1
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
2
|
Angelakos CC, Girven KS, Liu Y, Gonzalez OC, Murphy KR, Jennings KJ, Giardino WJ, Zweifel LS, Suko A, Palmiter RD, Clark SD, Krasnow MA, Bruchas MR, de Lecea L. A cluster of neuropeptide S neurons regulates breathing and arousal. Curr Biol 2023; 33:5439-5455.e7. [PMID: 38056461 PMCID: PMC10842921 DOI: 10.1016/j.cub.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.
Collapse
Affiliation(s)
- Christopher Caleb Angelakos
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yin Liu
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Oscar C Gonzalez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kim J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mark A Krasnow
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Huang Y, Wojciechowski A, Feldman K, Ettaro R, Veros K, Ritter M, Carvalho Costa P, DiStasio J, Peirick JJ, Reissner KJ, Runyon SP, Clark SD. RTI-263, a biased neuropeptide S receptor agonist that retains an anxiolytic effect, attenuates cocaine-seeking behavior in rats. Neuropharmacology 2023; 241:109743. [PMID: 37820934 DOI: 10.1016/j.neuropharm.2023.109743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Neuropeptide S (NPS) is a neuromodulatory peptide that acts via a G protein-coupled receptor. Centrally administered NPS suppresses anxiety-like behaviors in rodents while producing a paradoxical increase in arousal. In addition, NPS increases drug-seeking behavior when administered during cue-induced reinstatement. Conversely, an NPS receptor (NPSR) antagonist, RTI-118, decreases cocaine-seeking behavior. A biased NPSR ligand, RTI-263, produces anxiolytic-like effects and has memory-enhancing effects similar to those of NPS but without the increase in arousal. In the present study, we show that RTI-263 decreased cocaine seeking by both male and female rats during cue-induced reinstatement. However, RTI-263 did not modulate the animals' behaviors during natural reward paradigms, such as palatable food intake, feeding during a fasting state, and cue-induced reinstatement of sucrose seeking. Therefore, NPSR biased agonists are a potential pharmacotherapy for substance use disorder because of the combined benefits of decreased drug seeking and the suppression of anxiety.
Collapse
Affiliation(s)
- Yuanli Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Alaina Wojciechowski
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Kyle Feldman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Robert Ettaro
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Kaliana Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Morgan Ritter
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Paula Carvalho Costa
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Jacob DiStasio
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Jennifer J Peirick
- Laboratory Animal Facilities, University at Buffalo, Buffalo, NY 14214, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P Runyon
- Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, NC 27709, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
4
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
5
|
Garau C, Liu X, Calo G, Schulz S, Reinscheid RK. Neuropeptide S Encodes Stimulus Salience in the Paraventricular Thalamus. Neuroscience 2022; 496:83-95. [PMID: 35710064 DOI: 10.1016/j.neuroscience.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Evaluation of stimulus salience is critical for any higher organism, as it allows for prioritizing of vital information, preparation of responses, and formation of valuable memory. The paraventricular nucleus of the thalamus (PVT) has recently been identified as an integrator of stimulus salience but the neurochemical basis and afferent input regarding salience signaling have remained elusive. Here we report that neuropeptide S (NPS) signaling in the PVT is necessary for stimulus salience encoding, including aversive, neutral and reinforcing sensory input. Taking advantage of a striking deficit of both NPS receptor (NPSR1) and NPS precursor knockout mice in fear extinction or novel object memory formation, we demonstrate that intra-PVT injections of NPS can rescue the phenotype in NPS precursor knockout mice by increasing the salience of otherwise low-intensity stimuli, while intra-PVT injections of NPSR1 antagonist in wild type mice partially replicates the knockout phenotype. The PVT appears to provide stimulus salience encoding in a dose- and NPS-dependent manner. PVT NPSR1 neurons recruit the nucleus accumbens shell and structures in the prefrontal cortex and amygdala, which were previously linked to the brain salience network. Overall, these results demonstrate that stimulus salience encoding is critically associated with NPS activity in the PVT.
Collapse
Affiliation(s)
- Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| | - Girolamo' Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, Jena, Germany
| | - Rainer K Reinscheid
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Bülbül M, Sinen O, Bayramoğlu O. Central neuropeptide-S administration alleviates stress-induced impairment of gastric motor functions through orexin-A. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:65-72. [PMID: 32009616 DOI: 10.5152/tjg.2020.18626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS The novel brain peptide neuropeptide-S (NPS) is produced exclusively by a small group of cells adjacent to the noradrenergic locus coeruleus. The NPSR mRNA has been detected in several brain areas involved in stress response and autonomic outflow, such as amygdala and hypothalamus, suggesting that central NPS may play a regulatory role in stress-induced changes in gastrointestinal (GI) motor functions. In rodents, exogenous central NPS was shown to inhibit stress-stimulated fecal output. Moreover, exogenous NPS was demonstrated to activate hypothalamic neurons that produce orexin-A (OXA), which has been shown to stimulate postprandial gastric motor functions via central vagal pathways. Therefore, we tested whether OXA mediates the NPS-induced alterations in gastric motor functions under stressed conditions. MATERIALS AND METHODS We investigated the effect of central exogenous NPS on solid gastric emptying (GE) and gastric postprandial motility in acute restraint stress (ARS)-loaded conscious rats. The OXA receptor antagonist SB-334867 was administered centrally prior to the central NPS injection. The expression of NPSR in the hypothalamus and dorsal vagal complex was analyzed by immunofluorescence. RESULTS Central administration of NPS restored the ARS-induced delayed GE and uncoordinated postprandial antro-pyloric contractions. The alleviative effect of NPS on GE was abolished by pretreatment of the OX1R antagonist SB-334867. In addition to hypothalamus, NPSR was detected in the dorsal motor nucleus of vagus, which suggest a direct stimulatory action of exogenous NPS on gastric motility. CONCLUSION NPS may be a novel candidate for the treatment of stress-related gastric disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Onur Bayramoğlu
- Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
7
|
Tobinski AM, Rappeneau V. Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 2021; 14:ph14080780. [PMID: 34451877 PMCID: PMC8400992 DOI: 10.3390/ph14080780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been extensively studied over the last two decades for their roles in locomotion, arousal/wakefulness and anxiety-related and fear-related behaviours in rodents. However, the possible implications of the NPS/NPSR1 system, especially those of the single nucleotide polymorphism (SNP) rs324981, in stress-related disorders and substance abuse in humans remain unclear. This is possibly due to the fact that preclinical and clinical research studies have remained separated, and a comprehensive description of the role of the NPS/NPSR1 system in stress-relevant and reward-relevant endpoints in humans and rodents is lacking. In this review, we describe the role of the NPS/NPSR1 system in emotionality, stress responsiveness and addiction-like behaviour in rodents. We also summarize the alterations in the NPS/NPSR1 system in individuals with stress-related disorders, as well as the impact of the SNP rs324981 on emotion, stress responses and neural activation in healthy individuals. Moreover, we discuss the therapeutic potential and possible caveats of targeting the NPS/NPSR1 system for the treatment of stress-related disorders. The primary goal of this review is to highlight the importance of studying some rodent behavioural readouts modulated by the NPS/NPSR1 system and relevant to stress-related disorders.
