1
|
Mittermüller D, Otto L, Kilian AL, Schnormeier AK, Littwitz-Salomon E, Hasenberg A, Dittmer U, Gunzer M. PD-1 knockout on cytotoxic primary murine CD8 + T cells improves their motility in retrovirus infected mice. Front Immunol 2024; 15:1338218. [PMID: 38742109 PMCID: PMC11089113 DOI: 10.3389/fimmu.2024.1338218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.
Collapse
Affiliation(s)
- Daniela Mittermüller
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annika Loredana Kilian
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Schnormeier
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| |
Collapse
|
2
|
Nieves-Rosado HM, Jacobs JL, Naqvi A, Mellors JW, Macatangay BJC, Kane LP. TIM-3 signaling contributes to the suppressive capacity of Tregs from people with HIV on antiretroviral therapy. J Leukoc Biol 2023; 114:368-372. [PMID: 37350502 PMCID: PMC10882646 DOI: 10.1093/jleuko/qiad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
TIM-3 expression is increased on peripheral regulatory T cells (Tregs) of virally suppressed persons with HIV-1 on antiretroviral therapy (PWH-ART). However, the relevance of TIM-3 expression in this setting is unclear. We used flow cytometry to evaluate the suppressive phenotype and signaling pathways in peripheral TIM-3- vs TIM-3+ Tregs in PWH-ART. TIM-3+ Tregs showed increased expression of IL-10 compared with persons without HIV-1. In addition, TIM-3+ Tregs displayed elevated signaling and activation, relative to TIM-3- Tregs from the same PWH-ART. Dramatically, TIM-3 blockade restrained the in vitro suppressive capacity of peripheral Tregs. Therefore, our data demonstrate not only that TIM-3 expression by Tregs is associated with an immunosuppressive response among PWH-ART, but also that TIM-3 contributes directly to the enhanced suppressive activity of Tregs in this setting.
Collapse
Affiliation(s)
- Hector M Nieves-Rosado
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Jana L Jacobs
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Asma Naqvi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Bernard J C Macatangay
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| |
Collapse
|
3
|
Mittermüller D, Otto L, Long Z, Kraus A, Beer A, Hasenberg A, Zelinskyy G, Westmeier J, Hasenkrug KJ, Dittmer U, Gunzer M. Regulatory T cells suppress the motility of cytotoxic T cells in Friend retrovirus-infected mice. JCI Insight 2023; 8:e167482. [PMID: 37427590 PMCID: PMC10371334 DOI: 10.1172/jci.insight.167482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Antiviral immunity often requires CD8+ cytotoxic T lymphocytes (CTLs) that actively migrate and search for virus-infected targets. Regulatory T cells (Tregs) have been shown to suppress CTL responses, but it is not known whether this is also mediated by effects on CTL motility. Here, we used intravital 2-photon microscopy in the Friend retrovirus (FV) mouse model to define the impact of Tregs on CTL motility throughout the course of acute infection. Virus-specific CTLs were very motile and had frequent short contacts with target cells at their peak cytotoxic activity. However, when Tregs were activated and expanded in late-acute FV infection, CTLs became significantly less motile and contacts with target cells were prolonged. This phenotype was associated with development of functional CTL exhaustion. Tregs had direct contacts with CTLs in vivo and, importantly, their experimental depletion restored CTL motility. Our findings identify an effect of Tregs on CTL motility as part of their mechanism of functional impairment in chronic viral infections. Future studies must address the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Daniela Mittermüller
- Institute for Virology and
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology and
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zoë Long
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Kim J Hasenkrug
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Ulf Dittmer
- Institute for Virology and
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institute for Analytical Sciences ISAS-e.V., Dortmund, Germany
| |
Collapse
|
4
|
Chen Q, Benamar M, Chan TMF, Wang M, Chatila TA. CPHEN-014: Comprehensive phenotyping of mouse regulatory T cells relevant to viral infections. Cytometry A 2022; 101:1000-1005. [PMID: 35593538 DOI: 10.1002/cyto.a.24655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
Abstract
Regulatory T (Treg) cells are a specialized subpopulation of CD4+ T cells that enforce peripheral immune tolerance. Treg cells act to suppress exuberant immune responses, limit inflammation, and promote tissue repair, thereby maintaining homeostasis and tolerance to self-antigens and those of the commensal microbial flora. Treg cells are characterized by the expression of the master regulator Foxp3, which plays a major role in Treg cells development and function. Under inflammatory conditions, Foxp3+ Treg cells may acquire effector T cell programs that modify their phenotype and function, reflecting their plasticity. During microbial infections, Treg cells act to limit the immunopathology triggered by the host immune response to pathogens albeit at the potential risk of pathogen persistence. In this review, we will discuss the influence of Treg cells on the outcome of viral infection and will give an overview of the Treg phenotype at steady-state and in inflammatory conditions.
Collapse
Affiliation(s)
- Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsz Man Fion Chan
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Sun X, Chi H. Tregs tango with killer cells in acute infection. Proc Natl Acad Sci U S A 2022; 119:e2202400119. [PMID: 35312353 PMCID: PMC9060493 DOI: 10.1073/pnas.2202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiang Sun
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
6
|
Teh CE, Preston SP, Robbins AK, Stutz MD, Cooney J, Clark MP, Policheni AN, Allison CC, Mackiewicz L, Arandjelovic P, Ebert G, Doerflinger M, Tan T, Rankin LC, Teh PP, Belz GT, Kallies A, Strasser A, Pellegrini M, Gray DHD. Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Sci Immunol 2022; 7:eabn8041. [PMID: 35333545 DOI: 10.1126/sciimmunol.abn8041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting the potent immunosuppressive properties of FOXP3+ regulatory T cells (Tregs) has substantial therapeutic potential for treating autoimmune and inflammatory diseases. Yet, the molecular mechanisms controlling Treg homeostasis, particularly during inflammation, remain unclear. We report that caspase-8 is a central regulator of Treg homeostasis in a context-specific manner that is decisive during immune responses. In mouse genetic models, targeting caspase-8 in Tregs led to accumulation of effector Tregs resistant to apoptotic cell death. Conversely, inflammation induced the MLKL-dependent necroptosis of caspase-8-deficient lymphoid and tissue Tregs, which enhanced immunity to a variety of chronic infections to promote clearance of viral or parasitic pathogens. However, improved immunity came at the risk of lethal inflammation in overwhelming infections. Caspase-8 inhibition using a clinical-stage compound revealed that human Tregs have heightened sensitivity to necroptosis compared with conventional T cells. These findings reveal a fundamental mechanism in Tregs that could be targeted to manipulate the balance between immune tolerance versus response for therapeutic benefit.
Collapse
Affiliation(s)
- Charis E Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alissa K Robbins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Stutz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle P Clark
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Antonia N Policheni
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Philip Arandjelovic
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregor Ebert
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tania Tan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lucille C Rankin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peggy P Teh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Renal Medicine, Alfred Health, Melbourne, VIC, Australia.,Department of Nephrology, Western Health, Melbourne, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Schwerdtfeger M, Dickow J, Schmitz Y, Francois S, Karakoese Z, Malyshkina A, Knuschke T, Dittmer U, Sutter K. Immunotherapy With Interferon α11, But Not Interferon Beta, Controls Persistent Retroviral Infection. Front Immunol 2022; 12:809774. [PMID: 35126368 PMCID: PMC8810532 DOI: 10.3389/fimmu.2021.809774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 01/24/2023] Open
Abstract
Type I Interferons (IFNs), including numerous IFNα subtypes and IFNβ, are key molecules during innate and adaptive immune responses against viral infections. These cytokines exert various non-redundant biological activities, although binding to the same receptor. Persistent viral infections are often characterized by increased IFN signatures implicating a potential role of type I IFNs in disease pathogenesis. Using the well-established Friend retrovirus (FV) mouse model, we compared the therapeutic efficacy of IFNα11 and IFNβ in acute and chronic retroviral infection. We observed a strong antiviral activity of both IFNs during acute FV infection, whereas only IFNα11 and not IFNβ could also control persistent FV infection. The therapeutic treatment with IFNα11 induced the expression of antiviral IFN-stimulated genes (ISG) and improved cytotoxic T cell responses. Finally, dysfunctional CD8+ T cells solely regained cytotoxicity after IFNα11 treatment. Our data provide evidence for opposing activities of type I IFNs during chronic retroviral infections. IFNβ was shown to be involved in immune dysfunction in chronic infections, whereas IFNα11 had a strong antiviral potential and reactivated exhausted T cells during persistent retroviral infection. In contrast, during acute infection, both type I IFNs were able to efficiently suppress FV replication.
