1
|
Kondhare D, Budow-Busse S, Daniliuc C, Leonard P. Xanthine Nucleosides with Pyrazolo[3,4- d]pyrimidine Skeleton: Functionalization with Halogen Atoms, Clickable Side Chains, Pyrene, and iEDDA Cycloadducts, and Impact of Ionic Forms on Photophysical Properties. J Org Chem 2025; 90:1096-1114. [PMID: 39754597 DOI: 10.1021/acs.joc.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution. 8-Aza-7-deaza-7-iodo-2'-deoxyxanthosine served as an intermediate in Suzuki-Miyaura, Sonogashira, and Stille reactions. Alkynyl and vinyl side chains as well as fluorescent tags were introduced. Pyrene conjugates were derived by copper(I)-catalyzed cycloaddition. Inverse-electron-demand Diels-Alder reaction of 8-aza-7-deaza-7-vinyl-2'-deoxyxanthosine with 3,6-dipyridyl-tetrazine proceeded with a second-order rate constant of 0.042 L M-1 s-1. X-ray analysis of 8-aza-7-deaza-7-vinyl-2'-deoxyxanthosine displayed two conformers with a syn conformation. Crystal packing is stabilized by xanthine base pairs. UV spectroscopy confirmed the sensitivity of 7-functionalized 8-aza-7-deazaxanthine nucleosides to pH changes. Halogen and alkynyl substituents decrease pK values, and vinyl, pyrene, or benzofuran leads to an increase. Fluorescence measurements of 8-aza-7-deaza-7-benzofuran-2'-deoxyxanthosine disclosed solvatochromism and enhanced fluorescence when the pH or the viscosity of the solvent is increased. Nucleoside pyrene conjugates connected by a linear linker displayed monomer emission, and two pyrene residues connected by a dendritic linker exhibited excimer emission. According to their fluorescence properties and sensitivity to pH changes, the functionalized 8-aza-7-deazaxanthine nucleosides expand the class of nucleosides applicable to fluorescence detection for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Simone Budow-Busse
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Institut für Organische Chemie, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| |
Collapse
|
2
|
La Barbera G, Shuler MS, Beck SH, Ibsen PH, Lindberg LJ, Karstensen JG, Dragsted LO. Development of an untargeted DNA adductomics method by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2025; 282:126985. [PMID: 39418978 DOI: 10.1016/j.talanta.2024.126985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Genotoxicants originating from inflammation, diet, and environment can covalently modify DNA, possibly initiating the process of carcinogenesis. DNA adducts have been known for long, but the old methods allowed to target only a few known DNA adducts at a time, not providing a global picture of the "DNA adductome". DNA adductomics is a new research field, aiming to screen for unknown DNA adducts by high resolution mass spectrometry (HRMS). However, DNA adductomics presents several analytical challenges such as the need for high sensitivity and for the development of effective screening approaches to identify novel DNA adducts. In this work, a sensitive untargeted DNA adductomics method was developed by using ultra-high performance liquid chromatography (UHPLC) coupled via an ESI source to a quadrupole-time of flight mass spectrometric instrumentation. Mobile phases with ammonium bicarbonate gave the best signal enhancement. The MS capillary voltage, cone voltage, and detector voltage had most effect on the response of the DNA adducts. A low adsorption vial was selected for reducing analyte loss. Hybrid surface-coated analytical columns were tested for reducing adsorption of the DNA adducts. The optimized method was applied to analyse DNA adducts in calf thymus, cat colon, and human colon DNA by performing a MSE acquisition (all-ion fragmentation acquisition) and screening for the loss of deoxyribose and the nucleobase fragment ions. Fifty-four DNA adducts were tentatively identified, hereof 38 never reported before. This is the first untargeted DNA adductomics study on human colon tissue, and one of the few untargeted DNA adductomics studies in the literature reporting the identification of such a high number of unknowns. This demonstrates promising results for the application of this sensitive method in future human studies for investigating novel potential cancer-causing factors.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark.
| | - Marshal Spenser Shuler
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark
| | - Søren Hammershøj Beck
- Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - Per Holger Ibsen
- Department of Pathology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - Lars Joachim Lindberg
- Danish HNPCC Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - John Gásdal Karstensen
- Danish Polyposis Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, 2000, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark
| |
Collapse
|
3
|
Wu Y, Shi Y, Liang X. Evolution of two metabolic genes involved in nucleotide and amino acid metabolism in Pseudomonas aeruginosa. PLoS One 2024; 19:e0315931. [PMID: 39689084 DOI: 10.1371/journal.pone.0315931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing various severe infections. Understanding genetic mechanisms of its metabolic versatility aids in developing novel antibacterial drugs and therapeutic strategies to address multidrug-resistant P. aeruginosa infections. The metabolism of nucleotides and amino acids contributes to the cycle of two key biological macromolecules in the genetic central dogma. Guanine deaminase (GuaD) catalyzes the deamination of guanine to produce xanthine to maintain the homeostasis of the nucleotide pool, and transporters specific to BCAAs (termed as BraT) import BCAAs to keep its intracellular availability level. However, little is known about the evolution of GuaD and BraT in P. aeruginosa population. Here, two copies turned out to be widespread in P. aeruginosa population for each of GuaD and BraT. The phylogenic analysis demonstrated that GuaD1 and BraB were inherited from the ancestor of Pseudomonas, while GuaD2 and BraZ were additionally acquired via evolutionary events in the ancestors of P. aeruginosa. The functional divergence of two copies was supported by different distribution patterns of dN/dS ratios, divergent expression levels, differentially co-expressed genes, and their functional enrichment modules with few intersections. Besides, some co-expressed genes with known functions are involved in infecting hosts, forming biofilm and resisting antibiotic treatment. Taken together, functional divergence following copy number increase and differentiation of co-expression networks might confer greater metabolic potential to P. aeruginosa, especially in response to host immune responses and antibiotic treatments in clinical settings.
