1
|
Pan L, Zhou Y, Kuang Y, Wang C, Wang W, Hu X, Chen X. Progress of research on γδ T cells in colorectal cancer (Review). Oncol Rep 2024; 52:160. [PMID: 39364743 PMCID: PMC11478060 DOI: 10.3892/or.2024.8819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy and second leading cause of cancer‑related fatalities worldwide. Immunotherapy alone or in combination with chemotherapy has a favorable survival benefit for patients with CRC. Unlike αβ T cells, which are prone to drug resistance, γδ T cells do not exhibit major histocompatibility complex restriction and can target tumor cells through diverse mechanisms. Recent research has demonstrated the widespread involvement of Vδ1T, Vδ2T, and γδ T17 cells in tumorigenesis and progression. In the present review, the influence of different factors, including immune checkpoint molecules, the tumor microenvironment and microorganisms, was summarized on the antitumor/protumor effects of these cells, aiming to provide insights for the development of more efficient and less toxic immunotherapy‑based anticancer drugs.
Collapse
Affiliation(s)
- Lijuan Pan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Yiru Zhou
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weimin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
2
|
Tani-Ichi S, Ikuta K. γδ intraepithelial lymphocytes acquire the ability to produce IFN-γ in a different time course than αβ intraepithelial lymphocytes. Int Immunol 2024; 36:653-661. [PMID: 38835285 DOI: 10.1093/intimm/dxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
An age-dependent increase in interferon (IFN)-γ expression by intestinal intraepithelial lymphocytes (IELs) contributes to the acquisition of resistance to infection by pathogens. However, how IELs acquire the ability to produce IFN-γ remains to be elucidated. Here, we report that IELs in the small intestine acquire the ability to rapidly produce IFN-γ at two distinct life stages. TCRαβ+ IELs (αβIELs) started producing IFN-γ at 4 weeks of age, within 1 week after weaning. In contrast, TCRγδ+ IELs (γδIELs) started producing IFN-γ at 7 weeks of age. In mice lacking Eγ4, an enhancer of the TCRγ locus (Eγ4-/- mice), Thy-1+ Vγ5+ γδIELs, a major subpopulation of γδIELs, were specifically reduced and their ability to produce IFN-γ was severely impaired, whereas Vγ2+ γδIELs normally produced IFN-γ. In Eγ4-/- mice, TCR expression levels were reduced in Vγ5+ γδIEL precursors in the thymus but unchanged in the Vγ5+ IELs. Nevertheless, TCR responsiveness in Vγ5+ γδIELs was impaired in Eγ4-/- mice, suggesting that the TCR signal received in the thymus may determine TCR responsiveness and the ability to produce IFN-γ in the gut. These results suggest that αβIELs and γδIELs start producing IFN-γ at different life stages and that the ability of Vγ5+ γδIELs to produce IFN-γ in the gut may be predetermined by TCR signalling in IEL precursors in the thymus.
Collapse
MESH Headings
- Animals
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Intestine, Small/immunology
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Lockhart A, Mucida D, Bilate AM. Intraepithelial Lymphocytes of the Intestine. Annu Rev Immunol 2024; 42:289-316. [PMID: 38277691 PMCID: PMC11608099 DOI: 10.1146/annurev-immunol-090222-100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
5
|
Bernal-Alferes B, Gómez-Mosqueira R, Ortega-Tapia GT, Burgos-Vargas R, García-Latorre E, Domínguez-López ML, Romero-López JP. The role of γδ T cells in the immunopathogenesis of inflammatory diseases: from basic biology to therapeutic targeting. J Leukoc Biol 2023; 114:557-570. [PMID: 37040589 DOI: 10.1093/jleuko/qiad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
The γδ T cells are lymphocytes with an innate-like phenotype that can distribute to different tissues to reside and participate in homeostatic functions such as pathogen defense, tissue modeling, and response to stress. These cells originate during fetal development and migrate to the tissues in a TCR chain-dependent manner. Their unique manner to respond to danger signals facilitates the initiation of cytokine-mediated diseases such as spondyloarthritis and psoriasis, which are immune-mediated diseases with a very strong link with mucosal disturbances, either in the skin or the gut. In spondyloarthritis, γδ T cells are one of the main sources of IL-17 and, therefore, the main drivers of inflammation and probably new bone formation. Remarkably, this population can be the bridge between gut and joint inflammation.
Collapse
Affiliation(s)
- Brian Bernal-Alferes
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rafael Gómez-Mosqueira
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Graciela Teresa Ortega-Tapia
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rubén Burgos-Vargas
- Departamento de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis No. 148 Col. Doctores C.P. 06720, Alcaldía Cuauhtémoc Ciudad de México, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - José Pablo Romero-López
- Laboratorio de Patogénesis Molecular, Edificio A4, Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Número 1, Colonia Los Reyes Ixtacala, C.P. 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
6
|
Suzuki T, Kilbey A, Casa-Rodríguez N, Lawlor A, Georgakopoulou A, Hayman H, Yin Swe KL, Nordin A, Cantù C, Vantourout P, Ridgway RA, Byrne RM, Chen L, Verzi MP, Gay DM, Gil Vázquez E, Belnoue-Davis HL, Gilroy K, Køstner AH, Kersten C, Thuwajit C, Andersen DK, Wiesheu R, Jandke A, Blyth K, Roseweir AK, Leedham SJ, Dunne PD, Edwards J, Hayday A, Sansom OJ, Coffelt SB. β-Catenin Drives Butyrophilin-like Molecule Loss and γδ T-cell Exclusion in Colon Cancer. Cancer Immunol Res 2023; 11:1137-1155. [PMID: 37309673 PMCID: PMC10398359 DOI: 10.1158/2326-6066.cir-22-0644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Intraepithelial lymphocytes (IEL) expressing γδ T-cell receptors (γδTCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immunosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic γδIELs. In contrast with healthy intestinal or colonic tissue, we found that γδIELs were largely absent from the microenvironment of both mouse and human tumors, and that butyrophilin-like (BTNL) molecules, which can critically regulate γδIEL through direct γδTCR interactions, were also downregulated in tumors. We then demonstrated that β-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased γδIEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of β-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant β-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and γδ T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts γδIEL immunosurveillance and furthers cancer progression.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nuria Casa-Rodríguez
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amy Lawlor
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anastasia Georgakopoulou
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hannah Hayman
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kyi Lai Yin Swe
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Ryan M. Byrne
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - David M. Gay
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Ester Gil Vázquez
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | - Christian Kersten
- Department of Research, Southern Hospital Trust, Kristiansand, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | | | - Robert Wiesheu
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anett Jandke
- The Francis Crick Institute, London, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Antonia K. Roseweir
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Simon J. Leedham
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Philip D. Dunne
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Sung C, An J, Lee S, Park J, Lee KS, Kim IH, Han JY, Park YH, Kim JH, Kang EJ, Hong MH, Kim TY, Lee JC, Lee JL, Yoon S, Choi CM, Lee DH, Yoo C, Kim SW, Jeong JH, Seo S, Kim SY, Kong SY, Choi JK, Park SR. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. NATURE CANCER 2023; 4:844-859. [PMID: 37308678 DOI: 10.1038/s43018-023-00572-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
Immune-related adverse events (irAEs) induced by checkpoint inhibitors involve a multitude of different risk factors. Here, to interrogate the multifaceted underlying mechanisms, we compiled germline exomes and blood transcriptomes with clinical data, before and after checkpoint inhibitor treatment, from 672 patients with cancer. Overall, irAE samples showed a substantially lower contribution of neutrophils in terms of baseline and on-therapy cell counts and gene expression markers related to neutrophil function. Allelic variation of HLA-B correlated with overall irAE risk. Analysis of germline coding variants identified a nonsense mutation in an immunoglobulin superfamily protein, TMEM162. In our cohort and the Cancer Genome Atlas (TCGA) data, TMEM162 alteration was associated with higher peripheral and tumor-infiltrating B cell counts and suppression of regulatory T cells in response to therapy. We developed machine learning models for irAE prediction, validated using additional data from 169 patients. Our results provide valuable insights into risk factors of irAE and their clinical utility.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Soohyeon Lee
- Division of Oncology-Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaesoon Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Il-Hwan Kim
- Department of Oncology, Haeundae Paik Hospital, Cancer Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eun Joo Kang
- Division of Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Yong Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam, Republic of Korea.