Collapse
Affiliation(s)
| | - Julia Dickow
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Yasmin Schmitz
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Sandra Francois
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute for Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Kathrin Sutter,
| |
Collapse
|
8
|
Aghabi YO, Yasin A, Kennedy JI, Davies SP, Butler AE, Stamataki Z. Targeting Enclysis in Liver Autoimmunity, Transplantation, Viral Infection and Cancer. Front Immunol 2021; 12:662134. [PMID: 33953725 PMCID: PMC8089374 DOI: 10.3389/fimmu.2021.662134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent liver inflammation can lead to cirrhosis, which associates with significant morbidity and mortality worldwide. There are no curative treatments beyond transplantation, followed by long-term immunosuppression. The global burden of end stage liver disease has been increasing and there is a shortage of donor organs, therefore new therapies are desperately needed. Harnessing the power of the immune system has shown promise in certain autoimmunity and cancer settings. In the context of the liver, regulatory T cell (Treg) therapies are in development. The hypothesis is that these specialized lymphocytes that dampen inflammation may reduce liver injury in patients with chronic, progressive diseases, and promote transplant tolerance. Various strategies including intrinsic and extracorporeal expansion of Treg cells, aim to increase their abundance to suppress immune responses. We recently discovered that hepatocytes engulf and delete Treg cells by enclysis. Herein, we propose that inhibition of enclysis may potentiate existing regulatory T cell therapeutic approaches in patients with autoimmune liver diseases and in patients receiving a transplant. Moreover, in settings where the abundance of Treg cells could hinder beneficial immunity, such us in chronic viral infection or liver cancer, enhancement of enclysis could result in transient, localized reduction of Treg cell numbers and tip the balance towards antiviral and anti-tumor immunity. We describe enclysis as is a natural process of liver immune regulation that lends itself to therapeutic targeting, particularly in combination with current Treg cell approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Zania Stamataki
- College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS NANO 2021; 15:3736-3753. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Collapse
Affiliation(s)
| | | | - Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Sharon R Lewin
- Victorian Infectious Diseases, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
A Combination of Anti-PD-L1 Treatment and Therapeutic Vaccination Facilitates Improved Retroviral Clearance via Reactivation of Highly Exhausted T Cells. mBio 2021; 12:mBio.02121-20. [PMID: 33531395 PMCID: PMC7858051 DOI: 10.1128/mbio.02121-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite significant efforts, vaccines are not yet available for every infectious pathogen, and the search for a protective approach to prevent the establishment of chronic infections, i.e., with HIV, continues. Immune checkpoint therapies targeting inhibitory receptors, such as PD-1, have shown impressive results against solid tumors. PD-1-targeted therapies have shown modest antiviral effects in preclinical models of chronic viral infection. Thus, novel therapy protocols are necessary to enhance T cell immunity and viral control to overcome T cell dysfunction and immunosuppression. Here, we demonstrate that nanoparticle-based therapeutic vaccination improved PD-1-targeted therapy during chronic infection with Friend retrovirus (FV). Prevention of inhibitory signals by blocking PD-L1 in combination with therapeutic vaccination with nanoparticles containing the microbial compound CpG and a CD8+ T cell Gag epitope peptide synergistically enhanced functional virus-specific CD8+ T cell responses and improved viral clearance. We characterized the CD8+ T cell populations that were affected by this combination therapy, demonstrating that new effector cells were generated and that exhausted CD8+ T cells were reactivated at the same time. While CD8+ T cells with high PD-1 (PD-1hi) expression turned into a large population of granzyme B-expressing CD8+ T cells after combination therapy, CXCR5-expressing follicular cytotoxic CD8+ T cells also expanded to a high degree. Thus, our study describes a very efficient approach to enhance virus control and may help us to understand the mechanisms of combination immunotherapy reactivating CD8+ T cell immunity. A better understanding of CD8+ T cell immunity during combination therapy will be important for developing efficient checkpoint therapies against chronic viral infections and cancer.
Collapse
|
11
|
Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021; 11:616949. [PMID: 33584708 PMCID: PMC7873351 DOI: 10.3389/fimmu.2020.616949] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Moore TC, Hasenkrug KJ. B-Cell Control of Regulatory T Cells in Friend Virus Infection. J Mol Biol 2021; 433:166583. [PMID: 32598936 DOI: 10.1016/j.jmb.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4+ and CD8+ T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8+ T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.
Collapse
Affiliation(s)
- Tyler C Moore
- College of Science and Technology, Bellevue University, 1000 Galvin Road South, Bellevue, NE 68005, USA.
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
13
|
CD4 +CD25 + Cells Are Essential for Maintaining Immune Tolerance in Chickens Inoculated with Bovine Serum Albumin at the Late Stage of Embryonic Development. Vet Sci 2020; 7:vetsci7040150. [PMID: 33022909 PMCID: PMC7712202 DOI: 10.3390/vetsci7040150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, the role of chicken CD4+CD25+ cells during induced immunotolerance was tested. Properties of chicken CD4+CD25+ cells sorted by flow cytometry were analyzed. Results showed that chicken CD4+CD25+ cells express IL-10, TGF-β highly and suppress proliferation of CD4+CD25− cells in vitro. To induce immunotolerance, embryos were inoculated with bovine serum albumin (BSA) via an intravascular route on embryo incubation day 20 (EID20), and after hatching chicks experienced BSA immunization four times at 7-day intervals. Serum anti-BSA antibodies and CD4+CD25+ cell ratio was analyzed. Results showed that humoral tolerance was obtained and the CD4+CD25+ cell percentage in peripheral blood lymphocytes increased along with this progress. Injection of anti-chicken CD25 antibody via an intravascular route on EID16 is applied to block CD4+CD25+ cells, and the CD4+CD25+ cell ratio decreased significantly up to 35 d post-hatch. Based on the above, injections of anti-chicken CD25 antibody on EID16 and BSA on EID20 were carried out sequentially, and tolerance level was contrasted to the BSA-injection group. Data revealed the anti-BSA antibodies increased significantly in the CD4+CD25+ cell-blocked groups indicating that immune tolerance level was weakened. In conclusion, chicken CD4+CD25+ cells are essential in maintaining induced immune tolerance.
Collapse
|
14
|
Westmeier J, Paniskaki K, Karaköse Z, Werner T, Sutter K, Dolff S, Overbeck M, Limmer A, Liu J, Zheng X, Brenner T, Berger MM, Witzke O, Trilling M, Lu M, Yang D, Babel N, Westhoff T, Dittmer U, Zelinskyy G. Impaired Cytotoxic CD8 + T Cell Response in Elderly COVID-19 Patients. mBio 2020; 11:e02243-20. [PMID: 32948688 PMCID: PMC7502863 DOI: 10.1128/mbio.02243-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a T cell response that most likely contributes to virus control in COVID-19 patients but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients. Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B as well as perforin within different effector CD8+ T cell subsets. PD-1-expressing CD8+ T cells also produced cytotoxic molecules during acute infection, indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years, the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2. Our data provide valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.IMPORTANCE Cytotoxic T cells are responsible for the elimination of infected cells and are key players in the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group than in younger patients.