Collapse
|
8
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
9
|
Dissociative Effects of Neuropeptide S Receptor Deficiency and Nasal Neuropeptide S Administration on T-Maze Discrimination and Reversal Learning. Pharmaceuticals (Basel) 2021; 14:ph14070643. [PMID: 34358069 PMCID: PMC8308873 DOI: 10.3390/ph14070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cognitive flexibility refers to the ability to modify learned behavior in response to changes in the environment. In laboratory rodents, cognitive flexibility can be assessed in reversal learning, i.e., the change of contingencies, for example in T-maze discrimination learning. The present study investigated the role of the neuropeptide S (NPS) system in cognitive flexibility. In the first experiment, mice deficient of NPS receptors (NPSR) were tested in T-maze discrimination and reversal learning. In the second experiment, C57BL/6J mice were tested in the T-maze after nasal administration of NPS. Finally, the effect of nasal NPS on locomotor activity was evaluated. NPSR deficiency positively affected the acquisition of T-maze discrimination but had no effects on reversal learning. Nasal NPS administration facilitated reversal learning and supported an allocentric learning strategy without affecting acquisition of the task or locomotor activity. Taken together, the present data show that the NPS system is able to modulate both acquisition of T-maze discrimination and its reversal learning. However, NPSR deficiency only improved discrimination learning, while nasal NPS administration only improved reversal learning, i.e., cognitive flexibility. These effects, which at first glance appear to be contradictory, could be due to the different roles of the NPS system in the brain regions that are important for learning and cognitive flexibility.
Collapse
|
10
|
Park S, Flüthmann P, Wolany C, Goedecke L, Spenner HM, Budde T, Pape HC, Jüngling K. Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance. Pharmaceuticals (Basel) 2021; 14:ph14060519. [PMID: 34072275 PMCID: PMC8230190 DOI: 10.3390/ph14060519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
Background: The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or genetic interventions, little is known about intracellular signaling cascades in neurons endogenously expressing the NPSR1. Methods: To elucidate possible G-protein-dependent signaling and effector systems, we performed whole-cell patch-clamp recordings on principal neurons of the anterior basolateral amygdala of mice. We used pharmacological interventions to characterize the NPSR1-mediated current induced by NPS application. Results: Application of NPS reliably evokes inward-directed currents in amygdalar neurons recorded in brain slice preparations of male and female mice. The NPSR1-mediated current had a reversal potential near the potassium reversal potential (EK) and was accompanied by an increase in membrane input resistance. GDP-β-S and BAPTA, but neither adenylyl cyclase inhibition nor 8-Br-cAMP, abolished the current. Intracellular tetraethylammonium or 4-aminopyridine reduced the NPS-evoked current. Conclusion: NPSR1 activation in amygdalar neurons inhibits voltage-gated potassium (K+) channels, most likely members of the delayed rectifier family. Intracellularly, Gαq signaling and calcium ions seem to be mandatory for the observed current and increased neuronal excitability.
Collapse
|
11
|
Chou Y, Hor CC, Lee MT, Lee H, Guerrini R, Calo G, Chiou L. Stress induces reinstatement of extinguished cocaine conditioned place preference by a sequential signaling via neuropeptide S, orexin, and endocannabinoid. Addict Biol 2021; 26:e12971. [PMID: 33078457 DOI: 10.1111/adb.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Neurons containing neuropeptide S (NPS) and orexins are activated during stress. Previously, we reported that orexins released during stress, via orexin OX1 receptors (OX1 Rs), contribute to the reinstatement of cocaine seeking through endocannabinoid/CB1 receptor (CB1 R)-mediated dopaminergic disinhibition in the ventral tegmental area (VTA). Here, we further demonstrated that NPS released during stress is an up-stream activator of this orexin-endocannabinoid cascade in the VTA, leading to the reinstatement of cocaine seeking. Mice were trained to acquire cocaine conditioned place preference (CPP) by context-pairing cocaine injections followed by the extinction training with context-pairing saline injections. Interestingly, the extinguished cocaine CPP in mice was significantly reinstated by intracerebroventricular injection (i.c.v.) of NPS (1 nmol) in a manner prevented by intraperitoneal injection (i.p.) of SHA68 (50 mg/kg), an NPS receptor antagonist. This NPS-induced cocaine reinstatement was prevented by either i.p. or intra-VTA microinjection (i.vta.) of SB-334867 (15 mg/kg, i.p. or 15 nmol, i.vta.) and AM 251 (1.1 mg/kg, i.p. or 30 nmol, i.vta.), antagonists of OX1 Rs and CB1 Rs, respectively. Besides, NPS (1 nmol, i.c.v.) increased the number of c-Fos-containing orexin neurons in the lateral hypothalamus (LH) and increased orexin-A level in the VTA. The latter effect was blocked by SHA68. Furthermore, a 30-min restraint stress in mice reinstated extinguished cocaine CPP and was prevented by SHA68. These results suggest that NPS is released upon stress and subsequently activates LH orexin neurons to release orexins in the VTA. The released orexins then reinstate extinguished cocaine CPP via an OX1 R- and endocannabinoid-CB1 R-mediated signaling in the VTA.
Collapse
Affiliation(s)
- Yu‐Hsien Chou
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Chia Chun Hor
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Ming Tatt Lee
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine National Taiwan University Taipei Taiwan
- Faculty of Pharmaceutical Sciences UCSI University Kuala Lumpur Malaysia
| | - Hsin‐Jung Lee
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) University of Ferrara Ferrara Italy
| | - Girolamo Calo
- Section of Pharmacology, Department of Medical Sciences University of Ferrara Ferrara Italy
| | - Lih‐Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Acupuncture Sciences China Medical University Taichung Taiwan
| |
Collapse
|
12
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
13
|
Albanese V, Ruzza C, Marzola E, Bernardi T, Fabbri M, Fantinati A, Trapella C, Reinscheid RK, Ferrari F, Sturaro C, Calò G, Amendola G, Cosconati S, Pacifico S, Guerrini R, Preti D. Structure-Activity Relationship Studies on Oxazolo[3,4- a]pyrazine Derivatives Leading to the Discovery of a Novel Neuropeptide S Receptor Antagonist with Potent In Vivo Activity. J Med Chem 2021; 64:4089-4108. [PMID: 33733768 PMCID: PMC8041306 DOI: 10.1021/acs.jmedchem.0c02223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptide S modulates important neurobiological functions including locomotion, anxiety, and drug abuse through interaction with its G protein-coupled receptor known as neuropeptide S receptor (NPSR). NPSR antagonists are potentially useful for the treatment of substance abuse disorders against which there is an urgent need for new effective therapeutic approaches. Potent NPSR antagonists in vitro have been discovered which, however, require further optimization of their in vivo pharmacological profile. This work describes a new series of NPSR antagonists of the oxazolo[3,4-a]pyrazine class. The guanidine derivative 16 exhibited nanomolar activity in vitro and 5-fold improved potency in vivo compared to SHA-68, a reference pharmacological tool in this field. Compound 16 can be considered a new tool for research studies on the translational potential of the NPSergic system. An in-depth molecular modeling investigation was also performed to gain new insights into the observed structure-activity relationships and provide an updated model of ligand/NPSR interactions.
