1
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch SC, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024:10.1038/s41588-024-01958-6. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - S Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Piha-Paul SA, Tseng C, Leung CH, Yuan Y, Karp DD, Subbiah V, Hong D, Fu S, Naing A, Rodon J, Javle M, Ajani JA, Raghav KP, Somaiah N, Mills GB, Tsimberidou AM, Zheng X, Chen K, Meric-Bernstam F. Phase II study of talazoparib in advanced cancers with BRCA1/2, DNA repair, and PTEN alterations. NPJ Precis Oncol 2024; 8:166. [PMID: 39085400 PMCID: PMC11291882 DOI: 10.1038/s41698-024-00634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Cancer cells with BRCA1/2 deficiencies are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. We evaluated the efficacy of talazoparib in DNA-Damage Repair (DDR)-altered patients. In this phase II trial, patients were enrolled onto one of four cohorts based on molecular alterations: (1) somatic BRCA1/2, (2) other homologous recombination repair pathway, (3) PTEN and (4) germline BRCA1/2. The primary endpoint was a clinical benefit rate (CBR): complete response, partial response or stable disease ≥24 weeks. 79 patients with a median of 4 lines of therapy were enrolled. CBR for cohorts 1-4 were: 32.5%, 19.7%, 9.4% and 30.6%, respectively. PTEN mutations correlated with reduced survival and a trend towards shorter time to progression.Talazoparib demonstrated clinical benefit in selected DDR-altered patients. PTEN mutations/loss patients derived limited clinical benefit. Further study is needed to determine whether PTEN is prognostic or predictive of response to PARP inhibitors.
Collapse
Affiliation(s)
- Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Chieh Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal P Raghav
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Lee IH, Lee SJ, Kim J, Lee YH, Chong GO, Kim JM, Lee J, Lee NY, Park SY, Hong DG, Chae YS. Exploring the effect of BRCA1/2 status on chemotherapy-induced hematologic toxicity in patients with ovarian cancer. Cancer Chemother Pharmacol 2024; 94:103-108. [PMID: 38652271 DOI: 10.1007/s00280-024-04670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE BRCA1/2 are integral to the DNA repair mechanism and their germline pathogenic variants (gBRCA) result in a high risk for developing breast and ovarian cancer. Patients with gBRCA mutations showed increased sensitivity to DNA cross-linking agent but might have increased treatment-related toxicities. Thus, we hypothesized that gBRCA mutation ovarian cancer patients who underwent platinum-based chemotherapy might be at higher risk of developing chemotherapy-induced hematologic toxicity. METHODS This study enrolled 160 patients with ovarian cancer who received frontline platinum-based chemotherapy between 2011 and 2019 in Kyungpook National University Chilgok Hospital. Incidence rate and severity of chemotherapy-induced hematologic toxicity (neutropenia, anemia, thrombocytopenia) was compared for BRCA mutation and wild patients. RESULTS 160 women, including 62 BRCA1/2 (38 BRCA1, and 25 BRCA2) mutation group, and 98 noncarriers, were analyzed. A higher frequency of G2 anemia was noted in the BRCA -mutant group (22% vs. 1%, p = 0.07). Furthermore, G3 anemia was significantly common among BRCA group (12.9% vs. 3%, p = 0.02). In the subgroup analysis according to BRCA1/2 status, BRCA1 mutated patients showed a significantly higher frequency of G1 anemia than BRCA2 (89% vs. 60%, p = 0.01). In terms of neutropenia and thrombocytopenia, BRCA mutated patients and noncarriers had similar hematologic toxicity. CONCLUSION Germline BRCA mutations were associated with a higher frequency of G2/3 anemia in ovarian cancer patients who underwent first-line platinum-based chemotherapy. Moreover, the BRCA1 mutation appeared to be more strongly associated with the incidence of chemotherapy-induced anemia. Our findings warrant further investigation in larger, prospective studies to confirm these current findings and determine whether preventive interventions may be necessary.
Collapse
Affiliation(s)
- In Hee Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea
| | - Soo Jung Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea
| | - Juhyung Kim
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jong Mi Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Juhun Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Laboratory Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Seo Young Park
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Dea Gy Hong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | - Yee Soo Chae
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Department of Oncology/Hematology, Kyungpook National University Chillgok Hospital, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Komatsu H, Okawa M, Kazuki Y, Kazuki K, Hichiwa G, Shimoya K, Sato S, Taniguchi F, Oshimura M, Harada T. Characterization of immortalized ovarian epithelial cells with BRCA1/2 mutation. Hum Cell 2024; 37:986-996. [PMID: 38615309 DOI: 10.1007/s13577-024-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
We aimed to elucidate the mechanism underlying carcinogenesis by comparing normal and BRCA1/2-mutated ovarian epithelial cells established via Sendai virus-based immortalization. Ovarian epithelial cells (normal epithelium: Ovn; with germline BRCA1 mutation: OvBRCA1; with germline BRCA2 mutation: OvBRCA2) were infected with Sendai virus vectors carrying three immortalization genes (Bmi-1, hTERT, and SV40T). The immunoreactivity to anti-epithelial cellular adhesion molecule (EpCAM) antibodies in each cell line and cells after 25 passages was confirmed using flow cytometry. Chromosomes were identified and karyotyped to detect numerical and structural abnormalities. Total RNA extracted from the cells was subjected to human transcriptome sequencing. Highly expressed genes in each cell line were confirmed using real-time polymerase chain reaction. Immortalization techniques allowed 25 or more passages of Ovn, OvBRCA1, and OvBRCA2 cells. No anti-EpCAM antibody reactions were observed in primary cultures or after long-term passages of each cell line. Structural abnormalities in the chromosomes were observed in each cell line; however, the abnormal chromosomes were successfully separated from the normal structures via cloning. Only normal cells from each cell line were cloned. MMP1, CCL2, and PAPPA were more predominantly expressed in OvBRCA1 and OvBRCA2 cells than in Ovn cells. Immortalized ovarian cells derived from patients with germline BRCA1 or BRCA2 mutations showed substantially higher MMP1 expression than normal ovarian cells. However, the findings need to be validated in the future.
Collapse
Affiliation(s)
- Hiroaki Komatsu
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan.
| | - Masayo Okawa
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Kanako Kazuki
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Genki Hichiwa
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Kazuto Shimoya
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Shinya Sato
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Fuminori Taniguchi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | | | | |
Collapse
|
5
|
Randall MP, Egolf LE, Vaksman Z, Samanta M, Tsang M, Groff D, Evans JP, Rokita JL, Layeghifard M, Shlien A, Maris JM, Diskin SJ, Bosse KR. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. J Natl Cancer Inst 2024; 116:138-148. [PMID: 37688570 PMCID: PMC10777668 DOI: 10.1093/jnci/djad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND High-risk neuroblastoma is a complex genetic disease that is lethal in more than 50% of patients despite intense multimodal therapy. Through genome-wide association studies (GWAS) and next-generation sequencing, we have identified common single nucleotide polymorphisms and rare, pathogenic or likely pathogenic germline loss-of-function variants in BARD1 enriched in neuroblastoma patients. The functional implications of these findings remain poorly understood. METHODS We correlated BARD1 genotype with expression in normal tissues and neuroblastomas, along with the burden of DNA damage in tumors. To validate the functional consequences of germline pathogenic or likely pathogenic BARD1 variants, we used CRISPR-Cas9 to generate isogenic neuroblastoma (IMR-5) and control (RPE1) cellular models harboring heterozygous BARD1 loss-of-function variants (R112*, R150*, E287fs, and Q564*) and quantified genomic instability in these cells via next-generation sequencing and with functional assays measuring the efficiency of DNA repair. RESULTS Both common and rare neuroblastoma-associated BARD1 germline variants were associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using isogenic heterozygous BARD1 loss-of-function variant cellular models, we functionally validated this association with inefficient DNA repair. BARD1 loss-of-function variant isogenic cells exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA double-strand break sites, and enhanced sensitivity to cisplatin and poly (ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. CONCLUSIONS Taken together, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications.
Collapse
Affiliation(s)
- Michael P Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Current affiliation: New York Genome Center, New York, NY
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Current affiliation: Genomics and Data Sciences, Spark Therapeutics, Philadelphia, PA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Sarker DB, Xue Y, Mahmud F, Jocelyn JA, Sang QXA. Interconversion of Cancer Cells and Induced Pluripotent Stem Cells. Cells 2024; 13:125. [PMID: 38247819 PMCID: PMC10814385 DOI: 10.3390/cells13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer cells, especially cancer stem cells (CSCs), share many molecular features with induced pluripotent stem cells (iPSCs) that enable the derivation of induced pluripotent cancer cells by reprogramming malignant cells. Conversely, normal iPSCs can be converted into cancer stem-like cells with the help of tumor microenvironment components and genetic manipulation. These CSC models can be utilized in oncogenic initiation and progression studies, understanding drug resistance, and developing novel therapeutic strategies. This review summarizes the role of pluripotency factors in the stemness, tumorigenicity, and therapeutic resistance of cancer cells. Different methods to obtain iPSC-derived CSC models are described with an emphasis on exposure-based approaches. Culture in cancer cell-conditioned media or cocultures with cancer cells can convert normal iPSCs into cancer stem-like cells, aiding the examination of processes of oncogenesis. We further explored the potential of reprogramming cancer cells into cancer-iPSCs for mechanistic studies and cancer dependencies. The contributions of genetic, epigenetic, and tumor microenvironment factors can be evaluated using these models. Overall, integrating iPSC technology into cancer stem cell research holds significant promise for advancing our knowledge of cancer biology and accelerating the development of innovative and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Faiza Mahmud
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Jonathan A. Jocelyn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
7
|
Minello A, Carreira A. BRCA1/2 Haploinsufficiency: Exploring the Impact of Losing one Allele. J Mol Biol 2024; 436:168277. [PMID: 37714298 DOI: 10.1016/j.jmb.2023.168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Since their discovery in the late 20th century, significant progress has been made in elucidating the functions of the tumor suppressor proteins BRCA1 and BRCA2. These proteins play vital roles in maintaining genome integrity, including DNA repair, replication fork protection, and chromosome maintenance. It is well-established that germline mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer; however, the precise mechanism underlying tumor formation in this context is not fully understood. Contrary to the long-standing belief that the loss of the second wild-type allele is necessary for tumor development, a growing body of evidence suggests that tumorigenesis can occur despite the presence of a single functional allele. This entails that heterozygosity in BRCA1/2 confers haploinsufficiency, where a single copy of the gene is not sufficient to fully suppress tumor formation. Here we provide an overview of the findings and the ongoing debate regarding BRCA haploinsufficiency. We further put out the challenges in studying this topic and discuss its potential relevance in the prevention and treatment of BRCA-related cancers.