Collapse
Affiliation(s)
- Jaana Westmeier
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Krystallenia Paniskaki
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Zehra Karaköse
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marvin Overbeck
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Limmer
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Thorsten Brenner
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marc M Berger
- Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Nina Babel
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Timm Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University of Bochum, Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China
| |
Collapse
|
15
|
Ross JA, Malyshkina A, Otto L, Liu J, Dittmer U. Inhibition of IL-2 or NF- κB Subunit c-Rel-Dependent Signaling Inhibits Expansion of Regulatory T Cells During Acute Friend Retrovirus Infection. Viral Immunol 2020; 33:353-360. [PMID: 32315584 DOI: 10.1089/vim.2019.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In retroviral infections, different immunological mechanisms are involved in the development of a chronic infection. In the Friend virus (FV) model, regulatory T cells (Tregs) were found to induce CD8+ T cell dysfunction before viral clearance is achieved and thus contribute to viral chronicity. Although studied for decades, the exact suppressive mechanisms of Tregs in the FV model remain elusive and an unavailable therapeutic target. However, extracellular IL-2 and intracellular NF-κB signaling were shown to be important pathways for Treg expansion and activation. Therefore, we decided to focus on these two pathways to test therapeutic approaches inhibiting Treg activation during FV infection. In this study, we show that the inhibition of either IL-2 or the NF-κB subunit c-Rel, impaired Treg expansion and activation at 2 weeks post-FV infection. Total numbers of Tregs as well as activated Tregs were reduced in FV-infected mice after treatment with anti-IL-2 antibodies or the c-Rel blocking reagent pentoxifylline. Surprisingly, this did not affect the expansion or function of virus-specific CD8+ T cells nor viral loads in the spleen. However, our data suggest that neutralization of IL-2 as well as blocking c-Rel efficiently inhibits virus-induced Treg expansion.
Collapse
Affiliation(s)
- Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
David P, Drabczyk-Pluta M, Pastille E, Knuschke T, Werner T, Honke N, Megger DA, Akhmetzyanova I, Shaabani N, Eyking-Singer A, Cario E, Kershaw O, Gruber AD, Tenbusch M, Dietze KK, Trilling M, Liu J, Schadendorf D, Streeck H, Lang KS, Xie Y, Zimmer L, Sitek B, Paschen A, Westendorf AM, Dittmer U, Zelinskyy G. Combination immunotherapy with anti-PD-L1 antibody and depletion of regulatory T cells during acute viral infections results in improved virus control but lethal immunopathology. PLoS Pathog 2020; 16:e1008340. [PMID: 32226027 PMCID: PMC7105110 DOI: 10.1371/journal.ppat.1008340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
Combination immunotherapy (CIT) is currently applied as a treatment for different cancers and is proposed as a cure strategy for chronic viral infections. Whether such therapies are efficient during an acute infection remains elusive. To address this, inhibitory receptors were blocked and regulatory T cells depleted in acutely Friend retrovirus-infected mice. CIT resulted in a dramatic expansion of cytotoxic CD4+ and CD8+ T cells and a subsequent reduction in viral loads. Despite limited viral replication, mice developed fatal immunopathology after CIT. The pathology was most severe in the gastrointestinal tract and was mediated by granzyme B producing CD4+ and CD8+ T cells. A similar post-CIT pathology during acute Influenza virus infection of mice was observed, which could be prevented by vaccination. Melanoma patients who developed immune-related adverse events under immune checkpoint CIT also presented with expanded granzyme-expressing CD4+ and CD8+ T cell populations. Our data suggest that acute infections may induce immunopathology in patients treated with CIT, and that effective measures for infection prevention should be applied.
Collapse
Affiliation(s)
- Paul David
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - Dominik A. Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ilseyar Akhmetzyanova
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Namir Shaabani
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking-Singer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dirk Schadendorf
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Youhua Xie
- Key Lab of Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisa Zimmer
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Annette Paschen
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
17
|
Zhang E, Ma Z, Li Q, Yan H, Liu J, Wu W, Guo J, Zhang X, Kirschning CJ, Xu H, Lang PA, Yang D, Dittmer U, Yan H, Lu M. TLR2 Stimulation Increases Cellular Metabolism in CD8 + T Cells and Thereby Enhances CD8 + T Cell Activation, Function, and Antiviral Activity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2872-2886. [PMID: 31636238 DOI: 10.4049/jimmunol.1900065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
TLR2 serves as a costimulatory molecule on activated T cells. However, it is unknown how the functionality and antiviral activity of CD8+ T cells are modulated by direct TLR2 signaling. In this study, we looked at the TLR2-mediated enhancement of TCR-driven CD8+ T cell activation in vitro and in woodchuck hepatitis virus transgenic mice. In vitro stimulation of CD8+ T cells purified from C57BL/6 mice showed that TLR2 agonist Pam3CSK4 directly enhanced the TCR-dependent CD8+ T cell activation. Transcriptome analysis revealed that TLR2 signaling increased expression of bioenergy metabolism-related genes in CD8+ T cells, such as IRF4, leading to improved glycolysis and glutaminolysis. This was associated with the upregulation of genes related to immune regulation and functions such as T-bet and IFN-γ. Glycolysis and glutaminolysis were in turn essential for the TLR2-mediated enhancement of T cell activation. Administration of TLR2 agonist Pam3CSK4 promoted the expansion and functionality of vaccine-primed, Ag-specific CD8+ T cells in both wild type and transgenic mice and improved viral suppression. Thus, TLR2 could promote CD8+ T cell immunity through regulating the energy metabolism.
Collapse
Affiliation(s)
- Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Zhiyong Ma
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Qian Li
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany.,Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jiabao Guo
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Xiaoyong Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Carsten J Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany; and
| | - Haifeng Xu
- Institute of Virology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Virology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany;
| |
Collapse
|
18
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
19
|
Malyshkina A, Littwitz-Salomon E, Sutter K, Ross JA, Paschen A, Windmann S, Schimmer S, Dittmer U. Chronic retroviral infection of mice promotes tumor development, but CD137 agonist therapy restores effective tumor immune surveillance. Cancer Immunol Immunother 2019; 68:479-488. [PMID: 30635687 PMCID: PMC11028158 DOI: 10.1007/s00262-019-02300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/06/2019] [Indexed: 12/29/2022]
Abstract
T cell responses are crucial for anti-tumor immunity. In chronic viral infections, anti-tumor T cell responses can be compromised due to various immunological mechanisms, including T cell exhaustion. To study mechanisms of anti-tumor immunity during a chronic viral infection, we made use of the well-established Friend virus (FV) mouse model. Chronically FV-infected mice are impaired in their ability to reject FBL-3 cells-a virus-induced tumor cell line of C57BL/6 origin. Here we aimed to explore therapeutic strategies to overcome the influence of T cell exhaustion during chronic viral infection, and reactivate effector CD8+ and CD4+ T cells to eliminate tumor cells. For T cell stimulation, agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily members CD137 and CD134 were used, because they were reported to augment the cytotoxic program of T cells. αCD137 agonistic therapy, but not αCD134 agonistic therapy, resulted in FBL-3 tumor elimination in chronically FV-infected mice. CD137 stimulation significantly enhanced the cytotoxic activity of both CD4+ and CD8+ T cells, which were both required for efficient tumor control. Our study suggests that agonistic antibodies to CD137 can efficiently enhance anti-tumor immunity even in the setting of chronic viral infection, which might have promising therapeutic applications.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany.
