1
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
2
|
Shirani M, Shariati S, Bazdar M, Sojoudi Ghamnak F, Moradi M, Shams Khozani R, Taki E, Arabsorkhi Z, Heidary M, Eskandari DB. The immunopathogenesis of Helicobacter pylori-induced gastric cancer: a narrative review. Front Microbiol 2024; 15:1395403. [PMID: 39035439 PMCID: PMC11258019 DOI: 10.3389/fmicb.2024.1395403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori infection is a well-established risk factor for the development of gastric cancer (GC). Understanding the immunopathogenesis underlying this association is crucial for developing effective preventive and therapeutic strategies. This narrative review comprehensively explores the immunopathogenesis of H. pylori-induced GC by delving into several key aspects, emphasizing the pivotal roles played by H. pylori virulence factors, including cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA), blood group antigen-binding adhesin (babA), and sialic acid binding adhesin (sabA). Moreover, the review focuses on the role of toll-like receptors (TLRs) and cytokines in the complex interplay between chronic infection and gastric carcinogenesis. Finally, the study examines the association between H. pylori evasion of the innate and adaptive immune response and development of GC. A comprehensive understanding of the immunopathogenesis of H. pylori-induced GC is essential for designing targeted interventions to prevent and manage this disease. Further research is warranted to elucidate the intricate immune responses involved and identify potential therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Arabsorkhi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
3
|
Backert S, Linz B, Tegtmeyer N. Helicobacter pylori-Induced Host Cell DNA Damage and Genetics of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:185-206. [PMID: 38231219 DOI: 10.1007/978-3-031-47331-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-β-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
4
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
5
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
6
|
Han L, Shu X, Wang J. Helicobacter pylori-Mediated Oxidative Stress and Gastric Diseases: A Review. Front Microbiol 2022; 13:811258. [PMID: 35211104 PMCID: PMC8860906 DOI: 10.3389/fmicb.2022.811258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is considered to be a type of gastrointestinal tumor and is mostly accompanied by Helicobacter pylori (HP) infection at the early stage. Hence, the long-term colonization of the gastric mucosa by HP as a causative factor for gastrointestinal diseases cannot be ignored. The virulence factors secreted by the bacterium activate the signaling pathway of oxidative stress and mediate chronic inflammatory response in the host cells. The virulence factors also thwart the antibacterial effect of neutrophils. Subsequently, DNA methylation is induced, which causes continuous cell proliferation and evolution toward low-grade-differentiated gastric cells. This process provides the pathological basis for the occurrence of progressive gastric cancer. Therefore, this review aims to summarize the oxidative stress response triggered by HP in the gastric mucosa and the subsequent signaling pathways. The findings are expected to help in the formulation of new targeted drugs for preventing the occurrence of early gastric cancer and its progression to middle and advanced cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Busada JT, Peterson KN, Khadka S, Xu X, Oakley RH, Cook DN, Cidlowski JA. Glucocorticoids and Androgens Protect From Gastric Metaplasia by Suppressing Group 2 Innate Lymphoid Cell Activation. Gastroenterology 2021; 161:637-652.e4. [PMID: 33971182 PMCID: PMC8328958 DOI: 10.1053/j.gastro.2021.04.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The immune compartment is critical for maintaining tissue homeostasis. A weak immune response increases susceptibility to infection, but immune hyperactivation causes tissue damage, and chronic inflammation may lead to cancer development. In the stomach, inflammation damages the gastric glands and drives the development of potentially preneoplastic metaplasia. Glucocorticoids are potent anti-inflammatory steroid hormones that are required to suppress gastric inflammation and metaplasia. However, these hormones function differently in males and females. Here, we investigate the impact of sex on the regulation of gastric inflammation. METHODS Endogenous glucocorticoids and male sex hormones were removed from mice using adrenalectomy and castration, respectively. Mice were treated with 5α-dihydrotestosterone (DHT) to test the effects of androgens on regulating gastric inflammation. Single-cell RNA sequencing of gastric leukocytes was used to identify the leukocyte populations that were the direct targets of androgen signaling. Type 2 innate lymphoid cells (ILC2s) were depleted by treatment with CD90.2 antibodies. RESULTS We show that adrenalectomized female mice develop spontaneous gastric inflammation and spasmolytic polypeptide-expressing metaplasia (SPEM) but that the stomachs of adrenalectomized male mice remain quantitatively normal. Simultaneous depletion of glucocorticoids and sex hormones abolished the male-protective effects and triggered spontaneous pathogenic gastric inflammation and SPEM. Treatment of female mice with DHT prevented gastric inflammation and SPEM development when administered concurrent with adrenalectomy and also reversed the pathology when administered after disease onset. Single-cell RNAseq of gastric leukocytes revealed that ILC2s expressed abundant levels of both the glucocorticoid receptor (Gr) and androgen receptor (Ar). We demonstrated that DHT treatment potently suppressed the expression of the proinflammatory cytokines Il13 and Csf2 by ILC2s. Moreover, ILC2 depletion protected the stomach from SPEM development. CONCLUSIONS Here, we report a novel mechanism by which glucocorticoids and androgens exert overlapping effects to regulate gastric inflammation. Androgen signaling within ILC2s prevents their pathogenic activation by suppressing the transcription of proinflammatory cytokines. This work revealed a critical role for sex hormones in regulating gastric inflammation and metaplasia.
Collapse
MESH Headings
- Adrenalectomy
- Androgens/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cellular Microenvironment
- Dihydrotestosterone/pharmacology
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gastric Mucosa/drug effects
- Gastric Mucosa/immunology
- Gastric Mucosa/metabolism
- Gastric Mucosa/pathology
- Gastritis, Atrophic/immunology
- Gastritis, Atrophic/metabolism
- Gastritis, Atrophic/pathology
- Gastritis, Atrophic/prevention & control
- Glucocorticoids/metabolism
- Gonadal Steroid Hormones/metabolism
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/metabolism
- Interleukin-13/genetics
- Interleukin-13/metabolism
- Interleukin-33/genetics
- Interleukin-33/metabolism
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Male
- Metaplasia
- Mice, Inbred C57BL
- Orchiectomy
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Sex Factors
- Signal Transduction
- Thy-1 Antigens/genetics
- Thy-1 Antigens/metabolism
- Mice
Collapse
Affiliation(s)
- Jonathan T Busada
- Molecular Endocrinology Group, Signal Transduction Laboratory, North Carolina; Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.
| | - Kylie N Peterson
- Molecular Endocrinology Group, Signal Transduction Laboratory, North Carolina
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, Epigenetics and Stem Cell Biology Laboratory, North Carolina
| | - Robert H Oakley
- Molecular Endocrinology Group, Signal Transduction Laboratory, North Carolina
| | - Donald N Cook
- Immunogenetics Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, North Carolina.
