1
|
Jayaraman S, Urdaneta A, Fandrich M, Gursky O. Serum Amyloid A Binding to Glycosaminoglycans is Synergistic with Amyloid Formation: Therapeutic Targeting in the Inflammation-linked Amyloidosis. J Mol Biol 2025; 437:169007. [PMID: 39954777 DOI: 10.1016/j.jmb.2025.169007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Serum amyloid A (SAA), a small lipophilic plasma protein elevated in inflammation, is a precursor of amyloid A (AA) amyloidosis, the major life-threatening complication of chronic inflammation in animals and humans. Although heparan sulfate (HS) is a potent amyloid agonist, particularly in AA amyloidosis, therapeutic targeting of SAA-HS interactions using a small-molecule HS/heparin decoy was unsuccessful. To understand molecular underpinnings, we used recombinant lipid-free human and murine SAA1 and human SAA2 to explore their interactions with various glycosaminoglycans at pH 5.5-7.4 during amyloid formation, from native protein to amyloid oligomers and fibrils. Effects of pH and glycosaminoglycan sulfation/charge supported by prior computational studies indicate electrostatic origin of SAA-glycosaminoglycan interactions. HS/heparin can promote amyloidogenesis by inducing non-native β-sheet and apparently causing liquid droplet formation in SAA in solution. Structural and binding studies by spectroscopy and ELISA reveal previously unknown synergy between amyloid formation and heparin/HS binding by SAA. We propose that this synergy potentially extends to other protein amyloids and stems from longitudinal binding of HS polyanions to basic residue arrays on amyloid oligomers or fibrils. This binding mode explains our finding that a minimal heparin chain length exceeding 20 monosaccharides is necessary to compete with HS for binding to amyloid oligomers. The results help explain prior failure of a small-molecule drug in targeting of SAA-HS interactions and consider alternative HS-targeting approaches for AA and, potentially, other amyloid diseases.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston MA, USA.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Marcus Fandrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston MA, USA
| |
Collapse
|
2
|
Abraham CB, Lewkowicz E, Gursky O, Straub JE. Elucidating the Mechanism of Recognition and Binding of Heparin to Amyloid Fibrils of Serum Amyloid A. Biochemistry 2024. [PMID: 39688935 DOI: 10.1021/acs.biochem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Amyloid diseases feature pathologic deposition of normally soluble proteins and peptides as insoluble fibrils in vital organs. Amyloid fibrils co-deposit with various nonfibrillar components including heparan sulfate (HS), a glycosaminoglycan that promotes amyloid formation in vitro for many unrelated proteins. HS-amyloid interactions have been proposed as a therapeutic target for inflammation-linked amyloidosis wherein N-terminal fragments of serum amyloid A (SAA) protein deposit in the kidney and liver. The structural basis for these interactions is unclear. Here, we exploit the high-resolution cryoelectron microscopy (cryo-EM) structures of ex vivo murine and human SAA fibrils in a computational study employing molecular docking, Brownian dynamics simulations, and molecular dynamics simulations to elucidate how heparin, a highly sulfated HS mimetic, recognizes and binds to amyloid protein fibrils. Our results demonstrate that negatively charged heparin chains bind to linear arrays of uncompensated positively charged basic residues along the spines of amyloid fibrils facilitated by electrostatic steering. The predicted heparin binding sites match the location of unidentified densities observed in cryo-EM maps of SAA amyloids, suggesting that these extra densities represent bound HS. Since HS is constitutively found in various amyloid deposits, our results suggest a common mechanism for HS-amyloid recognition and binding.
Collapse
Affiliation(s)
- Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Petersen I, Godec A, Ranjbarian F, Hofer A, Mirabello C, Hultqvist G. A charged tail on anti-α-Synuclein antibodies does not enhance their affinity to α-Synuclein fibrils. PLoS One 2024; 19:e0308521. [PMID: 39208301 PMCID: PMC11361660 DOI: 10.1371/journal.pone.0308521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The aggregation of α-Synuclein (αSyn) is strongly linked to neuronal death in Parkinson's disease and other synucleinopathies. The spreading of aggregated αSyn between neurons is at least partly dependent on electrostatic interactions between positively charged stretches on αSyn fibrils and the negatively charged heparan sulphate proteoglycans on the cell surface. To date there is still no therapeutic option available that could halt the progression of Parkinson's disease and one of the major limitations is likely the relatively low proportion of αSyn aggregates accessible to drugs in the extracellular space. Here, we investigated whether a negatively charged peptide tail fused to the αSyn aggregate-specific antibodies SynO2 and 9E4 could enhance the antibodies' avidity to αSyn aggregates in order to improve their potential therapeutic effect through inhibiting cell-to-cell spreading and enhancing the clearance of extracellular aggregates. We performed ELISAs to test the avidity to αSyn aggregates of both monovalent and bivalent antibody formats with and without the peptide tail. Our results show that the addition of the negatively charged peptide tail decreased the binding strength of both antibodies to αSyn aggregates at physiological salt conditions, which can likely be explained by intermolecular repulsions between the tail and the negatively charged C-terminus of αSyn. Additionally, the tail might interact with the paratopes of the SynO2 antibody abolishing its binding to αSyn aggregates. Conclusively, our peptide tail did not fulfil the required characteristics to improve the antibodies' binding to αSyn aggregates. Fine-tuning the design of the peptide tail to avoid its interaction with the antibodies' CDR and to better mimic relevant characteristics of heparan sulphates for αSyn aggregate binding may help overcome the limitations observed in this study.
Collapse
Affiliation(s)
- Inga Petersen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ana Godec
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, Linköping, Sweden
| | | |
Collapse
|
4
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
5
|
Verona G, Raimondi S, Canetti D, Mangione PP, Marchese L, Corazza A, Lavatelli F, Gillmore JD, Taylor GW, Bellotti V, Giorgetti S. Degradation versus fibrillogenesis, two alternative pathways modulated by seeds and glycosaminoglycans. Protein Sci 2024; 33:e4931. [PMID: 38380705 PMCID: PMC10880434 DOI: 10.1002/pro.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.
Collapse
Affiliation(s)
- Guglielmo Verona
- Centre for AmyloidosisUniversity College LondonLondonUK
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Sara Raimondi
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Diana Canetti
- Centre for AmyloidosisUniversity College LondonLondonUK
| | - P. Patrizia Mangione
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | - Alessandra Corazza
- Department of Medicine (DAME)University of UdineUdineItaly
- Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Francesca Lavatelli
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | | | - Vittorio Bellotti
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Sofia Giorgetti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
6
|
Moreno-Gázquez I, Pérez-Palacios R, Abengochea-Quílez L, Lahuerta Pueyo C, Roteta Unceta Barrenechea A, Andrés Gracia A, Aibar Arregui MA, Menao Guillén S. Targeted sequencing of selected functional genes in patients with wild-type transthyretin amyloidosis. BMC Res Notes 2023; 16:249. [PMID: 37784196 PMCID: PMC10546623 DOI: 10.1186/s13104-023-06491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVE Wild-type transthyretin (ATTRwt) amyloidosis is caused by the misfolding and deposition of the transthyretin protein (TTR) in the absence of mutations in the TTR gene. Studies regarding the variant form of ATTR amyloidosis (ATTRv) suggest that the presence of single-nucleotide polymorphisms (SNP) in genes other than the TTR, may influence the development of the disease. However, other genetic factors involved in the aetiopathogenesis of ATTRwt are currently unknown. This work investigates the presence of sequence variants in genes selected for their possible impact on ATTRwt amyloidosis. To do so, targeted sequencing of 84 protein-coding genes was performed in a cohort of 27 patients diagnosed with ATTRwt. RESULTS After applying quality and frequency filtering criteria, 72 rare or novel genetic variants were found. Subsequent classification according to the ACMG-AMP criteria resulted in 17 variants classified as of uncertain significance in 14 different genes. To our knowledge, this is the first report associating novel gene variants with ATTRwt amyloidosis. In conclusion, this study provides potential insights into the aetiopathogenesis of ATTRwt amyloidosis by linking novel coding-gene variants with the occurrence of the disease.