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| |
Collapse
|
20
|
Infection of B Cell Follicle-Resident Cells by Friend Retrovirus Occurs during Acute Infection and Is Maintained during Viral Persistence. mBio 2019; 10:mBio.00004-19. [PMID: 30782653 PMCID: PMC6381274 DOI: 10.1128/mbio.00004-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B cell follicles of the spleen and lymph nodes are immune privileged sites and serve as sanctuaries for infected CD4+ cells in HIV infection. It is assumed that CD8+ T cell responses promote the establishment of the reservoir, as B cell follicles do not permit CD8+ T cell entry. Here we analyzed the infected cell population in the Friend retrovirus (FV) infection and investigated whether FV can similarly infect follicular cells. For analysis of FV-infected cells, we constructed a recombinant FV encoding the bright fluorescent protein mWasabi and performed flow cytometry with cells isolated from spleens, lymph nodes and bone marrow of FV-mWasabi-infected mice. Using t-stochastic neighbor embedding for data exploration, we demonstrate how the target cell population changes during the course of infection. While FV was widely distributed in erythrocytes, myeloid cells, B cells, and CD4+ T cells in the acute phase of infection, the bulk viral load in the late phase was carried by macrophages and follicular B and CD4+ T cells, suggesting that FV persists in cells that are protected from CD8+ T cell killing. Importantly, seeding into follicular cells was equally observed in CD8+ T cell-depleted mice and in highly FV-susceptible mice that mount a very weak immune response, demonstrating that infection of follicular cells is not driven by immune pressure. Our data demonstrate that infection of cells in the B cell follicle is a characteristic of the FV infection, making this murine retrovirus an even more valuable model for development of retrovirus immunotherapy approaches.IMPORTANCE Human immunodeficiency virus is notorious for its ability to avoid clearance by therapeutic interventions, which is partly attributed to the establishment of reservoirs in latently infected cells and cells that reside in immunologically privileged B cell follicles. In the work presented here, we show that cells of the B cell follicle are equally infected by a simple mouse gammaretrovirus. Using fluorescently labeled Friend retrovirus, we found that B cells and T cells in the B cell follicle, while not carrying the bulk of the virus load, were indeed infected by Friend virus in the early acute phase of the infection and persisted in the chronic infection. Our results suggest that infection of follicular cells may be a shared property of lymphotropic viruses and propose the FV infection of mice as a useful model to study strategies for follicular reservoir elimination.
Collapse
|
21
|
Myers LM, Tal MC, Torrez Dulgeroff LB, Carmody AB, Messer RJ, Gulati G, Yiu YY, Staron MM, Angel CL, Sinha R, Markovic M, Pham EA, Fram B, Ahmed A, Newman AM, Glenn JS, Davis MM, Kaech SM, Weissman IL, Hasenkrug KJ. A functional subset of CD8 + T cells during chronic exhaustion is defined by SIRPα expression. Nat Commun 2019; 10:794. [PMID: 30770827 PMCID: PMC6377614 DOI: 10.1038/s41467-019-08637-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Prolonged exposure of CD8+ T cells to antigenic stimulation, as in chronic viral infections, leads to a state of diminished function termed exhaustion. We now demonstrate that even during exhaustion there is a subset of functional CD8+ T cells defined by surface expression of SIRPα, a protein not previously reported on lymphocytes. On SIRPα+ CD8+ T cells, expression of co-inhibitory receptors is counterbalanced by expression of co-stimulatory receptors and it is only SIRPα+ cells that actively proliferate, transcribe IFNγ and show cytolytic activity. Furthermore, target cells that express the ligand for SIRPα, CD47, are more susceptible to CD8+ T cell-killing in vivo. SIRPα+ CD8+ T cells are evident in mice infected with Friend retrovirus, LCMV Clone 13, and in patients with chronic HCV infections. Furthermore, therapeutic blockade of PD-L1 to reinvigorate CD8+ T cells during chronic infection expands the cytotoxic subset of SIRPα+ CD8+ T cells.
Collapse
Affiliation(s)
- Lara M Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Michal Caspi Tal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laughing Bear Torrez Dulgeroff
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ying Ying Yiu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew M Staron
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
- Foundational Immunology, AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | - Cesar Lopez Angel
- Deparment of Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maxim Markovic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Edward A Pham
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Benjamin Fram
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aijaz Ahmed
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jeffrey S Glenn
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Deparment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark M Davis
- Deparment of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA, 92037, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
22
|
Effects of Friend Virus Infection and Regulatory T Cells on the Antigen Presentation Function of B Cells. mBio 2019; 10:mBio.02578-18. [PMID: 30670616 PMCID: PMC6343038 DOI: 10.1128/mbio.02578-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+ T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+ T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections. Friend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+ T cell responses. Nonetheless, mice mount vigorous CD8+ T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Direct ex vivo analysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore, in vitro studies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+ T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+ T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced by in vivo depletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.
Collapse
|
23
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Bhattacharyya M, Penaloza-MacMaster P. Dynamics of Lymphocyte Reconstitution After Hematopoietic Transplantation During Chronic Lymphocytic Choriomeningitis Virus Infection. AIDS Res Hum Retroviruses 2018; 34:430-438. [PMID: 29620933 DOI: 10.1089/aid.2017.0251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone marrow transplantation is a treatment for various cancers and genetic diseases, and the only case of a cured HIV infection involved the use of this clinical procedure, highlighting the potential use of this therapy for curing many chronic diseases. However, little is known about how chronic viral infection influences lymphocyte reconstitution after bone marrow transplantation. To address this, we infected mice with chronic lymphocytic choriomeningitis virus, and performed bone marrow transplantation to assess lymphocyte reconstitution. Interestingly, we observed that adoptively transferred marrow cells exhibited preferential B cell differentiation in chronically infected mice. Moreover, donor marrow cells that were adoptively transferred into chronically infected mice differentiated into virus-specific CD8 T cells that were able to expand after PD-L1 blockade. Taken together, our data show that chronic viral infection induces a biased differentiation of bone marrow stem cells into B cells, and that exhausted virus-specific CD8 T cells generated de novo in this setting are rescuable by PD-1 blockade. These data contribute to the understanding of how chronic viral infection impacts lymphocyte reconstitution, and may provide valuable information to improve current hematopoietic transplantation regimens in chronically infected hosts.
Collapse
Affiliation(s)
- Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
25
|
Knuschke T, Rotan O, Bayer W, Kollenda S, Dickow J, Sutter K, Hansen W, Dittmer U, Lang KS, Epple M, Buer J, Westendorf AM. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8 + T Cell Responses During Chronic Retroviral Infection. Front Immunol 2018; 9:614. [PMID: 29740425 PMCID: PMC5924795 DOI: 10.3389/fimmu.2018.00614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022] Open
Abstract
T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP) nanoparticle (NP)-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I) are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL) and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/−) or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Kollenda
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Julia Dickow
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl S Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Moore TC, Messer RJ, Hasenkrug KJ. Regulatory T cells suppress virus-specific antibody responses to Friend retrovirus infection. PLoS One 2018; 13:e0195402. [PMID: 29614127 PMCID: PMC5882174 DOI: 10.1371/journal.pone.0195402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Recent vaccine studies with experimental antigens have shown that regulatory T cells (Tregs) constrain the magnitude of B cell responses. This homeostatic Treg-mediated suppression is thought to reduce the potential of germinal center (GC) responses to generate autoreactive antibodies. However, essentially opposite results were observed in live influenza infections where Tregs promoted B cell and antibody responses. Thus, it remains unclear whether Tregs dampen or enhance B cell responses, especially during live viral infections. Here, we use mice infected with Friend retrovirus (FV), which induces a robust expansion of Tregs. Depletion of Tregs led to elevated activation, proliferation, and class switching of B cells. In addition, Treg depletion enhanced the production of virus-specific and virus-neutralizing antibodies and reduced FV viremia. Thus, in contrast to influenza infection, Tregs either directly or indirectly suppress B cells during mouse retroviral infection indicating that the ultimate effect of Tregs on B cell responses is specific to the particular infectious agent.