Collapse
Affiliation(s)
- Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Fabbri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Anna Fantinati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| | - Rainer K Reinscheid
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, University of Münster, 48149 Münster, Germany
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti, 2, 35131 Padova, Italy
| | - Giorgio Amendola
- "DiSTABiF", Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Sandro Cosconati
- "DiSTABiF", Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Reinscheid RK, Mafessoni F, Lüttjohann A, Jüngling K, Pape HC, Schulz S. Neandertal introgression and accumulation of hypomorphic mutations in the neuropeptide S (NPS) system promote attenuated functionality. Peptides 2021; 138:170506. [PMID: 33556445 DOI: 10.1016/j.peptides.2021.170506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
The neuropeptide S (NPS) system plays an important role in fear and fear memory processing but has also been associated with allergic and inflammatory diseases. Genes for NPS and its receptor NPSR1 are found in all tetrapods. Compared to non-human primates, several non-synonymous single-nucleotide polymorphisms (SNPs) occur in both human genes that collectively result in functional attenuation, suggesting adaptive mechanisms in a human context. To investigate historic and geographic origins of these hypomorphic mutations and explore genetic signs of selection, we analyzed ancient genomes and worldwide genotype frequencies of four prototypic SNPs in the NPS system. Neandertal and Denisovan genomes contain exclusively ancestral alleles for NPSR1 while all derived alleles occur in ancient genomes of anatomically modern humans, indicating that they arose in modern Homo sapiens. Worldwide genotype frequencies for three hypomorphic NPSR1 SNPs show significant regional homogeneity but follow a gradient towards increasing derived allele frequencies that supports an out-of-Africa scenario. Increased density of high-frequency polymorphisms around the three NPSR1 loci suggests weak or possibly balancing selection. A hypomorphic mutation in the NPS precursor, however, was detected at high frequency in Eurasian Neandertal genomes and shows genetic signatures indicating that it was introgressed into the human gene pool, particularly in Southern Europe, by interbreeding with Neandertals. We discuss potential evolutionary scenarios including behavior and immune-based natural selection.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany; Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany.
| | | | - Annika Lüttjohann
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
15
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
16
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
17
|
Neuropeptide S attenuates methamphetamine-induced stereotyped behavior in rats. Biochem Biophys Res Commun 2020; 527:98-103. [DOI: 10.1016/j.bbrc.2020.04.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022]
|
18
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Lee MT, Chiu YT, Chiu YC, Hor CC, Lee HJ, Guerrini R, Calo G, Chiou LC. Neuropeptide S-initiated sequential cascade mediated by OX 1, NK 1, mGlu 5 and CB 1 receptors: a pivotal role in stress-induced analgesia. J Biomed Sci 2020; 27:7. [PMID: 31915019 PMCID: PMC6950992 DOI: 10.1186/s12929-019-0590-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023] Open
Abstract
Background Stress-induced analgesia (SIA) is an evolutionarily conserved phenomenon during stress. Neuropeptide S (NPS), orexins, substance P, glutamate and endocannabinoids are known to be involved in stress and/or SIA, however their causal links remain unclear. Here, we reveal an unprecedented sequential cascade involving these mediators in the lateral hypothalamus (LH) and ventrolateral periaqueductal gray (vlPAG) using a restraint stress-induced SIA model. Methods Male C57BL/6 mice of 8–12 week-old were subjected to intra-cerebroventricular (i.c.v.) and/or intra-vlPAG (i.pag.) microinjection of NPS, orexin-A or substance P alone or in combination with selective antagonists of NPS receptors (NPSRs), OX1 receptors (OX1Rs), NK1 receptors (NK1Rs), mGlu5 receptors (mGlu5Rs) and CB1 receptors (CB1Rs), respectively. Antinociceptive effects of these mediators were evaluated via the hot-plate test. SIA in mice was induced by a 30-min restraint stress. NPS levels in the LH and substance P levels in vlPAG homogenates were compared in restrained and unrestrained mice. Results NPS (i.c.v., but not i.pag.) induced antinociception. This effect was prevented by i.c.v. blockade of NPSRs. Substance P (i.pag.) and orexin-A (i.pag.) also induced antinociception. Substance P (i.pag.)-induced antinociception was prevented by i.pag. Blockade of NK1Rs, mGlu5Rs or CB1Rs. Orexin-A (i.pag.)-induced antinociception has been shown previously to be prevented by i.pag. blockade of OX1Rs or CB1Rs, and here was prevented by NK1R or mGlu5R antagonist (i.pag.). NPS (i.c.v.)-induced antinociception was prevented by i.pag. blockade of OX1Rs, NK1Rs, mGlu5Rs or CB1Rs. SIA has been previously shown to be prevented by i.pag. blockade of OX1Rs or CB1Rs. Here, we found that SIA was also prevented by i.c.v. blockade of NPSRs or i.pag. blockade of NK1Rs or mGlu5Rs. Restrained mice had higher levels of NPS in the LH and substance P in the vlPAG than unrestrained mice. Conclusions These results suggest that, during stress, NPS is released and activates LH orexin neurons via NPSRs, releasing orexins in the vlPAG. Orexins then activate OX1Rs on substance P-containing neurons in the vlPAG to release substance P that subsequently. Activates NK1Rs on glutamatergic neurons to release glutamate. Glutamate then activates perisynaptic mGlu5Rs to initiate the endocannabinoid retrograde inhibition of GABAergic transmission in the vlPAG, leading to analgesia.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Faculty of Pharmaceutical Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Yu-Ting Chiu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Chun Chiu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia Chun Hor
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences and National Institute of Neurosciences, Section of Pharmacology, University of Ferrara, 44121, Ferrara, Italy
| | - Lih-Chu Chiou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
20
|
Zhang S, Zhornitsky S, Le TM, Li CSR. Hypothalamic Responses to Cocaine and Food Cues in Individuals with Cocaine Dependence. Int J Neuropsychopharmacol 2019; 22:754-764. [PMID: 31420667 PMCID: PMC6929672 DOI: 10.1093/ijnp/pyz044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Individuals with cocaine addiction are characterized by under-responsiveness to natural reinforcers. As part of the dopaminergic pathways, the hypothalamus supports motivated behaviors. Rodent studies suggested inter-related roles of the hypothalamus in regulating drug and food intake. However, few studies have investigated hypothalamic responses to drugs and food or related cues in humans. METHODS We examined regional responses in 20 cocaine-dependent and 24 healthy control participants exposed to cocaine/food (cocaine dependent) and food (healthy control) vs neutral cues during functional magnetic resonance imaging. We examined the relationship between imaging findings and clinical variables and performed mediation analyses to examine the inter-relationships between cue-related activations, tonic cocaine craving, and recent cocaine use. RESULTS At a corrected threshold, cocaine-dependent participants demonstrated higher activation to cocaine than to food cues in the hypothalamus, inferior parietal cortex, and visual cortex. Cocaine-dependent participants as compared with healthy control participants also demonstrated higher hypothalamic activation to food cues. Further, the extent of these cue-induced hypothalamic activations was correlated with tonic craving, as assessed by the Cocaine Craving Questionnaire, and days of cocaine use in the prior month. In mediation analyses, hypothalamic activation to cocaine and food cues both completely mediated the relationship between the Cocaine Craving Questionnaire score and days of cocaine use in the past month. CONCLUSIONS The results were consistent with the proposition that the mechanisms of feeding and drug addiction are inter-linked in the hypothalamus and altered in cocaine addiction. The findings provide new evidence in support of hypothalamic dysfunction in cocaine addiction.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Correspondence: Sheng Zhang, PhD, Connecticut Mental Health Center S103, 34 Park Street, New Haven CT 06519 ()