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Carlson JC, Krishnan M, Rosenthal SL, Russell EM, Zhang JZ, Hawley NL, Moors J, Cheng H, Dalbeth N, de Zoysa JR, Watson H, Qasim M, Murphy R, Naseri T, Reupena MS, Viali S, Stamp LK, Tuitele J, Kershaw EE, Deka R, McGarvey ST, Merriman TR, Weeks DE, Minster RL. A stop-gain variant in BTNL9 is associated with atherogenic lipid profiles. HGG ADVANCES 2023; 4:100155. [PMID: 36340932 PMCID: PMC9630829 DOI: 10.1016/j.xhgg.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Current understanding of lipid genetics has come mainly from studies in European-ancestry populations; limited effort has focused on Polynesian populations, whose unique population history and high prevalence of dyslipidemia may provide insight into the biological foundations of variation in lipid levels. Here, we performed an association study to fine map a suggestive association on 5q35 with high-density lipoprotein cholesterol (HDL-C) seen in Micronesian and Polynesian populations. Fine-mapping analyses in a cohort of 2,851 Samoan adults highlighted an association between a stop-gain variant (rs200884524; c.652C>T, p.R218∗; posterior probability = 0.9987) in BTNL9 and both lower HDL-C and greater triglycerides (TGs). Meta-analysis across this and several other cohorts of Polynesian ancestry from Samoa, American Samoa, and Aotearoa New Zealand confirmed the presence of this association (βHDL-C = -1.60 mg/dL, p HDL-C = 7.63 × 10-10; βTG = 12.00 mg/dL, p TG = 3.82 × 10-7). While this variant appears to be Polynesian specific, there is also evidence of association from other multiancestry analyses in this region. This work provides evidence of a previously unexplored contributor to the genetic architecture of lipid levels and underscores the importance of genetic analyses in understudied populations.
Collapse
Affiliation(s)
- Jenna C. Carlson
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohanraj Krishnan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha L. Rosenthal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily M. Russell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerry Z. Zhang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola L. Hawley
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Jaye Moors
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Hong Cheng
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Janak R. de Zoysa
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Huti Watson
- Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti East Coast, New Zealand
| | - Muhammad Qasim
- Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti East Coast, New Zealand
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | | | | | - Lisa K. Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - John Tuitele
- Department of Public Health, Government of American Samoa, Pago Pago, American Samoa
| | - Erin E. Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ranjan Deka
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen T. McGarvey
- International Health Institute, Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Anthropology, Brown University, Providence, RI, USA
| | - Tony R. Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Daniel E. Weeks
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan L. Minster
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Gui Y, Cheng H, Zhou J, Xu H, Han J, Zhang D. Development and function of natural TCR + CD8αα + intraepithelial lymphocytes. Front Immunol 2022; 13:1059042. [PMID: 36569835 PMCID: PMC9768216 DOI: 10.3389/fimmu.2022.1059042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity of intestinal homeostasis results from the ability of the intestinal epithelium to absorb nutrients, harbor multiple external and internal antigens, and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes (IELs) are a unique cell population embedded within the intestinal epithelial layer, contributing to the formation of the mucosal epithelial barrier and serving as a first-line defense against microbial invasion. TCRαβ+ CD4- CD8αα+ CD8αβ- and TCRγδ+ CD4- CD8αα+ CD8αβ- IELs are the two predominant subsets of natural IELs. These cells play an essential role in various intestinal diseases, such as infections and inflammatory diseases, and act as immune regulators in the gut. However, their developmental and functional patterns are extremely distinct, and the mechanisms underlying their development and migration to the intestine are not fully understood. One example is that Bcl-2 promotes the survival of thymic precursors of IELs. Mature TCRαβ+ CD4- CD8αα+ CD8αβ- IELs seem to be involved in immune regulation, while TCRγδ+ CD4- CD8αα+ CD8αβ- IELs might be involved in immune surveillance by promoting homeostasis of host microbiota, protecting and restoring the integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting excessive inflammation. In this review, we elucidated and organized effectively the functions and development of these cells to guide future studies in this field. We also discussed key scientific questions that need to be addressed in this area.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Han
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| |
Collapse
|
11
|
Harly C, Robert J, Legoux F, Lantz O. γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:217-225. [PMID: 35821101 PMCID: PMC7613099 DOI: 10.4049/jimmunol.2200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αβ T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αβ T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.
Collapse
Affiliation(s)
- Christelle Harly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale UMR1307, Centre National de la Recherche Scientifique UMR6075, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers CRCI2NA, Nantes, France;
- LabEx Immunotherapy, Graft, Oncology, Nantes, France
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Francois Legoux
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France;
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; and
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
12
|
Li Y, Ma Y, Jin Y, Peng X, Wang X, Zhang P, Liu P, Liang C, Yang Q. Porcine intraepithelial lymphocytes undergo migration and produce an antiviral response following intestinal virus infection. Commun Biol 2022; 5:252. [PMID: 35318455 PMCID: PMC8941121 DOI: 10.1038/s42003-022-03205-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
The location of intraepithelial lymphocytes (IELs) between epithelial cells provide a first line of immune defense against enteric infection. It is assumed that IELs migrate only along the basement membrane or into the lateral intercellular space (LIS) between epithelial cells. Here, we identify a unique transepithelial migration of porcine IELs as they move to the free surface of the intestinal epithelia. The major causative agent of neonatal diarrhea in piglets, porcine epidemic diarrhea virus (PEDV), increases the number of IELs entering the LIS and free surface of the intestinal epithelia, driven by chemokine CCL2 secreted from virus-infected intestinal epithelial cells. Remarkably, only virus pre-activated IELs inhibits PEDV infection and their antiviral activity depends on the further activation by virus-infected cells. Although high levels of perforin is detected in the co-culture system, the antiviral function of activated IELs is mainly mediated by IFN-γ secretion inducing robust antiviral response in virus-infected cells. Our results uncover a unique migratory behavior of porcine IELs as well as their protective role in the defense against intestinal infection. When piglets are infected with intestinal virus, porcine intraepithelial lymphocytes undergo intra-and trans-epithelial migration promoted by chemokines from infected epithelial cells and produce an antiviral response.