Collapse
Affiliation(s)
- Yutong Wu
- Gansu Provincial Hospital of TCM, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yuqi Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohui Liang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Peng Y, Moffat JG, DuPai C, Kofoed EM, Skippington E, Modrusan Z, Gloor SL, Clark K, Xu Y, Li S, Chen L, Liu X, Wu P, Harris SF, Wang S, Crawford TD, Li CS, Liu Z, Wai J, Tan MW. Differential effects of inosine monophosphate dehydrogenase (IMPDH/GuaB) inhibition in Acinetobacter baumannii and Escherichia coli. J Bacteriol 2024; 206:e0010224. [PMID: 39235234 PMCID: PMC11500612 DOI: 10.1128/jb.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - John G. Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Cory DuPai
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, California, USA
| | - Susan L. Gloor
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Shuxuan Li
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry D. Crawford
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Chun Sing Li
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
5
|
Kaur R, Nikkel DJ, Wetmore SD. Mechanism of Nucleic Acid Phosphodiester Bond Cleavage by Human Endonuclease V: MD and QM/MM Calculations Reveal a Versatile Metal Dependence. J Phys Chem B 2024; 128:9455-9469. [PMID: 39359137 DOI: 10.1021/acs.jpcb.4c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Human endonuclease V (EndoV) catalytically removes deaminated nucleobases by cleaving the phosphodiester bond as part of RNA metabolism. Despite being implicated in several diseases (cancers, cardiovascular diseases, and neurological disorders) and potentially being a useful tool in biotechnology, details of the human EndoV catalytic pathway remain unclear due to limited experimental information beyond a crystal structure of the apoenzyme and select mutational data. Since a mechanistic understanding is critical for further deciphering the central roles and expanding applications of human EndoV in medicine and biotechnology, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were used to unveil the atomistic details of the catalytic pathway. Due to controversies surrounding the number of metals required for nuclease activity, enzyme-substrate models with different numbers of active site metals and various metal-substrate binding configurations were built based on structural data for other nucleases. Subsequent MD simulations revealed the structure and stability of the human EndoV-substrate complex for a range of active site metal binding architectures. Four unique pathways were then characterized using QM/MM that vary in metal number (one versus two) and modes of substrate coordination [direct versus indirect (water-mediated)], with several mechanisms being fully consistent with experimental structural, kinetic, and mutational data for related nucleases, including members of the EndoV family. Beyond uncovering key roles for several active site amino acids (D240 and K155), our calculations highlight that while one metal is essential for human EndoV activity, the enzyme can benefit from using two metals due to the presence of two suitable metal binding sites. By directly comparing one- versus two-metal-mediated P-O bond cleavage reactions within the confines of the same active site, our work brings a fresh perspective to the "number of metals" controversy.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| |
Collapse
|
6
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
7
|
Ye J, Bi X, Deng S, Wang X, Liu Z, Suo Q, Wu J, Chen H, Wang Y, Qian K, Shi R, Zhao J, Yang GY, Ye J, Tang Y. Hypoxanthine is a metabolic biomarker for inducing GSDME-dependent pyroptosis of endothelial cells during ischemic stroke. Theranostics 2024; 14:6071-6087. [PMID: 39346547 PMCID: PMC11426240 DOI: 10.7150/thno.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Stroke induces metabolic changes in the body, and metabolites have become potential biomarkers for stroke. However, the specific metabolites involved in stroke and the mechanisms underlying brain injury during stroke remain unclear. Methods: Surface-enhanced Raman spectroscopy (SERS) and liquid chromatography-mass spectrometry (LC‒MS) analysis of clinical serum samples from 69 controls and 51 ischemic stroke patients who underwent reperfusion within 24 hours were performed to identify differentially abundant metabolites. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) and then intravenously injected with hypoxanthine. The infarct area was evaluated via tetrazolium chloride (TTC) staining, and behavior tests were conducted. Blood-brain barrier (BBB) leakage was assessed by Evans blue and IgG staining. Human blood vessel organoids were used to investigate the mechanism of hypoxanthine-induced pyroptosis of endothelial cells. Results: SERS and LC‒MS revealed the metabolic profiles of serum from stroke patients and controls with high sensitivity, speed and accuracy. Hypoxanthine levels were significantly elevated in the acute stage of ischemic stroke in both patients and mice (p < 0.001 after Bonferroni correction). In addition, increasing hypoxanthine increased the infarct area and aggravated BBB leakage and neurobehavioral deficits in mice after ischemic stroke. Further mechanistic studies using endothelial cells, human blood vessel organoids, and stroke mice demonstrated that hypoxanthine-mediated gasdermin E (GSDME)-dependent pyroptosis of endothelial cells occurs through intracellular Ca2+ overload. Conclusion: Our study identified hypoxanthine as an important metabolite that induces vascular injury and BBB disruption in stroke through triggering GSDME-dependent pyroptosis of endothelial cells.
Collapse
Affiliation(s)
- Jing Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinyuan Bi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shiyu Deng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianghui Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ze Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qian Suo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiao Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haoran Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yong Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rubing Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201102, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaohui Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
8
|
Liu X, Ren X, Li R, Deng Q, Li X, He Y, Yao J, Zhang F, Liu W, Sun M, Li M, Ma J, Zheng Y, She G. Integrated pharmacokinetic-pharmacodynamic modeling and metabolomic research on polyphenol-rich fraction of Thymus quinquecostatus Celak. Alleviating cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118229. [PMID: 38670403 DOI: 10.1016/j.jep.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
9
|
Yue H, Ma X, Sun S, Hu H, Wu J, Xu T, Huang D, Luo Y, Wu J, Huang T. Diversity and saline-alkali resistance of Coleoptera endosymbiont bacteria in arid and semi-arid climate. Microbiol Spectr 2024; 12:e0023224. [PMID: 38912811 PMCID: PMC11302287 DOI: 10.1128/spectrum.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/21/2024] [Indexed: 06/25/2024] Open
Abstract
Soil salinization usually occurs in arid and semi-arid climate areas from 37 to 50 degrees north latitude and 73 to 123 degrees east longitude. These regions are inhabited by a large number of Coleopteran insects, which play an important role in the ecological cycle. However, little is known about the endosymbiotic microbial taxa and their biological characteristics in these insects. A study of endosymbiotic microorganisms of Coleoptera from Xinjiang, a typical arid and inland saline area, revealed that endosymbiont bacteria with salinity tolerance are common among the endosymbionts of Coleoptera. Functional prediction of the microbiota analysis indicated a higher abundance of inorganic ion transporters and metabolism in these endosymbiont strains. Screening was conducted on the tolerable 11% NaCl levels of Brevibacterium casei G20 (PRJNA754761), and differential metabolite and proteins were performed. The differential metabolites of the strain during the exponential and plateau phases were found to include benzene compounds, organic acids, and their derivatives. These results suggest that the endosymbiotic microorganisms of Coleoptera in this environment have adaptive evolution to extreme environments, and this group of microorganisms is also one of the important resources for mining saline and alkaline-tolerant chassis microorganisms and high-robustness enzymes. IMPORTANCE Coleoptera insects, as the first largest order of insect class, have the characteristics of a wide variety and wide distribution. The arid and semi-arid climate makes it more adaptable. By studying the endosymbiont bacteria of Coleoptera insects, we can systematically understand the adaptability of endosymbiont bacteria to host and special environment. Through the analysis of endosymbiont bacteria of Coleoptera insects in different saline-alkali areas in arid and semi-arid regions of Xinjiang, it was found that bacteria in different host samples were resistant to saline-alkali stress. These results suggest that bacteria and their hosts co-evolved in response to this climate. Therefore, this study is of great significance for understanding the endosymbiont bacteria of Coleoptera insects and obtaining extremophile resources (Saline-alkali-resistant chassis strains with modification potential for the production of bulk chemicals and highly robust industrial enzymes).