Collapse
Affiliation(s)
- Inmaculada Moreno-Gázquez
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain.
| | - Raquel Pérez-Palacios
- Department of Anatomy, Embryology and Genetics, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Lucia Abengochea-Quílez
- Health Research Institute in Aragón, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro- Edificio I+D, University of Zaragoza, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Carmen Lahuerta Pueyo
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Ana Roteta Unceta Barrenechea
- Department of Nuclear Medicine, Multihospital Nuclear Medicine Clinical Unit of Aragón, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Alejandro Andrés Gracia
- Department of Nuclear Medicine, Multihospital Nuclear Medicine Clinical Unit of Aragón, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Miguel Angel Aibar Arregui
- Department of Internal Medicine, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Sebastián Menao Guillén
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
7
|
Teixeira C, Martins HS, Saraiva MJ. Cellular environment of TTR deposits in an animal model of ATTR—Cardiomyopathy. Front Mol Biosci 2023; 10:1144049. [PMID: 36968272 PMCID: PMC10030511 DOI: 10.3389/fmolb.2023.1144049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction: Cardiac amyloidoses are the most fatal manifestation of systemic amyloidoses. It is believed the number of cases to be greatly underestimated mostly due to misdiagnosis. Particularly, the involvement of TTR V30M in the heart of ATTRV30M amyloidosis has not been completely understood specifically in terms of implicated cellular pathways, heart function and cardiac physiology. In the present work we proposed to characterize TTR V30M cardiac involvement particularly at the tissue cellular level in a mouse model.Methods: HSF ± hTTR V30M mice, a model that expresses human TTRV30M in a Ttr null background, widely used for the characterization and modulation of neurological features of ATTRV30M amyloidosis was used. SDS-PAGE of cardiac homogenates followed by Western blot was performed. Immunohistochemistry and double immunofluorescence analyses were carried out to determine TTR deposition pattern and sub-localization.Results: Western blots were able to detect TTR in its monomeric state at ∼14 kDa. Immunofluorescent images showed TTR was found mostly in the intercellular spaces. Blood contamination was excluded by CD31 staining. Tissues were Congo Red negative. Upon TTR and macrophages (CD68) staining in the cardiac tissue a clear tendency of macrophage convergence to the tissue regions where TTR was more abundant was observed. Moreover, in some instances it was possible to detect co-localization of both fluorophores. Cardiac fibroblasts were stained with PDGFr-alpha, and here the co-localization was not so evident although there was some degree of co-occurrence. The hearts of transgenic mice revealed higher content of Galectin-3.Conclusion: This animal model and associated features observed as result of cardiac TTR deposition provide a promising and invaluable research tool for a better understanding of the implicated pathways that lead to the lethality associated to TTR cardiac amyloidosis. New therapeutic strategies can be tested and ultimately this will lead to improved treatment alternatives capable of increasing patient’s quality of life and life expectancy and, hopefully to eradicate a condition that is silently spreading worldwide.
Collapse
Affiliation(s)
- Cristina Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helena Sofia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Maria João Saraiva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- *Correspondence: Maria João Saraiva,
| |
Collapse
|
8
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Noborn F, Thomsen C, Vorontsov E, Bobbio E, Sihlbom C, Nilsson J, Polte CL, Bollano E, Vukusic K, Sandstedt J, Dellgren G, Karason K, Oldfors A, Larson G. Subtyping of cardiac amyloidosis by mass spectrometry-based proteomics of endomyocardial biopsies. Amyloid 2023; 30:96-108. [PMID: 36209425 DOI: 10.1080/13506129.2022.2127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Cardiac amyloidosis is a severe condition leading to restrictive cardiomyopathy and heart failure. Mass spectrometry-based methods for cardiac amyloid subtyping have become important diagnostic tools but are currently used only in a few reference laboratories. Such methods include laser-capture microdissection to ensure the specific analysis of amyloid deposits. Here we introduce a direct proteomics-based method for subtyping of cardiac amyloidosis. METHODS Endomyocardial biopsies were retrospectively analysed from fresh frozen material of 78 patients with cardiac amyloidosis and from 12 biopsies of unused donor heart explants. Cryostat sections were digested with trypsin and analysed with liquid chromatography - mass spectrometry, and data were evaluated by proteomic software. RESULTS With a diagnostic threshold set to 70% for each of the four most common amyloid proteins affecting the heart (LC κ, LC λ, TTR and SAA), 65 of the cases (87%) could be diagnosed, and of these, 61 cases (94%) were in concordance with the original diagnoses. The specimens were also analysed for the summed intensities of the amyloid signature proteins (ApoE, ApoA-IV and SAP). The intensities were significantly higher (p < 0.001) for all assigned cases compared with controls. CONCLUSION Cardiac amyloidosis can be successfully subtyped without the prior enrichment of amyloid deposits with laser microdissection.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christer Thomsen
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Emanuele Bobbio
- Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian L Polte
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Vukusic
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joakim Sandstedt
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Duan G, Li Y, Ye M, Liu H, Wang N, Luo S. The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition. Int J Mol Sci 2023; 24:ijms24043729. [PMID: 36835140 PMCID: PMC9960511 DOI: 10.3390/ijms24043729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Transthyretin (TTR) aggregation and amyloid formation are associated with several ATTR diseases, such as senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). However, the mechanism that triggers the initial pathologic aggregation process of TTR remains largely elusive. Lately, increasing evidence has suggested that many proteins associated with neurodegenerative diseases undergo liquid-liquid phase separation (LLPS) and subsequent liquid-to-solid phase transition before the formation of amyloid fibrils. Here, we demonstrate that electrostatic interactions mediate LLPS of TTR, followed by a liquid-solid phase transition, and eventually the formation of amyloid fibrils under a mildly acidic pH in vitro. Furthermore, pathogenic mutations (V30M, R34T, and K35T) of TTR and heparin promote the process of phase transition and facilitate the formation of fibrillar aggregates. In addition, S-cysteinylation, which is a kind of post-translational modification of TTR, reduces the kinetic stability of TTR and increases the propensity for aggregation, while another modification, S-sulfonation, stabilizes the TTR tetramer and reduces the aggregation rate. Once TTR was S-cysteinylated or S-sulfonated, they dramatically underwent the process of phase transition, providing a foundation for post-translational modifications that could modulate TTR LLPS in the context of pathological interactions. These novel findings reveal molecular insights into the mechanism of TTR from initial LLPS and subsequent liquid-to-solid phase transition to amyloid fibrils, providing a new dimension for ATTR therapy.