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| |
Collapse
|
21
|
Zhao P, Qian X, Nie Y, Sun N, Wang Z, Wu J, Wei C, Ma R, Wang Z, Chai G, Li Y. Neuropeptide S Ameliorates Cognitive Impairment of APP/PS1 Transgenic Mice by Promoting Synaptic Plasticity and Reducing Aβ Deposition. Front Behav Neurosci 2019; 13:138. [PMID: 31293402 PMCID: PMC6603143 DOI: 10.3389/fnbeh.2019.00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating disease in the elderly with no known effective treatment. It is characterized by progressive deterioration of memory and cognition. Many new potential targets are being investigated to develop effective therapeutic strategies for AD. Neuropeptide S (NPS) is an endogenous peptide in the central nervous system, which has been shown to play a beneficial role in learning and memory. However, whether NPS can ameliorate cognitive deficits in AD remains unclear. In this study, we examined the effects of NPS treatment on the cognitive behaviors and pathological hallmarks in 8-month-old APPswe/PS1dE9 (APP/PS1) AD mice. We found that the APP/PS1 mice exhibited lower levels of NPS receptors (NPSRs) in the hippocampal area, and NPS administration increased c-Fos expression in the hippocampus and cortex, which suggests the NPS/NPSR system may contribute to the pathogenesis of AD. After an intracerebroventricular injection of NPS (1 nmol) for 2 weeks, we found NPS treatment ameliorated spatial memory deficits and promoted dendrite ramification and spine generation in hippocampal CA1 neurons, which was accompanied by the upregulation of postsynaptic density protein 95 (PSD95) and synapsin1. We also demonstrated that the injection of NPS decreased Aβ plaque deposits by decreasing the γ-secretase activity and the phosphorylation of APP at Thr668. Furthermore, application of NPS reversed the deficits in hippocampal late-phase long-term potentiation (LTP). These findings suggest NPS attenuated cognitive deficits by reducing pathological features in APP/PS1 mice, and NPS might be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Peng Zhao
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Xiaohang Qian
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Yunjuan Nie
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Na Sun
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | | | - Jiajun Wu
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Chen Wei
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Ruikun Ma
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Zhe Wang
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Gaoshang Chai
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Yuqing Li
- Wuxi Medical School, Jiangnan University, Wuxi, China.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Blough B, Namjoshi O. Small Molecule Neuropeptide S and Melanocortin 4 Receptor Ligands as Potential Treatments for Substance Use Disorders. Handb Exp Pharmacol 2019; 258:61-87. [PMID: 31628605 DOI: 10.1007/164_2019_313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a vital need for novel approaches and biological targets for drug discovery and development. Treatment strategies for substance use disorders (SUDs) to date have been mostly ineffective other than substitution-like therapeutics. Two such targets are the peptide G-protein-coupled receptors neuropeptide S (NPS) and melanocortin 4 (MC4). Preclinical evidence suggests that antagonists, inverse agonists, or negative allosteric modulators of these receptors might be novel therapeutics for SUDs. NPS is a relatively unexplored receptor with high potential for treating SUD. MC4 has a strong link to early-onset obesity, and emerging evidence suggests significant overlap between food-maintained and drug-maintained behaviors making MC4 an intriguing target for SUD. This chapter provides an overview of the literature in relation to the roles of NPS and MC4 in drug-seeking behaviors and then provides a medicinal chemistry-based survey of the small molecule ligands for each receptor.
Collapse
Affiliation(s)
- Bruce Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA.
| | - Ojas Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
24
|
Cohen H, Vainer E, Zeev K, Zohar J, Mathé AA. Neuropeptide S in the basolateral amygdala mediates an adaptive behavioral stress response in a rat model of posttraumatic stress disorder by increasing the expression of BDNF and the neuropeptide YY1 receptor. Eur Neuropsychopharmacol 2018; 28:159-170. [PMID: 29157796 DOI: 10.1016/j.euroneuro.2017.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023]
Abstract
Neuropeptide S (NPS) is a regulatory peptide that has anxiolytic and arousal-promoting effects in rodents. We used an animal model of posttraumatic stress disorder (PTSD) to assess long-term behavioral effects of a single dose of NPS, microinjected into the basolateral amygdala (BLA) 1h following exposure to predator-scent stress (PSS). To elucidate the molecular mechanism by which NPS attenuates behavioral stress responses, expression levels of neuropeptide Y (NPY), NPY-Y1 receptor (NPY-Y1R), and brain-derived neurotrophic factor (BDNF) were evaluated in the hippocampus. The behavioral and molecular effects of NPS receptor antagonist (NPS-RA), NPY-Y1R antagonist (NPY-Y1RA), or both administered centrally were evaluated in the same manner. Circulating corticosterone levels were measured at different time points following PSS-exposure. Immediate post-exposure treatment with NPS had a marked protective effect; BLA microinfusion of NPS completely abolished the extreme behavioral response to PSS, restored the decreased expression of BDNF and, unexpectedly, PY-Y1R, but didn't affect the decreased expression of NPY. BLA microinfusion of both NPY-Y1RA and NPS-RA together had an additive effect, which completely prevented the anxiolytic effects of NPS in rats exposed to PSS and disrupted the expression of NPY-Y1R in the hippocampus following NPS infusion. It may therefore be hypothesized that NPS acts, directly or indirectly, on both the NPY-Y1R and NPS receptors and that the cross-talk between NPS and NPY-Y1R may be necessary for the anxiolytic effects of NPS post-exposure. The NPS system might thus contribute to a potential endogenous mechanism underlying the shift towards adaptive behavioral response and thereby might be relevant as a pharmacological target for attenuating stress-related sequelae.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 4600, Beer-Sheva 84170, Israel.
| | - Ella Vainer
- Ministry of Health Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 4600, Beer-Sheva 84170, Israel
| | - Kaplan Zeev
- Ministry of Health Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 4600, Beer-Sheva 84170, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Ramat-Gan, Israel, Sackler Medical School, Tel-Aviv University, Israel
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Institutet, Sankt Görans Hospital, SE-11281 Stockholm, Sweden.
| |
Collapse
|
25
|
Ensho T, Nakahara K, Suzuki Y, Murakami N. Neuropeptide S increases motor activity and thermogenesis in the rat through sympathetic activation. Neuropeptides 2017; 65:21-27. [PMID: 28433253 DOI: 10.1016/j.npep.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/01/2022]
Abstract
The central role of neuropeptide S (NPS), identified as the endogenous ligand for GPR154, now named neuropeptide S receptor (NPSR), has not yet been fully clarified. We examined the central role of NPS for body temperature, energy expenditure, locomotor activity and adrenal hormone secretion in rats. Intracerebroventricular (icv) injection of NPS increased body temperature in a dose-dependent manner. Energy consumption and locomotor activity were also significantly increased by icv injection of NPS. In addition, icv injection of NPS increased the peripheral blood concentration of adrenalin and corticosterone. Pretreatment with the β1- and β2-adrenergic receptor blocker timolol inhibited the NPS-induced increase of body temperature. The expression of both NPS mRNA in the brainstem and NPSR mRNA in the hypothalamus showed a nocturnal rhythm with a peak occurring during the first half of the dark period. To examine whether the endogenous NPS is involved in regulation of body temperature, NPSR antagonist SHA68 was administered one hour after darkness. SHA68 attenuated the nocturnal rise of body temperature. These results suggest that NPS contributes to the regulation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan.