Collapse
Affiliation(s)
- Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France; Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
8
|
Bermes M, Rodriguez MJ, de Toledo MAS, Ernst S, Müller-Newen G, Brümmendorf TH, Chatain N, Koschmieder S, Baumeister J. Exploiting Synthetic Lethality between Germline BRCA1 Haploinsufficiency and PARP Inhibition in JAK2V617F-Positive Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:17560. [PMID: 38139386 PMCID: PMC10743753 DOI: 10.3390/ijms242417560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are rare hematologic disorders characterized by clonal hematopoiesis. Familial clustering is observed in a subset of cases, with a notable proportion exhibiting heterozygous germline mutations in DNA double-strand break repair genes (e.g., BRCA1). We investigated the therapeutic potential of targeting BRCA1 haploinsufficiency alongside the JAK2V617F driver mutation. We assessed the efficacy of combining the PARP inhibitor olaparib with interferon-alpha (IFNα) in CRISPR/Cas9-engineered Brca1+/- Jak2V617F-positive 32D cells. Olaparib treatment induced a higher number of DNA double-strand breaks, as demonstrated by γH2AX analysis through Western blot (p = 0.024), flow cytometry (p = 0.013), and confocal microscopy (p = 0.071). RAD51 foci formation was impaired in Brca1+/- cells compared to Brca1+/+ cells, indicating impaired homologous recombination repair due to Brca1 haploinsufficiency. Importantly, olaparib enhanced apoptosis while diminishing cell proliferation and viability in Brca1+/- cells compared to Brca1+/+ cells. These effects were further potentiated by IFNα. Olaparib induced interferon-stimulated genes and increased endogenous production of IFNα in Brca1+/- cells. These responses were abrogated by STING inhibition. In conclusion, our findings suggest that the combination of olaparib and IFNα presents a promising therapeutic strategy for MPN patients by exploiting the synthetic lethality between germline BRCA1 mutations and the JAK2V617F MPN driver mutation.
Collapse
Affiliation(s)
- Max Bermes
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Maria Jimena Rodriguez
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Marcelo Augusto Szymanski de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Sabrina Ernst
- Confocal Microscopy Facility, Interdisciplinary Center for Clinical Research IZKF, RWTH Aachen University, 52074 Aachen, Germany;
| | - Gerhard Müller-Newen
- Department of Biochemistry, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Tim Henrik Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.B.); (M.J.R.); (M.A.S.d.T.); (T.H.B.); (N.C.); (J.B.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany
| |
Collapse
|
9
|
Oubaddou Y, Ben Ali F, Oubaqui FE, Qmichou Z, Bakri Y, Rabii Ameziane RA. The Tumor Suppressor BRCA1/2, Cancer Susceptibility and Genome Instability in Gynecological and Mammary Cancers. Asian Pac J Cancer Prev 2023; 24:3139-3153. [PMID: 37774066 PMCID: PMC10762740 DOI: 10.31557/apjcp.2023.24.9.3139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
BRCA1 and BRCA2 germline alterations highly predispose women to breast and ovarian cancers. They are mostly found within the TNBC (Triple-Negative Breast Cancer) and the HGSOC (High-Grade Serous Ovarian Carcinoma) subsets, known by an aggressive phenotype, the lack of therapeutic targets and poor prognosis. Importantly, there is an increased risk for cervical cancer in BRCA1 and BRCA2 mutation carriers that raises questions about the link between the HPV-driven genome instability and BRCA1 and BRCA2 germline mutations. Clinical, preclinical, and in vitro studies explained the increased risk for breast and ovarian cancers by genome instability resulting from the lack or loss of many functions related to BRCA1 or BRCA2 proteins such as DNA damage repair, stalled forks and R-loops resolution, transcription regulation, cell cycle control, and oxidative stress. In this review, we decipher the relationship between BRCA1/2 alterations and genomic instability leading to gynecomammary cancers through results from patients, mice, and cell lines. Understanding the early events of BRCA1/2-driven genomic instability in gynecomammary cancers would help to find new biomarkers for early diagnosis, improve the sensitivity of emerging therapies such as PARP inhibitors, and reveal new potential therapeutic targets.
Collapse
Affiliation(s)
- Yassire Oubaddou
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ezzahrae Oubaqui
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Rabii Ameziane Rabii Ameziane
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
10
|
Hu-Heimgartner K, Lang N, Ayme A, Ming C, Combes JD, Chappuis VN, Vazquez C, Friedlaender A, Vuilleumier A, Bodmer A, Viassolo V, Sandoval JL, Chappuis PO, Labidi-Galy SI. Hematologic toxicities of chemotherapy in breast and ovarian cancer patients carrying BRCA1/BRCA2 germline pathogenic variants. A single center experience and review of the literature. Fam Cancer 2023; 22:283-289. [PMID: 37119509 PMCID: PMC10276105 DOI: 10.1007/s10689-023-00331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
BRCA1 and BRCA2 play a central role in DNA repair and their germline pathogenic variants (gBRCA) confer a high risk for developing breast and ovarian cancer. Standard chemotherapy regimens for these cancers include DNA-damaging agents. We hypothesized that gBRCA carriers might be at higher risk of developing chemotherapy-related hematologic toxicity and therapy-related myeloid neoplasms (t-MN). We conducted a retrospective study of women newly diagnosed with invasive breast or ovarian cancer who were screened for gBRCA1/gBRCA2 at Geneva University Hospitals. All patients were treated with (neo-)adjuvant chemotherapy. We evaluated acute hematologic toxicities by analyzing the occurrence of febrile neutropenia and severe neutropenia (grade 4) at day 7-14 of the first cycle of chemotherapy and G-CSF use during the entire chemotherapy regimen. Characteristics of t-MN were collected. We reviewed medical records from 447 patients: 58 gBRCA1 and 40 gBRCA2 carriers and 349 non-carriers. gBRCA1 carriers were at higher risk of developing severe neutropenia (32% vs. 14.5%, p = 0.007; OR = 3.3, 95% CI [1.6-7], p = 0.001) and of requiring G-CSF for secondary prophylaxis (58.3% vs. 38.2%, p = 0.011; OR = 2.5, 95% CI [1.4-4.8], p = 0.004). gBRCA2 carriers did not show increased acute hematologic toxicities. t-MN were observed in 2 patients (1 gBRCA1 and one non-carrier). Our results suggested an increased acute hematologic toxicity upon exposure to chemotherapy for breast and ovarian cancer among gBRCA1 but not gBRCA2 carriers. A deeper characterization of t-MN is warranted with the recent development of PARP inhibitors in frontline therapy in gBRCA breast and ovarian cancer.
Collapse
Affiliation(s)
- Ketty Hu-Heimgartner
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Noémie Lang
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Aurélie Ayme
- Department of Diagnostics, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Chang Ming
- Department of Clinical Research, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Jean-Damien Combes
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Victor N Chappuis
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Carla Vazquez
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Alex Friedlaender
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Aurélie Vuilleumier
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Alexandre Bodmer
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Valeria Viassolo
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - José L Sandoval
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Pierre O Chappuis
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
- Department of Diagnostics, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland.
- Center of Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland.
| |
Collapse
|
11
|
Nee K, Ma D, Nguyen QH, Pein M, Pervolarakis N, Insua-Rodríguez J, Gong Y, Hernandez G, Alshetaiwi H, Williams J, Rauf M, Dave KR, Boyapati K, Hasnain A, Calderon C, Markaryan A, Edwards R, Lin E, Parajuli R, Zhou P, Nie Q, Shalabi S, LaBarge MA, Kessenbrock K. Preneoplastic stromal cells promote BRCA1-mediated breast tumorigenesis. Nat Genet 2023; 55:595-606. [PMID: 36914836 PMCID: PMC10655552 DOI: 10.1038/s41588-023-01298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/28/2022] [Indexed: 03/16/2023]
Abstract
Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.