Collapse
|
11
|
Ahanger IA, Parray ZA, Raina N, Bashir S, Ahmad F, Hassan MI, Shahid M, Sharma A, Islam A. Counteraction of the cetyltrimethylammonium bromide-induced protein aggregation by Heparin: Potential impact on protein aggregation and neurodegenerative diseases using biophysical approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Khurshid B, Rehman AU, Luo R, Khan A, Wadood A, Anwar J. Heparin-Assisted Amyloidogenesis Uncovered through Molecular Dynamics Simulations. ACS OMEGA 2022; 7:15132-15144. [PMID: 35572757 PMCID: PMC9089684 DOI: 10.1021/acsomega.2c01034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/11/2022] [Indexed: 05/14/2023]
Abstract
Glycosaminoglycans (GAGs), in particular, heparan sulfate and heparin, are found colocalized with Aβ amyloid. They have been shown to enhance fibril formation, suggesting a possible pathological connection. We have investigated heparin's assembly of the KLVFFA peptide fragment using molecular dynamics simulation, to gain a molecular-level mechanistic understanding of how GAGs enhance fibril formation. The simulations reveal an exquisite process wherein heparin accelerates peptide assembly by first "gathering" the peptide molecules and then assembling them. Heparin does not act as a mere template but is tightly coupled to the peptides, yielding a composite protofilament structure. The strong intermolecular interactions suggest composite formation to be a general feature of heparin's interaction with peptides. Heparin's chain flexibility is found to be essential to its fibril promotion activity, and the need for optimal heparin chain length and concentration has been rationalized. These insights yield design rules (flexibility; chain-length) and protocol guidance (heparin:peptide molar ratio) for developing effective heparin mimetics and other functional GAGs.
Collapse
Affiliation(s)
- Beenish Khurshid
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697, United States
| | - Ray Luo
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697, United States
| | - Alamzeb Khan
- Department
of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut 06511, United States
| | - Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Jamshed Anwar
- Department
of Chemistry, University of Lancaster, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
14
|
Najarzadeh Z, Zaman M, Sereikaite V, Strømgaard K, Andreasen M, Otzen DE. Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. J Biol Chem 2021; 297:100953. [PMID: 34270957 PMCID: PMC8363829 DOI: 10.1016/j.jbc.2021.100953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/26/2022] Open
Abstract
Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Masihuz Zaman
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
15
|
Ahanger I, Parray ZA, Nasreen K, Ahmad F, Hassan MI, Islam A, Sharma A. Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS OMEGA 2021; 6:2328-2339. [PMID: 33521471 PMCID: PMC7841943 DOI: 10.1021/acsomega.0c05638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Heparin is one of the members of the glycosaminoglycan (GAG) family, which has been associated with protein aggregation diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. Here, we investigate heparin-induced aggregation of bovine serum albumin (BSA) using different spectroscopic techniques [absorption, 8-anilino-1-naphthalene sulfonic acid (ANS) and thioflavin T (ThT) fluorescence binding, and far- and near-UV circular dichroism]. Kinetic measurements revealed that heparin is involved in the significant enhancement of aggregation of BSA. The outcomes showed dearth of the lag phase and a considerable change in rate constant, which provides conclusive evidence, that is, heparin-induced BSA aggregation involves the pathway of the downhill polymerization mechanism. Heparin also causes enhancement of fluorescence intensity of BSA significantly. Moreover, heparin was observed to form amyloids and amorphous aggregates of BSA which were confirmed by ThT and ANS fluorescence, respectively. Circular dichroism measurements exhibit a considerable change in the secondary and tertiary structure of the protein due to heparin. In addition, binding studies of heparin with BSA to know the cause of aggregation, isothermal titration calorimetry measurements were exploited, from which heparin was observed to promote the aggregation of BSA by virtue of electrostatic interactions between positively charged amino acid residues of protein and negatively charged groups of GAG. The nature of binding of heparin with BSA is very much apparent with an appreciable heat of interaction and is largely exothermic in nature. Moreover, the Gibbs free energy change (ΔG) is negative, which indicates spontaneous nature of binding, and the enthalpy change (ΔH) and entropy change (ΔS) are also largely negative, which suggest that the interaction is driven by hydrogen bonding.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Ahanger
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khalida Nasreen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anurag Sharma
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
| |
Collapse
|
16
|
Tavassoly O, Safavi F, Tavassoly I. Heparin-binding Peptides as Novel Therapies to Stop SARS-CoV-2 Cellular Entry and Infection. Mol Pharmacol 2020; 98:612-619. [PMID: 32913137 PMCID: PMC7610036 DOI: 10.1124/molpharm.120.000098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are cell surface receptors that are involved in the cellular uptake of pathologic amyloid proteins and viruses, including the novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Heparin and heparan sulfate antagonize the binding of these pathogens to HSPGs and stop their cellular internalization, but the anticoagulant effect of these agents has been limiting their use in the treatment of viral infections. Heparin-binding peptides (HBPs) are suitable nonanticoagulant agents that are capable of antagonizing binding of heparin-binding pathogens to HSPGs. Here, we review and discuss the use of HBPs as viral uptake inhibitors and will address their benefits and limitations to treat viral infections. Furthermore, we will discuss a variant of these peptides that is in the clinic and can be considered as a novel therapy in coronavirus disease 2019 (COVID-19) infection. SIGNIFICANCE STATEMENT: The need to discover treatment modalities for COVID-19 is a necessity, and therapeutic interventions such as heparin-binding peptides (HBPs), which are used for other cases, can be beneficial based on their mechanisms of actions. In this paper, we have discussed the application of HBPs as viral uptake inhibitors in COVID-19 and explained possible mechanisms of actions and the therapeutic effects.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Farinaz Safavi
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Iman Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| |
Collapse
|
17
|
Sharma K, Mehra S, Sawner AS, Markam PS, Panigrahi R, Navalkar A, Chatterjee D, Kumar R, Kadu P, Patel K, Ray S, Kumar A, Maji SK. Effect of Disease-Associated P123H and V70M Mutations on β-Synuclein Fibrillation. ACS Chem Neurosci 2020; 11:2836-2848. [PMID: 32833434 DOI: 10.1021/acschemneuro.0c00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA). The common pathological hallmark of synucleinopathies is the filamentous α-synuclein (α-Syn) aggregates along with membrane components in cytoplasmic inclusions in the brain. β-Synuclein (β-Syn), an isoform of α-Syn, inhibits α-Syn aggregation and prevents its neurotoxicity, suggesting the neuroprotective nature of β-Syn. However, this notion changed with the discovery of disease-associated β-Syn mutations, V70M and P123H, in patients with DLB. It is still unclear how these missense mutations alter the structural and amyloidogenic properties of β-Syn, leading to neurodegeneration. Here, we characterized the biophysical properties and investigated the effect of mutations on β-Syn fibrillation under different conditions. V70M and P123H show high membrane binding affinity compared to wild-type β-Syn, suggesting their potential role in membrane interactions. β-Syn and its mutants do not aggregate under normal physiological conditions; however, the proteins undergo self-polymerization in a slightly acidic microenvironment and/or in the presence of an inducer, forming long unbranched amyloid fibrils similar to α-Syn. Strikingly, V70M and P123H mutants exhibit accelerated fibrillation compared to native β-Syn under these conditions. NMR study further revealed that these point mutations induce local perturbations at the site of mutation in β-Syn. Overall, our data provide insight into the biophysical properties of disease-associated β-Syn mutations and demonstrate that these mutants make the native protein more susceptible to aggregation in an altered microenvironment.