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| |
Collapse
|
26
|
Liu X, Si W, Garau C, Jüngling K, Pape HC, Schulz S, Reinscheid RK. Neuropeptide S precursor knockout mice display memory and arousal deficits. Eur J Neurosci 2017; 46:1689-1700. [PMID: 28548278 DOI: 10.1111/ejn.13613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Activation of neuropeptide S (NPS) signaling has been found to produce arousal, wakefulness, anxiolytic-like behaviors, and enhanced memory formation. In order to further study physiological functions of the NPS system, we generated NPS precursor knockout mice by homologous recombination in embryonic stem cells. NPS-/- mice were viable, fertile, and anatomically normal, when compared to their wild-type and heterozygous littermates. The total number of NPS neurons-although no longer synthesizing the peptide - was not affected by the knockout, as analyzed in NPS-/- /NPSEGFP double transgenic mice. Analysis of behavioral phenotypes revealed significant deficits in exploratory activity in NPS-/- mice. NPS precursor knockout mice displayed attenuated arousal in the hole board test, visible as reduced total nose pokes and number of holes inspected, that was not confounded by increased repetitive or stereotypic behavior. Importantly, long-term memory was significantly impaired in NPS-/- mice in the inhibitory avoidance paradigm. NPS precursor knockout mice displayed mildly increased anxiety-like behaviors in three different tests measuring responses to stress and novelty. Interestingly, heterozygous littermates often presented behavioral deficits similar to NPS-/- mice or displayed intermediate phenotype. These observations may suggest limited ligand availability in critical neural circuits. Overall, phenotypical changes in NPS-/- mice are similar to those observed in NPS receptor knockout mice and support earlier findings that suggest major functions of the NPS system in arousal, regulation of anxiety and stress, and memory formation.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Department of Pharmaceutical Science, University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Kay Jüngling
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.,Institute of Physiology I, University Hospital Münster, Westfälische-Wilhems-University, Robert-Koch-Str. 27a, D-48149, Münster, Germany.,Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
27
|
Blacktop JM, Todd RP, Sorg BA. Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaine-induced conditioned place preference and self-administration. Neuropharmacology 2017; 118:124-136. [PMID: 28322980 PMCID: PMC5492967 DOI: 10.1016/j.neuropharm.2017.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 01/20/2023]
Abstract
Addiction involves drug-induced neuroplasticity in the circuitry of motivated behavior, which includes the medial forebrain bundle and the lateral hypothalamic area. Emerging at the forefront of neuroplasticity regulation are specialized extracellular matrix (ECM) structures that form perineuronal nets (PNNs) around certain neurons, mainly parvalbumin positive (PV+), fast-spiking interneurons (FSINs), making them a promising target for the regulation of drug-induced neuroplasticity. Despite the emerging significance of PNNs in drug-induced neuroplasticity and the well-established role of the lateral hypothalamic area (LHA) in reward, reinforcement, and motivation, very little is known about how PNN-expressing neurons control drug-seeking behavior. We found that a discrete region of the anterior dorsal LHA (LHAad) exhibited robust PNN and dense ECM expression. Approximately 87% of parvalbumin positive (PV+) neurons co-expressed the PNN marker Wisteria floribunda agglutinin (WFA), while 62% of WFA positive (WFA+) neurons co-expressed PV in the LHAad of drug naïve rats. Removal of PNNs within this brain region via chrondroitinase ABC (Ch-ABC) administration abolished acquisition of cocaine-induced CPP and significantly attenuated the acquisition of cocaine self-administration (SA). Removal of LHAad PNNs did not affect locomotor activity, sucrose intake, sucrose-induced CPP, or acquisition of sucrose SA in separate groups of cocaine naïve animals. These data suggest that PNN-dependent neuroplasticity within the LHAad is critical for the acquisition of both cocaine-induced CPP and SA but is not general to all rewards, and that PNN degradation may have utility for the management of drug-associated behavioral plasticity and memory in cocaine addicts.
Collapse
Affiliation(s)
- Jordan M Blacktop
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States.
| | - Ryan P Todd
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - Barbara A Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| |
Collapse
|
28
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Clark SD, Kenakin TP, Gertz S, Hassler C, Gay EA, Langston TL, Reinscheid RK, Runyon SP. Identification of the first biased NPS receptor agonist that retains anxiolytic and memory promoting effects with reduced levels of locomotor stimulation. Neuropharmacology 2017; 118:69-78. [PMID: 28267583 DOI: 10.1016/j.neuropharm.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 01/26/2023]
Abstract
The neuropeptide S system has been implicated in a number of centrally mediated behaviors including memory consolidation, anxiolysis, and increased locomotor activity. Characterization of these behaviors has been primarily accomplished using the endogenous 20AA peptide (NPS) that demonstrates relatively equal potency for the calcium mobilization and cAMP second messenger pathways at human and rodent NPS receptors. This study is the first to demonstrate that truncations of the NPS peptide provides small fragments that retain significant potency only at one of two single polymorphism variants known to alter NPSR function (NPSR-107I), yet demonstrate a strong level of bias for the calcium mobilization pathway over the cAMP pathway. We have also determined that the length of the truncated peptide correlates with the degree of bias for the calcium mobilization pathway. A modified tetrapeptide analog (4) has greatly attenuated hyperlocomotor stimulation in vivo but retains activity in assays that correlate with memory consolidation and anxiolytic activity. Analog 4 also has a bias for the calcium mobilization pathway, at the human and mouse receptor. This suggests that future agonist ligands for the NPS receptor having a bias for calcium mobilization over cAMP production will function as non-stimulatory anxiolytics that augment memory formation.
Collapse
Affiliation(s)
- Stewart D Clark
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, NY 14214, United States
| | - Terrence P Kenakin
- University of North Carolina, Department of Pharmacology, Chapel Hill, NC 27599, United States
| | - Steven Gertz
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, NY 14214, United States
| | - Carla Hassler
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Elaine A Gay
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States; Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Scott P Runyon
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States.
| |
Collapse
|
30
|
Kallupi M, Scuppa G, de Guglielmo G, Calò G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction. Neuropsychopharmacology 2017; 42:695-706. [PMID: 27562376 PMCID: PMC5240182 DOI: 10.1038/npp.2016.171] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/14/2022]
Abstract
The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.
Collapse
Affiliation(s)
- Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Giulia Scuppa
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Giordano de Guglielmo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Girolamo Calò
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Statnick
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN USA
| | | | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032 Italy, Tel: +39 07 3740 3313, Fax: +39 07 3740 3325, E-mail:
| |
Collapse
|
31
|
James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017; 33:247-281. [PMID: 28012090 PMCID: PMC5799809 DOI: 10.1007/7854_2016_57] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One decade ago, our laboratory provided the first direct evidence linking orexin/hypocretin signaling with drug seeking by showing that activation of these neurons promotes conditioned morphine-seeking behavior. In the years since, contributions from many investigators have revealed roles for orexins in addiction for all drugs of abuse tested, but only under select circumstances. We recently proposed that orexins play a fundamentally unified role in coordinating "motivational activation" under numerous behavioral conditions, and here we unpack this hypothesis as it applies to drug addiction. We describe evidence collected over the past 10 years that elaborates the role of orexin in drug seeking under circumstances where high levels of effort are required to obtain the drug, or when motivation for drug reward is augmented by the presence of external stimuli like drug-associated cues/contexts or stressors. Evidence from studies using traditional self-administration and reinstatement models, as well as behavioral economic analyses of drug demand elasticity, clearly delineates a role for orexin in modulating motivational, rather than the primary reinforcing aspects of drug reward. We also discuss the anatomical interconnectedness of the orexin system with wider motivation and reward circuits, with a particular focus on how orexin modulates prefrontal and other glutamatergic inputs onto ventral tegmental area dopamine neurons. Last, we look ahead to the next decade of the research in this area, highlighting the recent FDA approval of the dual orexin receptor antagonist suvorexant (Belsomra®) for the treatment of insomnia as a promising sign of the potential clinical utility of orexin-based therapies for the treatment of addiction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 2337, Australia
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92967, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
| |
Collapse
|
32
|
Ruzza C, Calò G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opin Ther Pat 2016; 27:347-362. [PMID: 27788040 DOI: 10.1080/13543776.2017.1254195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.