| |
Collapse
|
8
|
Jan I, Rather RA, Mushtaq I, Malik AA, Besina S, Baba AB, Farooq M, Yousuf T, Rah B, Afroze D. Helicobacter pylori Subdues Cytokine Signaling to Alter Mucosal Inflammation via Hypermethylation of Suppressor of Cytokine Signaling 1 Gene During Gastric Carcinogenesis. Front Oncol 2021; 10:604747. [PMID: 33569347 PMCID: PMC7868987 DOI: 10.3389/fonc.2020.604747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection has been associated with the onset of gastric mucosal inflammation and is known to perturb the balance between T-regulatory (Treg) and T-helper 17 (Th17) cells which causes a spurt of interleukin 17 (IL17) and transforming growth factor-β (TGF-β) from Th17 and Treg cells within the gastric milieu. IL17 instigates a surge of interleukin 6 (IL6) from T-helper 1 (Th1) and T-helper 2 (Th2) cells. Further, H. pylori infection is known to stimulate the atypical DNA methylation in gastric mucosa. However, the precise role of cytokine signaling in induction of epigenetic modifications during gastric carcinogenesis is vaguely understood. In this study, patient samples from were examined using real-time polymerase chain reaction (qPCR), PCR, methylation-specific (MS)-PCR, and enzyme-linked immunosorbent assays. We found that H. pylori infection augments the production of interleukin 10 (IL10), IL6, and TGF-β in the gastric milieu and systemic circulation. Together with the IL6/IL10 mediated hyperactivation of the JAK/STAT pathway, H. pylori infection causes the inactivation of suppressor of cytokine signaling 1 (SOCS1) gene through the hypermethylation of the promoter region. This study signifies that H. pylori-mediated epigenetic silencing of SOCS1 in concert with inflammatory cytokines miffs hyperactivation of the JAK/STAT cascade during gastric carcinogenesis.
Collapse
Affiliation(s)
- Iqra Jan
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Rafiq A Rather
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Ifra Mushtaq
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Ajaz A Malik
- Department of General and Minimal Invasive Surgery, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Syed Besina
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Abdul Basit Baba
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Muzamil Farooq
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Tahira Yousuf
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Bilal Rah
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Dil Afroze
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India.,Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
9
|
Nohmi T. My career development with Ames test: A personal recollection. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503095. [PMID: 31699345 DOI: 10.1016/j.mrgentox.2019.503095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
Abstract
I first became acquainted with the Ames test at the very beginning of my career in 1978, when my task at the National Institute of Health Sciences (Tokyo) was to screen for mutagenicity of food additives used in Japan, using the Ames test. I also used this test to research the metabolic activation mechanisms of chemical carcinogens, in particular, the analgesic drug, phenacetin. This chemical was not mutagenic in Salmonella typhimurium TA100 with standard 9000 × g supernatant of liver homogenates (S9) from rat but was mutagenic with hamster S9. It was revealed that hamster S9 had much higher deacetylation activities than rat S9, which accounts for the species difference. Then, my work was focused on molecular biology. We cloned the genes encoding nitroreductase and acetyltransferase in Salmonella typhimurium TA1538. Plasmids carrying these genes made strain TA98 more sensitive to mutagenic nitroarenes and aromatic amines. Because of their high sensitivity, the resulting strains such as YG1021 and YG1024 are widely used to monitor mutagenic nitroarenes and aromatic amines in complex mixtures. Later, we disrupted the genes encoding DNA polymerases in TA1538 and classified chemical mutagens into four classes depending on their use of different DNA polymerases. I was also involved in the generation of gpt delta transgenic rodent gene mutation assays, which examine the results of the Ames test in vivo. I have unintentionally developed my career under the influence of Dr. Ames and I would like to acknowledge his remarkable achievements in the field of environmental mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
10
|
Interleukin-21 (IL-21) Downregulates Dendritic Cell Cytokine Responses to Helicobacter pylori and Modulates T Lymphocyte IL-17A Expression in Peyer's Patches during Infection. Infect Immun 2019; 87:IAI.00237-19. [PMID: 31383743 DOI: 10.1128/iai.00237-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin-21 (IL-21), a cytokine produced by many subsets of activated immune cells, is critical for driving inflammation in several models. Using Helicobacter pylori infection as a model for chronic mucosal infection, we previously published that IL-21 is required for the development of gastritis in response to infection. Concomitant with protection from chronic inflammation, H. pylori-infected IL-21-/- mice exhibited limited Th1 and Th17 responses in their gastric mucosa. Here we report that H. pylori-infected IL-21-/- mice express significantly higher levels of IL-17A than H. pylori-infected wild-type (WT) mice in the Peyer's patches and mesenteric lymph nodes. This led us to hypothesize that IL-21 may indirectly regulate H. pylori-specific T cell responses by controlling dendritic cell (DC) functions in mucosa-associated lymphoid tissue. It was found that IL-21 treatment reduced the ability of dendritic cells to produce proinflammatory cytokines in response to H. pylori While H. pylori increased the expression of costimulatory proteins on DCs, IL-21 reduced the expression of CD40 in the presence of H. pylori Also, Th17 recall responses were intact when DCs were used as antigen-presenting cells in the presence of IL-21, but IL-21 did impact the ability of DCs to induce antigen-specific proliferation. These data suggest that IL-21, while proinflammatory in most settings, downregulates the proinflammatory cytokine microenvironment through modulating the cytokine expression of DCs, indirectly modifying IL-17A expression. Understanding how these proinflammatory cytokines are regulated will advance our understanding of how and why H. pylori infection may be tolerated in some individuals while it causes gastritis, ulcers, or cancer in others.
Collapse
|
11
|
Peng C, Li NS, Hu Y, Lu NH. Impact factors that modulate gastric cancer risk in Helicobacter pylori-infected rodent models. Helicobacter 2019; 24:e12580. [PMID: 30950162 DOI: 10.1111/hel.12580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer causes a large social and economic burden to humans. Helicobacter pylori (H pylori) infection is a major risk factor for distal gastric cancer. Detailed elucidation of H pylori pathogenesis is significant for the prevention and treatment of gastric cancer. Animal models of H pylori-induced gastric cancer have provided an invaluable resource to help elucidate the mechanisms of H pylori-induced carcinogenesis as well as the interaction between host and the bacterium. Rodent models are commonly used to study H pylori infection because H pylori-induced pathological processes in the stomachs of rodents are similar to those in the stomachs of humans. The risk of gastric cancer in H pylori-infected animal models is greatly dependent on host factors, bacterial determinants, environmental factors, and microbiota. However, the related mechanisms and the effects of the interactions among these impact factors on gastric carcinogenesis remain unclear. In this review, we summarize the impact factors mediating gastric cancer risk when establishing H pylori-infected animal models. Clarifying these factors and their potential interactions will provide insights to construct animal models of gastric cancer and investigate the in-depth mechanisms of H pylori pathogenesis, which might contribute to the management of H pylori-associated gastric diseases.