Collapse
Affiliation(s)
- Tyler C. Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
28
|
Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection. J Virol 2017; 91:JVI.01263-17. [PMID: 28904197 DOI: 10.1128/jvi.01263-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 has shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with, gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially affected cytokine production by cells in response to staphylococcal enterotoxin B stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, interleukin-2 (IL-2), and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together, these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cells being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important for limiting damage by the immune system during acute infections. In chronic infections, however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their influence on CD4 T cells remains unclear. We assessed the expression of inhibitory receptors on HIV-specific CD4 T cells and their relationship with T cell functionality. We uncovered differences in inhibitory receptor expression depending on the CD4 T cell function. We also found differences in functionality of CD4 T cells following blocking of different inhibitory receptors, and we confirmed our results in a Friend virus retroviral model of infection in mice. Our results show that inhibitory receptor expression on CD4 T cells is linked to CD4 T cell functionality and could be sculpted by blockade of specific inhibitory receptors. These data reveal exciting possibilities for the development of novel treatments and immunotherapeutics.
Collapse
|
29
|
Abstract
Regulatory T cells (Tregs) are immunosuppressive cells of the immune system that control autoimmune reactivity. Tregs also respond during immune reactions to infectious agents in order to limit immunopathological damage from potent effectors such as CD8+ cytolytic T lymphocytes. We have used the Friend virus (FV) model of retroviral infection in mice to investigate how viral infections induce Tregs. During acute FV infection, there is significant activation and expansion of thymus-derived (natural) Tregs that suppress virus-specific CD8+ T cell responses. Unlike conventional T cells, the responding Tregs are not virus specific, so the mechanisms that induce their expansion are of great interest. We now show that B cells provide essential signals for Treg expansion during FV infection. Treg responses are greatly diminished in B cell-deficient mice but can be restored by adoptive transfers of B cells at the time of infection. The feeble Treg responses in B cell-deficient mice are associated with enhanced virus-specific CD8+ T cell responses and accelerated virus control during the first 2 weeks of infection. In vitro experiments demonstrated that B cells promote Treg activation and proliferation through a glucocorticoid-induced receptor superfamily member 18 (GITR) ligand-dependent mechanism. Thus, B cells play paradoxically opposing roles during FV infection. They provide proliferative signals to immunsosuppressive Tregs, which slows early virus control, and they also produce virus-specific antibodies, which are essential for long-term virus control. When infectious agents invade a host, numerous immunological mechanisms are deployed to limit their replication, neutralize their spread, and destroy the host cells harboring the infection. Since immune responses also have a strong capacity to damage host cells and tissues, their magnitude, potency, and duration are under regulatory control. Regulatory T cells are an important component of this control, and the mechanisms that induce them to respond and exert immunosuppressive regulation are of great interest. In the current report, we show that B cells, the cells responsible for making pathogen-specific antibodies, are also involved in promoting the expansion of regulatory T cells during a retroviral infection. In vitro studies demonstrated that they do so via stimulation of the Tregs through interactions between cell surface molecules: GITR interactions with its ligand (GITRL) on B cells and GITR on regulatory T cells. These findings point the way toward therapeutics to better treat infections and autoimmune diseases.
Collapse
|
30
|
Interference of retroviral envelope with vaccine-induced CD8 + T cell responses is relieved by co-administration of cytokine-encoding vectors. Retrovirology 2017; 14:28. [PMID: 28449719 PMCID: PMC5408827 DOI: 10.1186/s12977-017-0352-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Retroviral envelope (Env) proteins are known to exhibit immunosuppressive properties, which become apparent not only in retroviral infections, but also in gene-based immunizations using retroviral immunogens, where envelope interferes with the induction of CD8+ T cell responses towards another, simultaneously or subsequently delivered, immunogen. Results In the Friend retrovirus mouse model, immunization with a plasmid encoding the Friend murine leukemia virus (F-MuLV) Leader-Gag protein resulted in induction of a strong GagL85–93-specific CD8+ T cell response, while the response was completely abrogated by co-immunization with an F-MuLV Env-encoding plasmid. In order to overcome this interference of retroviral envelope, we employed plasmids encoding the cytokines interleukin (IL) 1β, IL2, IL12, IL15, IL21, IL28A or granulocyte–macrophage colony-stimulating factor (GM-CSF) as genetic adjuvants. Co-application of plasmids encoding IL2, IL12, IL21, IL28A and especially GM-CSF rescued the induction of GagL85–93-specific CD8+ T cells in mice vaccinated with FV Leader-Gag and Env. Mice that were immunized with plasmids encoding Leader-Gag and Env and the cytokines IL1β, IL12, IL15, IL28A or GM-CSF, but not Leader-Gag and Env without any cytokine, showed significantly reduced viral loads upon a high-dose Friend virus challenge infection. Conclusions Our data demonstrate the potency of cytokine-encoding vectors as adjuvants and immune modulators in composite vaccines for anti-retroviral immunization. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0352-7) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Penaloza-MacMaster P. CD8 T-cell regulation by T regulatory cells and the programmed cell death protein 1 pathway. Immunology 2017; 151:146-153. [PMID: 28375543 DOI: 10.1111/imm.12739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
The primary function of the immune system is to protect the host from infectious microorganisms and cancers. However, a major component of the immune response involves the direct elimination of cells in the body and the induction of systemic inflammation, which may result in life-threatening immunopathology. Therefore, the immune system has developed complex mechanisms to regulate itself with a specialized subset of CD4 T lymphocytes (referred to as regulatory T cells) and immune checkpoint pathways, such as the programmed cell death protein 1 pathway. These immune regulatory mechanisms can be exploited by pathogens and tumours to establish persistence in the host, warranting a deeper understanding of how to fine-tune immune responses during these chronic diseases. Here, I discuss various features of immune regulatory pathways and what important aspects must be considered in the next generation of therapies to reverse immune exhaustion, understanding that this process is a natural mechanism to prevent the host from destroying itself.
Collapse
Affiliation(s)
- Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
32
|
Bhattacharyya M, Penaloza-MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology 2017; 151:340-348. [PMID: 28295248 DOI: 10.1111/imm.12734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
T regulatory (Treg) cells are critical for preventing autoimmunity and suppressing immune responses during cancer and chronic infection. However, the role of Treg cells in the generation of vaccine-induced immune memory remains ill-defined. Using the mouse model of lymphocytic choriomeningitis virus (LCMV) infection, we demonstrate that transient absence of Treg cells during effector to memory CD8 T-cell transition results in a permanent impairment in the maintenance, function and recall capacity of CD8 T cells. Memory CD8 T cells in mice that were transiently depleted of Treg cells exhibited defective up-regulation of memory markers with a significant decrease in polyfunctionality. However, Treg-depleted mice showed no significant change in CD4 T-cell responses, and antibody levels relative to control. Altogether, this study evaluates the role of Treg cells in the formation of immune memory and demonstrates an important role for Treg cells in promoting memory CD8 T-cell differentiation and vaccine-induced immune protection against intracellular pathogens.
