1
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Zhao Y, Zhang Q, Zhang B, Dai Y, Gao Y, Li C, Yu Y, Li C. Epstein-Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int J Mol Sci 2024; 25:8160. [PMID: 39125729 PMCID: PMC11311853 DOI: 10.3390/ijms25158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.
Collapse
Affiliation(s)
- Yuehong Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Qi Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Botian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yihao Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yifei Gao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (Q.Z.); (B.Z.); (Y.D.); (Y.G.); (C.L.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3
|
Sherri N, Assaf R, Bitar ER, Znait S, Borghol AH, Kassem A, Rahal EA. Epstein-Barr Virus DNA Exacerbates Arthritis in a Mouse Model via Toll-like Receptor 9. Int J Mol Sci 2024; 25:4661. [PMID: 38731877 PMCID: PMC11083462 DOI: 10.3390/ijms25094661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.
Collapse
MESH Headings
- Animals
- Mice
- Arthritis, Experimental/virology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/virology
- Disease Models, Animal
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/pathology
- Herpesvirus 4, Human/physiology
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Nour Sherri
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Rayan Assaf
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Elio R. Bitar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Sabah Znait
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Aya Kassem
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut 1107, Lebanon; (N.S.); (R.A.); (E.R.B.); (S.Z.); (A.H.B.); (A.K.)
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
4
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Rehman UU, Ghafoor D, Ullah A, Ahmad R, Hanif S. Epigenetics regulation during virus-host interaction and their effects on the virus and host cell. Microb Pathog 2023; 182:106271. [PMID: 37517745 DOI: 10.1016/j.micpath.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Epigenetics, a field of study focused on cellular gene regulation independent of DNA sequence alterations, encompasses DNA methylation, histone modification and microRNA modification. Epigenetics processes play a pivotal role in governing the life cycles of viruses, enabling their transmission, persistence, and maintenance with in host organisms. This review examines the epigenetics regulation of diverse virus including orthomoxyviruses, coronavirus, retroviridae, mononegavirales, and poxviruses among others. The investigation encompasses ten representative viruses from these families. Detailed exploration of the epigenetic mechanisms underlying each virus type, involving miRNA modification, histone modification and DNA methylation, sheds light on the intricate and multifaceted epigenetic interplay between viruses and their hosts. Furthermore, this review investigates the influence of these epigenetic processes on infection cycles, emphasizing the utilization of epigenetics by viruses such as Epstein-Barr virus and Human immunodeficiency virus (HIV) to regulate gene expression during chronic or latent infections, control latency, and transition to lytic infection. Finally, the paper explores the novel treatments possibilities stemming from this epigenetic understanding.
Collapse
Affiliation(s)
- Ubaid Ur Rehman
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Dawood Ghafoor
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Asad Ullah
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riaz Ahmad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sumaira Hanif
- Department of Biological Sciences, International Islamic University, Islamabad, 45320, Pakistan
| |
Collapse
|
8
|
Napoletani G, Soldan SS, Kannan T, Preston-Alp S, Vogel P, Maestri D, Caruso LB, Kossenkov A, Sobotka A, Lieberman PM, Tempera I. PARP1 Inhibition Halts EBV+ Lymphoma Progression by Disrupting the EBNA2/MYC Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547847. [PMID: 37461649 PMCID: PMC10350008 DOI: 10.1101/2023.07.05.547847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
PARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model. We found that PARP1 inhibition induces a dramatic transcriptional reprogramming of LCLs driven largely by the reduction of the MYC oncogene expression and dysregulation of MYC targets, both in vivo and in vitro. PARP1 inhibition also reduced the expression of viral oncoprotein EBNA2, which we previously demonstrated depends on PARP1 for activation of MYC. Further, we show that PARP1 inhibition blocks the chromatin association of MYC, EBNA2, and tumor suppressor p53. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and identifies the EBNA2/MYC pathway as a target of PARP1 inhibitors and its utility for the treatment of EBNA2-driven EBV-associated cancers.
Collapse
Affiliation(s)
| | | | | | | | - Peter Vogel
- Department of Comparative Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses 2023; 15:1088. [PMID: 37243174 PMCID: PMC10222312 DOI: 10.3390/v15051088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide. To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a process of circularization and chromatinization and establishes a latent lifelong infection in host cells. There are different types of latency all characterized by different expressions of latent viral genes correlated with a different three-dimensional architecture of the viral genome. There are multiple factors involved in the regulation and maintenance of this three-dimensional organization, such as CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
Collapse
Affiliation(s)
| | - Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Italo Tempera
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
| |
Collapse
|
10
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
MC180295 Inhibited Epstein–Barr Virus-Associated Gastric Carcinoma Cell Growth by Suppressing DNA Repair and the Cell Cycle. Int J Mol Sci 2022; 23:ijms231810597. [PMID: 36142506 PMCID: PMC9500863 DOI: 10.3390/ijms231810597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
DNA methylation of both viral and host DNA is one of the major mechanisms involved in the development of Epstein–Barr virus-associated gastric carcinoma (EBVaGC); thus, epigenetic treatment using demethylating agents would seem to be promising. We have verified the effect of MC180295, which was discovered by screening for demethylating agents. MC180295 inhibited cell growth of the EBVaGC cell lines YCCEL1 and SNU719 in a dose-dependent manner. In a cell cycle analysis, growth arrest and apoptosis were observed in both YCCEL1 and SNU719 cells treated with MC180295. MKN28 cells infected with EBV were sensitive to MC180295 and showed more significant inhibition of cell growth compared to controls without EBV infection. Serial analysis of gene expression analysis showed the expression of genes belonging to the role of BRCA1 in DNA damage response and cell cycle control chromosomal replication to be significantly reduced after MC180295 treatment. We confirmed with quantitative PCR that the expression levels of BRCA2, FANCM, RAD51, TOP2A, and CDC45 were significantly decreased by MC180295. LMP1 and BZLF1 are EBV genes with expression that is epigenetically regulated, and MC180295 could up-regulate their expression. In conclusion, MC180295 inhibited the growth of EBVaGC cells by suppressing DNA repair and the cell cycle.