Collapse
Affiliation(s)
- Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nian-Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Sokolova O, Naumann M. Crosstalk Between DNA Damage and Inflammation in the Multiple Steps of Gastric Carcinogenesis. Curr Top Microbiol Immunol 2019; 421:107-137. [PMID: 31123887 DOI: 10.1007/978-3-030-15138-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last years, intensive investigations in molecular biology and cell physiology extended tremendously the knowledge about the association of inflammation and cancer. In frame of this paradigm, the human pathogen Helicobacter pylori triggers gastritis and gastric ulcer disease, and contributes to the development of gastric cancer. Mechanisms, by which the bacteria-induced inflammation in gastric mucosa leads to intestinal metaplasia and carcinoma, are represented in this review. An altered cell-signaling response and increased production of free radicals by epithelial and immune cells account for the accumulation of DNA damage in gastric mucosa, if infection stays untreated. Host genetics and environmental factors, especially diet, can accelerate the process, which offers the opportunity of intervention based on a balanced nutrition. It is supposed that inflammation might influence stem- or progenitor cells in gastric tissue predisposing for metaplasia or tumor relapse. Herein, DNA is strongly mutated and labile, which restricts therapy options. Thus, the understanding of the mechanisms that underlie gastric carcinogenesis will be of preeminent importance for the development of strategies for screening and early detection. As most gastric cancer patients face late-stage disease with a poor overall survival, the development of multi-targeted therapeutic intervention strategies is a major challenge for the future.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
13
|
Ge Z, Feng Y, Sheh A, Muthupalani S, Gong G, Chawanthayatham S, Essigmann JM, Fox JG. Mutagenicity of Helicobacter hepaticus infection in the lower bowel mucosa of 129/SvEv Rag2 -/- Il10 -/- gpt delta mice is influenced by sex. Int J Cancer 2019; 145:1042-1054. [PMID: 30977112 DOI: 10.1002/ijc.32332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/05/2019] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease and colonic tumors induced by Helicobacter hepaticus (Hh) infection in susceptible mouse strains are utilized to dissect the mechanisms underlying similar human diseases. In our study, infection with genotoxic cytolethal distending toxin-producing Hh in 129/SvEv Rag2-/- Il10-/- gpt delta (RagIl10gpt) mice of both sexes for 21 weeks induced significantly more severe cecal and colonic pathology compared to uninfected controls. The mutation frequencies in the infected RagIl10gpt males were 2.1-fold higher for the cecum and 1.7-fold higher for the colon than male RagIl10gpt controls. In addition, there was a 12.5-fold increase of G:C-to-T:A transversions in the colon of Hh-infected males compared to controls. In contrast, there was no statistical significance in mutation frequencies between infected female Rag2Il10gpt mice and controls. Moreover, Hh infection in RagIl10gpt males significantly up-regulated transcription of Tnfα and iNos, and decreased mRNA levels of cecal Atm compared to the infected females; there was no significant difference in mRNA levels of Il-22, Il-17A, Ifnγ and Atr between the infected males and females. Significantly higher levels of cecal and colonic iNos expression and γH2AX-positive epithelial cells (a biomarker for double-strand DNA breaks [DSB]) in Hh-infected Rag2Il10gpt males vs. Hh-infected females were noted. Finally, Hh infection and associated inflammation increased levels of intestinal mucosa-associated genotoxic colibactin-producing pks+ Escherichia coli. Elevated Tnfα and iNos responses and bacterial genotoxins, in concert with suppression of the DSB repair responses, may have promoted mutagenesis in the lower bowel mucosa of Hh-infected male RagIl10gpt mice.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Guanyu Gong
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences. Curr Top Microbiol Immunol 2019; 421:53-76. [PMID: 31123885 DOI: 10.1007/978-3-030-15138-6_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection is associated with the development of a chronic inflammatory response, which may induce peptic ulcers, gastric cancer (GC), and mucosa-associated lymphoid tissue (MALT) lymphoma. Chronic H. pylori infection promotes the genetic instability of gastric epithelial cells and interferes with the DNA repair systems in host cells. Colonization of the stomach with H. pylori is an important cause of non-cardia GC and gastric MALT lymphoma. The reduction of GC development in patients who underwent anti-H. pylori eradication schemes has also been well described. Individual susceptibility to GC development depends on the host's genetic predisposition, H. pylori virulence factors, environmental conditions, and geographical determinants. Biological determinants are urgently sought to predict the clinical course of infection in individuals with confirmed H. pylori infection. Possible candidates for such biomarkers include genetic aberrations such as single-nucleotide polymorphisms (SNPs) found in various cytokines/growth factors (e.g., IL-1β, IL-2, IL-6, IL-8, IL-10, IL-13, IL-17A/B, IFN-γ, TNF, TGF-β) and their receptors (IL-RN, TGFR), innate immunity receptors (TLR2, TLR4, CD14, NOD1, NOD2), enzymes involved in signal transduction cascades (PLCE1, PKLR, PRKAA1) as well as glycoproteins (MUC1, PSCA), and DNA repair enzymes (ERCC2, XRCC1, XRCC3). Bacterial determinants related to GC development include infection with CagA-positive (particularly with a high number of EPIYA-C phosphorylation motifs) and VacA-positive isolates (in particular s1/m1 allele strains). The combined genotyping of bacterial and host determinants suggests that the accumulation of polymorphisms favoring host and bacterial features increases the risk for precancerous and cancerous lesions in patients.