Collapse
Affiliation(s)
- Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Nicholas Pervolarakis
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | | | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Grace Hernandez
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Justice Williams
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maha Rauf
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Kushal Rajiv Dave
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Keerti Boyapati
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Aliza Hasnain
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Christian Calderon
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Anush Markaryan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Erin Lin
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Ritesh Parajuli
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Sundus Shalabi
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Bhardwaj P, Iyengar NM, Zahid H, Carter KM, Byun DJ, Choi MH, Sun Q, Savenkov O, Louka C, Liu C, Piloco P, Acosta M, Bareja R, Elemento O, Foronda M, Dow LE, Oshchepkova S, Giri DD, Pollak M, Zhou XK, Hopkins BD, Laughney AM, Frey MK, Ellenson LH, Morrow M, Spector JA, Cantley LC, Brown KA. Obesity promotes breast epithelium DNA damage in women carrying a germline mutation in BRCA1 or BRCA2. Sci Transl Med 2023; 15:eade1857. [PMID: 36812344 PMCID: PMC10557057 DOI: 10.1126/scitranslmed.ade1857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heba Zahid
- Department of Medical Laboratory Technology, College of Applied Medical Science, Taibah University, Medina 42353, Saudi Arabia
| | | | - Dong Jun Byun
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Qi Sun
- Computational Biology Service Unit of Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA
| | - Oleksandr Savenkov
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charalambia Louka
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Phoebe Piloco
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Acosta
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miguel Foronda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sofya Oshchepkova
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dilip D. Giri
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Pollak
- Departments of Medicine and Oncology, McGill University, Montreal, Canada
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin D. Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley M. Laughney
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lora Hedrick Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason A. Spector
- Laboratory of Bioregenerative Medicine and Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lewis C. Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Randall MP, Egolf LE, Vaksman Z, Samanta M, Tsang M, Groff D, Evans JP, Rokita JL, Layeghifard M, Shlien A, Maris JM, Diskin SJ, Bosse KR. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.525066. [PMID: 36778420 PMCID: PMC9915690 DOI: 10.1101/2023.01.31.525066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance High-risk neuroblastoma is a complex genetic disease that is lethal in 50% of patients despite intense multimodal therapy. Our genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) within the BARD1 gene showing the most significant enrichment in neuroblastoma patients, and also discovered pathogenic (P) or likely pathogenic (LP) rare germline loss-of-function variants in this gene. The functional implications of these findings remain poorly understood. Objective To define the functional relevance of BARD1 germline variation in children with neuroblastoma. Design We correlated BARD1 genotype with BARD1 expression in normal and tumor cells and the cellular burden of DNA damage in tumors. To validate the functional consequences of rare germline P-LP BARD1 variants, we generated isogenic cellular models harboring heterozygous BARD1 loss-of-function (LOF) variants and conducted multiple complementary assays to measure the efficiency of DNA repair. Setting (N/A). Participants (N/A). Interventions/Exposures (N/A). Main Outcomes and Measures BARD1 expression, efficiency of DNA repair, and genome-wide burden of DNA damage in neuroblastoma tumors and cellular models harboring disease-associated BARD1 germline variants. Results Both common and rare neuroblastoma associated BARD1 germline variants were significantly associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using neuroblastoma cellular models engineered to harbor disease-associated heterozygous BARD1 LOF variants, we functionally validated this association with inefficient DNA repair. These BARD1 LOF variant isogenic models exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA doublestrand break sites, and enhanced sensitivity to cisplatin and poly-ADP ribose polymerase (PARP) inhibition. Conclusions and Relevance Considering that at least 1 in 10 children diagnosed with cancer carry a predicted pathogenic mutation in a cancer predisposition gene, it is critically important to understand their functional relevance. Here, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications, and these findings may also extend to other cancers harboring germline variants in genes essential for DNA damage repair. Key Points Question: How do neuroblastoma patient BRCA1-associated RING domain 1 ( BARD1 ) germline variants impact DNA repair? Findings: Neuroblastoma-associated germline BARD1 variants disrupt DNA repair fidelity. Common risk variants correlate with decreased BARD1 expression and increased DNA double-strand breaks in neuroblastoma tumors and rare heterozygous loss-of-function variants induce BARD1 haploinsufficiency, resulting in defective DNA repair and genomic instability in neuroblastoma cellular models. Meaning: Germline variation in BARD1 contributes to neuroblastoma pathogenesis via dysregulation of critical cellular DNA repair functions, with implications for neuroblastoma treatment, risk stratification, and cancer predisposition.
Collapse
Affiliation(s)
- Michael P. Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - J. Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, PA 19104, USA
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Yakovlev VA, Sullivan SA, Fields EC, Temkin SM. PARP inhibitors in the treatment of ARID1A mutant ovarian clear cell cancer: PI3K/Akt1-dependent mechanism of synthetic lethality. Front Oncol 2023; 13:1124147. [PMID: 36910637 PMCID: PMC9992988 DOI: 10.3389/fonc.2023.1124147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme involved in the repair of DNA single-strand breaks (SSB). The recent development of poly(ADP-ribose) polymerase inhibitors (PARPi) results from over 45 years of studies. When the activity of PARP1 or PARP2 is compromised, DNA SSB lesions are unresolved and can be converted to DNA double-strand breaks (DSBs) by the cellular transcription mechanisms. ARID1A (also called BAF250a) is an important component of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex. ARID1A gene demonstrates >50% of mutation rate in ovarian clear-cell carcinomas (OCCC). Mutated or downregulated ARID1A significantly compromises the Homologous Recombination Repair (HRR) of DNA DSB. Results The present study demonstrated that downregulated or mutated ARID1A attenuates DNA HRR through stimulation of the PI3K/Akt1 pathway and makes tumor cells highly sensitive to PARPi and PARPi/ionizing radiation (IR) combination. We showed that PI3K/Akt1 pathway plays an important role in the sensitization of cancer cell lines with compromised function of ARID1A to PARPi treatment. Discussion We believe that using of PARPi monotherapy or in combination with radiation therapy is an appealing strategy for treating ARID1A-mutated cancers, as well as many other types of PI3K/Akt1-driven cancers.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephanie A Sullivan
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Emma C Fields
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
15
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
16
|
Martin SK, McVey M. BRCA1 protects against its own fragility. Mol Cell 2022; 82:3757-3759. [PMID: 36270245 PMCID: PMC10035668 DOI: 10.1016/j.molcel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Deshpande et al. (2022) demonstrate that BRCA1, a tumor suppressor tasked with protecting the genome, is encoded by a gene that is intrinsically fragile.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Biology, Tufts University, Medford, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA.
| |
Collapse
|
17
|
Deshpande M, Paniza T, Jalloul N, Nanjangud G, Twarowski J, Koren A, Zaninovic N, Zhan Q, Chadalavada K, Malkova A, Khiabanian H, Madireddy A, Rosenwaks Z, Gerhardt J. Error-prone repair of stalled replication forks drives mutagenesis and loss of heterozygosity in haploinsufficient BRCA1 cells. Mol Cell 2022; 82:3781-3793.e7. [PMID: 36099913 DOI: 10.1016/j.molcel.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theodore Paniza
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nahed Jalloul
- Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08903, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jerzy Twarowski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nikica Zaninovic
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qiansheng Zhan
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08903, USA
| | - Advaitha Madireddy
- Department of Pediatric Hematology/Oncology, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
18
|
Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022; 14:1704. [PMID: 36016325 PMCID: PMC9412291 DOI: 10.3390/v14081704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
A Human Betaretrovirus (HBRV) has been identified in humans, dating as far back as about 4500 years ago, with a high probability of it being acquired by our species around 10,000 years ago, following a species jump from mice to humans. HBRV is the human homolog of the MMTV (mouse mammary tumor virus), which is the etiological agent of murine mammary tumors. The hypothesis of a HMTV (human mammary tumor virus) was proposed about 50 years ago, and has acquired a solid scientific basis during the last 30 years, with the demonstration of a robust link with breast cancer and with PBC, primary biliary cholangitis. This article summarizes most of what is known about MMTV/HMTV/HBRV since the discovery of MMTV at the beginning of last century, to make evident both the quantity and the quality of the research supporting the existence of HBRV and its pathogenic role. Here, it is sufficient to mention that scientific evidence includes that viral sequences have been identified in breast-cancer samples in a worldwide distribution, that the complete proviral genome has been cloned from breast cancer and patients with PBC, and that saliva contains HBRV, as a possible route of inter-human infection. Controversies that have arisen concerning results obtained from human tissues, many of them outdated by new scientific evidence, are critically discussed and confuted.
Collapse
|
19
|
Abstract
Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes. In fact, recent advances in precision medicine have rapidly enabled the use of ctDNA to guide treatment decisions for predicting response and resistance to targeted therapies and immunotherapies. An advantage of using ctDNA over conventional tissue biopsies is the relatively noninvasive approach of obtaining peripheral blood, allowing for simple repeated and serial assessments. Most current clinical practice using ctDNA has endeavored to identify druggable and resistance mutations for guiding systemic therapy decisions, albeit mostly in metastatic disease. However, newer research is evaluating potential for ctDNA as a marker of minimal residual disease in the curative setting and as a useful screening tool to detect cancer in the general population. Here we review the history of ctDNA and liquid biopsies, technologies to detect ctDNA, and some of the current challenges and limitations in using ctDNA as a marker of minimal residual disease and as a general blood-based cancer screening tool. We also discuss the need to develop rigorous clinical studies to prove the clinical utility of ctDNA for future applications in oncology.