Collapse
|
13
|
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022; 13:955603. [PMID: 35935191 PMCID: PMC9355577 DOI: 10.3389/fmicb.2022.955603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
- Istituto Nazionale di Genetica Molecolare, “Romeo ed Enrica Invernizzi,” Milan, Italy
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
14
|
Ahmed K, Sheikh A, Fatima S, Haider G, Ghias K, Abbas F, Mughal N, Abidi SH. Detection and characterization of latency stage of EBV and histopathological analysis of prostatic adenocarcinoma tissues. Sci Rep 2022; 12:10399. [PMID: 35729214 PMCID: PMC9213544 DOI: 10.1038/s41598-022-14511-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The pathophysiology of prostate cancer involves both genetic and acquired factors, including pathogens, such as viruses. A limited number of studies have shown the presence of Epstein-Barr virus (EBV) in prostate cancer tissues. However, there is a dearth of data exploring EBV latency profile in prostate cancer, and the relationship of EBV with histopathological features of prostate cancer. In this study, prostate cancer and benign prostatic hyperplasia (BPH) samples were screened for the presence of EBV, followed by the characterization of the EBV latency profile and analysis of histopathological parameters in EBV-positive and EBV-negative groups. A conventional PCR strategy was employed using virus-specific primers to screen EBV in 99 formalin-fixed paraffin-embedded (FFPE) prostate cancer and 33 BPH samples received for histopathological analysis during the years 2019-2020. Subsequently, cDNA samples were used in a qPCR array to analyze the expression of EBV latency-associated genes to map the latency profile EBV maintains in the samples. Finally, statistical analyses were performed to determine the correlation between EBV and several histopathological features of the samples. EBV was detected in 39% of prostate cancer and 24% of BPH samples. The histopathological analysis of prostate cancer samples identified all samples as prostatic adenocarcinoma of acinar type, while statistical analyses revealed EBV-positive samples to exhibit significantly higher (p < 0.05) Gleason major and total Gleason scores as compared to EBV-negative samples. In the EBV-positive samples, variable expression patterns of latency-associated genes were observed, where most of the samples exhibited EBV latency II/III-like profiles in prostate cancer, while latency-II-like profiles in BPH samples. This study suggests a high prevalence of EBV in prostate samples, where EBV exhibited latency II/III-like profiles. Furthermore, EBV-positive samples exhibited a higher Gleason score suggesting a possible link between EBV and the onset/progression of prostate cancers. However, future functional studies are required to understand the role of the EBV gene expression profile in the onset/progression of prostate cancer.
Collapse
Affiliation(s)
- Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Alisalman Sheikh
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Saira Fatima
- Section of Histopathology, Department of Pathology & Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Ghulam Haider
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Farhat Abbas
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Nouman Mughal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
- Department of Surgery, Aga Khan University, Karachi, Pakistan.
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan.
| |
Collapse
|
15
|
Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2022; 52:78-88. [PMID: 34891084 PMCID: PMC9112224 DOI: 10.1016/j.coviro.2021.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide, causes infectious mononucleosis, is etiologically linked to multiple sclerosis and is associated with 200 000 cases of cancer each year. EBV manipulates host epigenetic pathways to switch between a series of latency programs and to reactivate from latency in order to colonize the memory B-cell compartment for lifelong infection and to ultimately spread to new hosts. Here, we review recent advances in the understanding of epigenetic mechanisms that control EBV latency and lytic gene expression in EBV-transformed B and epithelial cells. We highlight newly appreciated roles of DNA methylation epigenetic machinery, host histone chaperones, the Hippo pathway, m6A RNA modification and nonsense mediated decay in control of the EBV lifecycle.
Collapse
|
16
|
Godfrey A, Osborn K, Sinclair AJ. Interaction sites of the Epstein-Barr virus Zta transcription factor with the host genome in epithelial cells. Access Microbiol 2022; 3:000282. [PMID: 35018326 PMCID: PMC8742585 DOI: 10.1099/acmi.0.000282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is present in a state of latency in infected memory B-cells and EBV-associated lymphoid and epithelial cancers. Cell stimulation or differentiation of infected B-cells and epithelial cells induces reactivation to the lytic replication cycle. In each cell type, the EBV transcription and replication factor Zta (BZLF1, EB1) plays a role in mediating the lytic cycle of EBV. Zta is a transcription factor that interacts directly with Zta response elements (ZREs) within viral and cellular genomes. Here we undertake chromatin-precipitation coupled to DNA-sequencing (ChIP-Seq) of Zta-associated DNA from cancer-derived epithelial cells. The analysis identified over 14 000 Zta-binding sites in the cellular genome. We assessed the impact of lytic cycle reactivation on changes in gene expression for a panel of Zta-associated cellular genes. Finally, we compared the Zta-binding sites identified in this study with those previously identified in B-cells and reveal substantial conservation in genes associated with Zta-binding sites.
Collapse
Affiliation(s)
- Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
17
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
18
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
19
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
21
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
22
|
Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells. J Virol 2021; 95:e0019221. [PMID: 33853968 DOI: 10.1128/jvi.00192-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression. IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects and persists in >90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.
Collapse
|
23
|
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021; 12:200218. [PMID: 34052467 PMCID: PMC8173096 DOI: 10.1016/j.tvr.2021.200218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
24
|
Buschle A, Mrozek-Gorska P, Cernilogar FM, Ettinger A, Pich D, Krebs S, Mocanu B, Blum H, Schotta G, Straub T, Hammerschmidt W. Epstein-Barr virus inactivates the transcriptome and disrupts the chromatin architecture of its host cell in the first phase of lytic reactivation. Nucleic Acids Res 2021; 49:3217-3241. [PMID: 33675667 PMCID: PMC8034645 DOI: 10.1093/nar/gkab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a herpes virus also termed HHV 4 and the first identified human tumor virus, establishes a stable, long-term latent infection in human B cells, its preferred host. Upon induction of EBV's lytic phase, the latently infected cells turn into a virus factory, a process that is governed by EBV. In the lytic, productive phase, all herpes viruses ensure the efficient induction of all lytic viral genes to produce progeny, but certain of these genes also repress the ensuing antiviral responses of the virally infected host cells, regulate their apoptotic death or control the cellular transcriptome. We now find that EBV causes previously unknown massive and global alterations in the chromatin of its host cell upon induction of the viral lytic phase and prior to the onset of viral DNA replication. The viral initiator protein of the lytic cycle, BZLF1, binds to >105 binding sites with different sequence motifs in cellular chromatin in a concentration dependent manner implementing a binary molar switch probably to prevent noise-induced erroneous induction of EBV's lytic phase. Concomitant with DNA binding of BZLF1, silent chromatin opens locally as shown by ATAC-seq experiments, while previously wide-open cellular chromatin becomes inaccessible on a global scale within hours. While viral transcripts increase drastically, the induction of the lytic phase results in a massive reduction of cellular transcripts and a loss of chromatin-chromatin interactions of cellular promoters with their distal regulatory elements as shown in Capture-C experiments. Our data document that EBV's lytic cycle induces discrete early processes that disrupt the architecture of host cellular chromatin and repress the cellular epigenome and transcriptome likely supporting the efficient de novo synthesis of this herpes virus.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21 D-81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Bianca Mocanu
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-Universität (LMU) München, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Germany, Feodor-Lynen-Str. 21, D-81377 Munich, Germany
| |
Collapse
|
25
|
Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021; 13:v13040681. [PMID: 33920978 PMCID: PMC8071331 DOI: 10.3390/v13040681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The oral cavity is often the first site where viruses interact with the human body. The oral epithelium is a major site of viral entry, replication and spread to other cell types, where chronic infection can be established. In addition, saliva has been shown as a primary route of person-to-person transmission for many viruses. From a clinical perspective, viral infection can lead to several oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and biological relevance of initial oral infection, little is known about the mechanism of regulation of the viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection. In this review, we highlight three herpesviruses with known roles in oral infection, including herpes simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a specific emphasis on the viral life cycle in the oral epithelium.