Collapse
|
15
|
Liu W, Pan HF, Wang Q, Zhao ZM. The application of transgenic and gene knockout mice in the study of gastric precancerous lesions. Pathol Res Pract 2018; 214:1929-1939. [PMID: 30477641 DOI: 10.1016/j.prp.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia is a precursor for gastric dysplasia, which is in turn, a risk factor for gastric adenocarcinoma. Gastric metaplasia and dysplasia are known as gastric precancerous lesions (GPLs), which are essential stages in the progression from normal gastric mucosa to gastric cancer (GC) or gastric adenocarcinoma. Genetically-engineered mice have become essential tools in various aspects of GC research, including mechanistic studies and drug discovery. Studies in mouse models have contributed significantly to our understanding of the pathogenesis and molecular mechanisms underlying GPLs and GC. With the development and improvement of gene transfer technology, investigators have created a variety of transgenic and gene knockout mouse models for GPLs, such as H/K-ATPase transgenic and knockout mutant mice and gastrin gene knockout mice. Combined with Helicobacter infection, and treatment with chemical carcinogens, these mice develop GPLs or GC and thus provide models for studying the molecular biology of GC, which may lead to the discovery and development of novel drugs. In this review, we discuss recent progress in the use of genetically-engineered mouse models for GPL research, with particular emphasis on the importance of examining the gastric mucosa at the histological level to investigate morphological changes of GPL and GC and associated protein and gene expression.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hua-Feng Pan
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zi-Ming Zhao
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China
| |
Collapse
|
16
|
Helicobacter pylori-infected C57BL/6 mice with different gastrointestinal microbiota have contrasting gastric pathology, microbial and host immune responses. Sci Rep 2018; 8:8014. [PMID: 29789574 PMCID: PMC5964229 DOI: 10.1038/s41598-018-25927-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
C57BL/6 (B6) mice from Taconic Sciences (Tac) and the Jackson Laboratory (Jax) were infected with H. pylori PMSS1 (Hp) for 16 week; there was no significant difference in the gastric histologic activity index between Hp infected Tac and Jax B6. However, the degree of gastric mucous metaplasia and Th1-associated IgG2c levels in response to Hp infection were increased in Tac mice over Jax mice, whereas the colonization levels of gastric Hp were higher by 8-fold in Jax B6 compared with Tac B6. Additionally, mRNA expression of gastric Il-1β, Il-17A and RegIIIγ were significantly lower in the infected Tac compared to the infected Jax mice. There were significant differences in the microbial community structures in stomach, colon, and feces between Jax and Tac B6 females. Differences in gastric microbial communities between Jax and Tac B6 females are predicted to affect the metagenome. Moreover, Hp infection perturbed the microbial community structures in the stomach, colon and feces of Jax mice, but only altered the colonic microbial composition of Tac mice. Our data indicate that the GI microbiome of Tac B6 mice is compositionally distinct from Jax B6 mice, which likely resulted in different pathological, immunological, and microbial responses to Hp infection.
Collapse
|
17
|
Liu AQ, Xie Z, Chen XN, Feng J, Chen JW, Qin FJ, Ge LY. Fas-associated factor 1 inhibits tumor growth by suppressing Helicobacter pylori-induced activation of NF-κB signaling in human gastric carcinoma. Oncotarget 2018; 8:7999-8009. [PMID: 28030825 PMCID: PMC5352377 DOI: 10.18632/oncotarget.14033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Loss of Fas-associated factor 1 (FAF1) may act as a pro-survival signal in diseased cells, but whether this is true in gastric carcinoma remains unclear. Here we report that FAF1 was expressed at low levels in gastric carcinoma tissues and cell lines, and its expression correlated with larger tumors, higher histology grade, higher TNM stage, tumor infiltration, and lymph node metastasis. Univariate analysis and survival curve analysis identified low FAF1 expression as a predictor of poor prognosis. FAF1 overexpression in HGC-27 gastric cancer cells induced cell apoptosis and inhibited cell proliferation and growth. It also reduced colony formation in vitro and tumor growth in mice. We found that Helicobacter pylori, a risk factor for gastric cancer, down-regulated FAF1 expression via NF-κB signaling. Knock-down of IKKβ or p65 expression in gastric cancer cells reversed H. pylori-induced down-regulation of FAF1 expression and partially blocked H. pylori-induced secretion of inflammatory cytokines TNF-α and IL-8. Our results suggest that loss of FAF1 contributes to human gastric carcinogenesis by allowing H. pylori to activate NF-κB signaling.
Collapse
Affiliation(s)
- Ai-Qun Liu
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiao-Ni Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Jie Feng
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Jia-Wei Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Fu-Jun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Ying Ge
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| |
Collapse
|
18
|
Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice. PLoS One 2017; 12:e0173108. [PMID: 28355210 PMCID: PMC5371292 DOI: 10.1371/journal.pone.0173108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H.pylori), a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA), enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40) were used; half were placed on a moderately iron deficient (ID) diet immediately post-weaning, and the other half were maintained on an iron replete (IR) diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet) as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet). All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (p<0.001). Hippocampal gene expression of myelination markers and dopamine receptor 1 was significantly downregulated in mice on an ID diet (both p<0.05), independent of infection status. At 12 months postinfection, hematocrit (Hct) and hemoglobin (Hgb) concentration were significantly lower in +Hp, ID diet mice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA.
Collapse
|
19
|
Butcher LD, den Hartog G, Ernst PB, Crowe SE. Oxidative Stress Resulting From Helicobacter pylori Infection Contributes to Gastric Carcinogenesis. Cell Mol Gastroenterol Hepatol 2017; 3:316-322. [PMID: 28462373 PMCID: PMC5404027 DOI: 10.1016/j.jcmgh.2017.02.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/11/2017] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a gram-negative, microaerophilic bacterium that infects the stomach and can lead to, among other disorders, the development of gastric cancer. The inability of the host to clear the infection results in a chronic inflammatory state with continued oxidative stress within the tissue. Reactive oxygen species and reactive nitrogen species produced by the immune and epithelial cells damage the host cells and can result in DNA damage. H pylori has evolved to evoke this damaging response while blunting the host's efforts to kill the bacteria. This long-lasting state with inflammation and oxidative stress can result in gastric carcinogenesis. Continued efforts to better understand the bacterium and the host response will serve to prevent or provide improved early diagnosis and treatment of gastric cancer.
Collapse
Key Words
- AP Endonuclease
- APE1, apurinic/apyrimidinic endonuclease 1
- BabA, blood group antigen binding adhesion
- CagA, cytotoxin-associated gene A
- DNA Damage
- Gastric Cancer
- H pylori
- IL, interleukin
- NADPH, nicotinamide adenine dinucleotide phosphate
- NapA, neutrophil activating factor A
- Nox, nicotinamide adenine dinucleotide phosphate oxidase
- O2-, superoxide
- OH, hydroxyl radical
- Oxidative Stress
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- TGF-β, transforming growth factor β
- VacA, vacuolating cytotoxin A
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Lindsay D. Butcher
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Gerco den Hartog
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Peter B. Ernst
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Sheila E. Crowe
- Department of Medicine, University of California, San Diego, La Jolla, California
- Correspondence Address correspondence to: Sheila E. Crowe, MD, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.Department of MedicineUniversity of CaliforniaSan Diego9500 Gilman DriveLa JollaCalifornia 92093-0063
| |
Collapse
|
20
|
Neumann L, Mueller M, Moos V, Heller F, Meyer TF, Loddenkemper C, Bojarski C, Fehlings M, Doerner T, Allers K, Aebischer T, Ignatius R, Schneider T. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. THE JOURNAL OF IMMUNOLOGY 2016; 197:1801-8. [PMID: 27456483 DOI: 10.4049/jimmunol.1501330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)-dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori-infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS(+) cell population in H. pylori-infected patients and confirmed intracellular NO production. Because we did not detect iNOS(+) PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS(+) PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA(+) PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS(+) PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection.