Collapse
Affiliation(s)
- Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
33
|
Ellis JS, Braley-Mullen H. Mechanisms by Which B Cells and Regulatory T Cells Influence Development of Murine Organ-Specific Autoimmune Diseases. J Clin Med 2017; 6:jcm6020013. [PMID: 28134752 PMCID: PMC5332917 DOI: 10.3390/jcm6020013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Experiments with B cell-deficient (B−/−) mice indicate that a number of autoimmune diseases require B cells in addition to T cells for their development. Using B−/− Non-obese diabetic (NOD) and NOD.H-2h4 mice, we demonstrated that development of spontaneous autoimmune thyroiditis (SAT), Sjogren’s syndrome and diabetes do not develop in B−/− mice, whereas all three diseases develop in B cell-positive wild-type (WT) mice. B cells are required early in life, since reconstitution of adult mice with B cells or autoantibodies did not restore their ability to develop disease. B cells function as important antigen presenting cells (APC) to initiate activation of autoreactive CD4+ effector T cells. If B cells are absent or greatly reduced in number, other APC will present the antigen, such that Treg are preferentially activated and effector T cells are not activated. In these situations, B−/− or B cell-depleted mice develop the autoimmune disease when T regulatory cells (Treg) are transiently depleted. This review focuses on how B cells influence Treg activation and function, and briefly considers factors that influence the effectiveness of B cell depletion for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| | - Helen Braley-Mullen
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
- Department of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
34
|
Dietze KK, Dittmer U, Koudaimi DK, Schimmer S, Reitz M, Breloer M, Hartmann W. Filariae-Retrovirus Co-infection in Mice is Associated with Suppressed Virus-Specific IgG Immune Response and Higher Viral Loads. PLoS Negl Trop Dis 2016; 10:e0005170. [PMID: 27923052 PMCID: PMC5140070 DOI: 10.1371/journal.pntd.0005170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Worldwide more than 2 billion people are infected with helminths, predominantly in developing countries. Co-infections with viruses such as human immunodeficiency virus (HIV) are common due to the geographical overlap of these pathogens. Helminth and viral infections induce antagonistic cytokine responses in their hosts. Helminths shift the immune system to a type 2-dominated immune response, while viral infections skew the cytokine response towards a type 1 immune response. Moreover, chronic helminth infections are often associated with a generalized suppression of the immune system leading to prolonged parasite survival, and also to a reduced defence against unrelated pathogens. To test whether helminths affect the outcome of a viral infection we set up a filarial/retrovirus co-infection model in C57BL/6 mice. Although Friend virus (FV) infection altered the L. sigmodontis-specific immunoglobulin response towards a type I associated IgG2 isotype in co-infected mice, control of L. sigmodontis infection was not affected by a FV-superinfection. However, reciprocal control of FV infection was clearly impaired by concurrent L. sigmodontis infection. Spleen weight as an indicator of pathology and viral loads in spleen, lymph nodes (LN) and bone marrow (BM) were increased in L. sigmodontis/FV-co-infected mice compared to only FV-infected mice. Numbers of FV-specific CD8+ T cells as well as cytokine production by CD4+ and CD8+ cells were alike in co-infected and FV-infected mice. Increased viral loads in co-infected mice were associated with reduced titres of neutralising FV-specific IgG2b and IgG2c antibodies. In summary our findings suggest that helminth infection interfered with the control of retroviral infection by dampening the virus-specific neutralising antibody response. The coincidental infection of a host with two different pathogens is widespread in low-income countries. Regions where helminth infections are endemic strongly overlap with areas where the incidence of viral infections such as HIV is high. HIV is a major public health issue causing more than 1 million deaths per year. To analyse the impact of a pre-existing helminth infection on a viral infection we established a helminth/retrovirus co-infection mouse model. Mice that were first infected with Litomosoides sigmodontis and subsequently with a murine retrovirus showed a more severe course of virus infection, i.e. exaggerated splenomegaly and higher viral loads. Since different lymphocytes such as B and T cells contribute to viral control we analysed the cellular and humoral immune response. While T cell responses were similar in co-infected and virus-infected mice, we observed reduced titres of virus-specific antibodies in co-infected mice. Our results suggest that helminth infection interfered with viral control by dampening the virus-specific antibody response. The viral infection itself altered the humoral immune response against L. sigmodontis without changing the worm burden. In summary, our data highlight the importance of deworming programs or vaccines against helminths in developing countries where the incidence of helminth/HIV co-infections is high.
Collapse
Affiliation(s)
- Kirsten Katrin Dietze
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Karim Koudaimi
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martina Reitz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
35
|
Knuschke T, Rotan O, Bayer W, Sokolova V, Hansen W, Sparwasser T, Dittmer U, Epple M, Buer J, Westendorf AM. Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection. Retrovirology 2016; 13:24. [PMID: 27076190 PMCID: PMC4831142 DOI: 10.1186/s12977-016-0258-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Background Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8+ or CD4+ T cell epitope peptides (GagL85–93 or Env gp70123–141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4+ and CD8+ effector T cells was analysed and the viral loads were determined. Results Therapeutic vaccination of chronically FV-infected mice with functionalized CaP nanoparticles transiently reactivated cytotoxic CD8+ T cells and significantly reduced the viral loads. Transient ablation of Tregs during nanoparticle-based therapeutic vaccination strongly enhanced anti-viral immunity and further decreased viral burden. Conclusion Our data illustrate a crucial role for CD4+ Foxp3+ Tregs in the suppression of anti-viral T cell responses during therapeutic vaccination against chronic retroviral infection. Thus, the combination of transient Treg ablation and therapeutic nanoparticle-based vaccination confers robust and sustained anti-viral immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Medicine, 30625, Hannover, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
36
|
Immune Surveillance of the CNS following Infection and Injury. Trends Immunol 2016; 36:637-650. [PMID: 26431941 DOI: 10.1016/j.it.2015.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair.
Collapse
|
37
|
Dietze KK, Schimmer S, Kretzmer F, Wang J, Lin Y, Huang X, Wu W, Wang B, Lu M, Dittmer U, Yang D, Liu J. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model. PLoS One 2016; 11:e0151717. [PMID: 26986976 PMCID: PMC4795771 DOI: 10.1371/journal.pone.0151717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Lin
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xuan Huang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
38
|
Abstract
Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8(+) T cell functions, and specialization of CD4(+) T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications.
Collapse
Affiliation(s)
- Elina I Zuniga
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Monica Macal
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Gavin M Lewis
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - James A Harker
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
39
|
O'Connor MA, Vella JL, Green WR. Reciprocal relationship of T regulatory cells and monocytic myeloid-derived suppressor cells in LP-BM5 murine retrovirus-induced immunodeficiency. J Gen Virol 2015; 97:509-522. [PMID: 26253145 DOI: 10.1099/jgv.0.000260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunomodulatory cellular subsets, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs), contribute to the immunosuppressive tumour microenvironment and are targets of immunotherapy, but their role in retroviral-associated immunosuppression is less well understood. Due to known crosstalk between Tregs and MDSCs in the tumour microenvironment, and also their hypothesized involvement during human immunodeficiency virus/simian immunodeficiency virus infection, studying the interplay between these immune cells during LP-BM5 retrovirus-induced murine AIDS is of interest. IL-10-producing FoxP3+ Tregs expanded after LP-BM5 infection. Following in vivo adoptive transfer of natural Treg (nTreg)-depleted CD4+T-cells, and subsequent LP-BM5 retroviral infection, enriched monocytic MDSCs (M-MDSCs) from these nTreg-depleted mice displayed altered phenotypic subsets. In addition, M-MDSCs from LP-BM5-infected nTreg-depleted mice exhibited increased suppression of T-cell, but not B-cell, responses, compared with M-MDSCs derived from non-depleted LP-BM5-infected controls. Additionally, LP-BM5-induced M-MDSCs modulated the production of IL-10 by FoxP3+ Tregs in vitro. These collective data highlight in vitro and for the first time, to the best of our knowledge, in vivo reciprocal modulation between retroviral-induced M-MDSCs and Tregs, and may provide insight into the immunotherapeutic targeting of such regulatory cells during retroviral infection.
