1
|
Kuliczkowska-Płaksej J, Zdrojowy-Wełna A, Jawiarczyk-Przybyłowska A, Gojny Ł, Bolanowski M. Diagnosis and therapeutic approach to bone health in patients with hypopituitarism. Rev Endocr Metab Disord 2024; 25:513-539. [PMID: 38565758 DOI: 10.1007/s11154-024-09878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
The results of many studies in recent years indicate a significant impact of pituitary function on bone health. The proper function of the pituitary gland has a significant impact on the growth of the skeleton and the appearance of sexual dimorphism. It is also responsible for achieving peak bone mass, which protects against the development of osteoporosis and fractures later in life. It is also liable for the proper remodeling of the skeleton, which is a physiological mechanism managing the proper mechanical resistance of bones and the possibility of its regeneration after injuries. Pituitary diseases causing hypofunction and deficiency of tropic hormones, and thus deficiency of key hormones of effector organs, have a negative impact on the skeleton, resulting in reduced bone mass and susceptibility to pathological fractures. The early appearance of pituitary dysfunction, i.e. in the pre-pubertal period, is responsible for failure to achieve peak bone mass, and thus the risk of developing osteoporosis in later years. This argues for the need for a thorough assessment of patients with hypopituitarism, not only in terms of metabolic disorders, but also in terms of bone disorders. Early and properly performed treatment may prevent patients from developing the bone complications that are so common in this pathology. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary disease.
Collapse
Affiliation(s)
- Justyna Kuliczkowska-Płaksej
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Aleksandra Zdrojowy-Wełna
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Aleksandra Jawiarczyk-Przybyłowska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland.
| | - Łukasz Gojny
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Marek Bolanowski
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| |
Collapse
|
2
|
Hymer WC, Kraemer WJ. Resistance exercise stress: theoretical mechanisms for growth hormone processing and release from the anterior pituitary somatotroph. Eur J Appl Physiol 2023; 123:1867-1878. [PMID: 37421488 DOI: 10.1007/s00421-023-05263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Heavy resistance exercise (HRE) is the most effective method for inducing muscular hypertrophy and stimulating anabolic hormones, including growth hormone, into the blood. In this review, we explore possible mechanisms within the GH secretory pathway of the pituitary somatotroph, which are likely to modulate the flow of hormone synthesis and packaging as it is processed prior to exocytosis. Special emphasis is placed on the secretory granule and its possible role as a signaling hub. We also review data that summarize how HRE affects the quality and quantity of the secreted hormone. Finally, these pathway mechanisms are considered in the context of heterogeneity of the somatotroph population in the anterior pituitary.
Collapse
Affiliation(s)
- Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43802, USA.
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA.
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| |
Collapse
|
3
|
Theiler S, Hegetschweiler S, Staartjes VE, Spinello A, Brandi G, Regli L, Serra C. Influence of gender and sexual hormones on outcomes after pituitary surgery: a systematic review and meta-analysis. Acta Neurochir (Wien) 2023; 165:2445-2460. [PMID: 37555999 PMCID: PMC10477253 DOI: 10.1007/s00701-023-05726-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Although there is an increasing body of evidence showing gender differences in various medical domains as well as presentation and biology of pituitary adenoma (PA), gender differences regarding outcome of patients who underwent transsphenoidal resection of PA are poorly understood. The aim of this study was to identify gender differences in PA surgery. METHODS The PubMed/MEDLINE database was searched up to April 2023 to identify eligible articles. Quality appraisal and extraction were performed in duplicate. RESULTS A total of 40 studies including 4989 patients were included in this systematic review and meta-analysis. Our analysis showed odds ratio of postoperative biochemical remission in males vs. females of 0.83 (95% CI 0.59-1.15, P = 0.26), odds ratio of gross total resection in male vs. female patients of 0.68 (95% CI 0.34-1.39, P = 0.30), odds ratio of postoperative diabetes insipidus in male vs. female patients of 0.40 (95% CI 0.26-0.64, P < 0.0001), and a mean difference of preoperative level of prolactin in male vs. female patients of 11.62 (95% CI - 119.04-142.27, P = 0.86). CONCLUSIONS There was a significantly higher rate of postoperative DI in female patients after endoscopic or microscopic transsphenoidal PA surgery, and although there was some data in isolated studies suggesting influence of gender on postoperative biochemical remission, rate of GTR, and preoperative prolactin levels, these findings could not be confirmed in this meta-analysis and demonstrated no statistically significant effect. Further research is needed and future studies concerning PA surgery should report their data by gender or sexual hormones and ideally further assess their impact on PA surgery.
Collapse
Affiliation(s)
- Sven Theiler
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Saskia Hegetschweiler
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Antonio Spinello
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Giovanna Brandi
- Institute for Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Carlo Serra
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
4
|
Maita F, Maiolo L, Lucarini I, Del Rio De Vicente JI, Sciortino A, Ledda M, Mussi V, Lisi A, Convertino A. Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301925. [PMID: 37357140 PMCID: PMC10460871 DOI: 10.1002/advs.202301925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Today, the key methodology to study in vitro or in vivo electrical activity in a population of electrogenic cells, under physiological or pathological conditions, is by using microelectrode array (MEA). While significant efforts have been devoted to develop nanostructured MEAs for improving the electrophysiological investigation in neurons and cardiomyocytes, data on the recording of the electrical activity from neuroendocrine cells with MEA technology are scarce owing to their weaker electrical signals. Disordered silicon nanowires (SiNWs) for developing a MEA that, combined with a customized acquisition board, successfully capture the electrical signals generated by the corticotrope AtT-20 cells as a function of the extracellular calcium (Ca2+ ) concentration are reported. The recorded signals show a shape that clearly resembles the action potential waveform by suggesting a natural membrane penetration of the SiNWs. Additionally, the generation of synchronous signals observed under high Ca2+ content indicates the occurrence of a collective behavior in the AtT-20 cell population. This study extends the usefulness of MEA technology to the investigation of the electrical communication in cells of the pituitary gland, crucial in controlling several essential human functions, and provides new perspectives in recording with MEA the electrical activity of excitable cells.