Collapse
|
26
|
Bouvet M, Voigt S, Tagawa T, Albanese M, Chen YFA, Chen Y, Fachko DN, Pich D, Göbel C, Skalsky RL, Hammerschmidt W. Multiple Viral microRNAs Regulate Interferon Release and Signaling Early during Infection with Epstein-Barr Virus. mBio 2021; 12:e03440-20. [PMID: 33785626 PMCID: PMC8092300 DOI: 10.1128/mbio.03440-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, encodes 44 microRNAs (miRNAs), which regulate many genes with various functions in EBV-infected cells. Multiple target genes of the EBV miRNAs have been identified, some of which play important roles in adaptive antiviral immune responses. Using EBV mutant derivatives, we identified additional roles of viral miRNAs in governing versatile type I interferon (IFN) responses upon infection of human primary mature B cells. We also found that Epstein-Barr virus-encoded small RNAs (EBERs) and LF2, viral genes with previously reported functions in inducing or regulating IFN-I pathways, had negligible or even contrary effects on secreted IFN-α in our model. Data mining and Ago PAR-CLIP experiments uncovered more than a dozen previously uncharacterized, direct cellular targets of EBV miRNA associated with type I IFN pathways. We also identified indirect targets of EBV miRNAs in B cells, such as TRL7 and TLR9, in the prelatent phase of infection. The presence of epigenetically naive, non-CpG methylated viral DNA was essential to induce IFN-α secretion during EBV infection in a TLR9-dependent manner. In a newly established fusion assay, we verified that EBV virions enter a subset of plasmacytoid dendritic cells (pDCs) and determined that these infected pDCs are the primary producers of IFN-α in EBV-infected peripheral blood mononuclear cells. Our findings document that many EBV-encoded miRNAs regulate type I IFN response in newly EBV infected primary human B cells in the prelatent phase of infection and dampen the acute release of IFN-α in pDCs upon their encounter with EBV.IMPORTANCE Acute antiviral functions of all nucleated cells rely on type I interferon (IFN-I) pathways triggered upon viral infection. Host responses encompass the sensing of incoming viruses, the activation of specific transcription factors that induce the transcription of IFN-I genes, the secretion of different IFN-I types and their recognition by the heterodimeric IFN-α/β receptor, the subsequent activation of JAK/STAT signaling pathways, and, finally, the transcription of many IFN-stimulated genes (ISGs). In sum, these cellular functions establish a so-called antiviral state in infected and neighboring cells. To counteract these cellular defense mechanisms, viruses have evolved diverse strategies and encode gene products that target antiviral responses. Among such immune-evasive factors are viral microRNAs (miRNAs) that can interfere with host gene expression. We discovered that multiple miRNAs of Epstein-Barr virus (EBV) control over a dozen cellular genes that contribute to the antiviral states of immune cells, specifically B cells and plasmacytoid dendritic cells (pDCs). We identified the viral DNA genome as the activator of IFN-α and question the role of abundant EBV EBERs, that, contrary to previous reports, do not have an apparent inducing function in the IFN-I pathway early after infection.
Collapse
Affiliation(s)
- Mickaël Bouvet
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Stefanie Voigt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Manuel Albanese
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Yen-Fu Adam Chen
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Yan Chen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| |
Collapse
|
27
|
Li H, Li Y, Hu J, Liu S, Luo X, Tang M, Bode AM, Dong Z, Liu X, Liao W, Cao Y. (-)-Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK signal axes. Oncol Res 2021; 28:763-778. [PMID: 33629943 PMCID: PMC8420900 DOI: 10.3727/096504021x16135618512563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) plays an important oncogenic role in the viral latent infection. Recently, increasing evidence indicates that the high expression of LMP1 during EBV lytic cycle is related to the viral lytic replication. However, the mechanism by which LMP1 regulates EBV lytic replication remains unclear. (−)-Epigallocatechin-3-gallate (EGCG) prevents carcinogenesis by directly targeting numerous membrane proteins and effectively inhibits EBV lytic cascade. Here, we demonstrated that LMP1 promotes EBV lytic replication through the downstream signal molecules MAPKs, including ERKs, p38, and JNKs. LMP1 induces the phosphorylation of p53 through MAPKs to enhance the ability of wild-type p53 (wt-p53) to activate expression of BZLF1 gene, while the JNKs/c-Jun signal axis appears to be involved in EBV lytic replication induced by LMP1 in p53 mutant manner. We provided the first evidence that EGCG directly targets the viral membrane LMP1 (Kd = 0.36 μM, n = 1) using fluorescence quenching, isothermal titration calorimetry (ITC) assay, and CNBR-activated Sepharose 4B pull-down affinity chromatography. Furthermore, we revealed that EGCG inhibits EBV lytic replication via suppressing LMP1 and thus blocking the downstream MAPKs/wt-p53 signal axis in AGS-EBV cells and JNKs/c-Jun signal axis in p53 mutant B95.8 cells. Our study, for the first time, reports the binding and inhibitory efficacy of EGCG to the LMP1, which is a key oncoprotein encoded by EBV. These findings suggest the novel function of LMP1 in the regulation of EBV lytic cycle and reveal the new role of EGCG in EBV-associated malignancies through suppressing viral reactivation.