Collapse
Affiliation(s)
- Chiara Ruzza
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | - Girolamo Calò
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | | | - Salvatore Pacifico
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Claudio Trapella
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Severo Salvadori
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Delia Preti
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Remo Guerrini
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
33
|
Cannella N, Kallupi M, Li HW, Stopponi S, Cifani C, Ciccocioppo R, Ubaldi M. Neuropeptide S differently modulates alcohol-related behaviors in alcohol-preferring and non-preferring rats. Psychopharmacology (Berl) 2016; 233:2915-24. [PMID: 27235017 PMCID: PMC4935615 DOI: 10.1007/s00213-016-4333-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022]
Abstract
RATIONALE Neuropeptide S (NPS) displays unique pharmacological properties and induces both anxiolytic and pro-stress/arousal activities. Previous studies performed using Wistar rats demonstrated that NPS facilitated alcohol and cocaine seeking but did not affect alcohol or cocaine consumption. OBJECTIVES Here, we investigated the effects of NPS in Marchigian Sardinian alcohol-preferring (msP) rats, a rat strain characterized by excessive alcohol consumption comorbid with heightened anxiety and depressive-like phenotypes. Specifically, we evaluated the effect of NPS on operant alcohol self-administration by msP rats compared to Wistar rats. The effect of NPS on cue-induced reinstatement of alcohol seeking in msP rats was also evaluated. Finally, using the open field test (OFT) and the elevated plus maze (EPM), we evaluated the effects of NPS on locomotor activity and anxiety. RESULTS NPS reduced alcohol self-administration but did not affect cue-induced reinstatement in the msP rat. In addition, NPS induced reinstatement of extinguished alcohol seeking in Wistar rats without affecting alcohol intake. In the EPM task, NPS, in accordance with its anxiolytic activity, increased the time spent in the open arm of the arena by msP rats, although this effect was not observed in Wistar rats. CONCLUSIONS These data suggest that the effect of NPS is strongly influenced by the genetic background of the animal. In Wistar rats, NPS acts as a pro-arousal agent to promote the reinstatement of alcohol seeking. However, when alcohol drinking is motivated by or associated with a state of pathological anxiety, NPS attenuates alcohol consumption and seeking due to its anxiolytic activity.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino (MC) 62032, Italy
| | - Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino (MC) 62032, Italy
| | - Hong Wu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino (MC) 62032, Italy
| | | | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino (MC) 62032, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino (MC) 62032, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Building of Experimental Medicine, Via Madonna delle Carceri 9, Camerino, MC, 62032, Italy.
| |
Collapse
|
34
|
Zoicas I, Menon R, Neumann ID. Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively. Neuropharmacology 2016; 108:284-91. [PMID: 27044664 DOI: 10.1016/j.neuropharm.2016.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 11/28/2022]
Abstract
Neuropeptide S (NPS) has anxiolytic effects and facilitates extinction of cued fear in rodents. Here, we investigated whether NPS reverses social fear and social avoidance induced by social fear conditioning (SFC) and acute social defeat (SD), respectively, in male CD1 mice. Our results revealed that intracerebroventricular NPS (icv; 10 and 50 nmol/2 μl) reversed fear of unknown con-specifics induced by SFC and dose-dependently reduced avoidance of known aggressive con-specifics induced by SD. While 50 nmol of NPS completely reversed social avoidance and reinstated social preference, 10 nmol of NPS reduced social avoidance, but did not completely reinstate social preference in socially-defeated mice. Further, a lower dose (1 nmol/2 μl) of NPS facilitated the within-session extinction of cued fear, while a higher dose (10 nmol/2 μl) reduced the expression of cued fear. We could also confirm the anxiolytic effects of NPS (1, 10 and 50 nmol/2 μl) on the elevated plus-maze (EPM), which were not accompanied by alterations in locomotor activity either on the EPM or in the home cage. Finally, we could show that icv infusion of the NPS receptor 1 antagonist D-Cys((t)Bu)(5)-NPS (10 nmol/2 μl) did not alter SFC-induced social fear, general anxiety and locomotor activity. Taken together, our study extends the potent anxiolytic profile of NPS to a social context by demonstrating the reduction of social fear and social avoidance, thus providing the framework for studies investigating the involvement of the NPS system in the regulation of different types of social behaviour.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
35
|
Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, de Guglielmo G, Ruggeri B, Stopponi S, Ciccocioppo R, Cannella N. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S. Biol Psychiatry 2016; 79:452-62. [PMID: 26055195 DOI: 10.1016/j.biopsych.2015.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/04/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system. METHODS Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats. RESULTS Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree. CONCLUSIONS Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Hongwu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | - Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | | | - Barbara Ruggeri
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | | | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany..
| |
Collapse
|
36
|
Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 2016; 43:710-20. [PMID: 26750264 DOI: 10.1111/ejn.13170] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Orexin (ORX) (also known as hypocretin) neurons are located exclusively in the posterior hypothalamus, and are involved in a wide range of behaviours, including motivation for drugs of abuse such as alcohol. Hypothalamic subregions contain functionally distinct populations of ORX neurons that may play different roles in regulating drug-motivated and alcohol-motivated behaviours. To investigate the role of ORX neurons in ethanol (EtOH) seeking, we measured Fos activation of ORX neurons in rats following three different measures of EtOH seeking and preference: (i) context-induced reinstatement, or ABA renewal; (ii) cue-induced reinstatement of extinguished responding for EtOH; and (iii) a home cage task in which preference for EtOH (vs. water) was measured in the absence of either reinforcer. We found significant activation of ORX neurons in multiple subregions across all three behavioural tests. Notably, ORX neuron activation in the lateral hypothalamus correlated with the degree of seeking in context reinstatement and the degree of preference in home cage preference testing. In addition, Fos activation in ORX neurons in the dorsomedial hypothalamic and perifornical areas was correlated with context and home cage seeking/preference, respectively. Surprisingly, we found no relationship between the degree of cue-induced reinstatement and ORX neuron activation in any region, despite robust activation overall during reinstatement. These results demonstrate a strong relationship between ORX neuron activation and EtOH seeking/preference, but one that is differentially expressed across ORX field subregions, depending on reinstatement modality.
Collapse
Affiliation(s)
- David E Moorman
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Morgan H James
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth A Kilroy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
37
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Yamasaki T, Oda R, Imai K, Taniguchi D, Toyama S, Seno T, Arai Y, Ikoma K, Fujiwara H, Tokunaga D, Kawahito Y, Kubo T. Efficacy of MRP8/14 as a Marker of Disease Activity in Rheumatoid Arthritis. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojra.2016.62006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
40
|
Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex. Brain Struct Funct 2015; 221:3327-36. [PMID: 26323488 DOI: 10.1007/s00429-015-1103-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/27/2015] [Indexed: 01/04/2023]
Abstract
Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.
Collapse
|
41
|
Parks GS, Wang L, Wang Z, Civelli O. Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp Neurol 2014; 522:3817-33. [PMID: 24978951 PMCID: PMC4167928 DOI: 10.1002/cne.23642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Abstract
Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI), but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of most neuropeptides are poorly understood. To gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons by using double in situ hybridization. In all, 20 receptors, selected based on either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, 11 neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: nociceptin/orphanin FQ opioid receptor (NOP), MCHR1, both orexin receptors (ORX), somatostatin receptors 1 and 2 (SSTR1, SSTR2), kisspeptin recepotor (KissR1), neurotensin receptor 1 (NTSR1), neuropeptide S receptor (NPSR), cholecystokinin receptor A (CCKAR), and the κ-opioid receptor (KOR). Among these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system.