Collapse
Affiliation(s)
- Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Xuebin Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Xiuyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Penghao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chun Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, college of veterinary medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
13
|
Dynamic Imaging of IEL-IEC Co-Cultures Allows for Quantification of CD103-Dependent T Cell Migration. Int J Mol Sci 2021; 22:ijms22105148. [PMID: 34067987 PMCID: PMC8152227 DOI: 10.3390/ijms22105148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.
Collapse
|
14
|
Sullivan ZA, Khoury-Hanold W, Lim J, Smillie C, Biton M, Reis BS, Zwick RK, Pope SD, Israni-Winger K, Parsa R, Philip NH, Rashed S, Palm N, Wang A, Mucida D, Regev A, Medzhitov R. γδ T cells regulate the intestinal response to nutrient sensing. Science 2021; 371:eaba8310. [PMID: 33737460 PMCID: PMC11617329 DOI: 10.1126/science.aba8310] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The intestine is a site of direct encounter with the external environment and must consequently balance barrier defense with nutrient uptake. To investigate how nutrient uptake is regulated in the small intestine, we tested the effect of diets with different macronutrient compositions on epithelial gene expression. We found that enzymes and transporters required for carbohydrate digestion and absorption were regulated by carbohydrate availability. The "on-demand" induction of this machinery required γδ T cells, which regulated this program through the suppression of interleukin-22 production by type 3 innate lymphoid cells. Nutrient availability altered the tissue localization and transcriptome of γδ T cells. Additionally, transcriptional responses to diet involved cellular remodeling of the epithelial compartment. Thus, this work identifies a role for γδ T cells in nutrient sensing.
Collapse
Affiliation(s)
- Zuri A Sullivan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Chris Smillie
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Rachel K Zwick
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Scott D Pope
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, New Haven, CT, USA
| | - Kavita Israni-Winger
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Naomi H Philip
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Saleh Rashed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Division of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
15
|
Munoz LD, Sweeney MJ, Jameson JM. Skin Resident γδ T Cell Function and Regulation in Wound Repair. Int J Mol Sci 2020; 21:E9286. [PMID: 33291435 PMCID: PMC7729629 DOI: 10.3390/ijms21239286] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.
Collapse
Affiliation(s)
| | | | - Julie M. Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA; (L.D.M.); (M.J.S.)
| |
Collapse
|
16
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
17
|
Vandereyken M, James OJ, Swamy M. Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunol 2020; 13:721-731. [PMID: 32415229 PMCID: PMC7434593 DOI: 10.1038/s41385-020-0294-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Intraepithelial T lymphocytes (T-IEL) contain subsets of innate-like T cells that evoke innate and adaptive immune responses to provide rapid protection at epithelial barrier sites. In the intestine, T-IEL express variable T cell antigen receptors (TCR), with unknown antigen specificities. Intriguingly, they also express multiple inhibitory receptors, many of which are normally found on exhausted or antigen-experienced T cells. This pattern suggests that T-IEL are antigen-experienced, yet it is not clear where, and in what context, T-IEL encounter TCR ligands. We review recent evidence indicating TCR antigens for intestinal innate-like T-IEL are found on thymic or intestinal epithelium, driving agonist selection of T-IEL. We explore the contributions of the TCR and various co-stimulatory and co-inhibitory receptors in activating T-IEL effector functions. The balance between inhibitory and activating signals may be key to keeping these highly cytotoxic, rapidly activated cells in check, and key to harnessing their immune surveillance potential.
Collapse
Affiliation(s)
- Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
18
|
Jandke A, Melandri D, Monin L, Ushakov DS, Laing AG, Vantourout P, East P, Nitta T, Narita T, Takayanagi H, Feederle R, Hayday A. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδ T cell compartments. Nat Commun 2020; 11:3769. [PMID: 32724083 PMCID: PMC7387338 DOI: 10.1038/s41467-020-17557-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Butyrophilin-like (Btnl) genes are emerging as major epithelial determinants of tissue-associated γδ T cell compartments. Thus, the development of signature, murine TCRγδ+ intraepithelial lymphocytes (IEL) in gut and skin depends on Btnl family members, Btnl1 and Skint1, respectively. In seeking mechanisms underlying these profound effects, we now show that normal gut and skin γδ IEL development additionally requires Btnl6 and Skint2, respectively, and furthermore that different Btnl heteromers can seemingly shape different intestinal γδ+ IEL repertoires. This formal genetic evidence for the importance of Btnl heteromers also applied to the steady-state, since sustained Btnl expression is required to maintain the signature TCR.Vγ7+ IEL phenotype, including specific responsiveness to Btnl proteins. In sum, Btnl proteins are required to select and to maintain the phenotypes of tissue-protective γδ IEL compartments, with combinatorially diverse heteromers having differential impacts on different IEL subsets.
Collapse
Affiliation(s)
- Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Daisy Melandri
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Adam G Laing
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Pierre Vantourout
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Philip East
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Narita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo, 202-8585, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum, München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Adrian Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK. .,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK.
| |
Collapse
|
19
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Abstract
Intestinal intraepithelial lymphocytes (IEL) comprise distinct groups of innate-like and memory T cells that collectively form one of the largest T cell compartments in the body. IEL are located within the intestinal epithelium and are the first immune cells in the gut to interact with the food, microbiota, and pathogens that the gut is continually exposed to. IEL can respond rapidly to external insults to protect the small intestinal epithelium but are also considered regulatory cells that are important to maintain the homeostasis of the gut. However, the mechanisms of IEL activation and their interactions within the epithelium remain largely elusive. Indeed, IEL are not commonly evaluated even in studies of gut immunology, potentially because they are perceived as being difficult to isolate and study. In this protocol, we present a simplified method to isolate IEL from the murine small intestine and provide representative data for flow cytometric analyses of the different IEL subsets. We also outline two procedures for culturing IEL, which can permit functional studies and coculture with epithelial cells. These strategies should make studies of this large but enigmatic T cell compartment more accessible and open up understanding of homeostatic mechanisms in the intestine, and tissue-associated immunity.