Collapse
Affiliation(s)
- Laura Neumann
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany;
| | - Mattea Mueller
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Frank Heller
- Practice for Gastroenterology, 12163 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | - Christian Bojarski
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Michael Fehlings
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Thomas Doerner
- Department of Medicine, Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany
| | - Kristina Allers
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | | | - Ralf Ignatius
- Institute for Microbiology and Hygiene, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Thomas Schneider
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| |
Collapse
|
21
|
Toyoda T, Shi L, Takasu S, Cho YM, Kiriyama Y, Nishikawa A, Ogawa K, Tatematsu M, Tsukamoto T. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils. Helicobacter 2016; 21:131-42. [PMID: 26140520 DOI: 10.1111/hel.12243] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Spices have been used for thousands of years, and recent studies suggest that certain spices confer beneficial effects on gastric disorders. The purpose of this study was to evaluate possible chemopreventive effects of spice-derived compounds on Helicobacter pylori (H. pylori)-induced gastritis. METHODS We examined the inhibitory effects of curcumin, capsaicin, and piperine on H. pylori in vitro by determining the colony-forming units and real-time RT-PCR in H. pylori stimulated AGS gastric cancer cells. For in vivo analysis, 6-week-old SPF male Mongolian gerbils were infected with H. pylori, fed diets containing 5000 ppm curcumin, 100 ppm capsaicin, or 100 ppm piperine, and sacrificed after 13 weeks. RESULTS All three compounds inhibited in vitro proliferation of H. pylori, with curcumin being the most effective. Infiltration of neutrophils and mononuclear cells was suppressed by piperine both in the antrum and corpus of H. pylori-infected gerbils. Capsaicin also decreased neutrophils in the antrum and corpus and mononuclear cell infiltration and heterotopic proliferative glands in the corpus. mRNA expression of Tnf-α and formation of phospho-IκB-α in the antrum were reduced by both capsaicin and piperine. In addition, piperine suppressed expression of Il-1β, Ifn-γ, Il-6, and iNos, while H. pylori UreA and other virulence factors were not significantly attenuated by any compounds. CONCLUSION These results suggest that capsaicin and piperine have anti-inflammatory effects on H. pylori-induced gastritis in gerbils independent of direct antibacterial effects and may thus have potential for use in the chemoprevention of H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan.,Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Liang Shi
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Chemicals Safety Department, Mitsui Chemicals Inc., Mobara, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan.,Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Yuka Kiriyama
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Masae Tatematsu
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Japan Bioassay Research Center, Hadano, Japan
| | - Tetsuya Tsukamoto
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
22
|
Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. Proc Natl Acad Sci U S A 2015; 112:E4571-80. [PMID: 26243878 DOI: 10.1073/pnas.1507709112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During chronic inflammation, neutrophil-secreted hypochlorous acid can damage nearby cells inducing the genomic accumulation of 5-chlorocytosine (5ClC), a known inflammation biomarker. Although 5ClC has been shown to promote epigenetic changes, it has been unknown heretofore if 5ClC directly perpetrates a mutagenic outcome within the cell. The present work shows that 5ClC is intrinsically mutagenic, both in vitro and, at a level of a single molecule per cell, in vivo. Using biochemical and genetic approaches, we have quantified the mutagenic and toxic properties of 5ClC, showing that this lesion caused C→T transitions at frequencies ranging from 3-9% depending on the polymerase traversing the lesion. X-ray crystallographic studies provided a molecular basis for the mutagenicity of 5ClC; a snapshot of human polymerase β replicating across a primed 5ClC-containing template uncovered 5ClC engaged in a nascent base pair with an incoming dATP analog. Accommodation of the chlorine substituent in the template major groove enabled a unique interaction between 5ClC and the incoming dATP, which would facilitate mutagenic lesion bypass. The type of mutation induced by 5ClC, the C→T transition, has been previously shown to occur in substantial amounts both in tissues under inflammatory stress and in the genomes of many inflammation-associated cancers. In fact, many sequence-specific mutational signatures uncovered in sequenced cancer genomes feature C→T mutations. Therefore, the mutagenic ability of 5ClC documented in the present study may constitute a direct functional link between chronic inflammation and the genetic changes that enable and promote malignant transformation.
Collapse
|
23
|
Abstract
BACKGROUND Helicobacter cinaedi, an enterohepatic helicobacter species (EHS), is an important human pathogen and is associated with a wide range of diseases, especially in immunocompromised patients. It has been convincingly demonstrated that innate immune response to certain pathogenic enteric bacteria is sufficient to initiate colitis and colon carcinogenesis in recombinase-activating gene (Rag)-2-deficient mice model. To better understand the mechanisms of human IBD and its association with development of colon cancer, we investigated whether H. cinaedi could induce pathological changes noted with murine enterohepatic helicobacter infections in the Rag2(-/-) mouse model. MATERIALS AND METHODS Sixty 129SvEv Rag2(-/-) mice mouse were experimentally or sham infected orally with H. cinaedi strain CCUG 18818. Gastrointestinal pathology and immune responses in infected and control mice were analyzed at 3, 6 and 9 months postinfection (MPI). H. cinaedi colonized the cecum, colon, and stomach in infected mice. RESULTS H. cinaedi induced typhlocolitis in Rag2(-/-) mice by 3 MPI and intestinal lesions became more severe by 9 MPI. H. cinaedi was also associated with the elevation of proinflammatory cytokines, interferon-γ, tumor-necrosis factor-α, IL-1β, IL-10; iNOS mRNA levels were also upregulated in the cecum of infected mice. However, changes in IL-4, IL-6, Cox-2, and c-myc mRNA expressions were not detected. CONCLUSIONS Our results indicated that the Rag2(-/-) mouse model will be useful to continue investigating the pathogenicity of H. cinaedi, and to study the association of host immune responses in IBD caused by EHS.