Collapse
Affiliation(s)
- Francesco Maita
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Luca Maiolo
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Ivano Lucarini
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | | | - Antonio Sciortino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Mario Ledda
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Valentina Mussi
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Antonella Lisi
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Annalisa Convertino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| |
Collapse
|
5
|
Galvis D, Hodson DJ, Wedgwood KC. Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:fnetp.2023.1170930. [PMID: 36987428 PMCID: PMC7614376 DOI: 10.3389/fnetp.2023.1170930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We study the impact of spatial distribution of heterogeneity on collective dynamics in gap-junction coupled beta-cell networks comprised on cells from two populations that differ in their intrinsic excitability. Initially, these populations are uniformly and randomly distributed throughout the networks. We develop and apply an iterative algorithm for perturbing the arrangement of the network such that cells from the same population are increasingly likely to be adjacent to one another. We find that the global input strength, or network drive, necessary to transition the network from a state of quiescence to a state of synchronised and oscillatory activity decreases as network sortedness increases. Moreover, for weak coupling, we find that regimes of partial synchronisation and wave propagation arise, which depend both on network drive and network sortedness. We then demonstrate the utility of this algorithm for studying the distribution of heterogeneity in general networks, for which we use Watts-Strogatz networks as a case study. This work highlights the importance of heterogeneity in node dynamics in establishing collective rhythms in complex, excitable networks and has implications for a wide range of real-world systems that exhibit such heterogeneity.
Collapse
Affiliation(s)
- Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Correspondence: Daniel Galvis,
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kyle C.A. Wedgwood
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Mollard P. [The pituitary gland unveiled: from the stimulation-secretion coupling to cellular networks wiring]. Biol Aujourdhui 2023; 216:83-87. [PMID: 36744973 DOI: 10.1051/jbio/2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 02/07/2023]
Abstract
The year 2021 ended with an event of great sadness: the death of Andrée Tixier-Vidal. She was not only a pioneer in cell biology but also the charismatic promoter of stimulating and successful multidisciplinary collaborations. Her achievements led to subsequent major discoveries on both the stimulation-secretion coupling of pituitary endocrine cells and the hitherto unknown organization of these cells into multicellular 3D networks which build-up highly organized pulses of pituitary hormones controlling basic body functions such as growth and reproduction.
Collapse
Affiliation(s)
- Patrice Mollard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| |
Collapse
|
7
|
Drouin J. The corticotroph cells from early development to tumorigenesis. J Neuroendocrinol 2022; 34:e13147. [PMID: 35524583 DOI: 10.1111/jne.13147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
During development, highly specialized differentiated cells, such as pituitary secretory cells, acquire their identity and properties through a series of specification events exerted by transcription factors to implement a unique gene expression program and epigenomic state. The investigation of these developmental processes informs us on the unique features of a cell lineage, both to explain these features and also to outline where these processes may fail and cause disease. This review summarizes present knowledge on the developmental origin of pituitary corticotroph and melanotroph cells and on the underlying molecular mechanisms. At the onset, comparison of gene expression programs active in pituitary progenitors compared to those active in differentiated corticotrophs or melanotrophs indicated dramatic differences in the control of, for example, the cell cycle. Tpit is the transcription factor that determines terminal differentiation of pro-opiomelanocortin (POMC) lineages, both corticotrophs and melanotrophs, and its action involves this switch in cell cycle control in parallel with activation of cell-specific gene expression. There is thus far more to making a corticotroph cell than just activating transcription of the POMC gene. Indeed, Tpit also controls implementation of mechanisms for enhanced protein translation capacity and development of extensive secretory organelles. The corticotroph cell identity also includes mechanisms responsible for homotypic cell-cell interactions between corticotrophs and for privileged heterotypic cell interactions with pituitary cells of other lineages. The review also summarizes current knowledge on how a pioneer transcription factor, Pax7, remodels the epigenome such that the same determination transcription factor, Tpit, will implement the melanotroph program of gene expression. Finally, this canvas of regulatory mechanisms implementing POMC lineage identities constitutes the background to understand alterations that characterize corticotroph adenomas of Cushing's disease patients. The integration of all these data into a unified scheme will likely yield a scheme to globally understand pathogenic mechanisms in Cushing's disease.
Collapse
Affiliation(s)
- Jacques Drouin
- Institut de recherches cliniques de Montréal, Laboratoire de génétique moléculaire, Montréal, Québec, Canada
| |
Collapse
|
8
|
Le Tissier PR, Murray JF, Mollard P. A New Perspective on Regulation of Pituitary Plasticity: The Network of SOX2-Positive Cells May Coordinate Responses to Challenge. Endocrinology 2022; 163:6609891. [PMID: 35713880 PMCID: PMC9273012 DOI: 10.1210/endocr/bqac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/19/2022]
Abstract
Plasticity of function is required for each of the anterior pituitary endocrine axes to support alterations in the demand for hormone with physiological status and in response to environmental challenge. This plasticity is mediated at the pituitary level by a change in functional cell mass resulting from a combination of alteration in the proportion of responding cells, the amount of hormone secreted from each cell, and the total number of cells within an endocrine cell population. The functional cell mass also depends on its organization into structural and functional networks. The mechanisms underlying alteration in gland output depend on the strength of the stimulus and are axis dependent but in all cases rely on sensing of output of the functional cell mass and its regulation. Here, we present evidence that the size of pituitary cell populations is constrained and suggest this is mediated by a form of quorum sensing. We propose that pituitary cell quorum sensing is mediated by interactions between the networks of endocrine cells and hormone-negative SOX2-positive (SOX2+ve) cells and speculate that the latter act as both a sentinel and actuator of cell number. Evidence for a role of the network of SOX2+ve cells in directly regulating secretion from multiple endocrine cell networks suggests that it also regulates other aspects of the endocrine cell functional mass. A decision-making role of SOX2+ve cells would allow precise coordination of pituitary axes, essential for their appropriate response to physiological status and challenge, as well as prioritization of axis modification.