Collapse
Affiliation(s)
- Karan Sharma
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajay S. Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Pratap S. Markam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
18
|
Skaanning LK, Santoro A, Skamris T, Martinsen JH, D’Ursi AM, Bucciarelli S, Vestergaard B, Bugge K, Langkilde AE, Kragelund BB. The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin. Biomolecules 2020; 10:E1192. [PMID: 32824376 PMCID: PMC7464290 DOI: 10.3390/biom10081192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN1-61/heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN1-61 co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN1-61, through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.
Collapse
Affiliation(s)
- Line K. Skaanning
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Angelo Santoro
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Thomas Skamris
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Jacob Hertz Martinsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| |
Collapse
|
19
|
Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions. Acta Neuropathol 2020; 139:527-546. [PMID: 31673874 DOI: 10.1007/s00401-019-02085-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Abstract
Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.
Collapse
|
20
|
Li JP, Zhang X. Implications of Heparan Sulfate and Heparanase in Amyloid Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:631-645. [PMID: 32274729 DOI: 10.1007/978-3-030-34521-1_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloidosis refers to a group of diseases characterized by abnormal deposition of denatured endogenous proteins, termed amyloid, in the affected organs. Analysis of biopsy and autopsy tissues from patients revealed the presence of heparan sulfate proteoglycans (HSPGs) along with amyloid proteins in the deposits. For a long time, HSPGs were believed to occur in the deposits as an innocent bystander. Yet, the consistent presence of HSPGs in various deposits, regardless of the amyloid species, led to the hypothesis that these macromolecular glycoconjugates might play functional roles in the pathological process of amyloidosis. In vitro studies have revealed that HSPGs, or more precisely, the heparan sulfate (HS) side chains interact with amyloid peptides, thus promoting amyloid fibrillization. Although information on the mechanisms of HS participation in amyloid deposition is limited, recent studies involving a transgenic mouse model of Alzheimer's disease point to an active role of HS in amyloid formation. Heparanase cleavage alters the molecular structure of HS, and thus modulates the functional roles of HS in homeostasis, as well as in diseases, including amyloidosis. The heparanase transgenic mice have provided models for unveiling the effects of heparanase, through cleavage of HS, in various amyloidosis conditions.
Collapse
Affiliation(s)
- Jin-Ping Li
- Department of Medical Biochemistry and Microbiology and the SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Xiao Zhang
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Guillaume YC, Lethier L, Claire A. Thermodynamics of the association of transthyretin and its nanovectorized form with heparan sulfate proteoglycan HPLC stationary phase and correlation with tetramer stability and amyloidogenicity. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1489283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yves Claude Guillaume
- Univ Franche - Comté, Besançon, France
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| | - Lydie Lethier
- Univ Franche - Comté, Besançon, France
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, France
| | - André Claire
- Univ Franche - Comté, Besançon, France
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, France
| |
Collapse
|
22
|
Iannuzzi C, Borriello M, D'Agostino A, Cimini D, Schiraldi C, Sirangelo I. Protective effect of extractive and biotechnological chondroitin in insulin amyloid and advanced glycation end product-induced toxicity. J Cell Physiol 2019; 234:3814-3828. [PMID: 30256388 DOI: 10.1002/jcp.27153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023]
Abstract
Glycosaminoglycans are extracellular matrix components related to several biological functions and diseases. Chondroitin sulfate is a sulphated glycosaminoglycan synthesized as part of proteoglycan molecules. They are frequently associated with amyloid deposits and possess an active role in amyloid fibril formation. Recently, a neuroprotective effect of extracellular matrix components against amyloid toxicity and oxidative stress has been reported. Advanced glycation end products (AGEs), the end products of the glycation reaction, have been linked to amyloid-based neurodegenerative disease as associated with oxidative stress and inflammation. In this study we have analyzed the effect of chondroitin sulfate isolated from different species, in comparison with a new biotechnological unsulfated chondroitin, in the amyloid aggregation process of insulin, as well as the ability to prevent the formation of AGEs and related toxicity. The results have showed a determining role of chondroitin sulfate groups in modulating insulin amyloid aggregation. In addition, both sulfated and unsulfated chondroitins have shown protective properties against amyloid and AGEs-induced toxicity. These data are very relevant as a protective effect of these glycosaminoglycans in the AGE-induced toxicity was never observed before. Moreover, considering the issues related to the purity and safety of chondroitin from natural sources, this study suggests a new potential application for the biotechnological chondroitin.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella D'Agostino
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
23
|
Zinc binding regulates amyloid-like aggregation of GAPR-1. Biosci Rep 2019; 39:BSR20182345. [PMID: 30700571 PMCID: PMC6900432 DOI: 10.1042/bsr20182345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) are characterized by the presence of a CAP domain that is defined by four sequence motifs and a highly conserved tertiary structure. A common structure–function relationship for this domain is hitherto unknown. A characteristic of several CAP proteins is their formation of amyloid-like structures in the presence of lipids. Here we investigate the structural modulation of Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) by known interactors of the CAP domain, preceding amyloid-like aggregation. Using isothermal titration calorimetry (ITC), we demonstrate that GAPR-1 binds zinc ions. Zn2+ binding causes a slight but significant conformational change as revealed by CD, tryptophan fluorescence, and trypsin digestion. The Zn2+-induced conformational change was required for the formation of GAPR-1 oligomers and amyloid-like assemblies in the presence of heparin, as shown by ThT fluorescence and TEM. Molecular dynamics simulations show binding of Zn2+ to His54 and His103. Mutation of these two highly conserved residues resulted in strongly diminished amyloid-like aggregation. Finally, we show that proteins from the cysteine-rich secretory protein (CRISP) subfamily are also able to form ThT-positive structures in vitro in a heparin- and Zn2+-dependent manner, suggesting that oligomerization regulated by metal ions could be a common structural property of the CAP domain.
Collapse
|
24
|
Kameyama H, Uchimura K, Yamashita T, Kuwabara K, Mizuguchi M, Hung SC, Okuhira K, Masuda T, Kosugi T, Ohgita T, Saito H, Ando Y, Nishitsuji K. The Accumulation of Heparan Sulfate S-Domains in Kidney Transthyretin Deposits Accelerates Fibril Formation and Promotes Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:308-319. [PMID: 30414409 DOI: 10.1016/j.ajpath.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/27/2022]
Abstract
The highly sulfated domains of heparan sulfate (HS), alias HS S-domains, are made up of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)] and are selectively remodeled by extracellular endoglucosamine 6-sulfatases (Sulfs). Although HS S-domains are critical for signal transduction of several growth factors, their roles in amyloidoses are not yet fully understood. Herein, we found HS S-domains in the kidney of a patient with transthyretin amyloidosis. In in vitro assays with cells stably expressing human Sulfs, heparin, a structural analog of HS S-domains, promoted aggregation of transthyretin in an HS S-domain-dependent manner. Interactions of cells with transthyretin fibrils and cytotoxicity of these fibrils also depended on HS S-domains at the cell surface. Furthermore, glypican-5, encoded by the susceptibility gene for nephrotic syndrome GPC5, was found to be accumulated in the transthyretin amyloidosis kidney. Our study, thus, provides a novel insight into the pathologic roles of HS S-domains in amyloidoses, and we propose that enzymatic remodeling of HS chains by Sulfs may offer an effective approach to inhibiting formation and cytotoxicity of amyloid fibrils.