Collapse
Affiliation(s)
- Hongde Li
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Yueshuo Li
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianmin Hu
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya 13 Hospital, Central South University at Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Min Tang
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University at Tianjin, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University at Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid Based Diagnostics and Therapeutics, Hunan Province, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| |
Collapse
|
28
|
Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2021; 11:575255. [PMID: 33613459 PMCID: PMC7888302 DOI: 10.3389/fmicb.2020.575255] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection induces dynamic changes in transcriptional profiles. Virus-induced and antiviral responses are intertwined during the infection. Epstein-Barr virus (EBV) is a human gammaherpesvirus that provides a model of herpesvirus latency. To measure the transcriptome changes during the establishment of EBV latency, we infected EBV-negative Akata cells with EBV-EGFP and performed transcriptome sequencing (RNA-seq) at 0, 2, 4, 7, 10, and 14 days after infection. We found transient downregulation of mitotic division-related genes, reflecting reprogramming of cell growth by EBV, and a burst of viral lytic gene expression in the early phase of infection. Experimental and mathematical investigations demonstrate that infectious virions were not produced in the pre-latent phase, suggesting the presence of an abortive lytic infection. Fate mapping using recombinant EBV provided direct evidence that the abortive lytic infection in the pre-latent phase converges to latent infection during EBV infection of B-cells, shedding light on novel roles of viral lytic gene(s) in establishing latency. Furthermore, we find that the BZLF1 protein, which is a key regulator of reactivation, was dispensable for abortive lytic infection in the pre-latent phase, suggesting the divergent regulation of viral gene expressions from a productive lytic infection.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Takaki
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Yaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H. M. Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020; 94:JVI.01215-20. [PMID: 32581094 DOI: 10.1128/jvi.01215-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BHLF1 gene encodes an abundant linear and several circular RNAs believed to perform noncoding functions during virus replication, although an open reading frame (ORF) is retained among an unknown percentage of EBV isolates. Evidence suggests that BHLF1 is also transcribed during latent infection, which prompted us to investigate the contribution of this locus to latency. Analysis of transcripts transiting BHLF1 revealed that its transcription is widespread among B-cell lines supporting the latency I or III program of EBV protein expression and is more complex than originally presumed. EBV-negative Burkitt lymphoma cell lines infected with either wild-type or two different BHLF1 mutant EBVs were initially indistinguishable in supporting latency III. However, cells infected with BHLF1 - virus ultimately transitioned to the more restrictive latency I program, whereas cells infected with wild-type virus either sustained latency III or transitioned more slowly to latency I. Upon infection of primary B cells, which require latency III for growth in vitro, both BHLF1 - viruses exhibited variably reduced immortalization potential relative to the wild-type virus. Finally, in transfection experiments, efficient protein expression from an intact BHLF1 ORF required the EBV posttranscriptional regulator protein SM, whose expression is limited to the replicative cycle. Thus, one way in which BHLF1 may contribute to latency is through a mechanism, possibly mediated or regulated by a long noncoding RNA, that supports latency III critical for the establishment of EBV latency and lifelong persistence within its host, whereas any retained protein-dependent function of BHLF1 may be restricted to the replication cycle.IMPORTANCE Epstein-Barr virus (EBV) has significant oncogenic potential that is linked to its latent infection of B lymphocytes, during which virus replication is not supported. The establishment of latent infection, which is lifelong and can precede tumor development by years, requires the concerted actions of nearly a dozen EBV proteins and numerous small non-protein-coding RNAs. Elucidating how these EBV products contribute to latency is crucial for understanding EBV's role in specific malignancies and, ultimately, for clinical intervention. Historically, EBV genes that contribute to virus replication have been excluded from consideration of a role in latency, primarily because of the general incompatibility between virus production and cell survival. However, here, we provide evidence that the genetic locus containing one such gene, BHLF1, indeed contributes to key aspects of EBV latency, including its ability to promote the continuous growth of B lymphocytes, thus providing significant new insight into EBV biology and oncogenic potential.
Collapse
|
31
|
Activator protein-1 transactivation of the major immediate early locus is a determinant of cytomegalovirus reactivation from latency. Proc Natl Acad Sci U S A 2020; 117:20860-20867. [PMID: 32788362 DOI: 10.1073/pnas.2009420117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that latently infects hematopoietic cells and has the ability to reactivate when triggered by immunological stress. This reactivation causes significant morbidity and mortality in immune-deficient patients, who are unable to control viral dissemination. While a competent immune system helps prevent clinically detectable viremia, a portrait of the factors that induce reactivation following the proper cues remains incomplete. Our understanding of the complex molecular mechanisms underlying latency and reactivation continues to evolve. We previously showed the HCMV-encoded G protein-coupled receptor US28 is expressed during latency and facilitates latent infection by attenuating the activator protein-1 (AP-1) transcription factor subunit, c-fos, expression and activity. We now show AP-1 is a critical component for HCMV reactivation. Pharmacological inhibition of c-fos significantly attenuates viral reactivation. In agreement, infection with a virus in which we disrupted the proximal AP-1 binding site in the major immediate early (MIE) enhancer results in inefficient reactivation compared to WT. Concomitantly, AP-1 recruitment to the MIE enhancer is significantly decreased following reactivation of the mutant virus. Furthermore, AP-1 is critical for derepression of MIE-driven transcripts and downstream early and late genes, while immediate early genes from other loci remain unaffected. Our data also reveal MIE transcripts driven from the MIE promoter, the distal promoter, and the internal promoter, iP2, are dependent upon AP-1 recruitment, while iP1-driven transcripts are AP-1-independent. Collectively, our data demonstrate AP-1 binding to and activation of the MIE enhancer is a key molecular process controlling reactivation from latency.
Collapse
|
32
|
Fiches GN, Zhou D, Kong W, Biswas A, Ahmed EH, Baiocchi RA, Zhu J, Santoso N. Profiling of immune related genes silenced in EBV-positive gastric carcinoma identified novel restriction factors of human gammaherpesviruses. PLoS Pathog 2020; 16:e1008778. [PMID: 32841292 PMCID: PMC7473590 DOI: 10.1371/journal.ppat.1008778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/04/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022] Open
Abstract
EBV-associated gastric cancer (EBVaGC) is characterized by high frequency of DNA methylation. In this study, we investigated how epigenetic alteration of host genome contributes to pathogenesis of EBVaGC through the analysis of transcriptomic and epigenomic datasets from NIH TCGA (The Cancer Genome Atlas) consortium. We identified that immune related genes (IRGs) is a group of host genes preferentially silenced in EBV-positive gastric cancers through DNA hypermethylation. Further functional characterizations of selected IRGs reveal their novel antiviral activity against not only EBV but also KSHV. In particular, we showed that metallothionein-1 (MT1) and homeobox A (HOXA) gene clusters are down-regulated via EBV-driven DNA hypermethylation. Several MT1 isoforms suppress EBV lytic replication and release of progeny virions as well as KSHV lytic reactivation, suggesting functional redundancy of these genes. In addition, single HOXA10 isoform exerts antiviral activity against both EBV and KSHV. We also confirmed the antiviral effect of other dysregulated IRGs, such as IRAK2 and MAL, in scenario of EBV and KSHV lytic reactivation. Collectively, our results demonstrated that epigenetic silencing of IRGs is a viral strategy to escape immune surveillance and promote viral propagation, which is overall beneficial to viral oncogenesis of human gamma-herpesviruses (EBV and KSHV), considering that these IRGs possess antiviral activities against these oncoviruses.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Elshafa H. Ahmed
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Netty Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
33
|
Guo R, Zhang Y, Teng M, Jiang C, Schineller M, Zhao B, Doench JG, O'Reilly RJ, Cesarman E, Giulino-Roth L, Gewurz BE. DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression. Nat Microbiol 2020; 5:1051-1063. [PMID: 32424339 PMCID: PMC7462085 DOI: 10.1038/s41564-020-0724-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