Collapse
|
21
|
Edelblum K, Gustafsson K, Pennington DJ, Willcox BE, Ribot JC. Bordeaux 2018: Wine, Cheese, and γδ T Cells. Front Immunol 2019; 10:2544. [PMID: 31708934 PMCID: PMC6823204 DOI: 10.3389/fimmu.2019.02544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karen Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kenth Gustafsson
- Infection, Immunity and Inflammation Program, London, United Kingdom.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Daniel J Pennington
- Barts and the London School of Medicine, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Jin C, Bao J, Wang Y, Chen W, Zou S, Wu T, Wang L, Lv X, Gao W, Wang B, Zhu G, Dai G, Shi D, Sun W. Changes in circRNA expression profiles related to the antagonistic effects of Escherichia coli F17 in lamb spleens. Sci Rep 2018; 8:14524. [PMID: 30266913 PMCID: PMC6162294 DOI: 10.1038/s41598-018-31719-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
Sheep colibacillosis is one of the most common bacterial diseases in large-scale sheep farms. In this study, we orally administered Escherichia coli F17 (E. coli F17) to lambs to obtain antagonistic and sensitive individuals. We used RNA-seq to screen for differential circRNAs in the spleens of both antagonist and sensitive individuals to explore the effect of circRNA on anti-diarrhoea in sheep. The results showed that 60 differentially expressed (DE) circRNAs were screened by RNA-seq in the spleen of antagonistic and sensitive lambs, among which 31 were up-regulated and 29 were down-regulated; q-PCR was used to validate the relative expression levels of six randomly selected circRNAs in antagonist and susceptible lambs and found to be consistent with the results of RNA-seq. Using Miranda analysis of circRNA-miRNA-mRNA interactions, we found a certain target relationship between 6 circRNAs, 5 miRNAs and 9 mRNAs. The relative expression levels of mRNA in antagonistic and sensitive lambs were verified by q-PCR and were consistent with the results of RNA-seq. This study explored the expression profile of circRNA in the spleen of an antagonistic and susceptible lamb with diarrhoea and found that differentially expressed circRNAs were helpful for determining how the lambs resist the pathogenesis of diarrhoea and provided a scientific basis for lambs to resist diarrhoea.
Collapse
Affiliation(s)
- Chengyan Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Jianjun Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yue Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Weihao Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Shuangxia Zou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Tianyi Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Lihong Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaoyang Lv
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Buzhong Wang
- Jiangsu Xilaiyuan Ecological Agriculture Co., Ltd. Taizhou, Taizhou, 225300, Jiangsu, P. R. China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Guojun Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Wei Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| |
Collapse
|
23
|
Yuan G, Chen T, Zhang H, Cao Q, Qiu Y, Que B, Peng S, Chen M, Ji W. Comprehensive analysis of differential circular RNA expression in a mouse model of colitis-induced colon carcinoma. Mol Carcinog 2018; 57:1825-1834. [PMID: 30182433 DOI: 10.1002/mc.22900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) have received increasing attention for their involvement in the pathogenesis of cancer; however, the characterization and function of circRNAs in colitis-induced colon carcinoma remains largely unknown. A colitis-induced colon carcinoma model was established in mice treated with azoxymethane-dextran sodium sulfate (AOM-DSS), and the circRNA profile was screened by next generation sequencing. Bioinformatic tools, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and network analysis were used to predict the functions of differentially expressed circRNAs and potentially coexpressed target genes. Among the detected candidate 3069 circRNA genes, 126 circRNAs were upregulated, and 108 circRNAs were down regulated in colon tissues from AOM/DSS mice compared to those from control mice. A total of six of these candidate circRNAs were validated by RT-PCR. GO analysis revealed that numerous target genes including most microRNAs were involved in the Ras-Raf-MAPK pathway, actin cytoskeleton, focal adhesion, and additional biological processes. Our study revealed a comprehensive expression and functional profile for differentially expressed circRNAs in AOM/DSS induced colon carcinogenesis, indicating possible involvement of these dysregulated circRNAs in the development of colitis-induced colon carcinoma. The mmu-circ-001226/mmu-circ-000287-miRNA-mRNA network may provide a potential mechanism for colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingjia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Biao Que
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Blazquez JL, Benyamine A, Pasero C, Olive D. New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity. Front Immunol 2018; 9:1601. [PMID: 30050536 PMCID: PMC6050389 DOI: 10.3389/fimmu.2018.01601] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Recent findings in the immunology field have pointed out the emergent role of butyrophilins/butyrophilin-like molecules (BTN/BTNL in human, Btn/Btnl in mouse) in the modulation of γδ T cells. As long as the field develops exponentially, new relationships between certain γδ T cell subsets, on one hand, and their BTN/BTNL counterparts mainly present on epithelial and tumor cells, on the other, are described in the scientific literature. Btnl1/Btnl6 in mice and BTNL3/BTNL8 in humans regulate the homing and maturation of Vγ7+ and Vγ4+ T cells to the gut epithelium. Similarly, Skint-1 has shown to shape the dendritic epidermal T cells repertoire and their activation levels in mice. We and others have identified BTN3A proteins are the key mediators of phosphoantigen sensing by human Vγ9Vδ2 T cells. Here, we first synthesize the modulation of specific γδ T cell subsets by related BTN/BTNL molecules, in human and mice. Then, we focus on the role of BTN3A in the activation of Vγ9Vδ2 T cells, and we highlight the recent advances in the understanding of the expression, regulation, and function of BTN3A in tumor immunity. Hence, recent studies demonstrated that several signals induced by cancer cells or their microenvironment can regulate the expression of BTN3A. Moreover, antibodies targeting BTN3A have shown in vitro and in vivo efficacy in human tumors such as acute myeloid leukemia or pancreatic cancer. We thus finally discuss how these findings could help develop novel γδ T cell-based immunotherapeutical approaches.