Collapse
Affiliation(s)
- Haitao Yue
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
- School of Future Technology, Xinjiang University, Urumqi, China
| | - Xiaoyun Ma
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shuwen Sun
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Hongying Hu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jieyi Wu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tong Xu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Danyang Huang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yiqian Luo
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Junqiang Wu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tingting Huang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
10
|
He J, Ma M, Xu Z, Guo J, Chen H, Yang X, Chen P, Liu G. Association between semen microbiome disorder and sperm DNA damage. Microbiol Spectr 2024; 12:e0075924. [PMID: 38899893 PMCID: PMC11302304 DOI: 10.1128/spectrum.00759-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
DNA fragmentation index (DFI), a new biomarker to diagnose male infertility, is closely associated with poor reproductive outcomes. Previous research reported that seminal microbiome correlated with sperm DNA integrity, suggesting that the microbiome may be one of the causes of DNA damage in sperm. However, it has not been elucidated how the microbiota exerts their effects. Here, we used a combination of 16S rRNA sequencing and untargeted metabolomics techniques to investigate the role of microbiota in high sperm DNA fragmentation index (HDFI). We report that increased specific microbial profiles contribute to high sperm DNA fragmentation, thus implicating the seminal microbiome as a new therapeutic target for HDFI patients. Additionally, we found that the amount of Lactobacillus species was altered: Lactobacillus iners was enriched in HDFI patients, shedding light on the potential influence of L. iners on male reproductive health. Finally, we also identified enrichment of the acetyl-CoA fermentation to butanoate II and purine nucleobase degradation I in the high sperm DNA fragmentation samples, suggesting that butanoate may be the target metabolite of sperm DNA damage. These findings provide valuable insights into the complex interplay between microbiota and sperm quality in HDFI patients, laying the foundation for further research and potential clinical interventions.IMPORTANCEThe DNA fragmentation index (DFI) is a measure of sperm DNA fragmentation. Because high sperm DNA fragmentation index (HDFI) has been strongly associated with adverse reproductive outcomes, this has been linked to the seminal microbiome. Because the number of current treatments for HDFI is limited and most of them have no clear efficacy, it is critical to understand how semen microbiome exerts their effects on sperm DNA. Here, we evaluated the semen microbiome and its metabolites in patients with high and low sperm DNA fragmentation. We found that increased specific microbial profiles contribute to high sperm DNA fragmentation. In particular, Lactobacillus iners was uniquely correlated with high sperm DNA fragmentation. Additionally, butanoate may be the target metabolite produced by the microbiome to damage sperm DNA. Our findings support the interaction between semen microbiome and sperm DNA damage and suggest that seminal microbiome should be a new therapeutic target for HDFI patients.
Collapse
Affiliation(s)
- Junxian He
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Menghui Ma
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Zhenhan Xu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jintao Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Haicheng Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xing Yang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guihua Liu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
11
|
Mitsuoka K, Kim JI, Yoshida A, Matsumoto A, Aoki-Shioi N, Iwai S, Kuraoka I. Base preference for inosine 3'-riboendonuclease activity of human endonuclease V: implications for cleavage of poly-A tails containing inosine. Sci Rep 2024; 14:14973. [PMID: 38951658 PMCID: PMC11217400 DOI: 10.1038/s41598-024-65814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Deamination of bases is a form of DNA damage that occurs spontaneously via the hydrolysis and nitrosation of living cells, generating hypoxanthine from adenine. E. coli endonuclease V (eEndoV) cleaves hypoxanthine-containing double-stranded DNA, whereas human endonuclease V (hEndoV) cleaves hypoxanthine-containing RNA; however, hEndoV in vivo function remains unclear. To date, hEndoV has only been examined using hypoxanthine, because it binds closely to the base located at the cleavage site. Here, we examined whether hEndoV cleaves other lesions (e.g., AP site, 6-methyladenine, xanthine) to reveal its function and whether 2'-nucleoside modification affects its cleavage activity. We observed that hEndoV is hypoxanthine-specific; its activity was the highest with 2'-OH modification in ribose. The cleavage activity of hEndoV was compared based on its base sequence. We observed that it has specificity for adenine located on the 3'-end of hypoxanthine at the cleavage site, both before and after cleavage. These data suggest that hEndoV recognizes and cleaves the inosine generated on the poly A tail to maintain RNA quality. Our results provide mechanistic insight into the role of hEndoV in vivo.
Collapse
Affiliation(s)
- Kazuma Mitsuoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Jung In Kim
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Aya Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Akane Matsumoto
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Narumi Aoki-Shioi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
12
|
Korsmo HW, Ekperikpe US, Daehn IS. Emerging Roles of Xanthine Oxidoreductase in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:712. [PMID: 38929151 PMCID: PMC11200862 DOI: 10.3390/antiox13060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.
Collapse
Affiliation(s)
| | | | - Ilse S. Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1243, New York, NY 10029, USA
| |
Collapse
|
13
|
Nowak MM, Niemczyk M, Gołębiewski S, Pączek L. Influence of xanthine oxidase inhibitors on all-cause mortality in adults: a systematic review and meta-analysis. Cardiol J 2024; 31:479-487. [PMID: 38771265 PMCID: PMC11229807 DOI: 10.5603/cj.97807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Xanthine oxidase inhibitors, including allopurinol and febuxostat, are the first-line treatment of hyperuricemia. This meta-analysis investigated the association between urate-lowering therapy and all-cause mortality in different chronic diseases to match its users and non-users in a real-world setting. Overall, 11 studies were included, which reported adjusted hazard ratios for all-cause mortality over at least 12 months. Meta-analysis of all included studies showed no effect of the therapy on all-cause mortality. However, subgroup analyses showed its beneficial effect in patients with chronic kidney disease (14% risk reduction) and hyperuricemia (14% risk reduction), but not in patients with heart failure (28% risk increase). Urate-lowering therapy reduces all-cause mortality among patients with hyperuricemia and chronic kidney disease, but it seems to increase mortality in patients with heart failure and should be avoided in this subgroup.
Collapse
Affiliation(s)
- Marcin M. Nowak
- Department of Interventional Cardiology and Internal Diseases, Military Institute of Medicine – National Research Institute, Legionowo, Poland
| | - Mariusz Niemczyk
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Poland
| | - Sławomir Gołębiewski
- Department of Interventional Cardiology and Internal Diseases, Military Institute of Medicine – National Research Institute, Legionowo, Poland
| | - Leszek Pączek
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Poland
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Rehman A, Huang F, Zhang Z, Habumugisha T, Yan C, Shaheen U, Zhang X. Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health. ENVIRONMENT INTERNATIONAL 2024; 187:108713. [PMID: 38703446 DOI: 10.1016/j.envint.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuyi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Uzma Shaheen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China.
| |
Collapse
|
15
|
Shu Z, Ji Q, He T, Zhou D, Zheng S, Zhou H, He W. Combined metabolome and transcriptome analyses reveal that growing under Red shade affects secondary metabolite content in Huangjinya green tea. Front Genet 2024; 15:1365243. [PMID: 38660681 PMCID: PMC11039865 DOI: 10.3389/fgene.2024.1365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Shading treatments impact the tea (Camellia sinensis L.) quality. The sunlight sensitive varieties can be grown under shading nets for better growth and secondary metabolite content. Here, we studied the responses of a sunlight sensitive green tea variety "Huangjinya" by growing under colored shading nets (red, yellow, blue, and black (75% and 95%) shading rates) to find out the most suitable color of the shading net. Red shading was the most promising treatment as it positively affected the weight and length of 100 one-bud-three leaves and reduced the degree and rate of new shoots burn compared to control (natural sunlight). We then explored the comparative metabolomic changes in response to red shading by using UPLC-ESI-MS/MS system. The amino acids and derivatives, flavonoids, and alkaloids were downaccumulated whereas lipids, organic acids, and lignans were upaccumulated in Red shade grown tea samples. The red shading nets caused a decreased catechin, epicatechin, dopamine, and L-tyramine contents but increased caffeine content. We then employed transcriptome sequencing to find key changes in expressions of related genes and pathways. Notably, key genes associated with the phenylpropanoid and flavonoid biosynthesis pathways exhibited complex regulation. These expression changes suggested a potential trend of polymerization or condensation of simple molecules like catechin or pelargonidin into larger molecules like glucoside or proanthocyanidins. Here, Red shading net triggered higher expression of genes enriched in lipid biosynthesis and jasmonic acid biosynthesis, suggesting an interplay of fatty acids and JA in improving tea performance. These findings contribute to the metabolic responses of Huangjinya tea to red shading nets which might have implications for flavor and health benefits. Our data provide a foundation for further exploration and optimization of cultivation practices for this unique tea variety.