Collapse
Affiliation(s)
- Hirokazu Kameyama
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille 1, Villeneuve d'Ascq, France
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaori Kuwabara
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | | | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Masuda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan; Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
25
|
Takeda Y, Honda Y, Kakinoki S, Yamaoka T, Baba S. Surface modification of porous alpha-tricalcium phosphate granules with heparin enhanced their early osteogenic capability in a rat calvarial defect model. Dent Mater J 2018; 37:575-581. [PMID: 29491202 DOI: 10.4012/dmj.2017-305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heparin binds to and modulates various growth factors, potentially augmenting the bone-forming capability of biomaterials. Here, α-tricalcium phosphate (α-TCP) granules were modified with peptide containing the marine mussel-derived adhesive sequence, which reacts with α-TCP surface, and cationic sequence, which binds to heparin (α-Ph). α-Ph retained the α-TCP phase and intergranule spaces after the surface modification. The existence of heparin on α-Ph granules was confirmed using X-ray photoelectron spectroscopy. Granules of α-TCP and α-Ph were implanted into critical-size defects in rat calvaria for 4 weeks. Micro-computed tomography, histological evaluation, and Alcian blue staining revealed that α-Ph induced superior bone formation compared with α-TCP. Newly formed bone on α-Ph was preferentially in contact with the Alcian blue-stained surfaces of granules. These results suggested that heparinization enhanced the early osteogenic capacity of α-TCP, possibly by modulating the secretion of Alcian blue-stained extracellular matrixes.
Collapse
Affiliation(s)
| | | | - Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University
| |
Collapse
|
26
|
Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorg Chem 2018; 82:74-85. [PMID: 30273836 DOI: 10.1016/j.bioorg.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/11/2022]
Abstract
A series of pentamethinium salts with benzothiazolium and indolium side units comprising one or two positive charges were designed and synthesized to determine the relationships among the molecular structure, charge density, affinity to sulfated polysaccharides, and biological activity. Firstly, it was found that the affinity of the pentamethinium salts to sulfated polysaccharides correlated with their biological activity. Secondly, the side heteroaromates displayed a strong effect on the cytotoxicity and selectivity towards cancer cells. Finally, doubly charged pentamethinium salts possessing benzothiazolium side units exhibited remarkably high efficacy against a taxol-resistant cancer cell line.
Collapse
|
27
|
Al-Shabib NA, Khan JM, Malik A, Alsenaidy AM, Alsenaidy MA, Husain FM, Shamsi MB, Hidayathulla S, Khan RH. Negatively charged food additive dye “Allura Red” rapidly induces SDS-soluble amyloid fibril in beta-lactoglobulin protein. Int J Biol Macromol 2018; 107:1706-1716. [DOI: 10.1016/j.ijbiomac.2017.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
28
|
Nitani A, Muta H, Adachi M, So M, Sasahara K, Sakurai K, Chatani E, Naoe K, Ogi H, Hall D, Goto Y. Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. J Biol Chem 2017; 292:21219-21230. [PMID: 29101231 DOI: 10.1074/jbc.m117.813097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 μg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.
Collapse
Affiliation(s)
- Ayame Nitani
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hiroya Muta
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masayuki Adachi
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Kazumitsu Naoe
- National Institute of Technology, Nara College, Nara 639-1080, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Suita, Osaka 565-0871, Japan, and
| | - Damien Hall
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.,Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Yuji Goto
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan,
| |
Collapse
|
29
|
Abstract
Syndecans comprise a major family of cell surface heparan sulfate proteoglycans (HSPGs). Syndecans are composed of sulfated glycosaminoglycans (GAGs), heparan sulfate (HS) or both HS and chondroitin sulfate (CS), attached covalently to core proteins. Syndecans regulate many cellular processes, such as adhesion, proliferation, and migration. Syndecans bind and regulate molecules primarily through their HS chains, but do not bind to all HS/heparin-binding molecules. Furthermore, mice ablated for the syndecan-1 or -4 gene do not show major developmental abnormalities, but they do show striking pathological phenotypes when challenged with infectious or inflammatory stimuli and conditions, suggesting that certain functions of syndecans are specific and cannot be compensated for by other syndecans or other HSPGs. These observations underscore the physiological importance of syndecans and indicate a need to study the activities of isolated native syndecans to define their molecular and cellular functions, and to establish their biological significance. Here we describe methods to isolate syndecans and several assays to analyze their functions.
Collapse
Affiliation(s)
- Pyong Woo Park
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
30
|
Risør MW, Juhl DW, Bjerring M, Mathiesen J, Enghild JJ, Nielsen NC, Otzen DE. Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils. Biophys J 2017; 113:580-596. [PMID: 28793213 DOI: 10.1016/j.bpj.2017.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Many proteins and peptides self-associate into highly ordered and structurally similar amyloid cross-β aggregates. This fibrillation is critically dependent on properties of the protein and the surrounding environment that alter kinetic and thermodynamic equilibria. Here, we report on dominating surface and solution effects on the fibrillogenic behavior and amyloid assembly of the C-36 peptide, a circulating bioactive peptide from the α1-antitrypsin serine protease inhibitor. C-36 converts from an unstructured peptide to mature amyloid twisted-ribbon fibrils over a few hours when incubated on polystyrene plates under physiological conditions through a pathway dominated by surface-enhanced nucleation. In contrast, in plates with nonbinding surfaces, slow bulk nucleation takes precedence over surface catalysis and leads to fibrillar polymorphism. Fibrillation is strongly ion-sensitive, underlining the interplay between hydrophilic and hydrophobic forces in molecular self-assembly. The addition of exogenous surfaces in the form of silica glass beads and polyanionic heparin molecules potently seeds the amyloid conversion process. In particular, heparin acts as an interacting template that rapidly forces β-sheet aggregation of C-36 to distinct amyloid species within minutes and leads to a more homogeneous fibril population according to solid-state NMR analysis. Heparin's template effect highlights its role in amyloid seeding and homogeneous self-assembly, which applies both in vitro and in vivo, where glycosaminoglycans are strongly associated with amyloid deposits. Our study illustrates the versatile thermodynamic landscape of amyloid formation and highlights how different experimental conditions direct C-36 into distinct macromolecular structures.
Collapse
Affiliation(s)
- Michael W Risør
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Dennis W Juhl
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Niels C Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
31
|
Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD, Masliah E. Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep 2017; 7:9008. [PMID: 28827536 PMCID: PMC5566500 DOI: 10.1038/s41598-017-08720-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Amyloid aggregates found in the brain of patients with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are thought to spread to increasingly larger areas of the brain through a prion-like seeding mechanism. Not much is known about which cell surface receptors may be involved in the cell-to-cell transfer, but proteoglycans are of interest due to their well-known propensity to interact with amyloid aggregates. In this study, we investigated the involvement of plasma membrane-bound heparan and chondroitin sulfate proteoglycans in cellular uptake of aggregates consisting of α-synuclein, a protein forming amyloid aggregates in Parkinson's disease. We show, using a pH-sensitive probe, that internalization of α-synuclein amyloid fibrils in neuroblastoma cells is dependent on heparan sulfate, whereas internalization of smaller non-amyloid oligomers is not. We also show that α-synuclein fibril uptake in an oligodendrocyte-like cell line is equally dependent on heparan sulfate, while astrocyte- and microglia-like cell lines have other means to internalize the fibrils. In addition, we analyzed the interaction between the α-synuclein amyloid fibrils and heparan sulfate and show that overall sulfation of the heparan sulfate chains is more important than sulfation at particular sites along the chains.