Collapse
Affiliation(s)
- Juan-Luis Blazquez
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France
| | - Audrey Benyamine
- Aix-Marseille Université (AMU), Médecine Interne Hôpital Nord, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Daniel Olive
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
25
|
Setyaningsih WAW, Arfian N, Suryadi E, Romi MM, Tranggono U, Sari DCR. Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial-Mesenchymal Transition, and Kidney Tubular Injury in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:164-173. [PMID: 29749985 PMCID: PMC5936848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial-mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury. METHODS A hyperuricemia model was performed in male Swiss background mice (3 months old, 30-40 g) with daily intraperitoneal injections of 125 mg/kg body weight (BW) of uric acid. The mice were terminated on day 7 (UA7, n=5) and on day 14 (UA14, n=5). Allopurinol groups (UAl7 and UAl14, each n=5) were added with oral 50 mg/kg BW of allopurinol treatment. The serum uric acid level was quantified, and tubular injury was assessed based on PAS staining. Reverse transcriptase-PCR was done to quantify Wnt5a, Ror2, E-cadherin, and vimentin expressions. IHC staining was done for E-cadherin and collagen I. We used the Shapiro-Wilk for normality testing and one-way ANOVA for variance analysis with a P<0.05 as significance level using SPSS 22 software. RESULTS The hyperuricemia groups had a higher uric acid level, which was associated with a higher tubular injury score. Meanwhile, the allopurinol groups had a significantly lower uric acid level and tubular injury than the uric acid groups. Reverse transcriptase-PCR revealed downregulation of the E-cadherin expression. While vimentin and collagen I expression are upregulated, which was associated with a higher Wnt5a expression. However, the allopurinol groups had reverse results. Immunostaining revealed a reduction in E-cadherin staining in the epithelial cells and collagen I positive staining in the epithelial cells and the interstitial areas. CONCLUSION Hyperuricemia induced tubular injury, which might have been mediated by EMT through the activation of Wnt5a.
Collapse
Affiliation(s)
| | - Nur Arfian
- Department of Anatomy, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Efrayim Suryadi
- Department of Anatomy, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Mansyur Romi
- Department of Anatomy, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Untung Tranggono
- Department of Surgery, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
26
|
Bao Q, Li C, Xu C, Zhang R, Zhao K, Duan Z. Porcine enterocyte protein Btnl5 negatively regulates NF-kappa B pathway by interfering p65 nuclear translocation. Gene 2018; 646:47-55. [DOI: 10.1016/j.gene.2017.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/12/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
|
27
|
Franchini DM, Michelas M, Lanvin O, Poupot M, Fournié JJ. BTN3A1-antibodies and phosphoantigens: TCRVγ9Vδ2 "see" the difference. Eur J Immunol 2017; 47:954-957. [PMID: 28597565 DOI: 10.1002/eji.201747058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Abstract
Human blood γδ T lymphocytes express TCRVγ9Vδ2 and respond to nonpeptide phosphoantigens (PAgs) by a mysterious mechanism involving the BTN3A1 (CD277) molecule . BTN3A1 is a butyrophilin-like protein related to CD80, PD-L1, and MHC, and is either a presenting or a co-stimulatory molecule for PAgs. Although the precise roles and molecular interactions with the TCRVγ9Vδ2 are currently not determined, it is commonly thought that all TCRVγ9Vδ2 lymphocytes 'see' PAg and BTN3A1 together, presumably in a single molecular recognition event. But whether this recognition event could be reproduced in a simplified model was not addressed in previous studies. In this issue, Starick et al. (Eur. J. Immunol. 2017. 47: 982-992) compared the response of three TCRVγ9Vδ2 pairs of murine and human cell transfectants to PAg and anti-BTN3A1 antibodies using IL-2 release as a readout. The authors found that although the two murine transfectants responded similarly to either stimuli, one murine TCRVγ9Vδ2 transfectant reacted to PAgs but not to anti-BTN3A1 (mAb 20.1). Human transductants behave in a similar fashion, demonstrating that TCRVγ9Vδ2 lymphocytes differentiate PAg and BTN3A1 signals, while species of the transductants unmask this differential sensitivity. Indeed, understanding the puzzling mode of antigen recognition by γδ T lymphocytes will be essential for developing γδ T-cell-based immunotherapies, and the authors of this study now demonstrate that TCRVγ9Vδ2 lymphocytes are able to differentiate the PAg and BTN3A1 stimuli.
Collapse
Affiliation(s)
- Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Olivia Lanvin
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Jean Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| |
Collapse
|
28
|
γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 2017; 17:733-745. [PMID: 28920588 DOI: 10.1038/nri.2017.101] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.
Collapse
|
29
|
Agace WW, McCoy KD. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity 2017; 46:532-548. [PMID: 28423335 DOI: 10.1016/j.immuni.2017.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life.
Collapse
Affiliation(s)
- William W Agace
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark; Immunology Section, Department of Experimental Medical Science, Lund University, BMC D14, Sölvegatan 19, 221 84 Lund, Sweden.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
30
|
|
31
|
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 2016; 167:203-218.e17. [PMID: 27641500 PMCID: PMC5037318 DOI: 10.1016/j.cell.2016.08.030] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Collapse
Affiliation(s)
- Rafael Di Marco Barros
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; MBPhD Programme, University College London, London WC1E 6BT, UK
| | | | - Robin J Dart
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Rosie Hart
- Francis Crick Institute, London WC2A3LY, UK
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pablo Pereira
- Department of Immunology, Pasteur Institute, 75015 Paris, France
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Epidemiology, University of Marburg, 35037 Marburg, Germany
| | - Adrian Hayday
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK.
| |
Collapse
|
32
|
The ontogeny of Butyrophilin-like (Btnl) 1 and Btnl6 in murine small intestine. Sci Rep 2016; 6:31524. [PMID: 27528202 PMCID: PMC4985744 DOI: 10.1038/srep31524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022] Open
Abstract
Murine Butyrophilin-like (Btnl) 1 and Btnl6 are primarily restricted to intestinal epithelium where they regulate the function of intraepithelial T lymphocytes. We recently demonstrated that Btnl1 and Btnl6 can form an intra-family heterocomplex and that the Btnl1-Btnl6 complex selectively expands Vγ7Vδ4 TCR IELs. To define the regulation of Btnl expression in the small intestine during ontogeny we examined the presence of Btnl1 and Btnl6 in the small bowel of newborn to 4-week-old mice. Although RNA expression of Btnl1 and Btnl6 was detected in the small intestine at day 0, Btnl1 and Btnl6 protein expression was substantially delayed and was not detectable in the intestinal epithelium until the mice reached 2–3 weeks of age. The markedly elevated Btnl protein level at week 3 coincided with a significant increase of γδ TCR IELs, particularly those bearing the Vγ7Vδ4 receptor. This was not dependent on gut microbial colonization as mice housed in germ-free conditions had normal Btnl protein levels. Taken together, our data show that the expression of Btnl1 and Btnl6 is delayed in the murine neonatal gut and that the appearance of the Btnl1 and Btnl6 proteins in the intestinal mucosa associates with the expansion of Vγ7Vδ4 TCR IELs.