Collapse
Affiliation(s)
| | | | | | | | | | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
16
|
Wu Y, Huang T, Wei Q, Yan X, Chen L, Ma Z, Luo L, Cao J, Chen H, Wei X, Tan H, Chen F, Tong G, Li L, Tang Z, Luo Y. Combined effects of copper and cadmium exposure on ovarian function and structure in Nile Tilapia (Oreochromis niloticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:266-280. [PMID: 38436777 DOI: 10.1007/s10646-024-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.
Collapse
Affiliation(s)
- Yijie Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
- College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Qiyu Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Xin Yan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liting Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Zhirui Ma
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liming Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
- College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Honglian Tan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Fuyan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China.
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China.
| |
Collapse
|
17
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
18
|
Burgis NE, VanWormer K, Robbins D, Smith J. An ITPA Enzyme with Improved Substrate Selectivity. Protein J 2024; 43:62-71. [PMID: 38066288 PMCID: PMC10901923 DOI: 10.1007/s10930-023-10162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 02/29/2024]
Abstract
Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA.
| | - Kandise VanWormer
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Devin Robbins
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Jonathan Smith
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| |
Collapse
|
19
|
Wan H, Wang W, Liu J, Zhang Y, Yang B, Hua R, Chen H, Chen S, Hua Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear Res 2023; 440:108913. [PMID: 37939412 DOI: 10.1016/j.heares.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rongkai Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
20
|
Li S, Liu X, Jia X, Fang M, Yang Q, Gong Z. Assessment of the temporal trend and daily profiles of the dietary purine intake among Chinese residents during 2014 to 2021. Front Nutr 2023; 10:1259053. [PMID: 38024389 PMCID: PMC10666749 DOI: 10.3389/fnut.2023.1259053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The incidence of hyperuricemia is on the rise in China, primarily due to dietary habits. However, limited data exists regarding dietary purine intake in the country. This study aimed to estimate the daily dietary purine intake among Chinese residents from 2014 to 2021 and evaluate the temporal trend using joinpoint regression analysis. The analysis revealed an annual percentage change (APC) of 0.8% (95% CI: 0.1-1.5%) in dietary purine intake prior to the joinpoint (2014-2019). Following the joinpoint (2019-2021), the APC significantly increased to 6.5% (95% CI: 3.3-9.8%), indicating a noteworthy upward trend (p = 0.045). Furthermore, the average daily purine intake varied significantly among different regions of China, with the southern region showing the highest dietary intake of purines. Considering the diverse contributions of various food sources to dietary purine intake, it was observed that meat consumption had the greatest impact, accounting for 36.2% of purine intake, followed by cereals consumption (25.3%) and vegetables and edible fungi (24.2%). These findings hold significance for dietary intervention and management strategies aimed at reducing purine intake among the population.
Collapse
Affiliation(s)
| | - Xin Liu
- *Correspondence: Xin Liu, ; Xiwu Jia,
| | - Xiwu Jia
- *Correspondence: Xin Liu, ; Xiwu Jia,
| | | | | | | |
Collapse
|
21
|
Zhang Q, Tretyakova N. Incorporation of inosine into DNA by human polymerase eta (Polη): kinetics of nucleotide misincorporation and structural basis for the mutagenicity. Biochem J 2023; 480:1479-1483. [PMID: 37746864 PMCID: PMC10586757 DOI: 10.1042/bcj20230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Inosine, a purine nucleoside containing the hypoxanthine (HX) nucleobase, can form in DNA via hydrolytic deamination of adenine. Due to its structural similarity to guanine and the geometry of Watson-Crick base pairs, inosine can mispair with cytosine upon catalysis by DNA polymerases, leading to AT → GC mutations. Additionally, inosine plays an essential role in purine nucleotide biosynthesis, and inosine triphosphate is present in living cells. In a recent publication, Averill and Jung examined the possibility of polη catalyzed incorporation of deoxyinosine triphosphate (dITP) across dC and dT in a DNA template. They found that dITP can be incorporated across C or T, with the ratio of 13.7. X ray crystallography studies revealed that the mutagenic incorporation of dITP by human polη was affected by several factors including base pair geometry in the active site of the polymerase, tautomerization of nucleobases, and the interaction of the incoming dITP nucleotide with active site residues of polη. This study demonstrates that TLS incorporation of inosine monophosphate (IMP) into growing DNA chains contributes to its mutagenic potential in cells.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, U.S.A
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, U.S.A
| |
Collapse
|
22
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
23
|
Rushing BR. Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents. Int J Mol Sci 2023; 24:13242. [PMID: 37686047 PMCID: PMC10487847 DOI: 10.3390/ijms241713242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to elucidate the molecular determinants influencing the response of cancer cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP data. Through integrated pathway analysis, the study identified key metabolic pathways, such as cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis also revealed potential druggable targets within these pathways. Furthermore, copy number variant (CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The findings of this study provide a holistic view of the molecular landscape and dysregulated pathways underlying the response of cancer cells to alkylating agents. The insights gained from this research can contribute to the development of more effective therapeutic strategies and personalized treatment approaches, ultimately improving patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Blake R. Rushing
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Burgis NE, April C, VanWormer K. Arginine-178 is an essential residue for ITPA function. Arch Biochem Biophys 2023; 744:109700. [PMID: 37506994 PMCID: PMC10530447 DOI: 10.1016/j.abb.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The inosine triphosphate pyrophosphatase (ITPA) enzyme plays a critical cellular role by removing noncanonical nucleoside triphosphates from nucleotide pools. One of the first pathological ITPA mutants identified is R178C (rs746930990), which causes a fatal infantile encephalopathy, termed developmental and epileptic encephalopathy 35 (DEE 35). The accumulation of noncanonical nucleotides such as inosine triphosphate (ITP), is suspected to affect RNA and/or interfere with normal nucleotide function, leading to development of DEE 35. Molecular dynamics simulations have shown that the very rare R178C mutation does not significantly perturb the overall structure of the protein, but results in a high level of structural flexibility and disrupts active-site hydrogen bond networks, while preliminary biochemical data indicate that ITP hydrolyzing activity is significantly reduced for the R178C mutant. Here we report Michaelis-Menten enzyme kinetics data for the R178C ITPA mutant and three other position 178 ITPA mutants. These data confirm that position 178 is essential for ITPA activity and even conservative mutation at this site (R178K) results in significantly reduced enzyme activity. Our data support that disruption of the active-site hydrogen bond network is a major cause of diminished ITP hydrolyzing activity for the R178C mutation. These results suggest an avenue for developing therapies to address DEE 35.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA.