To accomplish the remarkable task of lifelong infection, the Epstein-Barr virus (EBV) switches between four viral genome latency and lytic programmes to navigate the B-cell compartment and evade immune responses. The transforming programme, consisting of highly immunogenic EBV nuclear antigen (EBNA) and latent membrane proteins (LMPs), is expressed in newly infected B lymphocytes and in post-transplant lymphomas. On memory cell differentiation and in most EBV-associated Burkitt's lymphomas, all but one viral antigen are repressed for immunoevasion. To gain insights into the epigenetic mechanisms that restrict immunogenic oncoprotein expression, a genome-scale CRISPR-Cas9 screen was performed in EBV and Burkitt's lymphoma cells. Here, we show that the ubiquitin ligase ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) and its DNA methyltransferase partner DNA methyltransferase I (DNMT1) are critical for the restriction of EBNA and LMP expression. All UHRF1 reader and writer domains were necessary for silencing and DNMT3B was identified as an upstream viral genome CpG methylation initiator. Polycomb repressive complex I exerted a further layer of control over LMP expression, suggesting a second mechanism for latency programme switching. UHRF1, DNMT1 and DNMT3B are upregulated in germinal centre B cells, the Burkitt's lymphoma cell of origin, providing a molecular link between B-cell state and the EBV latency programme. These results suggest rational therapeutic targets to manipulate EBV oncoprotein expression.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yuchen Zhang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Molly Schineller
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
34
|
Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol 2020; 42:131-142. [PMID: 32232535 PMCID: PMC7174264 DOI: 10.1007/s00281-020-00792-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is a model of herpesvirus latency and epigenetic changes. The virus preferentially infects human B-lymphocytes (and also other cell types) but does not turn them straight into virus factories. Instead, it establishes a strictly latent infection in them and concomitantly induces the activation and proliferation of infected B cells. How the virus establishes latency in its target cells is only partially understood, but its latent state has been studied intensively by many. During latency, several copies of the viral genome are maintained as minichromosomes in the nucleus. In latently infected cells, most viral genes are epigenetically repressed by cellular chromatin constituents and DNA methylation, but certain EBV genes are spared and remain expressed to support the latent state of the virus in its host cell. Latency is not a dead end, but the virus can escape from this state and reactivate. Reactivation is a coordinated process that requires the removal of repressive chromatin components and a gain in accessibility for viral and cellular factors and machines to support the entire transcriptional program of EBV's ensuing lytic phase. We have a detailed picture of the initiating events of EBV's lytic phase, which are orchestrated by a single viral protein - BZLF1. Its induced expression can lead to the expression of all lytic viral proteins, but initially it fosters the non-licensed amplification of viral DNA that is incorporated into preformed capsids. In the virions, the viral DNA is free of histones and lacks methylated cytosine residues which are lost during lytic DNA amplification. This review provides an overview of EBV's dynamic epigenetic changes, which are an integral part of its ingenious lifestyle in human host cells.
Collapse
Affiliation(s)
- Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, D-81377, Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, D-81377, Munich, Germany.
| |
Collapse
|
35
|
Pich D, Mrozek-Gorska P, Bouvet M, Sugimoto A, Akidil E, Grundhoff A, Hamperl S, Ling PD, Hammerschmidt W. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. mBio 2019; 10:e01723-19. [PMID: 31530670 PMCID: PMC6751056 DOI: 10.1128/mbio.01723-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) infects and activates resting human B lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines, many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, prelatent phase of infection have not been investigated systematically. In studies during the first 8 days of infection using derivatives of EBV with mutations in single genes of EBVs, we found only Epstein-Barr nuclear antigen 2 (EBNA2) to be essential for activating naive human B lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, latent membrane protein 2A (LMP2A), and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding Epstein-Barr virus with small RNA (EBERs) had no discernible phenotype compared with wild-type EBV. B cells infected with a double mutant of EBNA3A and 3C had an unexpected proliferative advantage and did not regulate the DNA damage response (DDR) of the infected host cell in the prelatent phase. Even EBNA1, which has very critical long-term functions in maintaining and replicating the viral genomic DNA in established cell lines, was dispensable for the early activation of infected cells. Our findings document that the virus dose is a decisive parameter and indicate that EBNA2 governs the infected cells initially and implements a strictly controlled temporal program independent of other viral latent genes. It thus appears that EBNA2 is sufficient to control all requirements for clonal cellular expansion and to reprogram human B lymphocytes from energetically quiescent to activated cells.IMPORTANCE The preferred target of Epstein-Barr virus (EBV) is human resting B lymphocytes. We found that their infection induces a well-coordinated, time-driven program that starts with a substantial increase in cell volume, followed by cellular DNA synthesis after 3 days and subsequent rapid rounds of cell divisions on the next day accompanied by some DNA replication stress (DRS). Two to 3 days later, the cells decelerate and turn into stably proliferating lymphoblast cell lines. With the aid of 16 different recombinant EBV strains, we investigated the individual contributions of EBV's multiple latent genes during early B-cell infection and found that many do not exert a detectable phenotype or contribute little to EBV's prelatent phase. The exception is EBNA2 that is essential in governing all aspects of B-cell reprogramming. EBV relies on EBNA2 to turn the infected B lymphocytes into proliferating lymphoblasts preparing the infected host cell for the ensuing stable, latent phase of viral infection. In the early steps of B-cell reprogramming, viral latent genes other than EBNA2 are dispensable, but some, EBNA-LP, for example, support the viral program and presumably stabilize the infected cells once viral latency is established.
Collapse
Affiliation(s)
- Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Mickaël Bouvet
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Atsuko Sugimoto
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Ezgi Akidil
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
36
|
Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, Wang Z, Smith NA, Ma Y, Reinstadler B, Nomburg J, Sommermann T, Cahir-McFarland E, Gygi SP, Mootha VK, Weekes MP, Gewurz BE. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab 2019; 30:539-555.e11. [PMID: 31257153 PMCID: PMC6720460 DOI: 10.1016/j.cmet.2019.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongying Shen
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Nicholas A Smith
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Bryn Reinstadler
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jason Nomburg
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Thomas Sommermann
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Ellen Cahir-McFarland
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Benjamin E Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, Hammerschmidt W. Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A 2019; 116:16046-16055. [PMID: 31341086 PMCID: PMC6690029 DOI: 10.1073/pnas.1901314116] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human tumor virus and a model of herpesviral latency. The virus efficiently infects resting human B lymphocytes and induces their continuous proliferation in vitro, which mimics certain aspects of EBV's oncogenic potential in vivo. How lymphoblastoid cell lines (LCLs) evolve from the infected lymphocytes is uncertain. We conducted a systematic time-resolved longitudinal study of cellular functions and transcriptional profiles of newly infected naïve primary B lymphocytes. EBV reprograms the cells comprehensively and globally. Rapid and extensive transcriptional changes occur within 24 h and precede any metabolic and phenotypic changes. Within 72 h, the virus activates the cells, changes their phenotypes with respect to cell size, RNA, and protein content, and induces metabolic pathways to cope with the increased demand for energy, supporting an efficient cell cycle entry on day 3 postinfection. The transcriptional program that EBV initiates consists of 3 waves of clearly discernable clusters of cellular genes that peak on day 2, 3, or 4 and regulate RNA synthesis, metabolic pathways, and cell division, respectively. Upon onset of cell doublings on day 4, the cellular transcriptome appears to be completely reprogrammed to support the proliferating cells, but 3 additional clusters of EBV-regulated genes fine-tune cell signaling, migration, and immune response pathways, eventually. Our study reveals that more than 11,000 genes are regulated upon EBV infection as naïve B cells exit quiescence to enter a germinal center-like differentiation program, which culminates in immortalized, proliferating cells that partially resemble plasmablasts and early plasma cells.