Collapse
|
33
|
Affiliation(s)
- David A. Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - John Trowsdale
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
34
|
Lebrero-Fernández C, Wenzel UA, Akeus P, Wang Y, Strid H, Simrén M, Gustavsson B, Börjesson LG, Cardell SL, Öhman L, Quiding-Järbrink M, Bas-Forsberg A. Altered expression of Butyrophilin ( BTN) and BTN-like ( BTNL) genes in intestinal inflammation and colon cancer. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:191-200. [PMID: 27957327 PMCID: PMC4879465 DOI: 10.1002/iid3.105] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 12/22/2022]
Abstract
Several Butyrophilin (BTN) and Btn‐like (BTNL) molecules control T lymphocyte responses, and are genetically associated with inflammatory disorders and cancer. In this study, we present a comprehensive expression analysis of human and murine BTN and BTNL genes in conditions associated with intestinal inflammation and cancer. Using real‐time PCR, expression of human BTN and BTNL genes was analyzed in samples from patients with ulcerative colitis, irritable bowel syndrome, and colon tumors. Expression of murine Btn and Btnl genes was examined in mouse models of spontaneous colitis (Muc2−/−) and intestinal tumorigenesis (ApcMin/+). Our analysis indicates a strong association of several of the human genes with ulcerative colitis and colon cancer; while especially BTN1A1, BTN2A2, BTN3A3, and BTNL8 were significantly altered in inflammation, colonic tumors exhibited significantly decreased levels of BTNL2, BTNL3, BTNL8, and BTNL9 as compared to unaffected tissue. Colonic inflammation in Muc2−/− mice significantly down‐regulated the expression of particularly Btnl1, Btnl4, and Btnl6 mRNA, and intestinal polyps derived from ApcMin/+ mice displayed altered levels of Btn1a1, Btn2a2, and Btnl1 transcripts. Thus, our data present an association of BTN and BTNL genes with intestinal inflammation and cancer and represent a valuable resource for further studies of this gene family.
Collapse
Affiliation(s)
- Cristina Lebrero-Fernández
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Ulf Alexander Wenzel
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Paulina Akeus
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Ying Wang
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Hans Strid
- Department of Internal Medicine and Clinical Nutrition Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Magnus Simrén
- Department of Internal Medicine and Clinical NutritionInstitute of MedicineUniversity of GothenburgGothenburgSweden; Center for Functional GI and Motility DisordersUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Bengt Gustavsson
- Department of Surgery Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Lars G Börjesson
- Department of Surgery Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Lena Öhman
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden; Department of Internal Medicine and Clinical NutritionInstitute of MedicineUniversity of GothenburgGothenburgSweden; School of Health and EducationUniversity of SkövdeSkövdeSweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Anna Bas-Forsberg
- Department of Microbiology and Immunology Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| |
Collapse
|
35
|
Lebrero-Fernández C, Bergström JH, Pelaseyed T, Bas-Forsberg A. Murine Butyrophilin-Like 1 and Btnl6 Form Heteromeric Complexes in Small Intestinal Epithelial Cells and Promote Proliferation of Local T Lymphocytes. Front Immunol 2016; 7:1. [PMID: 26834743 PMCID: PMC4717187 DOI: 10.3389/fimmu.2016.00001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
To date, few molecular conduits mediating the cross-talk between intestinal epithelial cells and intraepithelial lymphocytes (IELs) have been described. We recently showed that butyrophilin-like (Btnl) 1 can attenuate the epithelial response to activated IELs, resulting in reduced production of proinflammatory mediators, such as IL-6 and CXCL1. We here report that like Btnl1, murine Btnl6 expression is primarily confined to the intestinal epithelium. Although Btnl1 can exist in a cell surface-expressed homomeric form, we found that it additionally forms heteromeric complexes with Btnl6, and that the engagement of Btnl1 is a prerequisite for surface expression of Btnl6 on intestinal epithelial cells. In an IEL-epithelial cell coculture system, enforced epithelial cell expression of Btnl1 significantly enhanced the proliferation of IELs in the absence of exogenous activation. The effect on proliferation was dependent on the presence of IL-2 or IL-15 and restricted to IELs upregulating CD25. In the γδ T-cell subset, the Btnl1-Btnl6 complex, but not Btnl1, specifically elevated the proliferation of IELs bearing the Vγ7Vδ4 receptor. Thus, our results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes and suggest that the interaction between Btnl proteins and IELs regulates the expansion of IELs in the intestinal mucosa.
Collapse
Affiliation(s)
- Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Joakim H Bergström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Anna Bas-Forsberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
36
|
Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol 2016; 51:206-13. [PMID: 26800996 PMCID: PMC4771822 DOI: 10.1007/s00535-016-1170-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestine play important roles in the regulation of local immune responses. Although their functions have been studied in a variety of animal experiments, in vitro studies on spatiotemporal behaviors of IELs and their interaction with intestinal epithelial cells (IECs) have been hampered due to the lack of a suitable culture system. In this study, we aimed at developing a novel co-culture system of IELs with IECs to investigate dynamic interaction between these two populations of cells in vitro. METHODS We optimized experimental conditions under which murine IELs can be efficiently maintained with IECs cultured as three-dimensional organoids. We then tested the effect of IL-2, IL-7, and IL-15 on the maintenance of IELs in this co-culture system. By time-lapse imaging, we also examined the dynamic behaviors of IELs. RESULTS IELs can be expanded with epithelial organoids in the presence of IL-2, IL-7, and IL-15. IELs were efficiently maintained within and outside of organoids showing a ~four-fold increase in both αβT and γδT IELs for a period of 2 weeks. Four-dimensional fluorescent imaging revealed an active, multi-directional movement of IELs along the basolateral surface of IECs, and also their inward or outward migration relative to organoid structures. Cell tracking analysis showed that αβT and γδT IELs shared indistinguishable features with regard to their dynamics. CONCLUSIONS This novel co-culture method could serve as a unique tool to investigate the motility dynamics of IELs and their temporal and spatial interaction with IECs in vitro.
Collapse
|
37
|
Guo Y, Wang AY. Novel Immune Check-Point Regulators in Tolerance Maintenance. Front Immunol 2015; 6:421. [PMID: 26347744 PMCID: PMC4539525 DOI: 10.3389/fimmu.2015.00421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/02/2015] [Indexed: 01/24/2023] Open
Abstract
The great success of anti-cytotoxic lymphocyte antigen 4 (CTLA4) and anti-programed cell death protein 1 (PD1) in cancer treatment has encouraged more effort in harnessing the immune response through immunomodulatory molecules in various diseases. The immunoglobulin (Ig) super family comprises the majority of immunomodulatory molecules. Discovery of novel Ig super family members has brought novel insights into the function of different immune cells in tolerance maintenance. In this review, we discuss the function of newly identified B7 family molecules, B7-H4 and V-domain Ig Suppressor of T cell Activation (VISTA), and the butyrophilin/butyrophilin-like family members. We discuss the current stages of immunomodulatory molecules in clinical trials of organ transplantation. The potential of engaging the novel Ig superfamily members in tolerance maintenance is also discussed. We conclude with the challenges remaining to manipulate these molecules in the immune response.