Collapse
Affiliation(s)
- Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | | |
Collapse
|
24
|
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 2015; 11:e1004901. [PMID: 25647331 PMCID: PMC4372043 DOI: 10.1371/journal.pgen.1004901] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022] Open
Abstract
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. People with chronic inflammatory conditions have a markedly increased risk for cancer. In addition, many cancers have an inflammatory microenvironment that promotes tumor growth. Here, we show that inflammatory infiltration synergizes with tissue regeneration to induce DNA sequence rearrangements in vivo. Chronically inflamed issues that are continuously regenerating are thus at an increased risk for mutagenesis and malignant transformation. Further, rapidly dividing tumor cells in an inflammatory microenvironment can also acquire mutations, which have been shown to contribute to drug resistance and disease recurrence. Finally, inflammation-induced tissue regeneration sensitizes tissues to DNA damaging environmental exposures and chemotherapeutics. The work described here thus increases our understanding of how inflammation leads to genetic changes that drive cancer formation and recurrence.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
25
|
Zhou X, Su J, Zhu L, Zhang G. Helicobacter pylori modulates cisplatin sensitivity in gastric cancer by down-regulating miR-141 expression. Helicobacter 2014; 19:174-81. [PMID: 24628843 DOI: 10.1111/hel.12120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent studies found that gastric cancer patients with Helicobacter pylori infection had a better response to chemotherapy and had an improved overall prognosis compared with those without. However, the underlying mechanism remains unknown. METHODS Quantitative real-time PCR (qRT-PCR) was utilized to determine the expression profile of miR-141 in H. pylori infected cells and tissues and their respective controls. qRT-PCR and Western blot were used to determine the expression level of KEAP-1. Luciferase reporter assays were used to determine whether KEAP-1 was a direct target of miR-141 in the gastric cancer cells. MTT and apoptosis assay were performed to detect the survival of cells under cisplatin treatment. RESULT We found that H. pylori infection can significantly down-regulate miR-141 expression. Knockdown miR-141 expression in 7901/DDP and 7901 cells could significantly improve cisplatin sensitivity. Over-expression of miR-141 resulted in enhanced resistance to cisplatin in both gastric cancer cells. We also demonstrated that miR-141 directly targets KEAP1 by luciferase reporter assay, and that down-regulation of KEAP1 induces cisplatin resistance. Conversely, over-expression of KEAP1 significantly enhanced cisplatin sensitivity. Our 75 pairs of tissues also showed that KEAP1 was significantly up-regulated in H. pylori-positive tissues. CONCLUSION Altogether, these findings demonstrated that the H. pylori infection could modulate cisplatin sensitivity through miR-141-mediated regulation of KEAP1.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, China
| | | | | | | |
Collapse
|
26
|
Whary MT, Muthupalani S, Ge Z, Feng Y, Lofgren J, Shi HN, Taylor NS, Correa P, Versalovic J, Wang TC, Fox JG. Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect 2014; 16:345-55. [PMID: 24513446 PMCID: PMC4030519 DOI: 10.1016/j.micinf.2014.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/24/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Higher prevalence of helminth infections in Helicobacter pylori infected children was suggested to potentially lower the life-time risk for gastric adenocarcinoma. In rodent models, helminth co-infection does not reduce Helicobacter-induced inflammation but delays progression of pre-malignant gastric lesions. Because gastric cancer in INS-GAS mice is promoted by intestinal microflora, the impact of Heligmosomoides polygyrus co-infection on H. pylori-associated gastric lesions and microflora were evaluated. Male INS-GAS mice co-infected with H. pylori and H. polygyrus for 5 months were assessed for gastrointestinal lesions, inflammation-related mRNA expression, FoxP3(+) cells, epithelial proliferation, and gastric colonization with H. pylori and Altered Schaedler Flora. Despite similar gastric inflammation and high levels of proinflammatory mRNA, helminth co-infection increased FoxP3(+) cells in the corpus and reduced H. pylori-associated gastric atrophy (p < 0.04), dysplasia (p < 0.02) and prevented H. pylori-induced changes in the gastric flora (p < 0.05). This is the first evidence of helminth infection reducing H. pylori-induced gastric lesions while inhibiting changes in gastric flora, consistent with prior observations that gastric colonization with enteric microbiota accelerated gastric lesions in INS-GAS mice. Identifying how helminths reduce gastric premalignant lesions and impact bacterial colonization of the H. pylori infected stomach could lead to new treatment strategies to inhibit progression from chronic gastritis to cancer in humans.
Collapse
Affiliation(s)
- Mark T Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Lofgren
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hai Ning Shi
- Mucosal Immunology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy S Taylor
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pelayo Correa
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Versalovic
- Department of Pathology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Columbia University Medical Center, New York, NY, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Shiota S, Murakami K, Okimoto T, Kodama M, Yamaoka Y. Serum Helicobacter pylori CagA antibody titer as a useful marker for advanced inflammation in the stomach in Japan. J Gastroenterol Hepatol 2014; 29:67-73. [PMID: 24033876 PMCID: PMC3870047 DOI: 10.1111/jgh.12359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Subjects infected with Helicobacter pylori containing cagA do not always induce serum CagA antibody. Our previous meta-analysis showed that serum CagA seropositivity was associated with gastric cancer even in East Asian countries. However, it remains unclear why serum CagA-positive status is associated with gastric cancer. In this study, we aimed to examine the relationship between anti-CagA antibody titer and the levels of pepsinogen (PG), and histological score. METHODS Eighty-eight H. pylori-positive Japanese patients with gastritis were included. Serum CagA antibody titer, PG I, and PG II were evaluated by ELISA. Histological scores were evaluated according to Update Sydney System. CagA expression was examined by immunoblot. RESULTS Seroprevalence of CagA antibody was found in 75.0%. Interestingly, serum CagA antibody titer was significantly correlated with PG I and PG II levels (P = 0.003 and 0.004, respectively). Serum CagA antibody titer was also significantly correlated with mucosal inflammation in the corpus (P = 0.04). On the other hand, bacterial density was not related with CagA antibody titer. CagA expression level of the strains was irrespective of the status of PG and serum CagA antibody. CONCLUSIONS Subjects with higher serum CagA antibody titer can be considered as high-risk population for the development of gastric cancer from the point of strong gastric inflammatory response even in Japan. Host recognition rather than bacterial colonization might be associated with the difference of serum CagA antibody titer.