Collapse
Affiliation(s)
- Paul R Le Tissier
- Correspondence: Paul R. Le Tissier, PhD, Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Bldg, 15 George Square, Edinburgh EH8 9XD, UK.
| | - Joanne F Murray
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Patrice Mollard
- Correspondence: Patrice Mollard, PhD, Institute of Functional Genomics, University of Montpellier, 141 rue de la Cardonille, F-34093, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
9
|
Xu Y, Han CY, Park MJ, Gye MC. Increased testicular insulin-like growth factor 1 is associated with gonadal activation by recombinant growth hormone in immature rats. Reprod Biol Endocrinol 2022; 20:72. [PMID: 35459135 PMCID: PMC9034493 DOI: 10.1186/s12958-022-00944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In children, recombinant human growth hormone (rhGH) therapy for treatment of short stature has raised concerns of the early onset of puberty. Puberty is initiated by the activation of the hypothalamus-pituitary-gonad axis. Insulin-like growth factor-1 (IGF1) has been known to mediate physiologic effects of GH. To understand the mechanism of precocious sexual maturation following prepubertal GH therapy, the effects of rhGH on the hypothalamus-pituitary-gonad axis were examined in the immature male rats. METHODS Immature male rats were given by daily injection of rhGH (1 or 2 IU/kg) from postnatal day (PND) 21 to PND 23 or 30. The effects of rhGH on kisspeptin-GnRH-LH system in the hypothalamus-pituitary axis, systemic and testicular IGF1, spermatogenesis, steroidogenesis, and circulating testosterone levels were examined. The effects of rhGH on the IGF1 expression and steroidogenesis were examined in progenitor LCs in vitro. RESULTS Testicular steroidogenic pathway and spermatogenesis marker mRNA levels, number and size of 17β-hydroxysteroid dehydrogenase (+) LCs, and blood testosterone levels of rhGH rats were significantly higher than those of controls on PNDs 24 and 31. Hypothalamic Kiss1 and Gnrh1 mRNA of rhGH rats were significantly higher than those of controls on PND 24, indicating early activation of hypothalamic kisspeptin-GnRH neurons by rhGH. Hypothalamic Igf1 mRNA levels of rhGH rats were significantly higher than those of controls on PND 24 but significantly lower than those of controls on PND 31. Testicular Igf1 mRNA levels were significantly higher in rhGH rats than in the controls on PNDs 24 and 31 whereas circulating IGF1 levels were not. In progenitor LCs, rhGH significantly increased Igf1 and steroidogenic pathway mRNA levels and testosterone production. CONCLUSIONS Local increases in testicular IGF1 might be an important mediator of gonadal maturation via activation of LCs steroidogenesis in immature rats given rhGH.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04760, Korea
| | - Chang Yong Han
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04760, Korea
| | - Mi Jung Park
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, 01757, Korea.
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04760, Korea.
| |
Collapse
|
10
|
Penn DJ, Zala SM, Luzynski KC. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front Physiol 2022; 13:822073. [PMID: 35431992 PMCID: PMC9008510 DOI: 10.3389/fphys.2022.822073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.
Collapse
|
11
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
12
|
Stallings CE, Kapali J, Evans BW, McGee SR, Ellsworth BS. FOXO Transcription Factors Are Required for Normal Somatotrope Function and Growth. Endocrinology 2022; 163:6490941. [PMID: 34971379 PMCID: PMC8782608 DOI: 10.1210/endocr/bqab263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Understanding the molecular mechanisms underlying pituitary organogenesis and function is essential for improving therapeutics and molecular diagnoses for hypopituitarism. We previously found that deletion of the forkhead factor, Foxo1, in the pituitary gland early in development delays somatotrope differentiation. While these mice grow normally, they have reduced growth hormone expression and free serum insulin-like growth factor-1 (IGF1) levels, suggesting a defect in somatotrope function. FOXO factors show functional redundancy in other tissues, so we deleted both Foxo1 and its closely related family member, Foxo3, from the primordial pituitary. We find that this results in a significant reduction in growth. Consistent with this, male and female mice in which both genes have been deleted in the pituitary gland (dKO) exhibit reduced pituitary growth hormone expression and serum IGF1 levels. Expression of the somatotrope differentiation factor, Neurod4, is reduced in these mice. This suggests a mechanism underlying proper somatotrope function is the regulation of Neurod4 expression by FOXO factors. Additionally, dKO mice have reduced Lhb expression and females also have reduced Fshb and Prl expression. These studies reveal FOXO transcription factors as important regulators of pituitary gland function.
Collapse
Affiliation(s)
- Caitlin E Stallings
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jyoti Kapali
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Brian W Evans
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
- Correspondence: Buffy S. Ellsworth, Ph.D., Department of Physiology, Southern Illinois University, 1135 Lincoln Drive, Life Science III room 2062, Carbondale, IL 62901, USA.
| |
Collapse
|
13
|
Seasonal influence on the bathymetric distribution of an endangered fish within a marine protected area. Sci Rep 2021; 11:13342. [PMID: 34172777 PMCID: PMC8233415 DOI: 10.1038/s41598-021-92633-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
The spatio-temporal variability of fish distribution is important to better manage and protect the populations of endangered species. In this sense, the vertical movements of a vulnerable and protected species, Sciaena umbra, were assessed in a marine protected area (the Réserve Naturelle Marine de Cerbère-Banyuls, south of France) to study the variability of their bathymetric distribution at different time scales. Twenty adults were marked with acoustic transmitters and acoustically monitored over 2.5 years. This revealed that some individuals remained at shallow waters (< 8 m) all year round, while others presented vertical segregation at deeper waters during the cold months (mean depth of 22.5 ± 0.04 m) and all aggregated in shallow waters during the warm months. The brown meagre was more active during the night, except in June and July when peaks of activity were observed at dusk. These patterns are likely associated with foraging and reproductive behavior during the cold and warm periods, respectively, and likely regulated by water temperature and the depth of the thermocline. Here, we provide valuable information on when and where in the water column critical periods of S. umbra life cycle are expected to occur, which should be considered in management and protection plans.
Collapse
|
14
|
Schoeller EL, Tonsfeldt KJ, Sinkovich M, Shi R, Mellon PL. Growth Hormone Pulses and Liver Gene Expression Are Differentially Regulated by the Circadian Clock Gene Bmal1. Endocrinology 2021; 162:6128829. [PMID: 33539533 PMCID: PMC7901660 DOI: 10.1210/endocr/bqab023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/16/2022]
Abstract
In this study, we found that loss of the circadian clock gene Bmal1 causes disruptions throughout the growth hormone (GH) axis, from hepatic gene expression to production of urinary pheromones and pheromone-dependent behavior. First, we show that Bmal1 knockout (KO) males elicit reduced aggressive responses from wild-type (WT) males and secrete lower levels of major urinary proteins (MUPs); however, we also found that a liver-specific KO of Bmal1 (liver-Bmal1-KO) produces a similar reduction in MUP secretion without a defect in aggressive behavior, indicating that the decrease in elicited aggression arises from another factor. We then shifted our investigation to determine the cause of MUP dysregulation in Bmal1 KO animals. Because the pulse pattern of GH drives sexually dimorphic expression of hepatic genes including MUPs, we examined GH pulsatility. We found that Bmal1 KO males have a female-like pattern of GH release, whereas liver-Bmal1-KO mice are not significantly different from either WT or Bmal1 KO. Since differential patterns of GH release regulate the transcription of many sexually dimorphic genes in the liver, we then examined hepatic gene transcription in Bmal1 KO and liver-Bmal1-KO mice. We found that while some female-predominant genes increase in the Bmal1 KO, there was no decrease in male-predominant genes, and little change in the liver-Bmal1-KO. We also found disrupted serum insulin growth factor 1 (IGF-1) and liver Igf1 messenger RNA in the Bmal1 KO mice, which may underlie the disrupted GH release. Overall, our findings differentiate between GH-pulse-driven and circadian-driven effects on hepatic genes, and the functional consequences of altered GH pulsatility.