Collapse
|
20
|
He Z, Ghorayeb R, Tan S, Chen K, Lorentzian AC, Bottyan J, Aalam SMM, Pujana MA, Lange PF, Kannan N, Eaves CJ, Maxwell CA. Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nat Commun 2022; 13:2200. [PMID: 35459234 PMCID: PMC9033786 DOI: 10.1038/s41467-022-29885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack Bottyan
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Syed Mohammed Musheer Aalam
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Miguel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Hu PZ, Chen XY, Xiong W, Yang ZJ, Li XR, Deng WZ, Gong LN, Deng H, Yuan LM. A BRCA1 Splice Site Variant Responsible for Familial Ovarian Cancer in a Han-Chinese Family. Curr Med Sci 2022; 42:666-672. [PMID: 35290602 DOI: 10.1007/s11596-022-2527-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the most common and most lethal gynecological malignancies. OC has an age-dependent incidence and occurs more commonly in females older than 50 years old. Most OC patients are diagnosed at an advanced stage and have a poor prognosis. Germline mutations in the BRCA1 DNA repair associated gene (BRCA1) and the BRCA2 DNA repair associated gene (BRCA2) account for 20%-25% of epithelial ovarian cancer (EOC). BRCA1 germline mutations are more common in Chinese EOC patients. METHODS This study reported a three-generation Han-Chinese family containing four EOC patients and a rectal adenocarcinoma patient. Whole-exome sequencing was performed on two EOC patients and an unaffected individual. Variant validation was also performed in all available members by Sanger sequencing. RESULTS A heterozygous splice site variant, c.4358-2A>G in the BRCA1 gene, was identified. Bioinformatic analysis showed that the variant may change the splicing machinery. CONCLUSION The BRCA1 splice site variant, c.4358-2A>G was identified as the likely genetic cause for EOC, and may also be associated with the increased risk of rectal adenocarcinoma in the family. The findings were beneficial for genetic counseling, helpful for cancer prevention in other family members, and may facilitate therapy decision-making in the future to reduce cancer lethality.
Collapse
Affiliation(s)
- Peng-Zhi Hu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiang-Yu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Zhi-Jian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiao-Rong Li
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wen-Zhi Deng
- Department of Pathology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Li-Na Gong
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Disease Genome Research Center, Central South University, Changsha, 410013, China
| | - La-Mei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
22
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
23
|
Sun S, Brazhnik K, Lee M, Maslov AY, Zhang Y, Huang Z, Klugman S, Park BH, Vijg J, Montagna C. Single-cell analysis of somatic mutation burden in mammary epithelial cells of pathogenic BRCA1/2 mutation carriers. J Clin Invest 2022; 132:148113. [PMID: 35025760 PMCID: PMC8884908 DOI: 10.1172/jci148113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited germline mutations in the breast cancer gene 1 (BRCA1) or BRCA2 genes (herein BRCA1/2) greatly increase the risk of breast and ovarian cancer, presumably by elevating somatic mutational errors as a consequence of deficient DNA repair. However, this has never been directly demonstrated by a comprehensive analysis of the somatic mutational landscape of primary, noncancer, mammary epithelial cells of women diagnosed with pathogenic BRCA1/2 germline mutations. Here, we used an accurate, single-cell whole-genome sequencing approach to first show that telomerized primary mammary epithelial cells heterozygous for a highly penetrant BRCA1 variant displayed a robustly elevated mutation frequency as compared with their isogenic control cells. We then demonstrated a small but statistically significant increase in mutation frequency in mammary epithelial cells isolated from the breast of BRCA1/2 mutation carriers as compared with those obtained from age-matched controls with no genetically increased risk for breast cancer.
Collapse
Affiliation(s)
- Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Kristina Brazhnik
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Yi Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Zhenqiu Huang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Susan Klugman
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, United States of America
| | - Ben H Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States of America
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States of America
| |
Collapse
|
24
|
De Sarkar N, Dasgupta S, Chatterjee P, Coleman I, Ha G, Ang LS, Kohlbrenner EA, Frank SB, Nunez TA, Salipante SJ, Corey E, Morrissey C, Van Allen E, Schweizer MT, Haffner MC, Patel R, Hanratty B, Lucas JM, Dumpit RF, Pritchard CC, Montgomery RB, Nelson PS. Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight 2021; 6:152789. [PMID: 34877933 PMCID: PMC8675196 DOI: 10.1172/jci.insight.152789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
Cancers with homology-directed DNA repair (HRR) deficiency exhibit high response rates to poly(ADP-ribose) polymerase inhibitors (PARPi) and platinum chemotherapy. Though mutations disrupting BRCA1 and BRCA2 associate with HRR deficiency (HRRd), patterns of genomic aberrations and mutation signatures may be more sensitive and specific indicators of compromised repair. Here, we evaluated whole-exome sequences from 418 metastatic prostate cancers (mPCs) and determined that one-fifth exhibited genomic characteristics of HRRd that included Catalogue Of Somatic Mutations In Cancer mutation signature 3. Notably, a substantial fraction of tumors with genomic features of HRRd lacked biallelic loss of a core HRR-associated gene, such as BRCA2. In this subset, HRRd associated with loss of chromodomain helicase DNA binding protein 1 but not with mutations in serine-protein kinase ATM, cyclin dependent kinase 12, or checkpoint kinase 2. HRRd genomic status was strongly correlated with responses to PARPi and platinum chemotherapy, a finding that supports evaluating biomarkers reflecting functional HRRd for treatment allocation.
Collapse
Affiliation(s)
| | | | | | | | - Gavin Ha
- Divisions of Human Biology.,Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lisa S Ang
- Divisions of Human Biology.,Clinical Research
| | | | | | | | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Michael T Schweizer
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | - Robert B Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Divisions of Human Biology.,Clinical Research.,Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology and.,Department of Urology, University of Washington, Seattle, Washington, USA.,Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Rahman ML, Hyodo T, Karnan S, Ota A, Hasan MN, Mihara Y, Wahiduzzaman M, Tsuzuki S, Hosokawa Y, Konishi H. Experimental strategies to achieve efficient targeted knock-in via tandem paired nicking. Sci Rep 2021; 11:22627. [PMID: 34799652 PMCID: PMC8604973 DOI: 10.1038/s41598-021-01978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Tandem paired nicking (TPN) is a method of genome editing that enables precise and relatively efficient targeted knock-in without appreciable restraint by p53-mediated DNA damage response. TPN is initiated by introducing two site-specific nicks on the same DNA strand using Cas9 nickases in such a way that the nicks encompass the knock-in site and are located within a homologous region between a donor DNA and the genome. This nicking design results in the creation of two nicks on the donor DNA and two in the genome, leading to relatively efficient homology-directed recombination between these DNA fragments. In this study, we sought to identify the optimal design of TPN experiments that would improve the efficiency of targeted knock-in, using multiple reporter systems based on exogenous and endogenous genes. We found that efficient targeted knock-in via TPN is supported by the use of 1700-2000-bp donor DNAs, exactly 20-nt-long spacers predicted to be efficient in on-target cleavage, and tandem-paired Cas9 nickases nicking at positions close to each other. These findings will help establish a methodology for efficient and precise targeted knock-in based on TPN, which could broaden the applicability of targeted knock-in to various fields of life science.
Collapse
Affiliation(s)
- Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Yuko Mihara
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
- Bangladesh Medical Research Council, Dhaka, 1212, Bangladesh
- Eukaryotic Gene Expression and Function (EuGEF) Research Group, Chattogram, 4000, Bangladesh
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
26
|
Yan Y, Narayan A, Cho S, Cheng Z, Liu JO, Zhu H, Wang G, Wharram B, Lisok A, Brummet M, Saeki H, Huang T, Gabrielson K, Gabrielson E, Cope L, Kanaan YM, Afsari A, Naab T, Yfantis HG, Ambs S, Pomper MG, Sukumar S, Merino VF. CRYβB2 enhances tumorigenesis through upregulation of nucleolin in triple negative breast cancer. Oncogene 2021; 40:5752-5763. [PMID: 34341513 PMCID: PMC10064491 DOI: 10.1038/s41388-021-01975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Expression of β-crystallin B2 (CRYβB2) is elevated in African American (AA) breast tumors. The underlying mechanisms of CRYβB2-induced malignancy and the association of CRYβB2 protein expression with survival have not yet been described. Here, we report that the expression of CRYβB2 in breast cancer cells increases stemness, growth, and metastasis. Transcriptomics data revealed that CRYβB2 upregulates genes that are functionally associated with unfolded protein response, oxidative phosphorylation, and DNA repair, while down-regulating genes related to apoptosis. CRYβB2 in tumors promotes de-differentiation, an increase in mesenchymal markers and cancer-associated fibroblasts, and enlargement of nucleoli. Proteome microarrays identified a direct interaction between CRYβB2 and the nucleolar protein, nucleolin. CRYβB2 induces nucleolin, leading to the activation of AKT and EGFR signaling. CRISPR studies revealed a dependency on nucleolin for the pro-tumorigenic effects of CRYβB2. Triple-negative breast cancer (TNBC) xenografts with upregulated CRYβB2 are distinctively sensitive to the nucleolin aptamer, AS-1411. Lastly, in AA patients, higher levels of nucleolar CRYβB2 in primary TNBC correlates with decreased survival. In summary, CRYβB2 is upregulated in breast tumors of AA patients and induces oncogenic alterations consistent with an aggressive cancer phenotype. CRYβB2 increases sensitivity to nucleolin inhibitors and may promote breast cancer disparity.
Collapse
Affiliation(s)
- Yu Yan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun O Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan Wharram
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ala Lisok
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmine M Kanaan
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ali Afsari
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Tammey Naab
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vanessa F Merino
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Puleo J, Polyak K. The MCF10 Model of Breast Tumor Progression. Cancer Res 2021; 81:4183-4185. [PMID: 34400468 DOI: 10.1158/0008-5472.can-21-1939] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
The MCF10 cell lines first described by Soule and colleagues in 1990 have been a great resource for the breast cancer research community, facilitating research on the regulation of normal breast epithelial phenotypes and progressive changes in this regulation during malignancy. Here we review the development of the MCF10 parental and subsequent sublines and highlight a few of the major contributions of MCF10 model systems to breast cancer research.See related article by Soule and colleagues, Cancer Res 1990;50:6075-86.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
28
|
Li N, Zethoven M, McInerny S, Devereux L, Huang YK, Thio N, Cheasley D, Gutiérrez-Enríquez S, Moles-Fernández A, Diez O, Nguyen-Dumont T, Southey MC, Hopper JL, Simard J, Dumont M, Soucy P, Meindl A, Schmutzler R, Schmidt MK, Adank MA, Andrulis IL, Hahnen E, Engel C, Lesueur F, Girard E, Neuhausen SL, Ziv E, Allen J, Easton DF, Scott RJ, Gorringe KL, James PA, Campbell IG. Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. NPJ Breast Cancer 2021; 7:52. [PMID: 33980861 PMCID: PMC8115524 DOI: 10.1038/s41523-021-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
Collapse
Affiliation(s)
- Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Lisa Devereux
- Lifepool, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Niko Thio
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany
| | - Rita Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
| | - Christoph Engel
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Elodie Girard
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, Pathology North, Newcastle, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia.