Collapse
Affiliation(s)
- Elisabet Ihse
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hodaka Yamakado
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xander M van Wijk
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
32
|
Stewart KL, Hughes E, Yates EA, Middleton DA, Radford SE. Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils. J Mol Biol 2017; 429:2449-2462. [PMID: 28697887 PMCID: PMC5548265 DOI: 10.1016/j.jmb.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022]
Abstract
The Aβ peptide forms extracellular plaques associated with Alzheimer's disease. In addition to protein fibrils, amyloid plaques also contain non-proteinaceous components, including glycosaminoglycans (GAGs). We have shown previously that the GAG low-molecular-weight heparin (LMWH) binds to Aβ40 fibrils with a three-fold-symmetric (3Q) morphology with higher affinity than Aβ40 fibrils in alternative structures, Aβ42 fibrils, or amyloid fibrils formed from other sequences. Solid-state NMR analysis of the GAG-3Q fibril complex revealed an interaction site at the corners of the 3Q fibril structure, but the origin of the binding specificity remained obscure. Here, using a library of short heparin polysaccharides modified at specific sites, we show that the N-sulfate or 6-O-sulfate of glucosamine, but not the 2-O-sulfate of iduronate within heparin is required for 3Q binding, indicating selectivity in the interactions of the GAG with the fibril that extends beyond general electrostatic complementarity. By creating 3Q fibrils containing point substitutions in the amino acid sequence, we also show that charged residues at the fibril three-fold apices provide the majority of the binding free energy, while charged residues elsewhere are less critical for binding. The results indicate, therefore, that LMWH binding to 3Q fibrils requires a precise molecular complementarity of the sulfate moieties on the GAG and charged residues displayed on the fibril surface. Differences in GAG binding to fibrils with distinct sequence and/or structure may thus contribute to the diverse etiology and progression of amyloid diseases.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eleri Hughes
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David A Middleton
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
33
|
Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clin Sci (Lond) 2017; 131:395-409. [PMID: 28213611 DOI: 10.1042/cs20160413] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR) amyloidosis (ATTR amyloidosis) is an underdiagnosed and important type of cardiomyopathy and/or polyneuropathy that requires increased awareness within the medical community. Raising awareness among clinicians about this type of neuropathy and lethal form of heart disease is critical for improving earlier diagnosis and the identification of patients for treatment. The following review summarizes current criteria used to diagnose both hereditary and wild-type ATTR (ATTRwt) amyloidosis, tools available to clinicians to improve diagnostic accuracy, available and newly developing therapeutics, as well as a brief biochemical and biophysical background of TTR amyloidogenesis.
Collapse
|
34
|
Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, Maria Doglia S, Relini A, Penco A, Giorgetti S, Gerace E, Mannaioni G, Bellotti V, Rigacci S, Cerbai E, Stefani M. Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes. Biophys J 2017; 111:2024-2038. [PMID: 27806283 DOI: 10.1016/j.bpj.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.
| | - Valentina Spinelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Elisabetta Gerace
- Department of Health Science, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Stefania Rigacci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Quittot N, Sebastiao M, Bourgault S. Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance. Biochem Cell Biol 2017; 95:329-337. [DOI: 10.1139/bcb-2016-0236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer’s disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.
Collapse
Affiliation(s)
- Noé Quittot
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Mathew Sebastiao
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
36
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
37
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
38
|
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2016; 100:37-54. [PMID: 27737778 DOI: 10.1016/j.ijbiomac.2016.10.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder marked by the presence of cytoplasmic inclusions, Lewy bodies (LBs) and Lewy neurites (LNs) as well as the degeneration of dopamine producing neurons in the substantia nigra region of the brain. The LBs and LNs in PD are mainly composed of aggregated form of a presynaptic protein, α-synuclein (α-Syn). However, the mechanisms of α-Syn aggregation and actual aggregated species responsible for the degeneration of dopaminergic neurons have not yet been resolved. Despite the fact that α-Syn aggregation in LBs and LNs is crucial and mutations of α-Syn are associated with early onset PD, it is really a challenging task to establish a correlation between α-Syn aggregation rate and PD pathogenesis. Regardless of strong genetic contribution, PD is mostly sporadic and familial forms of the disease represent only a minor part (<10%) of all cases. The complexity in PD further increases due to the involvement of several cellular factors in the pathogenesis of the disease as well as the environmental factors associated with the risk of developing PD. Therefore, effect of these factors on α-Syn aggregation pathway and how these factors modulate the properties of wild type (WT) as well as mutated α-Syn should be collectively taken into account. The present review specifically provides an overview of recent research on α-Syn aggregation pathways and its modulation by several cellular factors potentially relevant to PD pathogenesis. We also briefly discuss about effect of environmental risk factors on α-Syn aggregation.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
39
|
Mikawa S, Mizuguchi C, Nishitsuji K, Baba T, Shigenaga A, Shimanouchi T, Sakashita N, Otaka A, Akaji K, Saito H. Heparin promotes fibril formation by the N-terminal fragment of amyloidogenic apolipoprotein A-I. FEBS Lett 2016; 590:3492-3500. [DOI: 10.1002/1873-3468.12426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shiho Mikawa
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | | | - Naomi Sakashita
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Akira Otaka
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
40
|
Gonçalves NP, Gonçalves P, Magalhães J, Ventosa M, Coelho AV, Saraiva MJ. Tissue remodeling after interference RNA mediated knockdown of transthyretin in a familial amyloidotic polyneuropathy mouse model. Neurobiol Aging 2016; 47:91-101. [PMID: 27568093 DOI: 10.1016/j.neurobiolaging.2016.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
Transthyretin (TTR) deposition in the peripheral nervous system is the hallmark of familial amyloidotic polyneuropathy (FAP). Currently, liver transplantation is the only available treatment to halt the progression of clinical symptoms; however, due to the limitations of this procedure, development of alternative therapeutic strategies is of utmost importance. In this regard, interference RNA (RNAi) targeting TTR is currently in phase III clinical development. To dissect molecular changes occurring in dorsal root ganglia (DRG) upon RNAi-mediated knockdown of TTR, we treated both chronically and acutely an FAP mouse model, in different stages of disease. Our data show that inhibition of TTR expression by the liver with RNAi reverse TTR deposition in DRG, decrease matrix metalloproteinase-2 (MMP-2) protein levels in plasma, inhibit Mmp-2 gene expression and downregulate MMP-9 activity in DRG, indicating extracellular matrix remodeling. Furthermore, protein levels of MMP-2 were found upregulated in plasma samples from FAP patients indicating that MMP-2 might be a novel potential biomarker for FAP diagnosis. Collectively, our data show that silencing TTR liver synthesis in vivo can modulate TTR-induced pathology in the peripheral nervous system and highlight the potential of MMP-2 as a novel disease biomarker.
