, Germany
| | | | - Linus Butt
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Julia Binz
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mahdieh Rahmatollahi
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Schneider
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Reinheckel
- Institut of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jochen Reiser
- Rush University Medical Center, Chicago, Illinois, USA
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | | | - Max C Liebau
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany; Department of Pediatrics, Division of Pediatric Nephrology, University Hospital of Cologne, Cologne, Germany
| | - Bodo B Beck
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
45
|
Klein JB, A Knepper M. Protein Mass Spectrometry Made Simple. J Am Soc Nephrol 2018; 29:1585-1587. [PMID: 29724882 DOI: 10.1681/asn.2018030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jon B Klein
- University of Louisville School of Medicine and Robley Rex Veterans Administration Medical Center, Louisville, Kentucky; and
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
46
|
Zhu Y, Zhao R, Piehowski PD, Moore RJ, Lim S, Orphan VJ, Paša-Tolić L, Qian WJ, Smith RD, Kelly RT. Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:4-10. [PMID: 29576737 PMCID: PMC5863755 DOI: 10.1016/j.ijms.2017.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-μm-i.d. columns increase signal intensity by >3-fold relative to those using 75-μm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos MS significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a ~3-fold increase in peptide identifications and 1.7-fold increase in identified protein groups for 2 ng tryptic digests of the bacterium S. oneidensis. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~ 95% for 0.5 ng samples and by ~42% for 2 ng samples. Using the best combination of the above variables, we were able to identify >3,000 proteins from 10 ng tryptic digests from both HeLa and THP-1 mammalian cell lines. We also identified >950 proteins from subnanogram archaeal/bacterial cocultures. The present ultrasensitive LC-MS platform achieves a level of proteome coverage not previously realized for ultra-small sample loadings, and is expected to facilitate the analysis of subnanogram samples, including single mammalian cells.
Collapse
Affiliation(s)
- Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sujung Lim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T. Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Corresponding author footnote: Ryan T. Kelly, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN K8-91, Richland, WA 99352 USA, Tel: 509-371-6525, Fax: 509-371-6445,
| |
Collapse
|
47
|
Mitok KA, Freiberger EC, Schueler KL, Rabaglia ME, Stapleton DS, Kwiecien NW, Malec PA, Hebert AS, Broman AT, Kennedy RT, Keller MP, Coon JJ, Attie AD. Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. J Biol Chem 2018; 293:5860-5877. [PMID: 29496998 DOI: 10.1074/jbc.ra117.001102] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The mouse is a critical model in diabetes research, but most research in mice has been limited to a small number of mouse strains and limited genetic variation. Using the eight founder strains and both sexes of the Collaborative Cross (C57BL/6J (B6), A/J, 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), PWK/PhJ (PWK), WSB/EiJ (WSB), and CAST/EiJ (CAST)), we investigated the genetic dependence of diabetes-related metabolic phenotypes and insulin secretion. We found that strain background is associated with an extraordinary range in body weight, plasma glucose, insulin, triglycerides, and insulin secretion. Our whole-islet proteomic analysis of the eight mouse strains demonstrates that genetic background exerts a strong influence on the islet proteome that can be linked to the differences in diabetes-related metabolic phenotypes and insulin secretion. We computed protein modules consisting of highly correlated proteins that enrich for biological pathways and provide a searchable database of the islet protein expression profiles. To validate the data resource, we identified tyrosine hydroxylase (Th), a key enzyme in catecholamine synthesis, as a protein that is highly expressed in β-cells of PWK and CAST islets. We show that CAST islets synthesize elevated levels of dopamine, which suppresses insulin secretion. Prior studies, using only the B6 strain, concluded that adult mouse islets do not synthesize l-3,4-dihydroxyphenylalanine (l-DOPA), the product of Th and precursor of dopamine. Thus, the choice of the CAST strain, guided by our islet proteomic survey, was crucial for these discoveries. In summary, we provide a valuable data resource to the research community, and show that proteomic analysis identified a strain-specific pathway by which dopamine synthesized in β-cells inhibits insulin secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paige A Malec
- the Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109
| | - Alexander S Hebert
- the Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | | - Robert T Kennedy
- the Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109
| | | | - Joshua J Coon
- Chemistry, and .,the Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | |
Collapse
|
48
|
Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, Shukla AK, Petyuk VA, Campbell-Thompson M, Mathews CE, Smith RD, Qian WJ, Kelly RT. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nat Commun 2018; 9:882. [PMID: 29491378 PMCID: PMC5830451 DOI: 10.1038/s41467-018-03367-w] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues. There is a great need of developing highly sensitive mass spectrometry-based proteomics analysis for small cell populations. Here, the authors establish a robotically controlled chip-based nanodroplet processing platform and demonstrate its ability to profile the proteome from 10–100 mammalian cells.
Collapse
Affiliation(s)
- Ying Zhu
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Yufeng Shen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan T Kelly
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
49
|
Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A Perspective on Extracellular Vesicles Proteomics. Front Chem 2017; 5:102. [PMID: 29209607 PMCID: PMC5702361 DOI: 10.3389/fchem.2017.00102] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victória Bombarda Rocha
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
50
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|