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Mechanisms of High-Grade Serous Carcinogenesis in the Fallopian Tube and Ovary: Current Hypotheses, Etiologic Factors, and Molecular Alterations. Int J Mol Sci 2021; 22:ijms22094409. [PMID: 33922503 PMCID: PMC8122889 DOI: 10.3390/ijms22094409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian high-grade serous carcinomas (HGSCs) are a heterogeneous group of diseases. They include fallopian-tube-epithelium (FTE)-derived and ovarian-surface-epithelium (OSE)-derived tumors. The risk/protective factors suggest that the etiology of HGSCs is multifactorial. Inflammation caused by ovulation and retrograde bleeding may play a major role. HGSCs are among the most genetically altered cancers, and TP53 mutations are ubiquitous. Key driving events other than TP53 mutations include homologous recombination (HR) deficiency, such as BRCA 1/2 dysfunction, and activation of the CCNE1 pathway. HR deficiency and the CCNE1 amplification appear to be mutually exclusive. Intratumor heterogeneity resulting from genomic instability can be observed at the early stage of tumorigenesis. In this review, I discuss current carcinogenic hypotheses, sites of origin, etiologic factors, and molecular alterations of HGSCs.
Collapse
|
30
|
Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53. Cell Rep 2020; 30:1195-1207.e7. [PMID: 31995758 DOI: 10.1016/j.celrep.2019.12.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Targeted knockin mediated by double-stranded DNA cleavage is accompanied by unwanted insertions and deletions (indels) at on-target and off-target sites. A nick-mediated approach scarcely generates indels but exhibits reduced efficiency of targeted knockin. Here, we demonstrate that tandem paired nicking, a method for targeted knockin involving two Cas9 nickases that create nicks at the homologous regions of the donor DNA and the genome in the same strand, scarcely creates indels at the edited genomic loci, while permitting the efficiency of targeted knockin largely equivalent to that of the Cas9-nuclease-based approach. Tandem paired nicking seems to accomplish targeted knockin by DNA recombination analogous to Holliday's model and creates intended genomic changes without introducing additional nucleotide changes, such as silent mutations. Targeted knockin through tandem paired nicking neither triggers significant p53 activation nor occurs preferentially in p53-suppressed cells. These properties of tandem paired nicking demonstrate its utility in precision genome engineering.
Collapse
|
31
|
Inagaki-Kawata Y, Yoshida K, Kawaguchi-Sakita N, Kawashima M, Nishimura T, Senda N, Shiozawa Y, Takeuchi Y, Inoue Y, Sato-Otsubo A, Fujii Y, Nannya Y, Suzuki E, Takada M, Tanaka H, Shiraishi Y, Chiba K, Kataoka Y, Torii M, Yoshibayashi H, Yamagami K, Okamura R, Moriguchi Y, Kato H, Tsuyuki S, Yamauchi A, Suwa H, Inamoto T, Miyano S, Ogawa S, Toi M. Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants. Commun Biol 2020; 3:578. [PMID: 33067557 PMCID: PMC7567851 DOI: 10.1038/s42003-020-01301-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
The genetic and clinical characteristics of breast tumors with germline variants, including their association with biallelic inactivation through loss-of-heterozygosity (LOH) and second somatic mutations, remain elusive. We analyzed germline variants of 11 breast cancer susceptibility genes for 1,995 Japanese breast cancer patients, and identified 101 (5.1%) pathogenic variants, including 62 BRCA2 and 15 BRCA1 mutations. Genetic analysis of 64 BRCA1/2-mutated tumors including TCGA dataset tumors, revealed an association of biallelic inactivation with more extensive deletions, copy neutral LOH, gain with LOH and younger onset. Strikingly, TP53 and RB1 mutations were frequently observed in BRCA1- (94%) and BRCA2- (9.7%) mutated tumors with biallelic inactivation. Inactivation of TP53 and RB1 together with BRCA1 and BRCA2, respectively, involved LOH of chromosomes 17 and 13. Notably, BRCA1/2 tumors without biallelic inactivation were indistinguishable from those without germline variants. Our study highlights the heterogeneity and unique clonal selection pattern in breast cancers with germline variants. Yukiko Inagaki-Kawata et al. report an analysis of germline variants in breast cancer susceptibility genes in 1,995 Japanese breast cancer patients. They find that 5.1% of the patients carry germline variants in cancer-linked genes and investigate the characteristics of patients with germline mutations in BRCA1/2.
Collapse
Affiliation(s)
- Yukiko Inagaki-Kawata
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.,Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | | | - Tomomi Nishimura
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.,Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Noriko Senda
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University, Kyoto, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Kyoto University, Kyoto, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuki Kataoka
- Hospital Care Research Unit/Department of Respiratory Medicine, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Masae Torii
- Department of Breast Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hiroshi Yoshibayashi
- Department of Breast Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | | | - Ryuji Okamura
- Department of Breast Surgery, Yamatotakada Municipal Hospital, Yamatotakada, Japan
| | | | - Hironori Kato
- Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeru Tsuyuki
- Department of Breast Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Akira Yamauchi
- Department of Breast Surgery, Kitano Hospital, Osaka, Japan
| | - Hirofumi Suwa
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | | | - Satoru Miyano
- Laboratory of Sequence Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan. .,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan. .,Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Breast-Specific Epigenetic Regulation of DeltaNp73 and Its Role in DNA-Damage-Response of BRCA1-Mutated Human Mammary Epithelial Cells. Cancers (Basel) 2020; 12:cancers12092367. [PMID: 32825620 PMCID: PMC7564633 DOI: 10.3390/cancers12092367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The function of BRCA1/2 proteins is essential for maintaining genomic integrity in all cell types. However, why women who carry deleterious germline mutations in BRCA face an extremely high risk of developing breast and ovarian cancers specifically has remained an enigma. We propose that breast-specific epigenetic modifications, which regulate tissue differentiation, could team up with BRCA deficiency and affect tissue susceptibility to cancer. In earlier work, we compared genome-wide methylation profiles of various normal epithelial tissues and identified breast-specific methylated gene promoter regions. Here, we focused on deltaNp73, the truncated isoform of p73, which possesses antiapoptotic and pro-oncogenic functions. We showed that the promoter of deltaNp73 is unmethylated in normal human breast epithelium and methylated in various other normal epithelial tissues and cell types. Accordingly, deltaNp73 was markedly induced by DNA damage in human mammary epithelial cells (HMECs) but not in other epithelial cell types. Moreover, the induction of deltaNp73 protected HMECs from DNA damage-induced cell death, and this effect was more substantial in HMECs from BRCA1 mutation carriers. Notably, when BRCA1 was knocked down in MCF10A, a non-malignant breast epithelial cell line, both deltaNp73 induction and its protective effect from cell death were augmented upon DNA damage. Interestingly, deltaNp73 induction also resulted in inhibition of BRCA1 and BRCA2 expression following DNA damage. In conclusion, breast-specific induction of deltaNp73 promotes survival of BRCA1-deficient mammary epithelial cells upon DNA damage. This might result in the accumulation of genomic alterations and allow the outgrowth of breast cancers. These findings indicate deltaNp73 as a potential modifier of breast cancer susceptibility in BRCA1 mutation carriers and may stimulate novel strategies of prevention and treatment for these high-risk women.
Collapse
|
33
|
Baker LA, Holliday H, Roden D, Krisp C, Wu SZ, Junankar S, Serandour AA, Mohammed H, Nair R, Sankaranarayanan G, Law AMK, McFarland A, Simpson PT, Lakhani S, Dodson E, Selinger C, Anderson L, Samimi G, Hacker NF, Lim E, Ormandy CJ, Naylor MJ, Simpson K, Nikolic I, O'Toole S, Kaplan W, Cowley MJ, Carroll JS, Molloy M, Swarbrick A. Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Res 2020; 22:63. [PMID: 32527287 PMCID: PMC7291584 DOI: 10.1186/s13058-020-01306-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Mass Spectrometric Proteome Analysis, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Aurelien A Serandour
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Hisham Mohammed
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Geetha Sankaranarayanan
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew M K Law
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sunil Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, , Brisbane, QLD, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christina Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Goli Samimi
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Neville F Hacker
- School of Women's and Children's Health, University of New South Wales, and Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, NSW, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher J Ormandy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kaylene Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sandra O'Toole
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Warren Kaplan
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mark Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
34
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
35
|
Hámori L, Kudlik G, Szebényi K, Kucsma N, Szeder B, Póti Á, Uher F, Várady G, Szüts D, Tóvári J, Füredi A, Szakács G. Establishment and Characterization of a Brca1 -/-, p53 -/- Mouse Mammary Tumor Cell Line. Int J Mol Sci 2020; 21:ijms21041185. [PMID: 32053991 PMCID: PMC7072850 DOI: 10.3390/ijms21041185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women and the second most common cancer overall. By the age of 80, the estimated risk for breast cancer for women with germline BRCA1 or BRCA2 mutations is around 80%. Genetically engineered BRCA1-deficient mouse models offer a unique opportunity to study the pathogenesis and therapy of triple negative breast cancer. Here we present a newly established Brca1−/−, p53−/− mouse mammary tumor cell line, designated as CST. CST shows prominent features of BRCA1-mutated triple-negative breast cancers including increased motility, high proliferation rate, genome instability and sensitivity to platinum chemotherapy and PARP inhibitors (olaparib, veliparib, rucaparib and talazoparib). Genomic instability of CST cells was confirmed by whole genome sequencing, which also revealed the presence of COSMIC (Catalogue of Somatic Mutations in Cancer) mutation signatures 3 and 8 associated with homologous recombination (HR) deficiency. In vitro sensitivity of CST cells was tested against 11 chemotherapy agents. Tumors derived from orthotopically injected CST-mCherry cells in FVB-GFP mice showed sensitivity to cisplatin, providing a new model to study the cooperation of BRCA1-KO, mCherry-positive tumor cells and the GFP-expressing stromal compartment in therapy resistance and metastasis formation. In summary, we have established CST cells as a new model recapitulating major characteristics of BRCA1-negative breast cancers.