Collapse
Affiliation(s)
- Nádia Pereira Gonçalves
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Paula Gonçalves
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Joana Magalhães
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | - Miguel Ventosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria João Saraiva
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal.
| |
Collapse
|
41
|
Takase H, Tanaka M, Yamamoto A, Watanabe S, Takahashi S, Nadanaka S, Kitagawa H, Yamada T, Mukai T. Structural requirements of glycosaminoglycans for facilitating amyloid fibril formation of human serum amyloid A. Amyloid 2016; 23:67-75. [PMID: 27097047 DOI: 10.3109/13506129.2016.1168292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Given that heparan sulfate (HS), a glycosaminoglycan (GAG), is detected in amyloid deposits, it has been suggested that GAG is a key component of amyloid fibril formation. We previously reported that heparin (an analog of HS) facilitates the fibril formation of SAA, but the structural requirements remain unknown. In the present study, we investigated the structural requirements of GAGs for facilitating the amyloid fibril formation of SAA. Spectroscopic analyses using structurally diverse GAG analogs suggested that the fibril formation of SAA was facilitated irrespective of the backbone structure of GAGs; however, the facilitating effect was strongly correlated with the degree of sulfation. Microscopic analyses revealed that the morphologies of SAA aggregates were modulated by the GAGs. The HS molecule, which is less sulfated than heparin but contains highly sulfated domains, exhibited a relatively high potential to facilitate fibril formation compared to other GAGs. The length dependence of fragmented heparins on the facilitating effect suggested that a high density of sulfate groups is also required. These results indicate that not only the degree of sulfation but also the lengths of sulfated domains in GAG play important roles in fibril formation of SAA.
Collapse
Affiliation(s)
- Hiroka Takase
- a Department of Biophysical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| | - Masafumi Tanaka
- a Department of Biophysical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| | - Aki Yamamoto
- a Department of Biophysical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| | - Shiori Watanabe
- a Department of Biophysical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| | - Sanae Takahashi
- a Department of Biophysical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| | - Satomi Nadanaka
- b Department of Biochemistry , Kobe Pharmaceutical University , Kobe , Japan , and
| | - Hiroshi Kitagawa
- b Department of Biochemistry , Kobe Pharmaceutical University , Kobe , Japan , and
| | - Toshiyuki Yamada
- c Department of Clinical Laboratory Medicine , Jichi Medical University , Shimotsuke , Japan
| | - Takahiro Mukai
- a Department of Biophysical Chemistry , Kobe Pharmaceutical University , Kobe , Japan
| |
Collapse
|
42
|
Petrlova J, Hilt S, Budamagunta M, Domingo-Espín J, Voss JC, Lagerstedt JO. Molecular crowding impacts the structure of apolipoprotein A-I with potential implications on in vivo metabolism and function. Biopolymers 2016; 105:683-92. [PMID: 27122373 DOI: 10.1002/bip.22865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 11/08/2022]
Abstract
The effect molecular crowding, defined as the volume exclusion exerted by one soluble inert molecule upon another soluble molecule, has on the structure and self-interaction of lipid-free apoA-I were explored. The influence of molecular crowding on lipid-free apoA-I oligomerization and internal dynamics has been analyzed using electron paramagnetic resonance (EPR) spectroscopy measurements of nitroxide spin label at selected positions throughout the protein sequence and at varying concentrations of the crowding agent Ficoll-70. The targeted positions include sites previously shown to be sensitive for detecting intermolecular interaction via spin-spin coupling. Circular dichroism was used to study secondary structural changes in lipid-free apoA-I imposed by increasing concentrations of the crowding agent. Crosslinking and SDS-PAGE gel analysis was employed to further characterize the role molecular crowding plays in inducing apoA-I oligomerization. It was concluded that the dynamic apoA-I structure and oligomeric state was altered in the presence of the crowding agent. It was also found that the C-terminal was slightly more sensitive to molecular crowding. Finally, the data described the region around residue 217 in the C-terminal domain of apoA-I as the most sensitive reporter of the crowding-induced self-association of apoA-I. The implications of this behavior to in vivo functionality are discussed. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 683-692, 2016.
Collapse
Affiliation(s)
- Jitka Petrlova
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden
| | - Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616
| | - Madhu Budamagunta
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616
| | - Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden
| | - John C Voss
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden.,Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden
| |
Collapse
|
43
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
44
|
Naiki H, Okoshi T, Ozawa D, Yamaguchi I, Hasegawa K. Molecular pathogenesis of human amyloidosis: Lessons from β2 -microglobulin-related amyloidosis. Pathol Int 2016; 66:193-201. [PMID: 26969800 DOI: 10.1111/pin.12394] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/02/2023]
Abstract
Amyloidosis refers to a group of diseases with amyloid fibrils deposited in various organs and is classified into more than 30 diseases in humans based on the kind of amyloid protein. In order to elucidate the molecular pathogenesis of human amyloidosis, we studied the molecular mechanism of amyloid fibril formation in vitro. We first developed a novel fluorometric method to determine amyloid fibrils in vitro based on the unique characteristics of thioflavin T. We next proposed a nucleation-dependent polymerization model to explain the general mechanism of amyloid fibril formation in vitro. Based on this model, we characterized the biological molecular interactions that promote or inhibit amyloid fibril formation in vitro and developed models of pathological molecular environment for inducing human β2-microglobulin-related amyloidosis in long-term hemodialysis patients. We also proposed a novel and attractive cytotoxic mechanism of β2-microglobulin amyloid fibrils, that is, the disruption of endosomal/lysosomal membranes by endocytosed amyloid fibrils. These findings may be useful to elucidate the molecular pathogenesis of other kinds of human amyloidosis.
Collapse
Affiliation(s)
- Hironobu Naiki
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tadakazu Okoshi
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Daisaku Ozawa
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Itaru Yamaguchi
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuhiro Hasegawa
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
45
|
Nespovitaya N, Gath J, Barylyuk K, Seuring C, Meier BH, Riek R. Dynamic Assembly and Disassembly of Functional β-Endorphin Amyloid Fibrils. J Am Chem Soc 2016; 138:846-56. [DOI: 10.1021/jacs.5b08694] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nadezhda Nespovitaya
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Julia Gath
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Konstantin Barylyuk
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Carolin Seuring
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Beat H. Meier
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Roland Riek
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
46
|
Akasaki Y, Reixach N, Matsuzaki T, Alvarez-Garcia O, Olmer M, Iwamoto Y, Buxbaum JN, Lotz MK. Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis. Arthritis Rheumatol 2015; 67:2097-107. [PMID: 25940564 DOI: 10.1002/art.39178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Amyloid deposits are prevalent in osteoarthritic (OA) joints. We undertook this study to define the dominant precursor and to determine whether the deposits affect chondrocyte functions. METHODS Amyloid deposition in human normal and OA knee cartilage was determined by Congo red staining. Transthyretin (TTR) in cartilage and synovial fluid was analyzed by immunohistochemistry and Western blotting. The effects of recombinant amyloidogenic and nonamyloidogenic TTR variants were tested in human chondrocyte cultures. RESULTS Normal cartilage from young donors did not contain detectable amyloid deposits, but 7 of 12 aged normal cartilage samples (58%) and 12 of 12 OA cartilage samples (100%) had Congo red staining with green birefringence under polarized light. TTR, which is located predominantly at the cartilage surfaces, was detected in all OA cartilage samples and in a majority of aged normal cartilage samples, but not in normal cartilage samples from young donors. Chondrocytes and synoviocytes did not contain significant amounts of TTR messenger RNA. Synovial fluid TTR levels were similar in normal and OA knees. In cultured chondrocytes, only an amyloidogenic TTR variant induced cell death as well as the expression of proinflammatory cytokines and extracellular matrix-degrading enzymes. The effects of amyloidogenic TTR on gene expression were mediated in part by Toll-like receptor 4, receptor for advanced glycation end products, and p38 MAPK. TTR-induced cytotoxicity was inhibited by resveratrol, a plant polyphenol that stabilizes the native tetrameric structure of TTR. CONCLUSION These findings are the first to suggest that TTR amyloid deposition contributes to cell and extracellular matrix damage in articular cartilage in human OA and that therapies designed to reduce TTR amyloid formation might be useful.