| | - Caitlin April
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Kandise VanWormer
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| |
Collapse
|
25
|
Zhou L, Zhu X, Yang J, Cai L, Zhang L, Jiang H, Ruan H, Chen J. Deciphering the photoactive species-directed antibacterial mechanism of bismuth oxychloride with modulated nanoscale thickness. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117411. [PMID: 36758401 DOI: 10.1016/j.jenvman.2023.117411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
As an environmentally benign disinfection strategy, photocatalytic bacterial inactivation using nanoparticles involves photogenerated reactive species that cause cellular oxidative stress. Rationalising the structural performance of photocatalysts for the practical uses such as wastewater treatment has attracted significant attention; however, the contribution of reactive species to their photocatalytic antibacterial activities at the molecular and transcriptomic levels remains unclear. In this study, nontoxic bismuth oxychloride (BiOCl) photocatalysts with different nanoscale thicknesses, including nanosheets (Ns, ∼5.4 nm), nanoplates (Np, ∼1.8 nm), and ultra-nanosheets (Uns, ∼1.1 nm), were synthesised under hydrothermal conditions. Among the three samples, BiOCl Uns exhibited the most effective photocatalytic degradation efficiency with the calculated apparent rate constant of 0.0294 min-1, ∼4 times faster than that of Ns, whereas BiOCl Ns possessed the most pronounced bactericidal effect (5.4 log inactivation). Such findings indicate the distinct role of the photoactive species responsible for photocatalytic bacterial inactivation. Moreover, transcriptome analysis of Escherichia coli after photocatalytic treatment revealed that the underlying photocatalytic antibacterial mechanism at the genetic expression level involves cellular component biosynthesis, energy metabolism, and material transportation. Notably, the differences between BiOCl Ns and BiOCl Uns were significantly enriched in purine metabolism. Therefore, the cost-effective preparation of BiOCl nanosheets with nanoscale thickness-modulated photocatalytic antibacterial activity has remarkable potential for sustainable environmental and biomedical applications.
Collapse
Affiliation(s)
- Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Hongjie Ruan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing, 210004, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Straube H, Straube J, Rinne J, Fischer L, Niehaus M, Witte CP, Herde M. An inosine triphosphate pyrophosphatase safeguards plant nucleic acids from aberrant purine nucleotides. THE NEW PHYTOLOGIST 2023; 237:1759-1775. [PMID: 36464781 DOI: 10.1111/nph.18656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In plants, inosine is enzymatically introduced in some tRNAs, but not in other RNAs or DNA. Nonetheless, our data show that RNA and DNA from Arabidopsis thaliana contain (deoxy)inosine, probably derived from nonenzymatic adenosine deamination in nucleic acids and usage of (deoxy)inosine triphosphate (dITP and ITP) during nucleic acid synthesis. We combined biochemical approaches, LC-MS, as well as RNA-Seq to characterize a plant INOSINE TRIPHOSPHATE PYROPHOSPHATASE (ITPA) from A. thaliana, which is conserved in many organisms, and investigated the sources of deaminated purine nucleotides in plants. Inosine triphosphate pyrophosphatase dephosphorylates deaminated nucleoside di- and triphosphates to the respective monophosphates. ITPA loss-of-function causes inosine di- and triphosphate accumulation in vivo and an elevated inosine and deoxyinosine content in RNA and DNA, respectively, as well as salicylic acid (SA) accumulation, early senescence, and upregulation of transcripts associated with immunity and senescence. Cadmium-induced oxidative stress and biochemical inhibition of the INOSINE MONOPHOSPHATE DEHYDROGENASE leads to more IDP and ITP in the wild-type (WT), and this effect is enhanced in itpa mutants, suggesting that ITP originates from ATP deamination and IMP phosphorylation. Inosine triphosphate pyrophosphatase is part of a molecular protection system in plants, preventing the accumulation of (d)ITP and its usage for nucleic acid synthesis.
Collapse
Affiliation(s)
- Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Jannis Straube
- Department of Molecular Plant Breeding, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Lisa Fischer
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| |
Collapse
|
27
|
Zheng X, Chang S, Liu Y, Dai X, You C. Human Mitochondrial Protein HSPD1 Binds to and Regulates the Repair of Deoxyinosine in DNA. J Proteome Res 2023; 22:1339-1346. [PMID: 36852893 DOI: 10.1021/acs.jproteome.2c00854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The generation of deoxyinosine (dI) in DNA is one of the most important sources of genetic mutations, which may lead to cancer and other human diseases. A further understanding of the biological consequences of dI necessitates the identification and functional characterizations of dI-binding proteins. Herein, we employed a mass spectrometry-based proteomics approach to detect the cellular proteins that may sense the presence of dI in DNA. Our results demonstrated that human mitochondrial heat shock protein 60 (HSPD1) can interact with dI-bearing DNA. We further demonstrated the involvement of HSPD1 in the sodium nitrite-induced DNA damage response and in the modulation of dI levels in vitro and in human cells. Together, these findings revealed HSPD1 as a novel dI-binding protein that may play an important role in the mitochondrial DNA damage control in human cells.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Sijia Chang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
28
|
Tang Y, Sun L, Zhao Y, Yao J, Feng Z, Liu Z, Zhang G, Sun C. UHPLC-ESI-QE-Orbitrap-MS based metabolomics reveals the antioxidant mechanism of icaritin on mice with cerebral ischemic reperfusion. PeerJ 2023; 11:e14483. [PMID: 36643627 PMCID: PMC9838208 DOI: 10.7717/peerj.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 01/12/2023] Open
Abstract
Background Icaritin (ICT) has been previously demonstrated to display protective effects against cerebral ischemic reperfusion (I/R) by inhibiting oxidative stress, but the mechanism remains unclear. This study aimed to explore the mechanism from the perspective of metabolomics. Methods A mice cerebral artery occlusion/reperfusion (MCAO/R) model was explored to mimic cerebral ischemic reperfusion and protective effect of ICT was assessed by neurologic deficit scoring, infarct volume and brain water content. Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry (UHPLC-ESI-QE-Orbitrap-MS) based metabolomic was performed to explore potential biomarkers. Brain tissue metabolic profiles were analyzed and metabolic biomarkers were identified through multivariate data analysis. The protein levels of Nrf2, HO-1 and HQO1 were assayed by western blot. The release of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were detected using corresponding assay kits. Results The results showed that after ICT treatment, the neurological deficit, cerebral infarction area, brain edema and the level of MDA in brain tissue of MCAO/R mice were significantly reduced. Meanwhile, ICT enhanced the activity of SOD, CAT and GSH-Px. Western blot results confirmed that ICT up-regulated the protein levels of antioxidant-related protein including Nrf2, HO-1 and NQO1. According to the metabolomic profiling of brain tissues, clear separations were observed among the Sham, Model and ICT groups. A total of 44 biomarkers were identified, and the identified biomarkers were mainly related to linoleic acid metabolism, arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism and purine metabolism, respectively. At the same time, the inhibitory effect of ICT on arachidonic acid and linoleic acid in brain tissue, as well as the promoting effect on taurine, GABA, NAAG, may be the key factors for the anti-neurooxidative function of mice after MCAO/R injury. Conclusion Our results demonstrate that ICT has benefits for MCAO/R injury, which are partially related to the suppression of oxidative stress via stimulating the Nrf2 signaling and regulating the production of arachidonic acid, linoleic acid, taurine, GABA, NAAG in brain tissue.