Collapse
Affiliation(s)
- Erica L Schoeller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - McKenna Sinkovich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rujing Shi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
- Correspondence: Pamela L. Mellon, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0674, USA. )
| |
Collapse
|
15
|
Santiago-Andres Y, Golan M, Fiordelisio T. Functional Pituitary Networks in Vertebrates. Front Endocrinol (Lausanne) 2021; 11:619352. [PMID: 33584547 PMCID: PMC7873642 DOI: 10.3389/fendo.2020.619352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master endocrine gland that developed early in vertebrate evolution and therefore exists in all modern vertebrate classes. The last decade has transformed our view of this key organ. Traditionally, the pituitary has been viewed as a randomly organized collection of cells that respond to hypothalamic stimuli by secreting their content. However, recent studies have established that pituitary cells are organized in tightly wired large-scale networks that communicate with each other in both homo and heterotypic manners, allowing the gland to quickly adapt to changing physiological demands. These networks functionally decode and integrate the hypothalamic and systemic stimuli and serve to optimize the pituitary output into the generation of physiologically meaningful hormone pulses. The development of 3D imaging methods and transgenic models have allowed us to expand the research of functional pituitary networks into several vertebrate classes. Here we review the establishment of pituitary cell networks throughout vertebrate evolution and highlight the main perspectives and future directions needed to decipher the way by which pituitary networks serve to generate hormone pulses in vertebrates.
Collapse
Affiliation(s)
- Yorgui Santiago-Andres
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
16
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
17
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
18
|
Hymer WC, Kennett MJ, Maji SK, Gosselink KL, McCall GE, Grindeland RE, Post EM, Kraemer WJ. Bioactive growth hormone in humans: Controversies, complexities and concepts. Growth Horm IGF Res 2020; 50:9-22. [PMID: 31809882 DOI: 10.1016/j.ghir.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To revisit a finding, first described in 1978, which documented existence of a pituitary growth factor that escaped detection by immunoassay, but which was active in the established rat tibia GH bioassay. METHODS We present a narrative review of the evolution of growth hormone complexity, and its bio-detectability, from a historical perspective. RESULTS In humans under the age of 60, physical training (i.e. aerobic endurance and resistance training) are stressors which preferentially stimulate release of bioactive GH (bGH) into the blood. Neuroanatomical studies indicate a) that nerve fibers directly innervate the human anterior pituitary and b) that hind limb muscle afferents, in both humans and rats, also modulate plasma bGH. In the pituitary gland itself, molecular variants of GH, somatotroph heterogeneity and cell plasticity all appear to play a role in regulation of this growth factor. CONCLUSION This review considers more recent findings on this often forgotten/neglected subject. Comparison testing of a) human plasma samples, b) sub-populations of separated rat pituitary somatotrophs or c) purified human pituitary peptides by GH bioassay vs immunoassay consistently yield conflicting results.
Collapse
Affiliation(s)
- Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 4000076, India
| | - Kristin L Gosselink
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, United States of America
| | - Gary E McCall
- Department of Exercise Science Exercise and Neuroscience Program, University of Puget Sound, Tacoma, WA 98416, United States of America
| | - Richard E Grindeland
- Life Science Division, NASA-Ames Research Center, Moffett Field, CA 94035, United States of America
| | - Emily M Post
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, United States of America
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, United States of America.
| |
Collapse
|
19
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
20
|
Hoa O, Lafont C, Fontanaud P, Guillou A, Kemkem Y, Kineman RD, Luque RM, Fiordelisio Coll T, Le Tissier P, Mollard P. Imaging and Manipulating Pituitary Function in the Awake Mouse. Endocrinology 2019; 160:2271-2281. [PMID: 31329247 PMCID: PMC6760335 DOI: 10.1210/en.2019-00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Extensive efforts have been made to explore how the activities of multiple brain cells combine to alter physiology through imaging and cell-specific manipulation in different animal models. However, the temporal regulation of peripheral organs by the neuroendocrine factors released by the brain is poorly understood. We have established a suite of adaptable methodologies to interrogate in vivo the relationship of hypothalamic regulation with the secretory output of the pituitary gland, which has complex functional networks of multiple cell types intermingled with the vasculature. These allow imaging and optogenetic manipulation of cell activities in the pituitary gland in awake mouse models, in which both neuronal regulatory activity and hormonal output are preserved. These methodologies are now readily applicable for longitudinal studies of short-lived events (e.g., calcium signals controlling hormone exocytosis) and slowly evolving processes such as tissue remodeling in health and disease over a period of days to weeks.
Collapse
Affiliation(s)
- Ombeline Hoa
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Chrystel Lafont
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pierre Fontanaud
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Anne Guillou
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Yasmine Kemkem
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Tatiana Fiordelisio Coll
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF, México
| | - Paul Le Tissier
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, United Kingdom
| | - Patrice Mollard
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
- Correspondence: Patrice Mollard, PhD, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, F-34000 Montpellier, France. E-mail:
| |
Collapse
|
21
|
Ren YA, Monkkonen T, Lewis MT, Bernard DJ, Christian HC, Jorgez CJ, Moore JA, Landua JD, Chin HM, Chen W, Singh S, Kim IS, Zhang XH, Xia Y, Phillips KJ, MacKay H, Waterland RA, Ljungberg MC, Saha PK, Hartig SM, Coll TF, Richards JS. S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation. JCI Insight 2019; 5:126325. [PMID: 31265437 DOI: 10.1172/jci.insight.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.
Collapse
Affiliation(s)
- Yi Athena Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Carolina J Jorgez
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua A Moore
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - John D Landua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Haelee M Chin
- Department of Biology, Rice University, Houston, Texas, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Swarnima Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ik Sun Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Hf Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin J Phillips
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry MacKay
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | | | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Center at Texas Children's Hospital, Houston, Texas, USA
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France.,Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Yoon J, Kim H. Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1044-1051. [PMID: 30744377 PMCID: PMC6603329 DOI: 10.5713/ajas.18.0516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. METHODS We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. RESULTS As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. CONCLUSION In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.