Collapse
Affiliation(s)
- Megan A O'Connor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jennifer L Vella
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
40
|
Littwitz-Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology 2015. [PMID: 26220086 PMCID: PMC4518534 DOI: 10.1186/s12977-015-0191-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background It is well established that effector T cell responses are crucial for the control of most virus infections, but they are often tightly controlled by regulatory T cells (Treg) to minimize immunopathology. NK cells also contribute to virus control but it is not known if their antiviral effect is influenced by virus-induced Tregs as well. We therefore analyzed whether antiretroviral NK cell functions are inhibited by Tregs during an acute Friend retrovirus infection of mice. Results Selective depletion of Tregs by using the transgenic DEREG mouse model resulted in improved NK cell proliferation, maturation and effector cell differentiation. Suppression of NK cell functions depended on IL-2 consumption by Tregs, which could be overcome by specific NK cell stimulation with an IL-2/anti-IL-2 mAb complex. Conclusions The current study demonstrates that virus-induced Tregs indeed inhibit antiviral NK cell responses and describes a targeted immunotherapy that can abrogate the suppression of NK cells by Tregs. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ilseyar Akhmetzyanova
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Cecilia Vallet
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sandra Francois
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ulf Dittmer
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Kathrin Gibbert
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
41
|
Jiao YM, Liu CE, Luo LJ, Zhu WJ, Zhang T, Zhang LG, Su LS, Li HJ, Wu H. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity. Int J Infect Dis 2015; 37:42-9. [PMID: 26095899 DOI: 10.1016/j.ijid.2015.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A major question when attempting to eradicate and treat HIV-1 infection is how to reactivate latent proviruses. Stimulating HIV-1-specific cytolytic T lymphocytes (CTL) has been shown to facilitate the elimination of the latent viral reservoir after viral reactivation. Regulatory T (Treg) cells are known to be capable of lowering both HIV-specific immunoreactions and general immune activation during HIV-1 infection. It was hypothesized that the depletion of Treg cells could increase the HIV-1-specific cytolytic T lymphocyte response and reactivate HIV-1 p24 production. METHODS Treg cells were isolated by isolation kit according to the surface marker of Treg cells. Real-time PCR method was used to quantify HIV-1 DNA. P24 antigens in the cell culture supernatant was done by ELISA. Cells activation and HIV specific HIV-1 CD8+ T cells were analyses using a FACSCalibur flow cytometer and CELLQUEST software. RESULTS This study included both HIV-infected patients who were antiviral treatment-naïve and patients with sustained viral responses to antiretroviral therapy (ART) for 1 or 5 years. It was found that the HIV-DNA levels in Treg cells were approximately 10-fold higher than those in non-Treg CD4+ cells and that the depletion of Treg cells could enhance the frequency of HIV-1-specific CTL and immune activation after 5 years of effective ART. CONCLUSIONS CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.
Collapse
Affiliation(s)
- Yan-Mei Jiao
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Cui-E Liu
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Li-Jing Luo
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Wei-Jun Zhu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Beijing, China
| | - Tong Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Li-Guo Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Li-Shan Su
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, NC, USA
| | - Hong-Jun Li
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China.
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
42
|
Ellis JS, Braley-Mullen H. Regulatory T cells in B-cell-deficient and wild-type mice differ functionally and in expression of cell surface markers. Immunology 2015; 144:598-610. [PMID: 25318356 DOI: 10.1111/imm.12410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) with chronic inflammation of thyroids by T and B cells. B-cell deficient (B(-/-) ) mice are resistant to SAT but develop SAT if regulatory T (Treg) cells are transiently depleted. We established a transfer model using splenocytes from CD28(-/-) B(-/-) mice (effector cells and antigen-presenting cells) cultured with or without sorted Treg cells from Foxp3-GFP wild-type (WT) or B(-/-) mice. After transfer to mice lacking T cells, mice given Treg cells from B(-/-) mice had significantly lower SAT severity scores than mice given Treg cells from WT mice, indicating that Treg cells in B(-/-) mice are more effective suppressors of SAT than Treg cells in WT mice. Treg cells from B(-/-) mice differ from WT Treg cells in expression of CD27, tumour necrosis factor receptor (TNFR) II p75, and glucocorticoid-induced TNFR-related protein (GITR). After transient depletion using anti-CD25 or diphtheria toxin, the repopulating Treg cells in B(-/-) mice lack suppressor function, and expression of CD27, GITR and p75 is like that of WT Treg cells. If B(-/-) Treg cells develop with B cells in bone marrow chimeras, their phenotype is like that of WT Treg cells. Addition of B cells to cultures of B(-/-) Treg and T effector cells abrogates their suppressive function and their phenotype is like that of WT Treg cells. These results establish for the first time that Treg cells in WT and B(-/-) mice differ both functionally and in expression of particular cell surface markers. Both properties are altered after transient depletion and repopulation of B(-/-) Treg cells, and by the presence of B cells during Treg cell development or during interaction with effector T cells.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Medicine, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
43
|
Park HJ, Park JS, Jeong YH, Son J, Ban YH, Lee BH, Chen L, Chang J, Chung DH, Choi I, Ha SJ. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5801-11. [PMID: 25934860 DOI: 10.4049/jimmunol.1401936] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/04/2015] [Indexed: 01/07/2023]
Abstract
Regulatory T (Treg) cells act as terminators of T cell immuniy during acute phase of viral infection; however, their role and suppressive mechanism in chronic viral infection are not completely understood. In this study, we compared the phenotype and function of Treg cells during acute or chronic infection with lymphocytic choriomeningitis virus. Chronic infection, unlike acute infection, led to a large expansion of Treg cells and their upregulation of programmed death-1 (PD-1). Treg cells from chronically infected mice (chronic Treg cells) displayed greater suppressive capacity for inhibiting both CD8(+) and CD4(+) T cell proliferation and subsequent cytokine production than those from naive or acutely infected mice. A contact between Treg and CD8(+) T cells was necessary for the potent suppression of CD8(+) T cell immune response. More importantly, the suppression required cell-specific expression and interaction of PD-1 on chronic Treg cells and PD-1 ligand on CD8(+) T cells. Our study defines PD-1 upregulated on Treg cells and its interaction with PD-1 ligand on effector T cells as one cause for the potent T cell suppression and proposes the role of PD-1 on Treg cells, in addition to that on exhausted T cells, during chronic viral infection.
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Joon Seok Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Yun Hee Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Jimin Son
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Byoung-Hee Lee
- Division of Biological Resources Coordination, National Institute of Biological Resources, Environmental Research Complex, Incheon 404-170, Korea
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jun Chang
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Doo Hyun Chung
- Department of Pathology, College of Medicine, Seoul National University, Seoul 110-799, Korea; and
| | - Inhak Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 633-165, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea;
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly because of their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. RECENT FINDINGS Although nonhuman primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV-infected and simian immunodeficiency virus (SIV)-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining programmed death-1 (PD-1) blockade with suppressive antiretroviral therapy provide further support to the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon antiretroviral therapy interruption. Future in-vivo studies should build on recent in-vitro data, supporting the simultaneous targeting of multiple regulators of cell exhaustion. SUMMARY In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice.
Collapse
|
45
|
Woodchuck hepatitis virus core antigen-based DNA and protein vaccines induce qualitatively different immune responses that affect T cell recall responses and antiviral effects. Virology 2014; 475:56-65. [PMID: 25462346 DOI: 10.1016/j.virol.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
Abstract
T helper type 1 (Th1) immunity was considered to play a dominant role in viral clearance of hepadnaviral infection. However, pre-primed Th2 type responses were able to efficiently control hepadnaviral infection in animal models. We investigated how pre-primed Th1/2 responses control hepadnaviral replication using the newly established mouse models. DNA (pWHcIm, pCTLA-4-C) and protein vaccines based on the nucleocapsid protein (WHcAg) of woodchuck hepatitis virus (WHV) primed specific immune responses with distinct features. The pre-primed responses determined the characteristics of recall responses if challenged with a WHcAg-expressing adenoviral vector. Vaccination with pWHcIm and pCTLA4-C facilitated viral control in the hydrodynamic injection model and reduced WHV loads by about 3 and 2 logs in WHV-transgenic mice, respectively, despite of different kinetics of specific CD8+ T cell responses. Thus, pre-primed Th2-biased responses facilitate the development of CD8+ T cell responses in mice compared with naïve controls and thereby confer better viral control.