Collapse
Affiliation(s)
- Lilla Hámori
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Ferenc Uher
- Central Hospital of Southern Pest—National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary;
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (A.F.); (G.S.)
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (A.F.); (G.S.)
| |
Collapse
|
36
|
Abstract
The number of companies offering direct-to-consumer genetic tests is increasing. There is growing concern over whether direct-to-consumer genetic companies should be allowed to offer clinically relevant testing that has only been possible under medical care. Direct-to-consumer genetic testing can be incomplete, inaccurate, and inappropriate. The usefulness of such testing is extremely limited and it is unclear how well customers understand reported results. Research on the long-term impact of direct-to-consumer genetic testing is necessary to determine if stricter regulations regarding the performance of direct-to-consumer genetic testing are necessary.
Collapse
Affiliation(s)
- Lauren M Petersen
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Joel A Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
37
|
Chiang HC, Zhang X, Li J, Zhao X, Chen J, Wang HTH, Jatoi I, Brenner A, Hu Y, Li R. BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells. Nucleic Acids Res 2019; 47:5086-5099. [PMID: 30982901 PMCID: PMC6547407 DOI: 10.1093/nar/gkz262] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
BRCA1-associated basal-like breast cancer originates from luminal progenitor cells. Breast epithelial cells from cancer-free BRCA1 mutation carriers are defective in luminal differentiation. However, how BRCA1 deficiency leads to lineage-specific differentiation defect is not clear. BRCA1 is implicated in resolving R-loops, DNA-RNA hybrid structures associated with genome instability and transcriptional regulation. We recently showed that R-loops are preferentially accumulated in breast luminal epithelial cells of BRCA1 mutation carriers. Here, we interrogate the impact of a BRCA1 mutation-associated R-loop located in a putative transcriptional enhancer upstream of the ERα-encoding ESR1 gene. Genetic ablation confirms the relevance of this R-loop-containing region to enhancer-promoter interactions and transcriptional activation of the corresponding neighboring genes, including ESR1, CCDC170 and RMND1. BRCA1 knockdown in ERα+ luminal breast cancer cells increases intensity of this R-loop and reduces transcription of its neighboring genes. The deleterious effect of BRCA1 depletion on transcription is mitigated by ectopic expression of R-loop-removing RNase H1. Furthermore, RNase H1 overexpression in primary breast cells from BRCA1 mutation carriers results in a shift from luminal progenitor cells to mature luminal cells. Our findings suggest that BRCA1-dependent R-loop mitigation contributes to luminal cell-specific transcription and differentiation, which could in turn suppress BRCA1-associated tumorigenesis.
Collapse
Affiliation(s)
- Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jerry Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Howard T-H Wang
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew Brenner
- Department of Medicine, The Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
38
|
Nudelman KNH, McDonald BC, Lahiri DK, Saykin AJ. Biological Hallmarks of Cancer in Alzheimer's Disease. Mol Neurobiol 2019; 56:7173-7187. [PMID: 30993533 PMCID: PMC6728183 DOI: 10.1007/s12035-019-1591-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
Although Alzheimer's disease (AD) is an international health research priority for our aging population, little therapeutic progress has been made. This lack of progress may be partially attributable to disease heterogeneity. Previous studies have identified an inverse association of cancer and AD, suggesting that cancer history may be one source of AD heterogeneity. These findings are particularly interesting in light of the number of common risk factors and two-hit models hypothesized to commonly drive both diseases. We reviewed the ten hallmark biological alterations of cancer cells to investigate overlap with the AD literature and identified overlap of all ten hallmarks in AD, including (1) potentially common underlying risk factors, such as increased inflammation, deregulated cellular energetics, and genome instability; (2) inversely regulated mechanisms, including cell death and evading growth suppressors; and (3) functions with more complex, pleiotropic mechanisms, some of which may be stage-dependent in AD, such as cell adhesion/contact inhibition and angiogenesis. Additionally, we discuss the recent observation of a biological link between cancer and AD neuropathology. Finally, we address the therapeutic implications of this topic. The significant overlap of functional pathways and molecules between these diseases, some similarly and some oppositely regulated or functioning in each disease, supports the need for more research to elucidate cancer-related AD genetic and functional heterogeneity, with the aims of better understanding AD risk mediators, as well as further exploring the potential for some types of drug repurposing towards AD therapeutic development.
Collapse
Affiliation(s)
- Kelly N. H. Nudelman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
| | - Brenna C. McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
| | - Debomoy K. Lahiri
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
39
|
Naccarato AG, Lessi F, Zavaglia K, Scatena C, Al Hamad MA, Aretini P, Menicagli M, Roncella M, Ghilli M, Caligo MA, Mazzanti CM, Bevilacqua G. Mouse mammary tumor virus (MMTV) - like exogenous sequences are associated with sporadic but not hereditary human breast carcinoma. Aging (Albany NY) 2019; 11:7236-7241. [PMID: 31518337 PMCID: PMC6756874 DOI: 10.18632/aging.102252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2019] [Indexed: 04/12/2023]
Abstract
The inheritance of mutated suppressor genes, such as BRCA1 and BRCA2, is acknowledged as an etiological factor in hereditary breast carcinoma (HBC). Two different molecular mechanisms are possible; the Knudson's "two hits" or the gene haploinsufficiency. Etiology of sporadic breast carcinoma (SBC) is not known, although data support the possible role of the betaretrovirus Mouse Mammary Tumor Virus (MMTV). This study analyzes the presence of MMTV exogenous sequences in two representative groups of HBC and SBC, excluding any contamination by murine and retroviral material and endogenous betaretroviruses. The 30.3% of 56 SBC contained MMTV sequences, against the 4.2% of 47 HBC (p < 0.001). Cases positive for viral sequences showed the presence of p14, signal peptide of the MMTV envelope precursor. This result was expected based on the fact that HBCs, having a specific genetic etiology, do not need the action of a carcinogenetic viral agent. Moreover, the striking results obtained by comparing two groups of vastly different tumors represent an additional element of quality control: the distinction between HBC and SBC is so well-defined that results cannot be ascribed to mere coincidence. This paper strengthens the hypothesis for a viral etiology for human sporadic breast carcinoma.
Collapse
Affiliation(s)
- Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, and Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | | | - Katia Zavaglia
- Division of Molecular Genetics, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, and Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | - Mohammad A. Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | | | - Manuela Roncella
- Division of Surgery, Breast Center, Pisa University Hospital, Pisa, Italy
| | - Matteo Ghilli
- Division of Surgery, Breast Center, Pisa University Hospital, Pisa, Italy
| | - Maria Adelaide Caligo
- Division of Molecular Genetics, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | | | - Generoso Bevilacqua
- Division of Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, and Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- “San Rossore” Hospital – Casa di Cura “San Rossore”, Pisa, Italy
| |
Collapse
|
40
|
CRISPR/Cas9-Mediated BRCA1 Knockdown Adipose Stem Cells Promote Breast Cancer Progression. Plast Reconstr Surg 2019; 143:747-756. [PMID: 30817646 DOI: 10.1097/prs.0000000000005316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The tumor microenvironment within the breast is rich in adipose elements. The interaction between adipose cells and breast cancer is poorly understood, particularly as it pertains to patients with genetic susceptibility to breast cancer. This study focuses on the phenotype of human adipose-derived stem cells with the BRCA1 mutation and the effect they may have on breast cancer cell behavior. METHODS CRISPR/Cas9 was used to generate de novo BRCA1-knockdown human adipose-derived stem cells. The effect of the BRCA1 knockdown on the adipose-derived stem cell phenotype was compared to wild-type adipose-derived stem cells and patient-derived breast adipose-derived stem cells with known BRCA1 mutations. Interactions between adipose-derived stem cells and the MDA-MB-231 breast cancer cell line were evaluated. RESULTS BRCA1-knockdown adipose-derived stem cells stimulated MDA-MB-231 proliferation (1.4-fold increase on day 4; p = 0.0074) and invasion (2.3-fold increase on day 2; p = 0.0171) compared to wild-type cells. Immunofluorescence staining revealed higher levels of phosphorylated ataxia telangiectasia-mutated activation in BRCA1-knockdown cells (72.9 ± 5.32 percent versus 42.9 ± 4.97 percent; p = 0.0147), indicating higher levels of DNA damage. Beta-galactosidase staining demonstrated a significantly higher level of senescence in BRCA1-knockdown cells compared with wild-type cells (7.9 ± 0.25 percent versus 0.17 ± 0.17 percent; p < 0.0001). Using quantitative enzyme-linked immunosorbent assay to evaluate conditioned media, the authors found significantly higher levels of interleukin-8 in BRCA1-knockdown cells (2.57 ± 0.32-fold; p = 0.0049). CONCLUSIONS The authors show for the first time that the BRCA1 mutation affects the adipose-derived stem cell phenotype. Moreover, CRISPR/Cas9-generated BRCA1-knockdown adipose-derived stem cells stimulate a more aggressive behavior in breast cancer cells than wild-type adipose-derived stem cells. This appears to be related to increased inflammatory cytokine production by means of a DNA damage-mediated cell senescence pathway.