Collapse
Affiliation(s)
- Yanxia Guo
- Merck Research Laboratories , Palo Alto, CA , USA
| | - Adele Y Wang
- Merck Research Laboratories , Palo Alto, CA , USA
| |
Collapse
|
38
|
Swamy M, Abeler-Dörner L, Chettle J, Mahlakõiv T, Goubau D, Chakravarty P, Ramsay G, Reis e Sousa C, Staeheli P, Blacklaws BA, Heeney JL, Hayday AC. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat Commun 2015; 6:7090. [PMID: 25987506 PMCID: PMC4479038 DOI: 10.1038/ncomms8090] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022] Open
Abstract
Unrelenting environmental challenges to the gut epithelium place particular demands on the local immune system. In this context, intestinal intraepithelial lymphocytes (IEL) compose a large, highly conserved T cell compartment, hypothesized to provide a first line of defence via cytolysis of dysregulated intestinal epithelial cells (IEC) and cytokine-mediated re-growth of healthy IEC. Here we show that one of the most conspicuous impacts of activated IEL on IEC is the functional upregulation of antiviral interferon (IFN)-responsive genes, mediated by the collective actions of IFNs with other cytokines. Indeed, IEL activation in vivo rapidly provoked type I/III IFN receptor-dependent upregulation of IFN-responsive genes in the villus epithelium. Consistent with this, activated IEL mediators protected cells against virus infection in vitro, and pre-activation of IEL in vivo profoundly limited norovirus infection. Hence, intraepithelial T cell activation offers an overt means to promote the innate antiviral potential of the intestinal epithelium.
Collapse
Affiliation(s)
- Mahima Swamy
- Immunosurveillance lab, Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
- Peter Gorer Department of Immunobiology, King's College London, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
- Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucie Abeler-Dörner
- Immunosurveillance lab, Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
- Peter Gorer Department of Immunobiology, King's College London, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - James Chettle
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Tanel Mahlakõiv
- Institute of Virology, University Medical Center, Freiburg D-79104, Germany
- Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Delphine Goubau
- Immunosurveillance lab, Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Probir Chakravarty
- Immunosurveillance lab, Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - George Ramsay
- Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Caetano Reis e Sousa
- Immunosurveillance lab, Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Peter Staeheli
- Institute of Virology, University Medical Center, Freiburg D-79104, Germany
| | - Barbara A. Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Adrian C. Hayday
- Immunosurveillance lab, Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
- Peter Gorer Department of Immunobiology, King's College London, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
39
|
Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EEL, Wising C, Johansson MEV, Hansson GC. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 2015; 260:8-20. [PMID: 24942678 DOI: 10.1111/imr.12182] [Citation(s) in RCA: 868] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
|
42
|
Dalessandri T, Strid J. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer. Front Immunol 2014; 5:347. [PMID: 25101088 PMCID: PMC4105846 DOI: 10.3389/fimmu.2014.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022] Open
Abstract
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
43
|
Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet 2014; 10:e1004417. [PMID: 24901252 PMCID: PMC4046983 DOI: 10.1371/journal.pgen.1004417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5′ untranslated regions (5′UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood. Many immune genes are multigene families, presumably in response to pathogen variation. Some multigene families undergo expansion and contraction, leading to copy number variation (CNV), presumably due to more intense selection. Recently, the butyrophilin family in humans and other mammals has come under scrutiny, due to genetic associations with autoimmune diseases as well as roles in immune co-regulation and antigen presentation. Butyrophilin genes exhibit allelic polymorphism, but gene number appears stable within a species. We found that the BG homologues in chickens are very different, with great changes between haplotypes. We characterised one haplotype in detail, showing that there are two single BG genes, one on chromosome 2 and the other in the major histocompatibility complex (BF-BL region) on chromosome 16, and a family of BG genes in a tandem array in the BG region nearby. These genes have specific expression in cells and tissues, but overall are expressed in either haemopoietic cells or tissues. The two singletons have relatively stable evolutionary histories, but the BG region undergoes dynamic expansion and contraction, with the production of hybrid genes. Thus, chicken BG genes appear to evolve much more quickly than their closest homologs in mammals, presumably due to increased pressure from pathogens.
Collapse
|
44
|
Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, Beddoe T, Theodossis A, Williams NK, Gostick E, Price DA, Soudamini DU, Voon KK, Olivo M, Rossjohn J, Mori L, De Libero G. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat Immunol 2013; 14:908-16. [PMID: 23872678 DOI: 10.1038/ni.2665] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023]
Abstract
Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aigner J, Villatoro S, Rabionet R, Roquer J, Jiménez-Conde J, Martí E, Estivill X. A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. BMC Genet 2013; 14:61. [PMID: 23829304 PMCID: PMC3729544 DOI: 10.1186/1471-2156-14-61] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 12/22/2022] Open
Abstract
Background The Butyrophilin-like (BTNL) proteins are likely to play an important role in inflammation and immune response. Like the B7 protein family, many human and murine BTNL members have been shown to control T lymphocytes response, and polymorphisms in human BTNL2 have been linked to several inflammatory diseases, such as pulmonary sarcoidosis, inflammatory bowel disease and neonatal lupus. Results In this study we provide a comprehensive population, genomic and transcriptomic analysis of a 56-kb deletion copy number variant (CNV), located within two segmental duplications of two genes belonging to the BTNL family, namely BTNL8 and BTNL3. We confirm the presence of a novel BTNL8*3 fusion-protein product, and show an influence of the deletion variant on the expression level of several genes involved in immune function, including BTNL9, another member of the same family. Moreover, by genotyping HapMap and human diversity panel (HGDP) samples, we demonstrate a clear difference in the stratification of the BTNL8_BTNL3-del allele frequency between major continental human populations. Conclusion Despite tremendous progress in the field of structural variation, rather few CNVs have been functionally characterized so far. Here, we show clear functional consequences of a new deletion CNV (BTNL8_BTNL3-del) with potentially important implication in the human immune system and in inflammatory and proliferative disorders. In addition, the marked population differences found of BTNL8_BTNL3-del frequencies suggest that this deletion CNV might have evolved under positive selection due to environmental conditions in some populations, with potential phenotypic consequences.