Collapse
Affiliation(s)
- Yunfeng Tang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China
| | - Lixin Sun
- Linyi Traditional Chinese Medicine Hospital, Linyi, Shandong Province, China
| | - Yun Zhao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China
| | - Zhong Feng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhong Liu
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, Shandong Province, China
| |
Collapse
|
29
|
Mechanistic investigation of the deamination reaction of 6-thioguanine: a theoretical study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Ridone P, Ishida T, Lin A, Humphreys DT, Giannoulatou E, Sowa Y, Baker MAB. The rapid evolution of flagellar ion selectivity in experimental populations of E. coli. SCIENCE ADVANCES 2022; 8:eabq2492. [PMID: 36417540 PMCID: PMC9683732 DOI: 10.1126/sciadv.abq2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Determining which cellular processes facilitate adaptation requires a tractable experimental model where an environmental cue can generate variants that rescue function. The bacterial flagellar motor (BFM) is an excellent candidate-an ancient and highly conserved molecular complex for bacterial propulsion toward favorable environments. Motor rotation is often powered by H+ or Na+ ion transit through the torque-generating stator subunit of the motor complex, and ion selectivity has adapted over evolutionary time scales. Here, we used CRISPR engineering to replace the native Escherichia coli H+-powered stator with Na+-powered stator genes and report the spontaneous reversion of our edit in a low-sodium environment. We followed the evolution of the stators during their reversion to H+-powered motility and used both whole-genome and RNA sequencing to identify genes involved in the cell's adaptation. Our transplant of an unfit protein and the cells' rapid response to this edit demonstrate the adaptability of the stator subunit and highlight the hierarchical modularity of the flagellar motor.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Tsubasa Ishida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Angela Lin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | | | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| |
Collapse
|
31
|
Liu Y, Chen Z, Li S, Ding L, Wei X, Han S, Wang P, Sun Y. Multi-omics profiling and biochemical assays reveal the acute toxicity of environmental related concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on the gill of crucian carp (Carassius auratus). CHEMOSPHERE 2022; 307:135814. [PMID: 35921887 DOI: 10.1016/j.chemosphere.2022.135814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most extensively utilized plasticizers in the plastic manufacturing process. It is widely used in various fields due to its low cost and excellent effect. Although there is evidence that DEHP is harmful to animal and human health, DEHP-induced gill toxicity in aquatic organisms is inconclusive, and its mechanism has not been fully elucidated. Here, we investigated the effects of DEHP acute exposure on crucian carp gills at environmentally relevant concentrations of 20, 100, and 500 μg/L. Multi-omics profiling and biochemical assays were employed to characterize the potential toxicological mechanisms. The results showed that acute exposure to 100 and 500 μg/L of DEHP leads to oxidative stress in gills, as evidenced by overproduction of reactive oxygen species (ROS), increased antioxidant enzyme activity, and the transformation of glutathione from reduced to oxidized form, resulting in lipid peroxidation. Integrative analysis of transcriptomics and metabolomics indicated that increased purine metabolism was the potential source of increased ROS. Moreover, lipid metabolism disorder, including arachidonic acid metabolism, induces inflammation. Further, DEHP causes the imbalance of the CYP enzyme system in the gill, and DEHP-induced gill toxicity in crucian carp was associated with interference with CYP450 homeostasis. Taken together, this study broadens the molecular understanding of the DEHP-induced gill toxicity in aquatic organisms and provides novel perspectives for assessing the effects of DEHP on target and non-target aquatic organisms in the environment.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Shanwei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaofeng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
32
|
Ghiboub M, Penny S, Verburgt CM, Boneh RS, Wine E, Cohen A, Dunn KA, Pinto DM, Benninga MA, de Jonge WJ, Levine A, Van Limbergen JE. Metabolome Changes With Diet-Induced Remission in Pediatric Crohn's Disease. Gastroenterology 2022; 163:922-936.e15. [PMID: 35679949 DOI: 10.1053/j.gastro.2022.05.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The Crohn's disease (CD) exclusion diet (CDED) plus partial enteral nutrition (PEN) and exclusive enteral nutrition (EEN) both induce remission in pediatric CD. CDED+PEN is better tolerated and able to sustain remission. We characterized the changes in fecal metabolites induced by CDED+PEN and EEN and their relationship with remission. METHODS A total of 216 fecal metabolites were measured in 80 fecal samples at week (W) 0, W6, and W12, of children with mild to moderate CD in a prospective randomized trial comparing CDED+PEN vs EEN. The metabolites were measured using liquid chromatography coupled to mass spectrometry. Metagenome Kyoto Encyclopedia of Genes and Genomes Orthology analysis was performed to investigate the differential functional gene abundance involved in specific metabolic pathways. Data were analyzed according to clinical outcome of remission (W6_rem), no remission (W6_nr), sustained remission (W12_sr), and nonsustained (W12_nsr) remission. RESULTS A decrease in kynurenine and succinate synthesis and an increase in N-α-acetyl-arginine characterized CDED+PEN W6_rem, whereas changes in lipid metabolism characterized EEN W6_rem, especially reflected by lower levels in ceramides. In contrast, fecal metabolites in EEN W6_nr were comparable to baseline/W0 samples. CDED+PEN W6_rem children maintained metabolome changes through W12. In contrast, W12_nsr children in the EEN group, who resumed a free diet after week 6, did not. The metabolome of CDED+PEN differed from EEN in the purine, pyrimidine, and sphingolipid pathways. A significant differential abundance in several genes involved in these pathways was detected. CONCLUSION CDED+PEN- and EEN-induced remission are associated with significant changes in inflammatory bowel disease-associated metabolites such as kynurenine, ceramides, amino acids, and others. Sustained remission with CDED+PEN, but not EEN, was associated with persistent changes in metabolites. CLINICALTRIALS gov, Number NCT01728870.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Susanne Penny
- National Research Council Canada, Human Health Therapeutics, Halifax, Canada
| | - Charlotte M Verburgt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Rotem Sigall Boneh
- Division of Pediatric Gastroenterology, Wolfson Medical Centre, Holon, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Alejandro Cohen
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | | - Devanand M Pinto
- National Research Council Canada, Human Health Therapeutics, Halifax, Canada
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Arie Levine
- Division of Pediatric Gastroenterology, Wolfson Medical Centre, Holon, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Johan E Van Limbergen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Pediatrics, Dalhousie University, Halifax, Canada.