Collapse
Affiliation(s)
- Joon Yoon
- Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Heebal Kim
- Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.,Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Le Tissier P, Fiordelisio Coll T, Mollard P. The Processes of Anterior Pituitary Hormone Pulse Generation. Endocrinology 2018; 159:3524-3535. [PMID: 30020429 DOI: 10.1210/en.2018-00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
| |
Collapse
|
24
|
Nasteska D, Hodson DJ. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 2018; 61:R43-R60. [PMID: 29661799 PMCID: PMC5976077 DOI: 10.1530/jme-18-0011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly apparent that not all insulin-secreting beta cells are equal. Subtle differences exist at the transcriptomic and protein expression levels, with repercussions for beta cell survival/proliferation, calcium signalling and insulin release. Notably, beta cell heterogeneity displays plasticity during development, metabolic stress and type 2 diabetes mellitus (T2DM). Thus, heterogeneity or lack thereof may be an important contributor to beta cell failure during T2DM in both rodents and humans. The present review will discuss the molecular and cellular features of beta cell heterogeneity at both the single-cell and islet level, explore how this influences islet function and insulin release and look into the alterations that may occur during obesity and T2DM.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| |
Collapse
|
25
|
Vitale ML, Pelletier RM. The anterior pituitary gap junctions: potential targets for toxicants. Reprod Toxicol 2018; 79:72-78. [PMID: 29906538 DOI: 10.1016/j.reprotox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023]
Abstract
The anterior pituitary regulates endocrine organs and physiological activities in the body. Environmental pollutants and drugs deleterious to the endocrine system may affect anterior pituitary activity through direct action on anterior pituitary cells. Within the gland, endocrine and folliculostellate cells are organized into and function as individual tridimensional networks, each network regulating its activity by coordinating the connected cells' responses to physiological or pathological cues. The gap junctions connecting endocrine cells and/or folliculostellate cells allow transmission of information among cells that is necessary for adequate network function. Toxicants may affect gap junctions as well as the physiology of the anterior pituitary. However, whether toxicants effects on anterior pituitary hormone secretion involve gap junctions is unknown. The folliculostellate cell gap junctions are sensitive to hormones, cytokines and growth factors. These cells may be an interesting experimental model for evaluating whether toxicants target anterior pituitary gap junctions.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada.
| | - R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
26
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
27
|
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. [PMID: 28859530 PMCID: PMC5815295 DOI: 10.1080/10253890.2017.1369523] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Collapse
Affiliation(s)
- Mario G Oyola
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert J Handa
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
28
|
Le Tissier P, Campos P, Lafont C, Romanò N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol 2017; 13:257-267. [PMID: 27934864 DOI: 10.1038/nrendo.2016.193] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Pauline Campos
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Chrystel Lafont
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Nicola Romanò
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| |
Collapse
|
29
|
Beck A, Götz V, Qiao S, Weissgerber P, Flockerzi V, Freichel M, Boehm U. Functional Characterization of Transient Receptor Potential (TRP) Channel C5 in Female Murine Gonadotropes. Endocrinology 2017; 158:887-902. [PMID: 28324107 DOI: 10.1210/en.2016-1810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Gonadotrope cells in the anterior pituitary gland secrete gonadotropins regulating gonadal function in mammals. Recent results have implicated transient receptor potential (TRP) cation channels in pituitary physiology; however, if and how TRP channels contribute to gonadotrope function is not known. Here, we report that 14 out of 28 TRP channels encoded in the mouse genome are expressed in murine gonadotropes with highest expression levels found for canonical TRP (TRPC) channel 5 in juvenile females. We show that TRP channel expression in these cells exhibits considerable plasticity and that it depends on the sex and the developmental and hormonal status of the animal. We then combine different genetic strategies including genetic confocal Ca2+ imaging in whole-mount pituitary gland preparations to characterize TRPC5 channel function in gonadotropes from juvenile females. We show that the TRPC5 agonist Englerin A activates a cytosolic Ca2+ signal and a whole-cell current in these cells, which is absent in TRPC5-deficient mice, and demonstrate that TRPC5 forms functional heteromultimers with TRPC1 in gonadotropes. We further show that the Englerin A-activated TRPC5-dependent Ca2+ signal is mediated by Ca2+ influx both via TRPC5 and via l-type voltage-gated Ca2+ channels, activated by the depolarization through TRPC5-mediated cation influx. Finally, we demonstrate that the gonadotropin-releasing hormone (GnRH)-mediated net depolarization is significantly reduced in gonadotropes isolated from TRPC5-deficient mice. In conclusion, our data suggest that TRPC5 contributes to depolarization of the plasma membrane in gonadotropes upon GnRH stimulation and increases the intracellular Ca2+ concentration via its own Ca2+ permeability and via the activation of voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Andreas Beck
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
- Center of Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Viktoria Götz
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Sen Qiao
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Petra Weissgerber
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Ulrich Boehm
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
30
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017. [PMID: 27807202 DOI: 10.1152/physrev.00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
31
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
32
|
Eckstrum KS, Weis KE, Baur NG, Yoshihara Y, Raetzman LT. Icam5 Expression Exhibits Sex Differences in the Neonatal Pituitary and Is Regulated by Estradiol and Bisphenol A. Endocrinology 2016; 157:1408-20. [PMID: 26789235 PMCID: PMC4816737 DOI: 10.1210/en.2015-1521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endocrine-disrupting chemicals are prevalent in the environment and can impair reproductive success by affecting the hypothalamic-pituitary-gonadal axis. The developing pituitary gland is sensitive to exposure to endocrine-disrupting chemicals, such as bisphenol A (BPA), and sex-specific effects can occur. However, effects on the critical window of neonatal pituitary gland development in mice have not been explored. Therefore, this study determined baseline gene expression in male and female pituitaries and consequences of environmental exposure to 17β-estradiol (E2) and BPA on transcription of genes exhibiting sex differences during the neonatal period. Through microarray and quantitative RT-PCR analysis of pituitaries at postnatal day (PND)1, 3 genes were differentially expressed between males and females: Lhb, Fshb, and intracellular adhesion molecule-5 (Icam5). To see whether E2 and BPA exposure regulates these genes, pituitaries were cultured at PND1 with 10(-8) M E2 or 4.4 × 10(-6) M BPA. E2 decreased expression of Lhb, Fshb, and Icam5 mRNA in females but only significantly decreased expression of Icam5 in males. BPA decreased expression of Icam5 similarly to E2, but it did not affect Lhb or Fshb. Importantly, in vivo exposure to 50-μg/kg · d E2 from PND0 to PND7 decreased expression of Lhb, Fshb, and Icam5 mRNA in both males and females, whereas 50-mg/kg · d BPA exposure during the same time frame decreased expression of Icam5 in females only. Overall, we have uncovered that genes differentially expressed between the sexes can be regulated in part by hormonal and chemical signals in vivo and directly at the pituitary and can be regulated in a sex-specific manner.