Collapse
Affiliation(s)
- Gregory S. Parks
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, 92697
| | - Lien Wang
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, 92697
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| |
Collapse
|
42
|
Valsalan R, Manoj N. Evolutionary history of the neuropeptide S receptor/neuropeptide S system. Gen Comp Endocrinol 2014; 209:11-20. [PMID: 24859256 DOI: 10.1016/j.ygcen.2014.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
The neuropeptide S receptor (NPSR) belongs to the G protein-coupled receptor (GPCR) superfamily and is activated by the neuropeptide S (NPS). Although recently discovered, the vertebrate NPSR-NPS system has been established as an important signaling system in the central nervous system and is involved in physiological processes such as locomotor activity, wakefulness, asthma pathogenesis, anxiety and food intake. The availability of a large number of genome sequences from multiple bilaterian lineages has provided an opportunity to establish the evolutionary history of the system. This review describes the origin and the molecular evolution of the NPSR-NPS system using data derived primarily from comparative genomic analyses. These analyses indicate that the NPSR-NPS system and the vasopressin-like receptor-vasopressin/oxytocin peptide (VPR-VP/OT) system originated from a single system in an ancestral bilaterian. Multiple duplications of this ancestral system gave rise to the bilaterian VPR-VP/OT system and to the protostomian cardioacceleratory peptide receptor-cardioacceleratory peptide (CCAPR-CCAP) system and to the NPSR-NPS system in the deuterostomes. Gene structure features of the receptors were consistent with the orthology annotations derived from phylogenetic analyses. The orthology of the peptide precursors closely paralleled that of the receptors suggesting an ancient coevolution of the receptor-peptide pair. An important challenge for the coevolution hypothesis will be to establish the molecular and structural basis of the divergence between orthologous receptor-ligand pairs in this system.
Collapse
Affiliation(s)
- Ravisankar Valsalan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
43
|
Bonano JS, Runyon SP, Hassler C, Glennon RA, Stevens Negus S. Effects of the neuropeptide S receptor antagonist RTI-118 on abuse-related facilitation of intracranial self-stimulation produced by cocaine and methylenedioxypyrovalerone (MDPV) in rats. Eur J Pharmacol 2014; 743:98-105. [PMID: 25220242 PMCID: PMC4259821 DOI: 10.1016/j.ejphar.2014.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/21/2023]
Abstract
Neuropeptide S (NPS) is a neurotransmitter that activates the NPS receptor to modulate biological functions including anxiety-like behaviors, feeding, and drug reinforcement. RTI-118 is a novel NPS receptor antagonist that decreased cocaine self-administration in rats at doses that had little or no effect on food-maintained responding. To build on these previous findings, this study examined effects of RTI-118 on cocaine-induced facilitation of intracranial self-stimulation (ICSS) in rats. To provide a context for data interpretation, effects of RTI-118 were compared to effects of the kappa opioid receptor agonist U69,593, because the kappa opioid receptor is another peptide neurotransmitter receptor reported to modulate abuse-related cocaine effects. RTI-118 effects were also examined on ICSS facilitation produced by methylenedioxypyrovalerone (MDPV), a novel designer drug of abuse with some cocaine-like effects. Male Sprague-Dawley rats (n=12) with electrodes targeting the medial forebrain bundle responded under a fixed-ratio 1 schedule for range of brain stimulation frequencies. Under control conditions, brain stimulation maintained a frequency-dependent increase in ICSS rates. Cocaine (1.0-10mg/kg) and MDPV (3.2mg/kg) facilitated ICSS. RTI-118 (3.2-32mg/kg) alone produced little effect on ICSS but dose dependently blocked cocaine-induced ICSS facilitation. U69,593 (0.25-0.5mg/kg) also attenuated cocaine effects, but blockade of cocaine effects was incomplete even at a U69,593 dose that alone depressed ICSS. RTI-118 (32mg/kg) failed to block MDPV-induced ICSS facilitation. These results support further consideration of NPS receptor antagonists as candidate treatments for cocaine abuse and provide evidence for differential effects of a candidate treatment on abuse-related effects of cocaine and MDPV.
Collapse
Affiliation(s)
- Julie S Bonano
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA.
| | - Scott P Runyon
- Organic and Medicinal Chemistry, Research Triangle Institute, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709, USA
| | - Carla Hassler
- Organic and Medicinal Chemistry, Research Triangle Institute, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709, USA
| | - Richard A Glennon
- Department of Medicinal Chemistry, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980551, Richmond, VA 23298, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| |
Collapse
|
44
|
Ghazal P, Corsi M, Roth A, Faggioni F, Corti C, Merlo Pick E, Pucciarelli S, Ciccocioppo R, Ubaldi M. Paradoxical response to the sedative effects of diazepam and alcohol in C57BL/6J mice lacking the neuropeptide S receptor. Peptides 2014; 61:107-13. [PMID: 25240770 DOI: 10.1016/j.peptides.2014.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
The neuropeptide S (NPS) system is characterized by a unique pharmacology because it has anxiolytic-like effects and promotes arousal and wakefulness. To shed light on this peptidergic system, we tested the sedative effect of the central depressants diazepam and ethanol on the loss of righting reflex in mice lacking the neuropeptide S receptor (NPSR), NPSR(-/-). Furthermore, we tested the effect of the intracerebroventricular (ICV) administration of NPS on the sedative effect of diazepam and ethanol in NPSR(-/-) and their wild type counterpart NPSR(+/+). Finally, we evaluated the effect of the pro-arousal neuropeptides CRF and Hcrt-1/Ox-A in NPSR-deficient mice. Contrary to our expectations, the results showed that the NPSR(-/-) were less sensitive to the hypnotic effects of both diazepam and ethanol compared with their wild type littermates. ICV NPS was able to attenuate the sedative effect of both alcohol and diazepam in wild type mice, but not in the NPSR(-/-) line. The administration of CRF and Hcrt-1/Ox-A, two classic pro-arousal peptides, elicited the same effects in both NPSR(-/-) and wild type mice, ruling out the possibility that adaptive mechanisms occurring at the level of these two systems could have occurred during NPSR(-/-) development to compensate for the lack of NPSR receptors. Our findings demonstrated that the deletion of NPSR leads to minor changes in the arousal behavior of mice. Moreover, we demonstrated that the deletion of NPSR did not lead to compensatory changes in the vigilance-promoting effects of the CRF and Hcrt-1/Ox-A systems.
Collapse
Affiliation(s)
- Pasha Ghazal
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy
| | - Mauro Corsi
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, 37135 Verona, Italy
| | - Adelheid Roth
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, 37135 Verona, Italy
| | - Federico Faggioni
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, 37135 Verona, Italy
| | - Corrado Corti
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, 37135 Verona, Italy
| | - Emilio Merlo Pick
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, 37135 Verona, Italy
| | - Sandra Pucciarelli
- School of Biosciences and Biotechnology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy.
| |
Collapse
|
45
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
46
|
Oishi M, Kushikata T, Niwa H, Yakoshi C, Ogasawara C, Calo G, Guerrini R, Hirota K. Endogenous neuropeptide S tone influences sleep-wake rhythm in rats. Neurosci Lett 2014; 581:94-7. [PMID: 25161123 DOI: 10.1016/j.neulet.2014.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/01/2014] [Accepted: 08/17/2014] [Indexed: 11/16/2022]
Abstract
Neuropeptide S (NPS) is an endogenous peptide that exerts wakefulness promoting, analgesic, and anxiolytic effects when administered exogenously. However, it remains to be determined if endogenous NPS tone is involved in the control of the diurnal sleep-wake cycle, or spontanous behavior. In this study, we examined the effects of the NPS receptor antagonist [D-Cys((t)Bu)(5)]NPS (2 and 20 nmol, icv) on physiological sleep and spontaneous locomotor behavior. The higher dose of [D-Cys((t)Bu)(5)]NPS decreased the amount of time spent in wakefulness [control 782.5 ± 25.5 min, treatment 751.7 ± 28.1 min; p<0.05] and increased the time spent in NREMS [control 572.6 ± 17.2 min, treatment 600.2 ± 26.1 min; p<0.05]. There was no statistically significant difference in time spent in REMS. There were no behavioral changes including abnormal gross motor behavior in response to [D-Cys((t)Bu)(5)]NPS administration. Collectively these data suggest an involvement of the endogenous NPS/NPS receptor system in physiological sleep architecture.