| |
Collapse
|
33
|
Genome-wide analysis of fitness factors in uropathogenic Escherichia coli in a pig urinary tract infection model. Microbiol Res 2022; 265:127202. [PMID: 36167007 DOI: 10.1016/j.micres.2022.127202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs) in animals and humans. We applied Transposon-Directed Insertion Site sequencing (TraDIS) to determine the fitness genes in two well-characterized UPEC strains, UTI89 and CFT073, in order to identify fitness factors during UTI in a pig model. This novel animal model better reflects the course of UTI in humans than the commonly used mouse model, and facilitates the differentiation between sessile and planktonic UPEC populations. A total of 854 and 483 genes in UTI89 and CFT073, respectively, were predicted to contribute to growth in pig urine, and 1257 and 764, were scored as required for colonization of the bladder. The combined list of fitness genes for growth in urine and cystitis contained 741 (UTI89) and 439 (CFT073) genes. The essential genes for growth on LB agar media supplemented with kanamycin and the fitness factors during growth in human urine were also analyzed in CFT073. A total of 457 essential genes were identified and the pool of fitness genes for growth in human urine included 215 genes. The gene rfaG, which is involved in lipopolysaccharide biosynthesis, was included in all the fitness-gene-lists and was further confirmed to be relevant for all the conditions tested regardless of the host and the strain. Thus, this gene may represent a promising target for the development of new therapeutic strategies against UTI UPEC-associated. Besides this important observation, the study revealed strain-specific differences in gene-essentiality as well as in the fitness-gene-repertoire for growth in human urine and UTI of the pig model, and it identified novel factors required for UPEC-induced UTIs.
Collapse
|
34
|
Zheng X, Chen D, Zhao Y, Dai X, You C. Development of an Endonuclease V-Assisted Analytical Method for Sequencing Analysis of Deoxyinosine in DNA. Anal Chem 2022; 94:11627-11632. [PMID: 35942621 DOI: 10.1021/acs.analchem.2c02126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deoxyinosine (dI) is a highly mutagenic lesion that preferentially pairs with deoxycytidine during replication, which may induce A to G transition and ultimately contribute to carcinogenesis. Therefore, finding the site of dI modification in DNA is of great value for both basic research and clinical applications. Herein, we developed a novel method to sequence the dI modification site in DNA, which utilizes endonuclease V (EndoV)-dependent deamination repair to specifically label the modification site with biotin-14-dATP that allows the affinity enrichment of dI-bearing DNA for sequencing. We have achieved efficient determination of the location of the modified nucleotide in dI-bearing plasmid DNA with the assistance of EndoV-dependent deamination repair. We have also successfully applied this approach to locate the dI modification sites in the mitochondrial DNA of human cells. Our method should be generally applicable for genome-wide sequencing analysis of dI modifications in living organisms.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Di Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Yingqi Zhao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
35
|
Dewulf JP, Marie S, Nassogne MC. Disorders of purine biosynthesis metabolism. Mol Genet Metab 2022; 136:190-198. [PMID: 34998670 DOI: 10.1016/j.ymgme.2021.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.
Collapse
Affiliation(s)
- Joseph P Dewulf
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium.
| | - Marie-Cécile Nassogne
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium.
| |
Collapse
|
36
|
Mair S, Erharter K, Renard E, Brillet K, Brunner M, Lusser A, Kreutz C, Ennifar E, Micura R. Towards a comprehensive understanding of RNA deamination: synthesis and properties of xanthosine-modified RNA. Nucleic Acids Res 2022; 50:6038-6051. [PMID: 35687141 PMCID: PMC9226506 DOI: 10.1093/nar/gkac477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
Nucleobase deamination, such as A-to-I editing, represents an important posttranscriptional modification of RNA. When deamination affects guanosines, a xanthosine (X) containing RNA is generated. However, the biological significance and chemical consequences on RNA are poorly understood. We present a comprehensive study on the preparation and biophysical properties of X-modified RNA. Thermodynamic analyses revealed that base pairing strength is reduced to a level similar to that observed for a G•U replacement. Applying NMR spectroscopy and X-ray crystallography, we demonstrate that X can form distinct wobble geometries with uridine depending on the sequence context. In contrast, X pairing with cytidine occurs either through wobble geometry involving protonated C or in Watson-Crick-like arrangement. This indicates that the different pairing modes are of comparable stability separated by low energetic barriers for switching. Furthermore, we demonstrate that the flexible pairing properties directly affect the recognition of X-modified RNA by reverse transcription enzymes. Primer extension assays and PCR-based sequencing analysis reveal that X is preferentially read as G or A and that the ratio depends on the type of reverse transcriptase. Taken together, our results elucidate important properties of X-modified RNA paving the way for future studies on its biological significance.
Collapse
Affiliation(s)
- Stefan Mair
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Eva Renard
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Karl Brillet
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
37
|
Molecular Mechanisms behind Safranal's Toxicity to HepG2 Cells from Dual Omics. Antioxidants (Basel) 2022; 11:antiox11061125. [PMID: 35740022 PMCID: PMC9219844 DOI: 10.3390/antiox11061125] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The spice saffron (Crocus sativus) has anticancer activity in several human tissues, but the molecular mechanisms underlying its potential therapeutic effects are poorly understood. We investigated the impact of safranal, a small molecule secondary metabolite from saffron, on the HCC cell line HepG2 using untargeted metabolomics (HPLC–MS) and transcriptomics (RNAseq). Increases in glutathione disulfide and other biomarkers for oxidative damage contrasted with lower levels of the antioxidants biliverdin IX (139-fold decrease, p = 5.3 × 105), the ubiquinol precursor 3-4-dihydroxy-5-all-trans-decaprenylbenzoate (3-fold decrease, p = 1.9 × 10−5), and resolvin E1 (−3282-fold decrease, p = 45), which indicates sensitization to reactive oxygen species. We observed a significant increase in intracellular hypoxanthine (538-fold increase, p = 7.7 × 10−6) that may be primarily responsible for oxidative damage in HCC after safranal treatment. The accumulation of free fatty acids and other biomarkers, such as S-methyl-5′-thioadenosine, are consistent with safranal-induced mitochondrial de-uncoupling and explains the sharp increase in hypoxanthine we observed. Overall, the dual omics datasets describe routes to widespread protein destabilization and DNA damage from safranal-induced oxidative stress in HCC cells.
Collapse
|
38
|
Tang S, Stokasimov E, Cui Y, Pellman D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 2022; 606:930-936. [PMID: 35477155 PMCID: PMC10680091 DOI: 10.1038/s41586-022-04767-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/15/2022] [Indexed: 12/31/2022]
Abstract
Chromothripsis is a catastrophic mutational process that promotes tumorigenesis and causes congenital disease1-4. Chromothripsis originates from aberrations of nuclei called micronuclei or chromosome bridges5-8. These structures are associated with fragile nuclear envelopes that spontaneously rupture9,10, leading to DNA damage when chromatin is exposed to the interphase cytoplasm. Here we identify a mechanism explaining a major fraction of this DNA damage. Micronuclei accumulate large amounts of RNA-DNA hybrids, which are edited by adenine deaminases acting on RNA (ADAR enzymes) to generate deoxyinosine. Deoxyinosine is then converted into abasic sites by a DNA base excision repair (BER) glycosylase, N-methyl-purine DNA glycosylase11,12 (MPG). These abasic sites are cleaved by the BER endonuclease, apurinic/apyrimidinic endonuclease12 (APE1), creating single-stranded DNA nicks that can be converted to DNA double strand breaks by DNA replication or when closely spaced nicks occur on opposite strands13,14. This model predicts that MPG should be able to remove the deoxyinosine base from the DNA strand of RNA-DNA hybrids, which we demonstrate using purified proteins and oligonucleotide substrates. These findings identify a mechanism for fragmentation of micronuclear chromosomes, an important step in generating chromothripsis. Rather than breaking any normal chromosome, we propose that the eukaryotic cytoplasm only damages chromosomes with pre-existing defects such as the DNA base abnormality described here.