Collapse
|
41
|
Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol 2019; 42:215-231. [PMID: 31067289 PMCID: PMC6687356 DOI: 10.1590/1678-4685-gmb-2018-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA) genes confer high risk of developing cancer, especially breast and ovarian tumors. Since the cloning of these tumor suppressor genes over two decades ago, a significant amount of research has been done. Most recently, monoallelic loss-of-function mutations in PALB2 have also been shown to increase the risk of breast cancer. The identification of BRCA1, BRCA2 and PALB2 as proteins involved in DNA double-strand break repair by homologous recombination and of the impact of complete loss of BRCA1 or BRCA2 within tumors have allowed the development of novel therapeutic approaches for patients with germline or somatic mutations in said genes. Despite the advances, especially in the clinical use of PARP inhibitors, key gaps remain. Now, new roles for BRCA1 and BRCA2 are emerging and old concepts, such as the classical two-hit hypothesis for tumor suppression, have been questioned, at least for some BRCA functions. Here aspects regarding cancer predisposition, cellular functions, histological and genomic findings in BRCA and PALB2-related tumors will be presented, in addition to an up-to-date review of the evolution and challenges in the development and clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Gabriel S Macedo
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Alemar
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Lu L, Huang H, Zhou J, Ma W, Mackay S, Wang Z. BRCA1 mRNA expression modifies the effect of T cell activation score on patient survival in breast cancer. BMC Cancer 2019; 19:387. [PMID: 31023256 PMCID: PMC6482542 DOI: 10.1186/s12885-019-5595-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background Effector CD8+ T cell activation and its cytotoxic function to eradicate tumor cells depend on the T cell recognition of tumor neoantigens, and are positively associated with improved survival in breast cancer. Tumor suppressor BRCA1 and cell cycle regulator CCND1 play a critical role in maintaining genome integrity and tumorigenesis, respectively. However, it is still unclear how BRCA1 and CCND1 expression levels affect the effect of T cell activation on breast cancer patient survival. Methods The interactions between T cell activation status and either BRCA1 or CCND1 expression were evaluated using Kaplan-Meier survival curves and multivariate Cox regression models in a public dataset with 1088 breast cancer patients. Results Among the patients with low BRCA1 or CCND1 expression, the Activation group showed better overall survival than the Exhaustion group. Adjusted hazards ratios were 0.43 (95% CI: 0.20–0.93) in patients with a low BRCA1 level, and 0.39 (95% CI: 0.19–0.81) in patients with a low CCND1 level, respectively. There was a significant trend in both subgroups (p-trend = 0.011 in the low BRCA1 group, and p-trend = 0.009 in the low CCND1 group). In contrast, there is no significant association in patients with either high BRCA1 or high CCND1 levels. There is a significant interaction between T cell activation status and BRCA1 level (p = 0.009), but not between T cell activation status and CCND1 level (p = 0.135). Conclusions BRCA1 expression modified the effect of T cell activation status on patient survival in breast cancer, suggesting that the existence of neoantigens and the enhancement of neoantigen presentation in combination with immune checkpoint blockade may have synergistic effects on patient outcome.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Center for Biomedical Data Science, Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Huatian Huang
- Guizhou Qianxinan People's Hospital, Xingyi, 652400, Guizhou, China
| | - Jing Zhou
- Isoplexis Corporation, 35 NE Industrial Road, Branford, CT, 06405, USA
| | - Wenxue Ma
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sean Mackay
- Isoplexis Corporation, 35 NE Industrial Road, Branford, CT, 06405, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, School of Medicine, Center for Biomedical Data Science, Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
| |
Collapse
|
43
|
Zhang X, Wang Y, Chiang HC, Hsieh YP, Lu C, Park BH, Jatoi I, Jin VX, Hu Y, Li R. BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells. Breast Cancer Res 2019; 21:51. [PMID: 30995943 PMCID: PMC6472090 DOI: 10.1186/s13058-019-1132-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Background BRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. While non-malignant cells carrying cancer-predisposing BRCA1 mutations exhibit increased genomic instability, it remains unclear whether BRCA1 haploinsufficiency affects transcription and chromatin dynamics in breast epithelial cells. Methods H3K27ac-associated super-enhancers were compared in primary breast epithelial cells from BRCA1 mutation carriers (BRCA1mut/+) and non-carriers (BRCA1+/+). Non-tumorigenic MCF10A breast epithelial cells with engineered BRCA1 haploinsufficiency were used to confirm the H3K27ac changes. The impact of BRCA1 mutations on enhancer function and enhancer-promoter looping was assessed in MCF10A cells. Results Here, we show that primary mammary epithelial cells from women with BRCA1 mutations display significant loss of H3K27ac-associated super-enhancers. These BRCA1-dependent super-enhancers are enriched with binding motifs for the GATA family. Non-tumorigenic BRCA1mut/+ MCF10A cells recapitulate the H3K27ac loss. Attenuated histone mark and enhancer activity in these BRCA1mut/+ MCF10A cells can be partially restored with wild-type BRCA1. Furthermore, chromatin conformation analysis demonstrates impaired enhancer-promoter looping in BRCA1mut/+ MCF10A cells. Conclusions H3K27ac-associated super-enhancer loss is a previously unappreciated functional deficiency in ostensibly normal BRCA1 mutation-carrying breast epithelium. Our findings offer new mechanistic insights into BRCA1 mutation-associated transcriptional and epigenetic abnormality in breast epithelial cells and tissue/cell lineage-specific tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s13058-019-1132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yao Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
44
|
Analysis of Outcomes in Patients With BRCA1/2 Breast Cancer Mutations Treated With Accelerated Partial Breast Irradiation (APBI). Am J Clin Oncol 2019; 42:446-453. [PMID: 30973374 DOI: 10.1097/coc.0000000000000542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To analyze outcomes and survival for BRCA1/2+ patients treated with accelerated partial breast irradiation (APBI). MATERIALS AND METHODS Retrospective review was performed on 341 women treated with intracavitary APBI (Mammosite or Contura) postlumpectomy from 2002 to 2013. Patients were treated to 34.0 Gy in 10 BID fractions. Of 341 treated patients, 11 (3.2%) had BRCA1/2 mutations, 5 of whom had an oophorectomy. Ipsilateral breast tumor recurrence (IBTR), contralateral breast tumor recurrence (CBTR), and breast tumor recurrence progression-free survival were analyzed using SPSS-17. BRCA1/2+ patient outcomes were compared with a general population treated cohort. RESULTS Median age at diagnosis was 66 years, for BRCA1/2+ women it was 61 years. Median follow-up was 8.4 years and for BRCA1/2+ patients it was 8.8 years. IBTR for the entire cohort was 3.5%, while CBTR was 1.2%. Both IBTR and CBTR for the BRCA1/2+ group were 0%. The 5-year IBTR-free survival was 97.3% (95% confidence interval [CI]=94.9%, 98.6%), and the CBTR-free survival was 99.4% (95% CI=97.6%, 99.9%). The 5-year breast tumor recurrence-free survival was 96.7% (95% CI=94.1%, 98.2%). As no patients with BRCA1/2+ mutation died of metastatic breast cancer or recurrence during follow-up and review, overall survival could not be evaluated. CONCLUSIONS To date, BRCA1/2+ patients treated with APBI sustained no recurrences, or second cancers. Most patients had an ER+ status and underwent oophorectomy, which may be a protective mechanism for recurrence. This is the first outcomes report in the literature of BRCA1/2 mutations treated with APBI technique.
Collapse
|
45
|
Friedlaender A, Vuilleumier A, Viassolo V, Ayme A, De Talhouet S, Combes JD, Peron J, Bodmer A, Giraud S, Buisson A, Bonadona V, Gauchat-Bouchardy I, Tredan O, Chappuis PO, Labidi-Galy SI. BRCA1/BRCA2 germline mutations and chemotherapy-related hematological toxicity in breast cancer patients. Breast Cancer Res Treat 2019; 174:775-783. [PMID: 30635808 DOI: 10.1007/s10549-018-05127-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE BRCA1 and BRCA2 proteins are central to DNA repair process through homologous recombination. We hypothesize that BRCA1/BRCA2 mutation carriers may exhibit increased hematological toxicity when receiving genotoxic chemotherapy. METHODS We included women with primary breast cancers screened for BRCA1/BRCA2 germline mutations and treated with (neo)adjuvant chemotherapy in Geneva (Swiss cohort). The primary endpoint was the incidence of febrile neutropenia following the first chemotherapy cycle (C1). Secondary endpoints were the incidence of grade 3-4 neutropenia, grade 4 neutropenia and hospitalization during C1, G-CSF use and chemotherapy dose reduction during the entire chemotherapy regimen. Long-term toxicities (hematological, cardiac and neuropathy) were assessed in the Swiss cohort and a second cohort of patients from Lyon (French cohort). RESULTS Overall, 221 patients were assessed for acute hematological toxicity, including 23 BRCA1 and 22 BRCA2 carriers. Following the C1, febrile neutropenia had an incidence of 35% (p = 0.002), 14% (p = 0.562) and 10% among BRCA1, BRCA2 and non-carriers, respectively. Grade 4 neutropenia was found in 57% of BRCA1 (p < 0.001), 14% of BRCA2 (p = 0.861) and 18% of non-carriers. G-CSF support was necessary in 86% of BRCA1 (p = 0.005), 64% of BRCA2 (p = 0.285) and 51% of non-carriers. For long-term toxicity analysis, 898 patients were included (167 BRCA1-, 91 BRCA2- and 640 non-carriers). There was no difference between the 3 groups. CONCLUSIONS BRCA1 germline mutations is associated with greater acute hematological toxicity in breast cancer patients. These observations could have implication for primary prophylaxis with G-CSF.