Collapse
Affiliation(s)
- Masafumi Oishi
- Department of Anesthesiology, Hirosaki University Hospital, Hirosaki 036-8563, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hidetomo Niwa
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Chihiro Yakoshi
- Department of Anesthesiology, Hirosaki University Hospital, Hirosaki 036-8563, Japan
| | - Chihiro Ogasawara
- Department of Anesthesiology, Hirosaki University Hospital, Hirosaki 036-8563, Japan
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
47
|
Hassler C, Zhang Y, Gilmour B, Graf T, Fennell T, Snyder R, Deschamps J, Reinscheid RK, Garau C, Runyon SP. Identification of neuropeptide S antagonists: structure-activity relationship studies, X-ray crystallography, and in vivo evaluation. ACS Chem Neurosci 2014; 5:731-44. [PMID: 24964000 PMCID: PMC4140596 DOI: 10.1021/cn500113c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system.
Collapse
Affiliation(s)
- Carla Hassler
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Yanan Zhang
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Brian Gilmour
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Tyler Graf
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Timothy Fennell
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rodney Snyder
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Jeffrey
R. Deschamps
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6930, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Rainer K. Reinscheid
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Celia Garau
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Scott P. Runyon
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
48
|
Beiderbeck DI, Lukas M, Neumann ID. Anti-aggressive effects of neuropeptide S independent of anxiolysis in male rats. Front Behav Neurosci 2014; 8:185. [PMID: 24910598 PMCID: PMC4038774 DOI: 10.3389/fnbeh.2014.00185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide S (NPS) exerts robust anxiolytic and memory enhancing effects, but only in a non-social context. In order to study whether NPS affects aggressive behavior we used Wistar rats bred for low (LAB) and high (HAB) levels of innate anxiety-related behavior, respectively, which were both described to display increased levels of aggression compared with Wistar rats not selectively bred for anxiety (NAB). Male LAB, HAB, and NAB rats were tested for aggressive behavior toward a male intruder rat within their home cage (10 min, resident-intruder [RI] test). Intracerebroventricular (icv) infusion of NPS (1 nmol) significantly reduced inter-male aggression in LAB rats, and tended to reduce aggression in HAB and NAB males. However, local infusion of NPS (0.2 or 0.1 nmol NPS) into either the nucleus accumbens or the lateral hypothalamus did not influence aggressive behavior. Social investigation in the RI test and general social motivation assessed in the social preference paradigm were not altered by icv NPS (1 nmol). The anti-aggressive effect of NPS is most likely not causally linked to its anxiolytic properties, as intraperitoneal administration of the anxiogenic drug pentylenetetrazole decreased aggression in LAB rats whereas the anxiolytic drug diazepam did not affect aggression in HAB rats. Thus, although NPS has so far only been shown to exert effects on non-social behaviors, our results are the first demonstration of anti-aggressive effects of NPS in male rats.
Collapse
Affiliation(s)
- Daniela I Beiderbeck
- Department of Behavioral and Molecular Neurobiology, University of Regensburg Regensburg, Germany
| | - Michael Lukas
- Department of Behavioral and Molecular Neurobiology, University of Regensburg Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg Regensburg, Germany
| |
Collapse
|
49
|
Marchant NJ, Rabei R, Kaganovsky K, Caprioli D, Bossert JM, Bonci A, Shaham Y. A critical role of lateral hypothalamus in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J Neurosci 2014; 34:7447-57. [PMID: 24872550 PMCID: PMC4035512 DOI: 10.1523/jneurosci.0256-14.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In human alcoholics, abstinence is often self-imposed, despite alcohol availability, because of the negative consequences of excessive use. During abstinence, relapse is often triggered by exposure to contexts associated with alcohol use. We recently developed a rat model that captures some features of this human condition: exposure to the alcohol self-administration environment (context A), after punishment-imposed suppression of alcohol self-administration in a different environment (context B), provoked renewal of alcohol seeking in alcohol-preferring P rats. The mechanisms underlying context-induced renewal of alcohol seeking after punishment-imposed abstinence are unknown. Here, we studied the role of the lateral hypothalamus (LH) and its forebrain projections in this effect. We first determined the effect of context-induced renewal of alcohol seeking on Fos (a neuronal activity marker) expression in LH. We next determined the effect of LH reversible inactivation by GABAA + GABAB receptor agonists (muscimol + baclofen) on this effect. Finally, we determined neuronal activation in brain areas projecting to LH during context-induced renewal tests by measuring double labeling of the retrograde tracer cholera toxin subunit B (CTb; injected in LH) with Fos. Context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with increased Fos expression in LH. Additionally, renewal was blocked by muscimol + baclofen injections into LH. Finally, double-labeling analysis of CTb + Fos showed that context-induced renewal of alcohol seeking after punishment-imposed abstinence was associated with selective activation of accumbens shell neurons projecting to LH. The results demonstrate an important role of LH in renewal of alcohol seeking after punishment-imposed abstinence and suggest a role of accumbens shell projections to LH in this form of relapse.
Collapse
Affiliation(s)
- Nathan J Marchant
- Behavioral Neuroscience Research Branch and Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia,
| | - Rana Rabei
- Behavioral Neuroscience Research Branch and
| | | | | | | | - Antonello Bonci
- Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, Solomon H. Snyder Department of Neuroscience and Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland 21287
| | | |
Collapse
|
50
|
Didonet JJ, Cavalcante JC, Souza LDS, Costa MSMO, André E, Soares-Rachetti VDP, Guerrini R, Calo' G, Gavioli EC. Neuropeptide S counteracts 6-OHDA-induced motor deficits in mice. Behav Brain Res 2014; 266:29-36. [PMID: 24613977 DOI: 10.1016/j.bbr.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Neuropeptide S (NPS) is a 20-aminoacid peptide that selectively activates a G-protein coupled receptor named NPSR. Preclinical studies have shown that NPSR activation promotes anxiolysis, hyperlocomotion, arousal and weakfullness. Previous findings suggest that dopamine neurotransmission plays a role in the actions of NPS. Based on the close relationship between dopamine and Parkinson disease (PD) and on the evidence that NPSR are expressed on brain dopaminergic nuclei, the present study investigated the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of the dopaminergic neurotoxin 6-OHDA in the mouse rotarod test. 6-OHDA injection evoked motor deficits and significantly reduced tyrosine hidroxylase (TH)-positive cells in the substantia nigra (SN) and ventral tegmental area. However, a positive correlation was found only between the motor performance of 6-OHDA-injected mice and the number of TH-positive cells in SN. The systemic administration of l-DOPA+benserazide (25+6.25 mg/kg) counteracted 6-OHDA-induced motor deficits in mice. Similar to L-DOPA, the icv injection of NPS (0.1 and 1 nmol) reversed motor deficits evoked by 6-OHDA. In conclusion, NPS attenuated 6-OHDA-induced motor impairments in mice assessed in the rota-rod test. We discussed the beneficial actions of NPS based on a putative facilitation of dopaminergic neurotransmission in the brain. Finally, these findings candidate NPSR agonists as a potential innovative treatment for PD.
Collapse
Affiliation(s)
- Julia J Didonet
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Judney C Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lisiane de S Souza
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Vanessa de P Soares-Rachetti
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|