Collapse
Affiliation(s)
- Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Ron Fechtner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, D-81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, D-81377 Munich, Germany;
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany;
| |
Collapse
|
38
|
Nakhoul H, Lin Z, Wang X, Roberts C, Dong Y, Flemington E. High-Throughput Sequence Analysis of Peripheral T-Cell Lymphomas Indicates Subtype-Specific Viral Gene Expression Patterns and Immune Cell Microenvironments. mSphere 2019; 4:e00248-19. [PMID: 31292228 PMCID: PMC6620372 DOI: 10.1128/msphere.00248-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Certain peripheral T-cell lymphomas (PTCLs) have been associated with viral infection, particularly infection with Epstein-Barr virus (EBV). However, a comprehensive virome analysis across PTCLs has not previously been reported. Here we utilized published whole-transcriptome RNA sequencing (RNA-seq) data sets from seven different PTCL studies and new RNA-seq data from our laboratory to screen for virus association, to analyze viral gene expression, and to assess B- and T-cell receptor diversity paradigms across PTCL subtypes. In addition to identifying EBV in angioimmunoblastic T-cell lymphoma (AITL) and extranodal NK/T-cell lymphoma (ENKTL), two PTCL subtypes with well-established EBV associations, we also detected EBV in several cases of anaplastic large-cell lymphoma (ALCL), and we found evidence of infection by the oncogenic viruses Kaposi's sarcoma-associated herpesvirus and human T-cell leukemia virus type 1 in isolated PTCL cases. In AITLs, EBV gene expression analysis showed expression of immediate early, early, and late lytic genes, suggesting either low-level lytic gene expression or productive infection in a subset of EBV-infected B-lymphocyte stromal cells. Deconvolution of immune cell subpopulations demonstrated a greater B-cell signal in AITLs than in other PTCL subtypes, consistent with a larger role for B-cell support in the pathogenesis of AITL. Reconstructed T-cell receptor (TCR) and B-cell receptor (BCR) repertoires demonstrated increased BCR diversity in AITLs, consistent with a possible EBV-driven polyclonal response. These findings indicate potential alternative roles for EBV in PTCLs, in addition to the canonical oncogenic mechanisms associated with EBV latent infection. Our findings also suggest the involvement of other viruses in PTCL pathogenesis and demonstrate immunological alterations associated with these cancers.IMPORTANCE In this study, we utilized next-generation sequencing data from 7 different studies of peripheral T-cell lymphoma (PTCL) patient samples to globally assess viral associations, provide insights into the contributions of EBV gene expression to the tumor phenotype, and assess the unique roles of EBV in modulating the immune cell tumor microenvironment. These studies revealed potential roles for EBV replication genes in some PTCL subtypes, the possible role of additional human tumor viruses in rare cases of PTCLs, and a role for EBV in providing a unique immune microenvironmental niche in one subtype of PTCLs. Together, these studies provide new insights into the understudied role of tumor viruses in PTCLs.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zhen Lin
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Xia Wang
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Claire Roberts
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Erik Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
39
|
Chakravorty A, Sugden B, Johannsen EC. An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. J Virol 2019; 93:e02247-18. [PMID: 30700606 PMCID: PMC6450099 DOI: 10.1128/jvi.02247-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bill Sugden
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Schaeffner M, Mrozek-Gorska P, Buschle A, Woellmer A, Tagawa T, Cernilogar FM, Schotta G, Krietenstein N, Lieleg C, Korber P, Hammerschmidt W. BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Sci Alliance 2019; 2:e201800108. [PMID: 30926617 PMCID: PMC6441497 DOI: 10.26508/lsa.201800108] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of EBV infections is its latent phase, when all viral lytic genes are repressed. Repression results from a high nucleosome occupancy and epigenetic silencing by cellular factors such as the Polycomb repressive complex 2 (PRC2) and DNA methyltransferases that, respectively, introduce repressive histone marks and DNA methylation. The viral transcription factor BZLF1 acts as a molecular switch to induce transition from the latent to the lytic or productive phase of EBV's life cycle. It is unknown how BZLF1 can bind to the epigenetically silenced viral DNA and whether it directly reactivates the viral genome through chromatin remodeling. We addressed these fundamental questions and found that BZLF1 binds to nucleosomal DNA motifs both in vivo and in vitro. BZLF1 co-precipitates with cellular chromatin remodeler ATPases, and the knock-down of one of them, INO80, impaired lytic reactivation and virus synthesis. In Assay for Transposase-Accessible Chromatin-seq experiments, non-accessible chromatin opens up locally when BZLF1 binds to its cognate sequence motifs in viral DNA. We conclude that BZLF1 reactivates the EBV genome by directly binding to silenced chromatin and recruiting cellular chromatin-remodeling enzymes, which implement a permissive state for lytic viral transcription. BZLF1 shares this mode of action with a limited number of cellular pioneer factors, which are instrumental in transcriptional activation, differentiation, and reprogramming in all eukaryotic cells.
Collapse
Affiliation(s)
- Marisa Schaeffner
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Anne Woellmer
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Filippo M Cernilogar
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Gunnar Schotta
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Nils Krietenstein
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Corinna Lieleg
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Philipp Korber
- Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität Munich, Planegg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
41
|
van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV Vaccines. Front Oncol 2019; 9:104. [PMID: 30859093 PMCID: PMC6398348 DOI: 10.3389/fonc.2019.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous pathogen that imparts a significant burden of disease on the human population. EBV is the primary cause of infectious mononucleosis and is etiologically linked to the development of numerous malignancies. In recent years, evidence has also been amassed that strongly implicate EBV in the development of several autoimmune diseases, including multiple sclerosis. Prophylactic and therapeutic vaccination has been touted as a possible means of preventing EBV infection and controlling EBV-associated diseases. However, despite several decades of research, no licensed EBV vaccine is available. The majority of EBV vaccination studies over the last two decades have focused on the major envelope protein gp350, culminating in a phase II clinical trial that showed soluble gp350 reduced the incidence of IM, although it was unable to protect against EBV infection. Recently, novel vaccine candidates with increased structural complexity and antigenic content have been developed. The ability of next generation vaccines to safeguard against B-cell and epithelial cell infection, as well as to target infected cells during all phases of infection, is likely to decrease the negative impact of EBV infection on the human population.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Heidelberg, Germany
- Children's Hospital, Technische Universität München, and Helmholtz Zentrum München, Bavaria, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
42
|
Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol 2018; 32:15-23. [PMID: 30227386 DOI: 10.1016/j.coviro.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus that establishes lifelong infection in the majority of people worldwide. EBV uses epigenetic reprogramming to switch between multiple latency states in order to colonize the memory B-cell compartment and to then periodically undergo lytic reactivation upon plasma cell differentiation. This review focuses on recent advances in the understanding of epigenetic mechanisms that EBV uses to control its lifecycle and to subvert the growth and survival pathways that underly EBV-driven B-cell differentiation versus B-cell growth transformation, a hallmark of the first human tumor virus. These include the formation of viral super enhancers that drive expression of key host dependency factors, evasion of tumor suppressor responses, prevention of plasmablast differentiation, and regulation of the B-cell lytic switch.