Collapse
Affiliation(s)
- Alex Friedlaender
- Department of Oncology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - Aurélie Vuilleumier
- Department of Oncology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - Valeria Viassolo
- Department of Oncology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - Aurélie Ayme
- Department of Genetic Medicine, Laboratory and Clinical Pathology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - Solène De Talhouet
- Department of Medical Oncology, Centre Léon Bérard, 8 Rue Laennec, 69008, Lyon, France
| | - Jean-Damien Combes
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008, Lyon, France
| | - Julien Peron
- Departement of Medical Oncology, Institut de Cancérologie des Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
- UMR CNRS 5558, Université Lyon 1, Lyon, France
| | - Alexandre Bodmer
- Department of Oncology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - Sophie Giraud
- Division of Molecular Genetics, Hospices Civils de Lyon, Groupe Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France
| | - Adrien Buisson
- Division of Molecular Genetics, Hospices Civils de Lyon, Groupe Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France
| | - Valerie Bonadona
- Unit of Prevention and Genetic Epidemiology, UMR CNRS 5558, Centre Léon Bérard, 8 Rue Laennec, 69008, Lyon, France
| | - Isabelle Gauchat-Bouchardy
- Department of Genetic Medicine, Laboratory and Clinical Pathology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - Olivier Tredan
- Department of Medical Oncology, Centre Léon Bérard, 8 Rue Laennec, 69008, Lyon, France
| | - Pierre O Chappuis
- Department of Oncology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
- Department of Genetic Medicine, Laboratory and Clinical Pathology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.
- Department of Internal Medecine Specialities, Faculty of Medecine, Université de Genève, Rue Michel Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
46
|
Larrimore KE, Rancati G. One rogue agent suffices for genomic chaos. Nature 2019; 566:188-189. [PMID: 30737500 DOI: 10.1038/d41586-019-00260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Tarpey MD, Valencia AP, Jackson KC, Amorese AJ, Balestrieri NP, Renegar RH, Pratt SJP, Ryan TE, McClung JM, Lovering RM, Spangenburg EE. Induced in vivo knockdown of the Brca1 gene in skeletal muscle results in skeletal muscle weakness. J Physiol 2019; 597:869-887. [PMID: 30556208 PMCID: PMC6355718 DOI: 10.1113/jp276863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Breast cancer 1 early onset gene codes for the DNA repair enzyme, breast cancer type 1 susceptibility protein (BRCA1). The gene is prone to mutations that cause a loss of protein function. BRCA1/Brca1 has recently been found to regulate several cellular pathways beyond DNA repair and is expressed in skeletal muscle. Skeletal muscle specific knockout of Brca1 in mice caused a loss of muscle quality, identifiable by reductions in muscle force production and mitochondrial respiratory capacity. Loss of muscle quality was associated with a shift in muscle phenotype and an accumulation of mitochondrial DNA mutations. These results demonstrate that BRCA1 is necessary for skeletal muscle function and that increased mitochondrial DNA mutations may represent a potential underlying mechanism. ABSTRACT Recent evidence suggests that the breast cancer 1 early onset gene (BRCA1) influences numerous peripheral tissues, including skeletal muscle. The present study aimed to determine whether induced-loss of the breast cancer type 1 susceptibility protein (Brca1) alters skeletal muscle function. We induced genetic ablation of exon 11 in the Brca1 gene specifically in the skeletal muscle of adult mice to generate skeletal muscle-specific Brca1 homozygote knockout (Brca1KOsmi ) mice. Brca1KOsmi exhibited kyphosis and decreased maximal isometric force in limb muscles compared to age-matched wild-type mice. Brca1KOsmi skeletal muscle shifted toward an oxidative muscle fibre type and, in parallel, increased myofibre size and reduced capillary numbers. Unexpectedly, myofibre bundle mitochondrial respiration was reduced, whereas contraction-induced lactate production was elevated in Brca1KOsmi muscle. Brca1KOsmi mice accumulated mitochondrial DNA mutations and exhibited an altered mitochondrial morphology characterized by distorted and enlarged mitochondria, and these were more susceptible to swelling. In summary, skeletal muscle-specific loss of Brca1 leads to a myopathy and mitochondriopathy characterized by reductions in skeletal muscle quality and a consequent kyphosis. Given the substantial impact of BRCA1 mutations on cancer development risk in humans, a parallel loss of BRCA1 function in patient skeletal muscle cells would potentially result in implications for human health.
Collapse
Affiliation(s)
- Michael D. Tarpey
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | - Ana P. Valencia
- School of Public HealthDepartment of KinesiologyUniversity of MarylandCollege ParkMDUSA
| | - Kathryn C. Jackson
- School of Public HealthDepartment of KinesiologyUniversity of MarylandCollege ParkMDUSA
| | - Adam J. Amorese
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | | | - Randall H. Renegar
- Department of Anatomy and Cell BiologyBrody School of Medicine at East Carolina UniversityGreenvilleNCUSA
| | - Stephen J. P. Pratt
- School of MedicineDepartment of OrthopedicsUniversity of MarylandBaltimoreMDUSA
| | - Terence E. Ryan
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | - Joseph M. McClung
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
- East Carolina Diabetes and Obesity InstituteBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| | - Richard M. Lovering
- School of MedicineDepartment of OrthopedicsUniversity of MarylandBaltimoreMDUSA
| | - Espen E. Spangenburg
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
- East Carolina Diabetes and Obesity InstituteBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
| |
Collapse
|
48
|
Kotoula V, Lakis S, Tikas I, Giannoulatou E, Lazaridis G, Papadopoulou K, Manoussou K, Efstratiou I, Papanikolaou A, Fostira F, Vlachos I, Tarlatzis B, Fountzilas G. Pathogenic BRCA1 mutations may be necessary but not sufficient for tissue genomic heterogeneity: Deep sequencing data from ovarian cancer patients. Gynecol Oncol 2018; 152:375-386. [PMID: 30446274 DOI: 10.1016/j.ygyno.2018.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Tissue genomic heterogeneity (t-HET) in patients with epithelial ovarian cancer (OVCA) is related to tissue plasticity, i.e., flexibility to adapt to adverse molecular environments. Here, we interrogated the presence and clinical relevance of OVCA t-HET. METHODS We applied high-depth (>2000×) sequencing on 297 paraffin tissue samples (fallopian tubes, ovaries, intra-abdominal metastases) from 71 treatment-naïve patients who subsequently received first-line platinum-based chemotherapy. Based on tissue mutation patterns, we distinguished tissue genotypes into: no mutation (33/297 samples; 11.1%), stable (173; 58.2%) and unstable (91; 30.7%). We profiled genotypes per patient and assessed t-HET in 69 patients. Predicted pathogenic mutations refer to germline and/or tissues. RESULTS Among all 71 patients, 46 (64.8%) had pathogenic BRCA1 mutations and 15 (21.7%) had BRCA1/2 disruption (i.e., pathogenic mutations with position-LOH). We classified 29 patients with t-HET (42%), all with pathogenic BRCA1; t-HET was observed in 64% with such mutations (p < 0.001). As opposed to non-t-HET, matched tissues in t-HET shared pathogenic BRCA1 (p < 0.001) but not BRCA2 and TP53. Germline BRCA1 mutations in tissues exhibited position-LOH; heterozygous status; or, partial loss of the inherited allele accompanied by additional clonal mutations. Patients with t-HET had worse outcome (log-rank p = 0.048 [progression-free]; p = 0.037 [overall survival]), including 12/15 patients with disrupted BRCA1/2 and 3 BRCA1 carriers with partial germline loss in tissues. CONCLUSIONS Pathogenic BRCA1 mutations appear necessary but may not be sufficient for the establishment of t-HET. t-HET may be associated with worse outcome, including in patients with disrupted BRCA1/2, which is usually considered as a favourable marker. OVCA t-HET may need to be addressed for treatment decisions.
Collapse
Affiliation(s)
- Vassiliki Kotoula
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.
| | - Sotirios Lakis
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tikas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Kensington, NSW, Australia
| | - Georgios Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Manoussou
- Section of Biostatistics, Hellenic Cooperative Oncology Group, Athens, Greece.
| | | | - Alexios Papanikolaou
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research NCSR Demokritos, Athens, Greece
| | - Ioannis Vlachos
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research NCSR Demokritos, Athens, Greece.
| | - Basil Tarlatzis
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
49
|
Zhong H, Chen C, Tammali R, Breen S, Zhang J, Fazenbaker C, Kennedy M, Conway J, Higgs BW, Holoweckyj N, Raja R, Harper J, Pierce AJ, Herbst R, Tice DA. Improved Therapeutic Window in BRCA-mutant Tumors with Antibody-linked Pyrrolobenzodiazepine Dimers with and without PARP Inhibition. Mol Cancer Ther 2018; 18:89-99. [DOI: 10.1158/1535-7163.mct-18-0314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
|
50
|
Billing D, Horiguchi M, Wu-Baer F, Taglialatela A, Leuzzi G, Nanez SA, Jiang W, Zha S, Szabolcs M, Lin CS, Ciccia A, Baer R. The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 2018; 72:127-139.e8. [PMID: 30244837 DOI: 10.1016/j.molcel.2018.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/23/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.
Collapse
Affiliation(s)
- David Billing
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michiko Horiguchi
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Silvia Alvarez Nanez
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|