Collapse
Affiliation(s)
- Kirsten S Eckstrum
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Karen E Weis
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Nicholas G Baur
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Yoshihiro Yoshihara
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Golan M, Martin AO, Mollard P, Levavi-Sivan B. Anatomical and functional gonadotrope networks in the teleost pituitary. Sci Rep 2016; 6:23777. [PMID: 27029812 PMCID: PMC4815020 DOI: 10.1038/srep23777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 12/28/2022] Open
Abstract
Mammalian pituitaries exhibit a high degree of intercellular coordination; this enables them to mount large-scale coordinated responses to various physiological stimuli. This type of communication has not been adequately demonstrated in teleost pituitaries, which exhibit direct hypothalamic innervation and expression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in distinct cell types. We found that in two fish species, namely tilapia and zebrafish, LH cells exhibit close cell-cell contacts and form a continuous network throughout the gland. FSH cells were more loosely distributed but maintained some degree of cell-cell contact by virtue of cytoplasmic processes. These anatomical differences also manifest themselves at the functional level as evidenced by the effect of gap-junction uncouplers on gonadotropin release. These substances abolished the LH response to gonadotropin-releasing hormone stimulation but did not affect the FSH response to the same stimuli. Dye transfer between neighboring LH cells provides further evidence for functional coupling. The two gonadotropins were also found to be differently packaged within their corresponding cell types. Our findings highlight the evolutionary origin of pituitary cell networks and demonstrate how the different levels of cell-cell coordination within the LH and FSH cell populations are reflected in their distinct secretion patterns.
Collapse
Affiliation(s)
- Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Agnés O. Martin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Patrice Mollard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
34
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Seo M, Caetano-Anolles K, Rodriguez-Zas S, Ka S, Jeong JY, Park S, Kim MJ, Nho WG, Cho S, Kim H, Lee HJ. Comprehensive identification of sexually dimorphic genes in diverse cattle tissues using RNA-seq. BMC Genomics 2016; 17:81. [PMID: 26818975 PMCID: PMC4728830 DOI: 10.1186/s12864-016-2400-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 01/18/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Molecular mechanisms associated with sexual dimorphism in cattle have not been well elucidated. Furthermore, as recent studies have implied that gene expression patterns are highly tissue specific, it is essential to investigate gene expression in a variety of tissues using RNA-seq. Here, we employed and compared two statistical methods, a simple two group test and Analysis of deviance (ANODEV), in order to investigate bovine sexually dimorphic genes in 40 RNA-seq samples distributed across two factors: sex and tissue. RESULTS As a result, we detected 752 sexually dimorphic genes across tissues from two statistical approaches and identified strong tissue-specific patterns of gene expression. Additionally, significantly detected sex-related genes shared between two mammal species (cattle and rat) were identified using qRT-PCR. CONCLUSIONS Results of our analyses reveal that sexual dimorphism of metabolic tissues and pituitary gland in cattle involves various biological processes. Several differentially expressed genes between sexes in cattle and rat species are shared, but show tissue-specific patterns. Finally, we concluded that two distinct statistical approaches have their advantages and disadvantages in RNA-seq studies investigating multiple tissues.
Collapse
Affiliation(s)
- Minseok Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea, 151-741, Republic of Korea.
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea.
| | | | | | - Sojeong Ka
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Jin Young Jeong
- Division of Animal Products R&D, National Institute of Animal science, #1500 Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 565-851, Republic of Korea.
| | - Sungkwon Park
- Department of food science and technology, Sejong University, 98 Gun-Ja-Dong, Seoul, 143-747, Republic of Korea.
| | - Min Ji Kim
- Department of food science and technology, Sejong University, 98 Gun-Ja-Dong, Seoul, 143-747, Republic of Korea.
| | - Whan-Gook Nho
- Department of Swine & Poultry Science, National College of Agriculture and Fisheries, #1515 Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 560-500, Republic of Korea.
| | - Seoae Cho
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea.
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea, 151-741, Republic of Korea.
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea.
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun-Jeong Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea, 151-741, Republic of Korea.
- Division of Animal Products R&D, National Institute of Animal science, #1500 Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 565-851, Republic of Korea.
| |
Collapse
|
36
|
Steyn FJ. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release. J Neuroendocrinol 2015; 27:577-87. [PMID: 25808924 DOI: 10.1111/jne.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.
Collapse
Affiliation(s)
- F J Steyn
- The University of Queensland Centre for Clinical Research and The School of Biomedical Sciences, University of Queensland, Herston, 4029, Australia
| |
Collapse
|
37
|
Hodson DJ, Legros C, Desarménien MG, Guérineau NC. Roles of connexins and pannexins in (neuro)endocrine physiology. Cell Mol Life Sci 2015; 72:2911-28. [PMID: 26084873 DOI: 10.1007/s00018-015-1967-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
38
|
Luk HY, Kraemer WJ, Szivak TK, Flanagan SD, Hooper DR, Kupchak BR, Comstock BA, Dunn-Lewis C, Vingren JL, DuPont WH, Hymer WC. Acute resistance exercise stimulates sex-specific dimeric immunoreactive growth hormone responses. Growth Horm IGF Res 2015; 25:136-140. [PMID: 25934139 DOI: 10.1016/j.ghir.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE We sought to determine if an acute heavy resistance exercise test (AHRET) would elicit sex-specific responses in circulating growth hormone (GH), with untreated serum and serum treated with a reducing agent to break disulfide-bindings between GH dimers. METHODS 19 untrained participants (nine men and ten women) participated in an acute heavy resistance exercise test using the back squat. Blood samples were drawn before exercise (Pre), immediate post (IP), +15 min (+15), and +30 min (+30) afterwards. Serum samples were chemically reduced using glutathione (GSH). ELISAs were then used to compare immunoreactive GH concentrations in reduced (+GSH) and non-reduced (-GSH) samples. Data were analyzed using a three-way (2 sex × 2 treatment × 4 time) mixed methods ANOVA, with significance set at p ≤ 0.05. RESULTS GSH reduction resulted in increased immunoreactive GH concentrations when compared to non-reduced samples at Pre (1.68 ± 0.33 μg/L vs 1.25 ± 0.25 μg/L), IP (7.69 ± 1.08 μg/L vs 5.76 ± 0.80 μg/L), +15 min (4.39 ± 0.58 μg/L vs 3.24 ± 0.43 μg/L), and +30 min (2.35 ± 0.49 μg/L vs 1.45 ± 0.23 μg/L). Also, women demonstrated greater GH responses compared to men, and this was not affected by reduction. CONCLUSIONS Heavy resistance exercise increases immunoreactive GH dimer concentrations in men and women, with larger increases in women and more sustained response in men. The physiological significance of a sexually dimorphic GH response adds to the growing literature on aggregate GH and may be explained by differences in sex hormones and the structure of the GH cell network.