Collapse
Affiliation(s)
- Seiji Shiota
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan,Department of General Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, JapanS
| | - Kazunari Murakami
- Department of General Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, JapanS
| | - Tadayoshi Okimoto
- Department of General Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, JapanS
| | - Masaaki Kodama
- Department of General Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, JapanS
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan,Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, 77030 USA,Corresponding author: Yoshio Yamaoka MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan, Tel: +81-97-586-5740; Fax: +81-97-586-5749,
| |
Collapse
|
28
|
García A, Feng Y, Parry NMA, McCabe A, Mobley MW, Lertpiriyapong K, Whary MT, Fox JG. Helicobacter pylori infection does not promote hepatocellular cancer in a transgenic mouse model of hepatitis C virus pathogenesis. Gut Microbes 2013; 4:577-90. [PMID: 23929035 PMCID: PMC3928167 DOI: 10.4161/gmic.26042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) and hepatitis C virus (HCV) infect millions of people and can induce cancer. We investigated if H. pylori infection promoted HCV-associated liver cancer. Helicobacter-free C3B6F1 wild-type (WT) and C3B6F1-Tg(Alb1-HCVN)35Sml (HT) male and female mice were orally inoculated with H. pylori SS1 or sterile media. Mice were euthanized at ~12 mo postinoculation and samples were collected for analyses. There were no significant differences in hepatocellular tumor promotion between WT and HT mice; however, HT female mice developed significantly larger livers with more hepatic steatosis than WT female mice. H. pylori did not colonize the liver nor promote hepatocellular tumors in WT or HT mice. In the stomach, H. pylori induced more corpus lesions in WT and HT female mice than in WT and HT male mice, respectively. The increased corpus pathology in WT and HT female mice was associated with decreased gastric H. pylori colonization, increased gastric and hepatic interferon gamma expression, and increased serum Th1 immune responses against H. pylori. HT male mice appeared to be protected from H. pylori-induced corpus lesions. Furthermore, during gastric H. pylori infection, HT male mice were protected from gastric antral lesions and hepatic steatosis relative to WT male mice and these effects were associated with increased serum TNF-α. Our findings indicate that H. pylori is a gastric pathogen that does not promote hepatocellular cancer and suggest that the HCV transgene is associated with amelioration of specific liver and gastric lesions observed during concurrent H. pylori infection in mice.
Collapse
|
29
|
Abstract
The discovery of Helicobacter pylori overturned the conventional dogma that the stomach was a sterile organ and that pH values<4 were capable of sterilizing the stomach. H. pylori are an etiological agent associated with gastritis, hypochlorhydria, duodenal ulcers, and gastric cancer. It is now appreciated that the human stomach supports a bacterial community with possibly 100s of bacterial species that influence stomach homeostasis. Other bacteria colonizing the stomach may also influence H. pylori-associated gastric pathogenesis by creating reactive oxygen and nitrogen species and modulating inflammatory responses. In this review, we summarize the available literature concerning the gastric microbiota in humans, mice, and Mongolian gerbils. We also discuss the gastric perturbations, many involving H. pylori, that facilitate the colonization by bacteria from other compartments of the gastrointestinal tract, and identify risk factors known to affect gastric homeostasis that contribute to changes in the microbiota.
Collapse
|
30
|
Mangerich A, Dedon PC, Fox JG, Tannenbaum SR, Wogan GN. Chemistry meets biology in colitis-associated carcinogenesis. Free Radic Res 2013; 47:958-86. [PMID: 23926919 PMCID: PMC4316682 DOI: 10.3109/10715762.2013.832239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD)-a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology, and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation.
Collapse
Affiliation(s)
- Aswin Mangerich
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Gerald N. Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
31
|
Leung J, Wei W, Liu L. S-nitrosoglutathione reductase deficiency increases mutagenesis from alkylation in mouse liver. Carcinogenesis 2013; 34:984-9. [PMID: 23354311 DOI: 10.1093/carcin/bgt031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In human hepatocellular carcinoma (HCC) and many other cancers, somatic point mutations are highly prevalent, yet the mechanisms critical in their generation remain poorly understood. S-nitrosoglutathione reductase (GSNOR), a key regulator of protein S-nitrosylation, is frequently deficient in human HCC. Targeted deletion of the GSNOR gene in mice can reduce the activity of the DNA repair protein O (6)-alkylguanine-DNA alkyltransferase (AGT) and promote both carcinogen-induced and spontaneous HCC. In this study, we report that following exposure to the environmental carcinogen diethylnitrosamine, the mutation frequency of a transgenic reporter in the liver of GSNOR-deficient mice (GSNOR(-/-)) is significantly higher than that in wild-type control. In wild-type mice, diethylnitrosamine treatment does not significantly increase the frequency of the transition from G:C to A:T, a mutation deriving from diethylnitrosamine-induced O (6)-ethylguanines that are normally repaired by AGT. In contrast, the frequency of this transition from diethylnitrosamine is increased ~20 times in GSNOR(-/-) mice. GSNOR deficiency also significantly increases the frequency of the transversion from A:T to T:A, a mutation not affected by AGT. GSNOR deficiency in our experiments does not significantly affect either the frequencies of the other diethylnitrosamine-induced point mutations or hepatocyte proliferation. Thus, GSNOR deficiency, through both AGT-dependent and AGT-independent pathways, significantly raises the rates of specific types of DNA mutations. Our results demonstrate a critical role for GSNOR in maintaining genomic integrity in mice and support the hypothesis that GSNOR deficiency is an important cause of the widespread mutations in human HCC.
Collapse
Affiliation(s)
- James Leung
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
32
|
Hayakawa Y, Fox JG, Gonda T, Worthley DL, Muthupalani S, Wang TC. Mouse models of gastric cancer. Cancers (Basel) 2013; 5:92-130. [PMID: 24216700 PMCID: PMC3730302 DOI: 10.3390/cancers5010092] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sasaki M, Fujii Y, Iwamoto M, Ikadai H. Effect of sex steroids on Babesia microti infection in mice. Am J Trop Med Hyg 2012; 88:367-75. [PMID: 23249689 DOI: 10.4269/ajtmh.2012.12-0338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sex-based-differences are known to affect susceptibility to protozoan infections, but their effects on parasitemia and clinical symptoms in Babesia infections remain unclear. We examined the sex-based susceptibility of various mouse strains to Babesia microti Munich strain infection. In all strains, male mice exhibited significantly higher peak parasitemia and more severe anemia than female mice. Testosterone and estradiol-17β treatment caused an increase in parasitemia and aggravation of anemia. Orchidectomized male mice receiving testosterone exhibited smaller splenic macrophage populations three days after infection, smaller B cell populations 10 days after infection, and reduced splenic tumor necrosis factor-α and interferon-γ mRNA expression than mice that did not receive testosterone. Mice receiving estradiol-17β did not exhibit immunosuppressive effects. Thus, a weakened and delayed innate immunity response may lead to acquired immunity failure. The results suggested that testosterone directly affects T or B cells, leading to delayed acquired immunity, dramatically increased parasitemia, and severe anemia.