Collapse
Affiliation(s)
- Thomas C Frost
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin E Gewurz
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA; Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
43
|
Salloum N, Hussein HM, Jammaz R, Jiche S, Uthman IW, Abdelnoor AM, Rahal EA. Epstein-Barr virus DNA modulates regulatory T-cell programming in addition to enhancing interleukin-17A production via Toll-like receptor 9. PLoS One 2018; 13:e0200546. [PMID: 29995930 PMCID: PMC6040775 DOI: 10.1371/journal.pone.0200546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with the Epstein-Barr virus (EBV) has been associated with several autoimmune diseases including rheumatoid arthritis (RA). We have previously reported that DNA from this virus enhances production of the pro-autoimmune interleukin 17A (IL-17A) in mice. In this study we assessed the effect of EBV DNA on regulatory T cell programming and examined whether it mediated its effects via Toll-like receptor 9 (TLR9) in mice; moreover, we evaluated whether EBV DNA in humans had similar effects to those seen in mice. For this purpose, we assessed the linearity of the correlation between EBV DNA and IL-17A levels in RA subjects and matched controls. A modulatory effect for the viral DNA was observed for regulatory T cell markers with an inhibitory effect observed for CTLA4 expression in the EBV DNA-treated mice. To examine whether TLR9 mediated the detection of EBV DNA and enhancement of IL-17A production, mouse peripheral blood mononuclear cells were treated with the DNA in the presence or absence of the TLR9 inhibitor ODN 2088. Subsequently, IL-17A production from these cells was assessed. Treatment with the TLR9 inhibitor resulted in a significant decrease in IL-17A production indicating that TLR9 is involved in this pathway. In human subjects, examining the linearity of the correlation between EBV DNA and IL-17A levels in RA subjects showed a propensity for linearity that was not observed in controls. Our data thus indicates that EBV DNA itself acts as a modulator of the Th17 compartment as well as that of regulatory T cell mechanisms. The involvement of TLR9 in the EBV DNA-triggered induction of IL-17A suggests therapeutic targeting of this endosomal receptor in EBV positive subjects with an autoimmune flare-up or possibly for prophylactic purposes.
Collapse
Affiliation(s)
- Noor Salloum
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hadi M. Hussein
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Rana Jammaz
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Sara Jiche
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Imad W. Uthman
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alexander M. Abdelnoor
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
44
|
Bristol JA, Djavadian R, Albright ER, Coleman CB, Ohashi M, Hayes M, Romero-Masters JC, Barlow EA, Farrell PJ, Rochford R, Kalejta RF, Johannsen EC, Kenney SC. A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog 2018; 14:e1007179. [PMID: 30052684 PMCID: PMC6082571 DOI: 10.1371/journal.ppat.1007179] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/08/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection contributes to both B-cell and epithelial-cell malignancies. However, whether lytic EBV infection also contributes to tumors is unclear, although the association between malaria infection and Burkitt lymphomas (BLs) may involve excessive lytic EBV replication. A particular variant of the viral promoter (Zp) that controls lytic EBV reactivation is over-represented, relative to its frequency in non-malignant tissue, in EBV-positive nasopharyngeal carcinomas and AIDS-related lymphomas. To date, no functional differences between the prototype Zp (Zp-P) and the cancer-associated variant (Zp-V3) have been identified. Here we show that a single nucleotide difference between the Zp-V3 and Zp-P promoters creates a binding site for the cellular transcription factor, NFATc1, in the Zp-V3 (but not Zp-P) variant, and greatly enhances Zp activity and lytic viral reactivation in response to NFATc1-inducing stimuli such as B-cell receptor activation and ionomycin. Furthermore, we demonstrate that restoring this NFATc1-motif to the Zp-P variant in the context of the intact EBV B95.8 strain genome greatly enhances lytic viral reactivation in response to the NFATc1-activating agent, ionomycin, and this effect is blocked by the NFAT inhibitory agent, cyclosporine, as well as NFATc1 siRNA. We also show that the Zp-V3 variant is over-represented in EBV-positive BLs and gastric cancers, and in EBV-transformed B-cell lines derived from EBV-infected breast milk of Kenyan mothers that had malaria during pregnancy. These results demonstrate that the Zp-V3 enhances EBV lytic reactivation to physiologically-relevant stimuli, and suggest that increased lytic infection may contribute to the increased prevalence of this variant in EBV-associated malignancies.
Collapse
Affiliation(s)
- Jillian A. Bristol
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Emily R. Albright
- Department of Molecular Virology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carrie B. Coleman
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Makoto Ohashi
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James C. Romero-Masters
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Elizabeth A. Barlow
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul J. Farrell
- Molecular Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary Rochford
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado United States of America
| | - Robert F. Kalejta
- Department of Molecular Virology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology in Wisconsin Institutes for Medical Research, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
45
|
Encyclopedia of EBV-Encoded Lytic Genes: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:395-412. [DOI: 10.1007/978-981-10-7230-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Guidry JT, Birdwell CE, Scott RS. Epstein-Barr virus in the pathogenesis of oral cancers. Oral Dis 2018; 24:497-508. [PMID: 28190296 PMCID: PMC5554094 DOI: 10.1111/odi.12656] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus that establishes a lifelong persistent infection in the oral cavity and is intermittently shed in the saliva. EBV exhibits a biphasic life cycle, supported by its dual tropism for B lymphocytes and epithelial cells, which allows the virus to be transmitted within oral lymphoid tissues. While infection is often benign, EBV is associated with a number of lymphomas and carcinomas that arise in the oral cavity and at other anatomical sites. Incomplete association of EBV in cancer has questioned if EBV is merely a passenger or a driver of the tumorigenic process. However, the ability of EBV to immortalize B cells and its prevalence in a subset of cancers has implicated EBV as a carcinogenic cofactor in cellular contexts where the viral life cycle is altered. In many cases, EBV likely acts as an agent of tumor progression rather than tumor initiation, conferring malignant phenotypes observed in EBV-positive cancers. Given that the oral cavity serves as the main site of EBV residence and transmission, here we review the prevalence of EBV in oral malignancies and the mechanisms by which EBV acts as an agent of tumor progression.