Collapse
Affiliation(s)
- Hui Ying Luk
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
| | - Tunde K Szivak
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Shawn D Flanagan
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - David R Hooper
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Brian R Kupchak
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Brett A Comstock
- Division of Kinesiology and Sport Science, University of South Dakota, Vermillion, SD, USA
| | - Courtenay Dunn-Lewis
- Department of Health Sciences, School of Science and Engineering, Merrimack College, North Andover, MA, USA
| | - Jakob L Vingren
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, USA
| | - William H DuPont
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
39
|
Zawada I, Masternak MM, List EO, Stout MB, Berryman DE, Lewinski A, Kopchick JJ, Bartke A, Karbownik-Lewinska M, Gesing A. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging (Albany NY) 2015; 7:195-204. [PMID: 25855408 PMCID: PMC4394730 DOI: 10.18632/aging.100733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022]
Abstract
Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Ilona Zawada
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Michal M. Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Specialty Medicine, Ohio University, Athens, OH 45701, USA
| | - Michael B. Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute, 93-338 Lodz, Poland
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute, 93-338 Lodz, Poland
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| |
Collapse
|
40
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hodson DJ, Mitchell RK, Marselli L, Pullen TJ, Gimeno Brias S, Semplici F, Everett KL, Cooper DMF, Bugliani M, Marchetti P, Lavallard V, Bosco D, Piemonti L, Johnson PR, Hughes SJ, Li D, Li WH, Shapiro AMJ, Rutter GA. ADCY5 couples glucose to insulin secretion in human islets. Diabetes 2014; 63:3009-21. [PMID: 24740569 PMCID: PMC4141364 DOI: 10.2337/db13-1607] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/10/2014] [Indexed: 01/10/2023]
Abstract
Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic β-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human β-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in β-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K.
| | - Ryan K Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Timothy J Pullen
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Francesca Semplici
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Katy L Everett
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | | | - Marco Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Paul R Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K. Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, U.K. National Institute of Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Stephen J Hughes
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K. Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, U.K. National Institute of Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Daliang Li
- University of Texas Southwestern Medical Center, Dallas, TX
| | - Wen-Hong Li
- University of Texas Southwestern Medical Center, Dallas, TX
| | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K.
| |
Collapse
|
42
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
43
|
Abstract
Sexual maturation and somatic growth cessation are associated with adolescent development, which is precisely controlled by interconnected neuroendocrine regulatory pathways in the endogenous endocrine system. The pituitary gland is one of the key regulators of the endocrine system. By analyzing the RNA sequencing (RNA-seq) transcriptome before and after sexual maturation, in this study, we characterized the global gene expression patterns in zebrafish pituitaries at 45 and 90 days post-fertilization (dpf). A total of 15 043 annotated genes were expressed in the pituitary tissue, 3072 of which were differentially expressed with a greater than or equal to twofold change between pituitaries at 45 and 90 dpf. In the pituitary transcriptome, the most abundant transcript was gh. The expression levels of gh remained high even after sexual maturation at 90 dpf. Among the eight major pituitary hormone genes, lhb was the only gene that exhibited a significant change in its expression levels between 45 and 90 dpf. Significant changes in the pituitary transcripts included genes involved in the regulation of immune responses, bone metabolism, and hormone secretion processes during the juvenile-sexual maturity transition. Real-time quantitative PCR analysis was carried out to verify the RNA-seq transcriptome results and demonstrated that the expression patterns of the eight major pituitary hormone genes did not exhibit a significant gender difference at 90 dpf. For the first time, we report the quantitative global gene expression patterns at the juvenile and sexual maturity stages. These expression patterns may account for the dynamic neuroendocrine regulation observed in body metabolism.
Collapse
Affiliation(s)
- Wenxia He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Xiangyan Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| |
Collapse
|
44
|
Hodson DJ, Tarasov AI, Gimeno Brias S, Mitchell RK, Johnston NR, Haghollahi S, Cane MC, Bugliani M, Marchetti P, Bosco D, Johnson PR, Hughes SJ, Rutter GA. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol Endocrinol 2014; 28:860-71. [PMID: 24766140 PMCID: PMC4042069 DOI: 10.1210/me.2014-1038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Incretins such as glucagon-like peptide 1 (GLP-1) are released from the gut and potentiate insulin release in a glucose-dependent manner. Although this action is generally believed to hinge on cAMP and protein kinase A signaling, up-regulated beta cell intermediary metabolism may also play a role in incretin-stimulated insulin secretion. By employing recombinant probes to image ATP dynamically in situ within intact mouse and human islets, we sought to clarify the role of GLP-1-modulated energetics in beta cell function. Using these techniques, we show that GLP-1 engages a metabolically coupled subnetwork of beta cells to increase cytosolic ATP levels, an action independent of prevailing energy status. We further demonstrate that the effects of GLP-1 are accompanied by alterations in the mitochondrial inner membrane potential and, at elevated glucose concentration, depend upon GLP-1 receptor-directed calcium influx through voltage-dependent calcium channels. Lastly, and highlighting critical species differences, beta cells within mouse but not human islets respond coordinately to incretin stimulation. Together, these findings suggest that GLP-1 alters beta cell intermediary metabolism to influence ATP dynamics in a species-specific manner, and this may contribute to divergent regulation of the incretin-axis in rodents and man.