Collapse
|
46
|
Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning CJ, Hansen W, Dittmer U, Epple M, Buer J, Westendorf AM. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1787-98. [DOI: 10.1016/j.nano.2014.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 01/31/2023]
|
47
|
Mayer CT, Lahl K, Milanez-Almeida P, Watts D, Dittmer U, Fyhrquist N, Huehn J, Kopf M, Kretschmer K, Rouse B, Sparwasser T. Advantages of Foxp3(+) regulatory T cell depletion using DEREG mice. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:162-5. [PMID: 25505550 PMCID: PMC4257761 DOI: 10.1002/iid3.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022]
Abstract
Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3(+) Tregs selectively express eGFP and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about important considerations such as DT toxicity, which affects any mouse strain treated with DT, and Treg rebound after depletion. Additionally, we point out the specific advantages of BAC-transgenic DEREG mice including their suitability to study organ-specific autoimmunity such as type I diabetes. Moreover, we discuss recent insights into the role of Tregs in viral infections. In summary, DEREG mice are an important tool to study Treg-mediated tolerance and its therapeutic circumvention.
Collapse
Affiliation(s)
- Christian T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Katharina Lahl
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine Lane Building, Mailcode 5324, Stanford, CA, 94305, USA ; The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Pedro Milanez-Almeida
- Experimental Immunology, Helmholtz Centre for Infection Research Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Deepika Watts
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden Fetscherstr. 105, 01307, Dresden, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen Virchowstr.179, 45122, Essen, Germany
| | - Nanna Fyhrquist
- Unit of Systems Toxicology, Finnish Institute of Occupational Health Topeliuksenkatu 41b, 00250, Helsinki, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Manfred Kopf
- Institute for Molecular Health Sciences, Swiss Federal Institute of Technology Zuerich Otto-Stern-Weg 7, 8093, Zuerich, Switzerland
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden Fetscherstr. 105, 01307, Dresden, Germany ; Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD) Fetscherstr. 74, 01307, Dresden, Germany
| | - Barry Rouse
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee Knoxville, TN, 37996, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| |
Collapse
|
48
|
Martinez NE, Karlsson F, Sato F, Kawai E, Omura S, Minagar A, Grisham MB, Tsunoda I. Protective and detrimental roles for regulatory T cells in a viral model for multiple sclerosis. Brain Pathol 2014; 24:436-51. [PMID: 24417588 PMCID: PMC4097993 DOI: 10.1111/bpa.12119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) has been proposed to be an immune-mediated disease in the central nervous system (CNS) that can be triggered by virus infections. In Theiler's murine encephalomyelitis virus (TMEV) infection, during the first week (acute stage), mice develop polioencephalomyelitis. After 3 weeks (chronic stage), mice develop immune-mediated demyelination with virus persistence, which has been used as a viral model for MS. Regulatory T cells (Tregs) can suppress inflammation, and have been suggested to be protective in immune-mediated diseases, including MS. However, in virus-induced inflammatory demyelination, although Tregs can suppress inflammation, preventing immune-mediated pathology, Tregs may also suppress antiviral immune responses, leading to more active viral replication and/or persistence. To determine the role and potential translational usage of Tregs in MS, we treated TMEV-infected mice with ex vivo generated induced Tregs (iTregs) on day 0 (early) or during the chronic stage (therapeutic). Early treatment worsened clinical signs during acute disease. The exacerbation of acute disease was associated with increased virus titers and decreased immune cell recruitment in the CNS. Therapeutic iTreg treatment reduced inflammatory demyelination during chronic disease. Immunologically, iTreg treatment increased interleukin-10 production from B cells, CD4(+) T cells and dendritic cells, which may contribute to the decreased CNS inflammation.
Collapse
Affiliation(s)
- Nicholas E. Martinez
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Fridrik Karlsson
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Fumitaka Sato
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Eiichiro Kawai
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Seiichi Omura
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Alireza Minagar
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLA
| | - Matthew. B. Grisham
- Department of Immunology and Molecular MicrobiologyTexas Tech University Health Sciences CenterLubbockTX
| | - Ikuo Tsunoda
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
49
|
Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, O'Mara L, Yang S, Konieczny BT, Sharpe AH, Freeman GJ, Rudensky AY, Ahmed R. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med 2014; 211:1905-18. [PMID: 25113973 PMCID: PMC4144726 DOI: 10.1084/jem.20132577] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/10/2014] [Indexed: 12/28/2022] Open
Abstract
Regulatory T (T reg) cells are critical for preventing autoimmunity mediated by self-reactive T cells, but their role in modulating immune responses during chronic viral infection is not well defined. To address this question and to investigate a role for T reg cells in exhaustion of virus-specific CD8 T cells, we depleted T reg cells in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). T reg cell ablation resulted in 10-100-fold expansion of functional LCMV-specific CD8 T cells. Rescue of exhausted CD8 T cells was dependent on cognate antigen, B7 costimulation, and conventional CD4 T cells. Despite the striking recovery of LCMV-specific CD8 T cell responses, T reg cell depletion failed to diminish viral load. Interestingly, T reg cell ablation triggered up-regulation of the molecule programmed cell death ligand-1 (PD-L1), which upon binding PD-1 on T cells delivers inhibitory signals. Increased PD-L1 expression was observed especially on LCMV-infected cells, and combining T reg cell depletion with PD-L1 blockade resulted in a significant reduction in viral titers, which was more pronounced than that upon PD-L1 blockade alone. These results suggest that T reg cells effectively maintain CD8 T cell exhaustion, but blockade of the PD-1 inhibitory pathway is critical for elimination of infected cells.
Collapse
Affiliation(s)
- Pablo Penaloza-MacMaster
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Alice O Kamphorst
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Andreas Wieland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Smita S Iyer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Erin E West
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Leigh O'Mara
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Shu Yang
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322 Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, China
| | - Bogumila T Konieczny
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Arlene H Sharpe
- Department of Microbiology and Immunology, and Department of Medical Oncology and Dana Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Gordon J Freeman
- Department of Microbiology and Immunology, and Department of Medical Oncology and Dana Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program, Sloan-Kettering Institute for Cancer Research, and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Immunology Program, Sloan-Kettering Institute for Cancer Research, and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Howard Hughes Medical Institute, Immunology Program, Sloan-Kettering Institute for Cancer Research, and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
50
|
Joedicke JJ, Myers L, Carmody AB, Messer RJ, Wajant H, Lang KS, Lang PA, Mak TW, Hasenkrug KJ, Dittmer U. Activated CD8+ T cells induce expansion of Vβ5+ regulatory T cells via TNFR2 signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:2952-60. [PMID: 25098294 DOI: 10.4049/jimmunol.1400649] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vβ5(+) regulatory T cells (Tregs), which are specific for a mouse endogenous retroviral superantigen, become activated and proliferate in response to Friend virus (FV) infection. We previously reported that FV-induced expansion of this Treg subset was dependent on CD8(+) T cells and TNF-α, but independent of IL-2. We now show that the inflammatory milieu associated with FV infection is not necessary for induction of Vβ5(+) Treg expansion. Rather, it is the presence of activated CD8(+) T cells that is critical for their expansion. The data indicate that the mechanism involves signaling between the membrane-bound form of TNF-α on activated CD8(+) T cells and TNFR2 on Tregs. CD8(+) T cells expressing membrane-bound TNF-α but no soluble TNF-α remained competent to induce strong Vβ5(+) Treg expansion in vivo. In addition, Vβ5(+) Tregs expressing only TNFR2 but no TNFR1 were still responsive to expansion. Finally, treatment of naive mice with soluble TNF-α did not induce Vβ5(+) Treg expansion, but treatment with a TNFR2-specific agonist did. These results reveal a new mechanism of intercellular communication between activated CD8(+) T cell effectors and Tregs that results in the activation and expansion of a Treg subset that subsequently suppresses CD8(+) T cell functions.
Collapse
Affiliation(s)
- Jara J Joedicke
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Karl S Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany; Department of Molecular Medicine II, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany; and
| | - Tak W Mak
- Department of Medical Biophysics and Immunology, The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840;
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany;
| |
Collapse
|