Collapse
Affiliation(s)
- Joseph T. Guidry
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| | - Christine E. Birdwell
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| |
Collapse
|
47
|
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14:565-576. [PMID: 29805308 PMCID: PMC5968849 DOI: 10.7150/ijbs.24562] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that infects over 90% of the world's adult population. EBV can establish life-long latent infection in host due to the balance between EBV and host immune system. EBV latency is associated with various malignancies such as nasopharyngeal carcinoma, gastric carcinoma and Burkitt's lymphoma. EBV is the first human virus that has the capability to encode microRNAs (miRNAs). Remarkably, EBV-encoded miRNAs are abundantly expressed in latently-infected cells and serve important function in viral infection and pathogenesis. Increasing evidence indicates that EBV miRNAs target the host mRNAs involved in cell proliferation, apoptosis and transformation. EBV miRNAs also inhibit the expression of viral antigens, thereby enabling infected cells to escape immune recognition. Intriguingly, EBV miRNAs directly suppress host antiviral immunity by interfering with antigen presentation and immune cell activation. This review will update the current knowledge about EBV miRNAs implicated in host immune responses. An in-depth understanding of the functions of EBV miRNAs in host antiviral immunity will shed light on the EBV-host interactions and provide potential therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Lili Qian
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
48
|
The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel) 2018; 10:cancers10040098. [PMID: 29601503 PMCID: PMC5923353 DOI: 10.3390/cancers10040098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) is characterized by a bipartite life cycle in which latent and lytic stages are alternated. Latency is compatible with long-lasting persistency within the infected host, while lytic expression, preferentially found in oropharyngeal epithelial tissue, is thought to favor host-to-host viral dissemination. The clinical importance of EBV relates to its association with cancer, which we think is mainly a consequence of the latency/persistency mechanisms. However, studies in murine models of tumorigenesis/lymphomagenesis indicate that the lytic cycle also contributes to cancer formation. Indeed, EBV lytic expression is often observed in established cell lines and tumor biopsies. Within the lytic cycle EBV expresses a handful of immunomodulatory (BCRF1, BARF1, BNLF2A, BGLF5 & BILF1) and anti-apoptotic (BHRF1 & BALF1) proteins. In this review, we discuss the evidence supporting an abortive lytic cycle in which these lytic genes are expressed, and how the immunomodulatory mechanisms of EBV and related herpesviruses Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV) result in paracrine signals that feed tumor cells. An abortive lytic cycle would reconcile the need of lytic expression for viral tumorigenesis without relaying in a complete cycle that would induce cell lysis to release the newly formed infective viral particles.
Collapse
|
49
|
Almohammed R, Osborn K, Ramasubramanyan S, Perez-Fernandez IBN, Godfrey A, Mancini EJ, Sinclair AJ. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta. J Gen Virol 2018; 99:805-817. [PMID: 29580369 PMCID: PMC6096924 DOI: 10.1099/jgv.0.001056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gamma herpes virus Epstein–Barr virus (EBV) exploits multiple routes to evade the cellular immune response. During the EBV lytic replication cycle, viral proteins are expressed that provide excellent targets for recognition by cytotoxic T cells. This is countered by the viral BNLF2a gene. In B cells during latency, where BNLF2a is not expressed, we show that its regulatory region is embedded in repressive chromatin. The expression of BNLF2a mirrors the expression of a viral lytic cycle transcriptional regulator, Zta (BZLF1, EB1, ZEBRA), in B cells and we propose that Zta plays a role in up-regulating BNLF2a. In cells undergoing EBV lytic replication, we identified two distinct regions of interaction of Zta with the chromatin-associated BNLF2a promoter. We identify five potential Zta-response elements (ZREs) in the promoter that are highly conserved between virus isolates. Zta binds to these elements in vitro and activates the expression of the BNLF2a promoter in both epithelial and B cells. We also found redundancy amongst the ZREs. The EBV genome undergoes a biphasic DNA methylation cycle during its infection cycle. One of the ZREs contains an integral CpG motif. We show that this can be DNA methylated during EBV latency and that both Zta binding and promoter activation are enhanced by its methylation. In summary, we find that the BNLF2a promoter is directly targeted by Zta and that DNA methylation within the proximal ZRE aids activation. The implications for regulation of this key viral gene during the reactivation of EBV from latency are discussed.
Collapse
Affiliation(s)
- Rajaei Almohammed
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Sharada Ramasubramanyan
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
50
|
Szymula A, Palermo RD, Bayoumy A, Groves IJ, Ba abdullah M, Holder B, White RE. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome. PLoS Pathog 2018; 14:e1006890. [PMID: 29462212 PMCID: PMC5834210 DOI: 10.1371/journal.ppat.1006890] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 03/02/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. Epstein-Barr virus (EBV) infects almost everyone. Once infected, people harbor the virus for life, shedding it in saliva. Infection of children is asymptomatic, but a first infection during adolescence or adulthood can cause glandular fever (infectious mononucleosis). EBV is also implicated in several different cancers. EBV infection of B cells (antibody-producing immune cells) can drive them to replicate almost indefinitely (‘transformation’), generating cell lines. We have investigated the role of an EBV protein (EBNA-LP) which is thought to support gene activation by the essential virus protein EBNA2. We have made an EBV in which the EBNA-LP gene has been disrupted. This virus (LPKO) shows several properties. 1. It is reduced in its ability to transform B cells; 2. ‘Naïve’ B cells (those whose antibodies have not adapted to fight infections) die two weeks after LPKO infection; 3. Some virus genes fail to turn on immediately after LPKO infection. 4. Binding of EBNA2 and various cellular factors to these genes is delayed. 5. EBNA-LP does not affect EBNA2-targeted cellular genes in the same way. This shows that EBNA-LP is more important in naïve B cells, and that it helps to turn on virus genes, but not cell genes.
Collapse
MESH Headings
- Adult
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Cell Transformation, Viral/genetics
- Cells, Cultured
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Female
- Gene Expression Regulation, Viral
- Genome, Viral
- HEK293 Cells
- Herpesvirus 4, Human/genetics
- Humans
- Infant, Newborn
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/virology
- Pregnancy
- Promoter Regions, Genetic
- Protein Binding/genetics
- Transcription Factors/metabolism
- Viral Proteins/physiology
Collapse
Affiliation(s)
- Agnieszka Szymula
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Richard D. Palermo
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Amr Bayoumy
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ian J. Groves
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mohammed Ba abdullah
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Beth Holder
- Section of Pediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|