Collapse
Affiliation(s)
- Mizuki Sasaki
- Department of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | | | | | | |
Collapse
|
34
|
Hitzler I, Kohler E, Engler DB, Yazgan AS, Müller A. The role of Th cell subsets in the control of Helicobacter infections and in T cell-driven gastric immunopathology. Front Immunol 2012; 3:142. [PMID: 22675328 PMCID: PMC3365484 DOI: 10.3389/fimmu.2012.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/16/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic infection with the gastric bacterial pathogen Helicobacter pylori causes gastric adenocarcinoma in a particularly susceptible fraction of the infected population. The intestinal type of gastric cancer is preceded by a series of preneoplastic lesions that are of immunopathological origin, and that can be recapitulated by experimental infection of C57BL/6 mice with Helicobacter species. Several lines of evidence suggest that specific T cell subsets and/or their signature cytokines contribute to the control of Helicobacter infections on the one hand, and to the associated gastric preneoplastic pathology on the other. Here, we have used virulent H. pylori and H. felis isolates to infect mice that lack α/β T cells due to a targeted deletion of the T cell receptor β-chain, or are deficient for the unique p35 and p19 subunits of the Th1- and Th17-polarizing cytokines interleukin (IL)-12 and IL-23, respectively. We found that α/β T cells are absolutely required for Helicobacter control and for the induction of gastric preneoplastic pathology. In contrast, neither IL-12-dependent Th1 nor IL-23-dependent Th17 cells were essential for controlling the infection; IL-12p35-/- and IL-23p19-/- mice did not differ significantly from wild type animals with respect to Helicobacter colonization densities. Gastritis and gastric preneoplastic pathology developed to a similar extent in all three strains upon H. felis infection; in the H. pylori infection model, IL-23p19-/- mice exhibited significantly less gastritis and precancerous pathology. In summary, the results indicate that neither Th1 nor Th17 cells are by themselves essential for Helicobacter control; the associated gastric pathology is reduced only in the absence of Th17-polarizing IL-23, and only in the H. pylori, but not the H. felis infection model. The results thus suggest the involvement of other, as yet unknown T cell subsets in both processes.
Collapse
Affiliation(s)
- Iris Hitzler
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Young Kim M, Hoon Lim C, Trudel LJ, Deen WM, Wogan GN. Delivery method, target gene structure, and growth properties of target cells impact mutagenic responses to reactive nitrogen and oxygen species. Chem Res Toxicol 2012; 25:873-83. [PMID: 22303861 PMCID: PMC3328651 DOI: 10.1021/tx2004882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysregulated production of nitric oxide (NO•) and reactive oxygen species (ROS) by inflammatory cells in vivo may contribute to mutagenesis and carcinogenesis. Here, we compare cytotoxicity and mutagenicity induced by NO• and ROS in TK6 and AS52 cells, delivered by two methods: a well-characterized delivery system and a novel adaptation of a system for coculture. When exposed to preformed NO•, a cumulative dose of 620 μM min reduced the viability of TK6 cells at 24 h to 36% and increased mutation frequencies in the HPRT and TK1 genes to 7.7 × 10⁻⁶ (p < 0.05) and 24.8 × 10⁻⁶ (p < 0.01), 2.7- and 3.7-fold higher than background, respectively. In AS52 cells, cumulative doses of 1700 and 3700 μM min reduced viability to 49 and 22%, respectively, and increased the mutation frequency 10.2- and 14.6-fold higher than the argon control (132 × 10⁻⁶ and 190 × 10⁻⁶, respectively). These data show that TK6 cells were more sensitive than AS52 cells to killing by NO•. However, the two cell lines were very similar in relative susceptibility to mutagenesis; on the basis of fold increases in MF, average relative sensitivity values [(MF(exp)/MF(control))/cumulative NO• dose] were 5.16 × 10⁻³ and 4.97 × 10⁻³ μM⁻¹ min⁻¹ for TK6 cells and AS52 cells, respectively. When AS52 cells were exposed to reactive species generated by activated macrophages in the coculture system, cell killing was greatly reduced by the addition of NMA to the culture medium and was completely abrogated by combined additions of NMA and the superoxide scavenger Tiron, indicating the relative importance of NO• to loss of viability. Exposure in the coculture system for 48 h increased mutation frequency in the gpt gene by more than 9-fold, and NMA plus Tiron again completely prevented the response. Molecular analysis of gpt mutants induced by preformed NO• or by activated macrophages revealed that both doubled the frequency of gene inactivation (40% in induced vs 20% in spontaneous mutants). Sequencing showed that base-substitution mutations dominated the spectra, with transversions (30-40%) outnumbering transitions (10-20%). Virtually all mutations took place at guanine sites in the gene. G:C to T:A transversions accounted for about 30% of both spontaneous and induced mutations; G:C to A:T transitions amounted to 10-20% of mutants; insertions, small deletions, and multiple mutations were present at frequencies of 0-10%. Taken together, these results indicate that cell type and proximity to generator cells are critical determinants of cytotoxic and genotoxic responses induced by NO• and reactive species produced by activated macrophages.
Collapse
Affiliation(s)
- Min Young Kim
- Biological Engineering Department, 77 Massachusetts Avenue, Cambridge, MA 02139
- College of Applied Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Chang Hoon Lim
- Chemical Engineering Department, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Laura J. Trudel
- Biological Engineering Department, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - William M. Deen
- Chemical Engineering Department, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Gerald N. Wogan
- Biological Engineering Department, 77 Massachusetts Avenue, Cambridge, MA 02139
- College of Applied Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
36
|
Abstract
Helicobacter pylori infections and clinical outcome are dependent on sophisticated interactions between the bacteria and its host. Crucial bacterial factors associated with pathogenicity comprise a type IV secretion system encoded by the cag pathogenicity island, the effector protein CagA, the vacuolating cytotoxin (VacA), peptidoglycan, lipopolysaccharide (LPS), γ-glutamyl transpeptidase (GGT), protease HtrA, and the adhesins BabA, SabA, and others. The high number of these factors and allelic variation of the involved genes generates a highly complex scenario and reveals the difficulties in testing the contribution of each individual factor. Much effort has been put into identifying the molecular mechanisms associated with H. pylori-associated pathogenesis using human primary tissues, Mongolian gerbils, transgenic, knockout, and other mice as well as in vitro cell model systems. Interactions between bacterial factors and host signal transduction pathways seem to be critical for mediating the induction of pathogenic downstream processes and disease development. In this review article, we discuss the most recent progress in this research field.
Collapse
Affiliation(s)
- Steffen Backert
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Science Center West, Belfield Campus, Dublin, Ireland.
| | | |
Collapse
|
37
|
Abstract
The immune response to Helicobacter pylori entails both innate effectors and a complex mix of Th1, Th17, and Treg adaptive immune responses. The clinical outcome of infection may well depend to a large degree on the relative balance of these responses. Vaccination with a wide range of antigens, adjuvants, and delivery routes can produce statistically significant reductions in H. pylori colonization levels in mice, though rarely sterilizing immunity. Whether similar reductions in bacterial load can be achieved in humans, and whether they would be clinically significant, is still unclear. However, progress in understanding the role of Th1, Th17, and most recently Treg cells in protection against H. pylori infection provides reason for optimism.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstr 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|