Collapse
Affiliation(s)
- Johanna Aigner
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang H, Henry O, Distefano MD, Wang YC, Räikkönen J, Mönkkönen J, Tanaka Y, Morita CT. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1029-42. [PMID: 23833237 DOI: 10.4049/jimmunol.1300658] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most human γδ T cells express Vγ2Vδ2 TCRs and play important roles in microbial and tumor immunity. Vγ2Vδ2 T cells are stimulated by self- and foreign prenyl pyrophosphate intermediates in isoprenoid synthesis. However, little is known about the molecular basis for this stimulation. We find that a mAb specific for butyrophilin 3 (BTN3)/CD277 Ig superfamily proteins mimics prenyl pyrophosphates. The 20.1 mAb stimulated Vγ2Vδ2 T cell clones regardless of their functional phenotype or developmental origin and selectively expanded blood Vγ2Vδ2 T cells. The γδ TCR mediates 20.1 mAb stimulation because IL-2 is released by β(-) Jurkat cells transfected with Vγ2Vδ2 TCRs. 20.1 stimulation was not due to isopentenyl pyrophosphate (IPP) accumulation because 20.1 treatment of APC did not increase IPP levels. In addition, stimulation was not inhibited by statin treatment, which blocks IPP production. Importantly, small interfering RNA knockdown of BTN3A1 abolished stimulation by IPP that could be restored by re-expression of BTN3A1 but not by BTN3A2 or BTN3A3. Rhesus monkey and baboon APC presented HMBPP and 20.1 to human Vγ2Vδ2 T cells despite amino acid differences in BTN3A1 that localize to its outer surface. This suggests that the conserved inner and/or top surfaces of BTN3A1 interact with its counterreceptor. Although no binding site exists on the BTN3A1 extracellular domains, a model of the intracellular B30.2 domain predicts a basic pocket on its binding surface. However, BTN3A1 did not preferentially bind a photoaffinity prenyl pyrophosphate. Thus, BTN3A1 is required for stimulation by prenyl pyrophosphates but does not bind the intermediates with high affinity.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, Kim H, Gan S, Zhao Y, Li J, Yi K, Feng H, Zhu P, Li B, Liu Q, Fairley S, Magor KE, Du Z, Hu X, Goodman L, Tafer H, Vignal A, Lee T, Kim KW, Sheng Z, An Y, Searle S, Herrero J, Groenen MAM, Crooijmans RPMA, Faraut T, Cai Q, Webster RG, Aldridge JR, Warren WC, Bartschat S, Kehr S, Marz M, Stadler PF, Smith J, Kraus RHS, Zhao Y, Ren L, Fei J, Morisson M, Kaiser P, Griffin DK, Rao M, Pitel F, Wang J, Li N. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 2013; 45:776-783. [PMID: 23749191 PMCID: PMC4003391 DOI: 10.1038/ng.2657] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/08/2013] [Indexed: 12/19/2022]
Abstract
The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck's defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.
Collapse
Affiliation(s)
- Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Hualan Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, China
| | | | | | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Shangquan Gan
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | | | - Kang Yi
- BGI-Shenzhen, Shenzhen, China
| | - Huapeng Feng
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, China
| | - Pengyang Zhu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, China
| | - Bo Li
- BGI-Shenzhen, Shenzhen, China
| | - Qiuyue Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Suan Fairley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Zhenlin Du
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | | | - Hakim Tafer
- Department of Computer Science, University of Leipzig, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Alain Vignal
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique (INRA), Castanet-Tolosan, France
| | - Taeheon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyu-Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Zheya Sheng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yang An
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Steve Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Javier Herrero
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | | | - Thomas Faraut
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique (INRA), Castanet-Tolosan, France
| | | | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jerry R Aldridge
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Stephanie Kehr
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Manja Marz
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Department of Computer Science, University of Leipzig, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Robert H S Kraus
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands.,Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum, Gelnhausen, Germany
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jing Fei
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mireille Morisson
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique (INRA), Castanet-Tolosan, France
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Man Rao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Frederique Pitel
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique (INRA), Castanet-Tolosan, France
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Ammann JU, Cooke A, Trowsdale J. Butyrophilin Btn2a2 inhibits TCR activation and phosphatidylinositol 3-kinase/Akt pathway signaling and induces Foxp3 expression in T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5030-6. [PMID: 23589618 PMCID: PMC3736090 DOI: 10.4049/jimmunol.1203325] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The butyrophilin-related protein Btn2a2 was upregulated on murine APC including CD19(+) B cells, CD11b(+)F4/80(+) peritoneal macrophages, and CD11c(+) bone marrow-derived dendritic cells after activation with LPS or Pam3CysK4, suggesting a role in modulation of T lymphocytes. Consistent with this, binding of mouse Btn2a2-Fc to CD3(+) primary mouse T cells stimulated with anti-CD3 and anti-CD28 reduced the number of proliferating cells and entry of cells into the cell cycle. Binding of Btn2a2-Fc to anti-CD3-stimulated T cells inhibited CD3ε, Zap70, and subsequent Erk1/2 activation. It also interfered with activation of the regulatory subunit of PI3K, p85, and activation of Akt in T cells stimulated with both anti-CD3 and anti-CD28. Inhibition of Akt activation by Btn2a2-Fc was, in contrast to inhibition by programmed death ligand-1-Fc, not overcome by anti-CD28 costimulation. Using Foxp3-GFP-transgenic, naive T cells, Btn2a2-Fc induced de novo expression of Foxp3 in a dose-dependent manner, and Btn2a2-Fc-induced CD4(+)CD25(+)Foxp3(+) T cells had inhibitory properties. The data indicate an important physiological role for Btn2a2 in inhibiting T cell activation and inducing Foxp3(+) regulatory T cells.
Collapse
Affiliation(s)
- Johannes U Ammann
- Division of Immunology, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Anne Cooke
- Division of Immunology, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - John Trowsdale
- Division of Immunology, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
49
|
Yao Y, Levings MK, Steiner TS. ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation. Eur J Immunol 2012; 42:3310-21. [PMID: 22987503 DOI: 10.1002/eji.201142213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/02/2012] [Accepted: 09/07/2012] [Indexed: 12/23/2022]
Abstract
Intestinal epithelial cells (IECs) normally promote the development of gut resident tolerogenic dendritic cells (DCs) and regulatory T cells, but how this process is altered in inflammatory bowel disease is not well characterized. Recently, we published that the cell injury signal ATP modulates IEC chemokine responses to the TLR5 ligand flagellin and exacerbates colitis in the presence of flagellin. We hypothesized that ATP switches these IECs from tolerogenic to proinflammatory, enhancing DC activation and immune responses to commensal antigens. Here, we report that ATP enhanced murine IEC production of KC, IL-6, TGF-β, and thymic stromal lymphopoietin in response to TLR1/2 stimulation by Pam(3) CSK(4) (PAM). Moreover, supernatants from IECs stimulated with ATP+PAM enhanced expression of CD80 on bone marrow derived dendritic cells, and increased their production of IL-12, IL-6, IL-23, TGF-β, and aldh1a2, suggesting a Th1/Th17 polarizing environment. DCs conditioned by stressed IECs stimulated an enhanced recall response to flagellin and supported the expansion of IFN-γ(+) and IL-17(+) memory T cells. Lastly, colonic administration of nonhydrolysable ATP increased production of IL-6 and Cxcl1 (KC) by IECs. These findings indicate that ATP influences the response of IECs to TLR ligands and biases the maturation of DCs to become inflammatory.
Collapse
Affiliation(s)
- Yu Yao
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
50
|
The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. Immunogenetics 2012; 64:781-94. [DOI: 10.1007/s00251-012-0619-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/19/2012] [Indexed: 12/24/2022]
|