Collapse
Affiliation(s)
| | | | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Natalie R. Johnston
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Shahab Haghollahi
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew C. Cane
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Paul R. Johnson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
45
|
Gesing A, Wang F, List EO, Berryman DE, Masternak MM, Lewinski A, Karbownik-Lewinska M, Kopchick JJ, Bartke A. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent. J Gerontol A Biol Sci Med Sci 2014; 70:44-52. [PMID: 24550353 DOI: 10.1093/gerona/glu008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield. Department of Oncological Endocrinology, Medical University of Lodz, Poland.
| | - Feiya Wang
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Edward O List
- Edison Biotechnology Institute, Department of Specialty Medicine
| | - Darlene E Berryman
- Edison Biotechnology Institute, School of Applied Health Sciences and Wellness, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando. Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Poland. Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, Poland. Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - John J Kopchick
- Edison Biotechnology Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
46
|
Rutter GA, Hodson DJ. Minireview: intraislet regulation of insulin secretion in humans. Mol Endocrinol 2013; 27:1984-95. [PMID: 24243488 PMCID: PMC5426601 DOI: 10.1210/me.2013-1278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022] Open
Abstract
The higher organization of β-cells into spheroid structures termed islets of Langerhans is critical for the proper regulation of insulin secretion. Thus, rodent β-cells form a functional syncytium that integrates and propagates information encoded by secretagogues, producing a "gain-of-function" in hormone release through the generation of coordinated cell-cell activity. By contrast, human islets possess divergent topology, and this may have repercussions for the cell-cell communication pathways that mediate the population dynamics underlying the intraislet regulation of insulin secretion. This is pertinent for type 2 diabetes mellitus pathogenesis, and its study in rodent models, because environmental and genetic factors may converge on these processes in a species-specific manner to precipitate the defective insulin secretion associated with glucose intolerance. The aim of the present minireview is therefore to discuss the structural and functional underpinnings that influence insulin secretion from human islets, and the possibility that dyscoordination between individual β-cells may play an important role in some forms of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Guy A Rutter
- Section Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. ; or Professor Guy A. Rutter, Section of Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. E-mail:
| | | |
Collapse
|
47
|
Li X, Bartke A, Berryman DE, Funk K, Kopchick JJ, List EO, Sun L, Miller RA. Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes. Am J Physiol Endocrinol Metab 2013; 305:E942-50. [PMID: 23941873 PMCID: PMC3798695 DOI: 10.1152/ajpendo.00304.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detoxification of ingested xenobiotic chemicals, and of potentially toxic endogenous metabolites, is carried out largely through a series of enzymes synthesized in the liver, sometimes called "xenobiotic metabolizing enzymes" (XME). Expression of these XME is sexually dimorphic in rodents and humans, with many of the XME expressed at higher levels in females. This expression pattern is thought to be regulated, in part, by the sex differences in circadian growth hormone (GH) pulsatility. We have evaluated mRNA, in the liver, for 52 XME genes in male and female mice of four mutant stocks, with diminished levels of GH receptor (GHR) either globally (GKO), or in liver (LKO), fat (FKO), or muscle (MKO) tissue specifically. The data show complex, sex-specific changes. For some XME, the expression pattern is consistent with direct control of hepatic mRNA by GHR in the liver. In contrast, other XME show evidence for indirect pathways in which hepatic XME expression is altered by GH signals in fat or skeletal muscle. The effects of GHR-null mutations on glucose control, responses to dietary interventions, steroid metabolism, detoxification pathways, and lifespan may depend on a mixture of direct hepatic effects and cross talk between different GH-responsive tissues.
Collapse
Affiliation(s)
- Xinna Li
- 1Department of Pathology, and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, Michigan;
| | - Andrzej Bartke
- 2Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois;
| | - Darlene E. Berryman
- 3Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio;
- 4School of Applied Health Sciences and Wellness, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio;
- 5Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio; and
| | - Kevin Funk
- 3Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio;
| | - John J. Kopchick
- 3Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio;
- 5Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio; and
| | - Edward O. List
- 3Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio;
- 6Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Liou Sun
- 2Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois;
| | - Richard A. Miller
- 1Department of Pathology, and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, Michigan;
| |
Collapse
|
48
|
Hodson DJ, Mitchell RK, Bellomo EA, Sun G, Vinet L, Meda P, Li D, Li WH, Bugliani M, Marchetti P, Bosco D, Piemonti L, Johnson P, Hughes SJ, Rutter GA. Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 2013; 123:4182-94. [PMID: 24018562 PMCID: PMC4382273 DOI: 10.1172/jci68459] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic β cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. β cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent β cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of β cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional β cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that β cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.
Collapse
Affiliation(s)
- David J. Hodson
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Gao Sun
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Laurent Vinet
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Paolo Meda
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Daliang Li
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Wen-Hong Li
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Lorenzo Piemonti
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Johnson
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Grey CL, Chang JP. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells. Gen Comp Endocrinol 2013; 186:150-6. [PMID: 23510860 DOI: 10.1016/j.ygcen.2013.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022]
Abstract
Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
50
|
Cheung LYM, Rizzoti K, Lovell-Badge R, Le Tissier PR. Pituitary phenotypes of mice lacking the notch signalling ligand delta-like 1 homologue. J Neuroendocrinol 2013; 25:391-401. [PMID: 23279263 PMCID: PMC3664429 DOI: 10.1111/jne.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 11/16/2012] [Accepted: 12/08/2012] [Indexed: 01/17/2023]
Abstract
The Notch signalling pathway ligand delta-like 1 homologue (Dlk1, also named Pref1) is expressed throughout the developing pituitary and becomes restricted to mostly growth hormone (GH) cells within the adult gland. We have investigated the role of Dlk1 in pituitary development and function from late embryogenesis to adulthood using a mouse model completely lacking the expression of Dlk1. We confirm that Dlk1-null mice are shorter and weigh less than wild-type littermates from late gestation, at parturition and in adulthood. A loss of Dlk1 leads to significant reduction in GH content throughout life, whereas other pituitary hormones are reduced to varying degrees depending on sex and age. Both the size of the pituitary and the proportion of hormone-producing cell populations are unchanged, suggesting that there is a reduction in hormone content per cell. In vivo challenge of mutant and wild-type littermates with growth hormone-releasing hormone and growth hormone-releasing hexapeptide shows that reduced GH secretion is unlikely to account for the reduced growth of Dlk1 knockout animals. These data suggest that loss of Dlk1 gives rise to minor pituitary defects manifesting as an age- and sex-dependent reduction in pituitary hormone contents. However, Dlk1 expression in other tissue is most likely responsible for the weight and length differences observed in mutant animals.
Collapse
Affiliation(s)
- L Y M Cheung
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|