Collapse
Affiliation(s)
- Yukio Akasaki
- The Scripps Research Institute, La Jolla, California
| | | | | | | | - Merissa Olmer
- The Scripps Research Institute, La Jolla, California
| | - Yukihide Iwamoto
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| |
Collapse
|
47
|
Zhang Q, Li J, Liu C, Song C, Li P, Yin F, Xiao Y, Li J, Jiang W, Zong A, Zhang X, Wang F. Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience 2015; 305:169-82. [PMID: 26254241 DOI: 10.1016/j.neuroscience.2015.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/10/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
In the present study, we investigated the effects of low molecular weight chondroitin sulfate (LMWCS) on amyloid beta (Aβ)-induced neurotoxicity in vitro and in vivo. The in vitro results showed that LMWCS blocked Aβ25-35-induced cell viability loss and apoptosis, decreased intracellular calcium concentration, reactive oxygen species (ROS) levels, the mitochondrial membrane potential (MMP) depolarization, and the protein expression of Caspase-3. During in vivo experiments, LMWCS improved the cognitive impairment induced by Aβ1-40, increased the level of choline acetyltransferase (ChAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and decreased the level of malondialdehyde (MDA) and acetylcholinesterase (AChE) in the mouse brain. Moreover, LMWCS decreased the density of pyramidal cells of CA1 regions, and suppressed the protein expression of Bax/Bcl-2 and Caspase-3, -9 in the hippocampus of mice. In conclusion, LMWCS possessed neuroprotective properties against toxic effects induced by Aβ peptides both in vitro and in vivo, which might be related to anti-apoptotic activity. LMWCS might be a useful preventive and therapeutic compound for Alzheimer's disease.
Collapse
Affiliation(s)
- Q Zhang
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; School of Ocean, Shandong University, Weihai 264209, China
| | - J Li
- Neurosurgery, Weihai Municipal Hospital, Weihai 264009, China
| | - C Liu
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - C Song
- School of Ocean, Shandong University, Weihai 264209, China
| | - P Li
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - F Yin
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Y Xiao
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - J Li
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - W Jiang
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - A Zong
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - X Zhang
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - F Wang
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
48
|
Oskarsson ME, Singh K, Wang J, Vlodavsky I, Li JP, Westermark GT. Heparan Sulfate Proteoglycans Are Important for Islet Amyloid Formation and Islet Amyloid Polypeptide-induced Apoptosis. J Biol Chem 2015; 290:15121-32. [PMID: 25922077 PMCID: PMC4463455 DOI: 10.1074/jbc.m114.631697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/16/2015] [Indexed: 12/23/2022] Open
Abstract
Deposition of β cell toxic islet amyloid is a cardinal finding in type 2 diabetes. In addition to the main amyloid component islet amyloid polypeptide (IAPP), heparan sulfate proteoglycan is constantly present in the amyloid deposit. Heparan sulfate (HS) side chains bind to IAPP, inducing conformational changes of the IAPP structure and an acceleration of fibril formation. We generated a double-transgenic mouse strain (hpa-hIAPP) that overexpresses human heparanase and human IAPP but is deficient of endogenous mouse IAPP. Culture of hpa-hIAPP islets in 20 mm glucose resulted in less amyloid formation compared with the amyloid load developed in cultured islets isolated from littermates expressing human IAPP only. A similar reduction of amyloid was achieved when human islets were cultured in the presence of heparin fragments. Furthermore, we used CHO cells and the mutant CHO pgsD-677 cell line (deficient in HS synthesis) to explore the effect of cellular HS on IAPP-induced cytotoxicity. Seeding of IAPP aggregation on CHO cells resulted in caspase-3 activation and apoptosis that could be prevented by inhibition of caspase-8. No IAPP-induced apoptosis was seen in HS-deficient CHO pgsD-677 cells. These results suggest that β cell death caused by extracellular IAPP requires membrane-bound HS. The interaction between HS and IAPP or the subsequent effects represent a possible therapeutic target whose blockage can lead to a prolonged survival of β cells.
Collapse
Affiliation(s)
| | | | - Jian Wang
- Ningxia People's Hospital, Yinchuan 750021, China, and Medical Biochemistry and Microbiology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Israel Vlodavsky
- the Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jin-Ping Li
- Medical Biochemistry and Microbiology, Uppsala University, Box 571, 75123 Uppsala, Sweden,
| | | |
Collapse
|
49
|
Rosú SA, Rimoldi OJ, Prieto ED, Curto LM, Delfino JM, Ramella NA, Tricerri MA. Amyloidogenic propensity of a natural variant of human apolipoprotein A-I: stability and interaction with ligands. PLoS One 2015; 10:e0124946. [PMID: 25950566 PMCID: PMC4423886 DOI: 10.1371/journal.pone.0124946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
Abstract
A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses.
Collapse
Affiliation(s)
- Silvana A. Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Omar J. Rimoldi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Eduardo D. Prieto
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, La Plata, Buenos Aires, Argentina
| | - Lucrecia M. Curto
- Departamento de Química Biológica e Instituto de Bioquímica y Biofísica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José M. Delfino
- Departamento de Química Biológica e Instituto de Bioquímica y Biofísica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel A. Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - M. Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
50
|
Gonçalves NP, Costelha S, Saraiva MJ. Glial cells in familial amyloidotic polyneuropathy. Acta Neuropathol Commun 2014; 2:177. [PMID: 25519307 PMCID: PMC4280682 DOI: 10.1186/s40478-014-0177-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Transthyretin V30M mutation is the most common variant leading to Familial Amyloidotic Polyneuropathy. In this genetic disorder, Transthyretin accumulates preferentially in the extracellular matrix of peripheral and autonomic nervous systems leading to cell death and dysfunction. Thus, knowledge regarding important biological systems for Transthyretin clearance might unravel novel insights into Familial Amyloidotic Polyneuropathy pathophysiology. Herein, our aim was to evaluate the ability of glial cells from peripheral and autonomic nervous systems in Transthyretin uptake and degradation. We assessed the role of glial cells in Familial Amyloidotic Polyneuropathy pathogenesis with real-time polymerase chain reaction, immunohistochemistry, interference RNA and confocal microscopy. RESULTS Histological examination revealed that Schwann cells and satellite cells, from an Familial Amyloidotic Polyneuropathy mouse model, internalize and degrade non-fibrillar Transthyretin. Immunohistochemical studies of human nerve biopsies from V30M patients and disease controls showed intracellular Transthyretin immunoreactivity in Schwann cells, corroborating animal data. Additionally, we found Transthyretin expression in colon of this Familial Amyloidotic Polyneuropathy mouse model, probably being synthesized by satellite cells of the myenteric plexus. CONCLUSIONS Glial cells from the peripheral and autonomic nervous systems are able to internalize Transthyretin. Overall, these findings bring to light the closest relationship between Transthyretin burden and clearance from the nervous system extracellular milieu.
Collapse
|