Collapse
Affiliation(s)
- Shangming Tang
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ema Stokasimov
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Cui
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Inosine triphosphate pyrophosphatase from Trypanosoma brucei cleanses cytosolic pools from deaminated nucleotides. Sci Rep 2022; 12:6408. [PMID: 35436992 PMCID: PMC9016069 DOI: 10.1038/s41598-022-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInosine triphosphate pyrophosphatases (ITPases) are ubiquitous house-cleaning enzymes that specifically recognize deaminated purine nucleotides and catalyze their hydrolytic cleavage. In this work, we have characterized the Trypanosoma brucei ITPase ortholog (TbITPA). Recombinant TbITPA efficiently hydrolyzes (deoxy)ITP and XTP nucleotides into their respective monophosphate form. Immunolocalization analysis performed in bloodstream forms suggests that the primary role of TbITPA is the exclusion of deaminated purines from the cytosolic nucleoside triphosphate pools. Even though ITPA-knockout bloodstream parasites are viable, they are more sensitive to inhibition of IMP dehydrogenase with mycophenolic acid, likely due to an expansion of IMP, the ITP precursor. On the other hand, TbITPA can also hydrolyze the activated form of the antiviral ribavirin although in this case, the absence of ITPase activity in the cell confers protection against this nucleoside analog. This unexpected phenotype is dependant on purine availability and can be explained by the fact that ribavirin monophosphate, the reaction product generated by TbITPA, is a potent inhibitor of trypanosomal IMP dehydrogenase and GMP reductase. In summary, the present study constitutes the first report on a protozoan inosine triphosphate pyrophosphatase involved in the removal of harmful deaminated nucleotides from the cytosolic pool.
Collapse
|
40
|
García V, Grønnemose RB, Torres-Puig S, Kudirkiene E, Piantelli M, Ahmed S, Andersen TE, Møller-Jensen J, Olsen JE, Herrero-Fresno A. Genome-wide analysis of fitness-factors in uropathogenic Escherichia coli during growth in laboratory media and during urinary tract infections. Microb Genom 2021; 7. [PMID: 34928200 PMCID: PMC8767336 DOI: 10.1099/mgen.0.000719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) UTI89 is a well-characterized strain, which has mainly been used to study UPEC virulence during urinary tract infection (UTI). However, little is known on UTI89 key fitness-factors during growth in lab media and during UTI. Here, we used a transposon-insertion-sequencing approach (TraDIS) to reveal the UTI89 essential-genes for in vitro growth and fitness-gene-sets for growth in Luria broth (LB) and EZ-MOPS medium without glucose, as well as for human bacteriuria and mouse cystitis. A total of 293 essential genes for growth were identified and the set of fitness-genes was shown to differ depending on the growth media. A modified, previously validated UTI murine model, with administration of glucose prior to infection was applied. Selected fitness-genes for growth in urine and mouse-bladder colonization were validated using deletion-mutants. Novel fitness-genes, such as tusA, corA and rfaG; involved in sulphur-acquisition, magnesium-uptake, and LPS-biosynthesis, were proved to be important during UTI. Moreover, rfaG was confirmed as relevant in both niches, and therefore it may represent a target for novel UTI-treatment/prevention strategies.
Collapse
Affiliation(s)
- Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Rasmus B Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Sergi Torres-Puig
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mateo Piantelli
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas E Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
41
|
Jiang Q, Zhang W. Gradual effects of gradient concentrations of polystyrene nanoplastics on metabolic processes of the razor clams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117631. [PMID: 34182384 DOI: 10.1016/j.envpol.2021.117631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
With the widespread occurrence and accumulation of plastic waste in the world, plastic pollution has become a serious threat to ecosystem and ecological security, especially to estuarine and coastal areas. Understanding the impacts of changing nanoplastics concentrations on aquatic organisms living in these areas is essential for revealing the ecological effects caused by plastic pollution. In the present study, we revealed the effects of exposure to gradient concentrations (0.005, 0.05, 0.5 and 50 mg/L) of 75 nm polystyrene nanoplastics (PS-NPs) for 48 h on metabolic processes in muscle tissue of a bivalve, the razor clam Sinonovacula constricta, via metabolomic and transcriptomic analysis. Our results showed that PS-NPs caused dose-dependent adverse effects on energy reserves, membrane lipid metabolism, purine metabolism and lysosomal hydrolases. Exposure to PS-NPs reduced energy reserves, especially lipids. Membrane lipid metabolism was sensitive to PS-NPs with contents of phosphocholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS) increasing and degradation being inhibited in all concentrations. High concentrations of PS-NPs altered the purine metabolism via increasing contents of guanosine triphosphate (GTP) and adenine, which may be needed for DNA repair, and consuming inosine and hypoxanthine. During exposure to low concentrations of PS-NPs, lysosomal hydrolases in S. constricta, especially cathepsins, were inhibited while this influence was improved transitorily in 5 mg/L of PS-NPs. These adverse effects together impacted energy metabolism in S. constricta and disturbed energy homeostasis, which was manifested by the low levels of acetyl-CoA in high concentrations of PS-NPs. Overall, our results revealed the effects of acute exposure to gradient concentrations of PS-NPs on S. constricta, especially its metabolic process, and provide perspectives for understanding the toxicity of dynamic plastic pollution to coastal organisms and ecosystem.
Collapse
Affiliation(s)
- Qichen Jiang
- Freshwater Fishers Research Institute of Jiangsu Province, 79 Chatting East Street, Nanjing, 210017, China
| | - Wenyi Zhang
- Institute of Animal Genetic Resource, Nanjing Normal University, 1 Wenyuan Street, Nanjing, 210046, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
42
|
Wilson CS, Stocks BT, Hoopes EM, Rhoads JP, McNew KL, Major AS, Moore DJ. Metabolic preconditioning in CD4+ T cells restores inducible immune tolerance in lupus-prone mice. JCI Insight 2021; 6:e143245. [PMID: 34403367 PMCID: PMC8525586 DOI: 10.1172/jci.insight.143245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Autoimmune disease has presented an insurmountable barrier to restoration of durable immune tolerance. Previous studies indicate that chronic therapy with metabolic inhibitors can reduce autoimmune inflammation, but it remains unknown whether acute metabolic modulation enables permanent immune tolerance to be established. In an animal model of lupus, we determined that targeting glucose metabolism with 2-deoxyglucose (2DG) and mitochondrial metabolism with metformin enables endogenous immune tolerance mechanisms to respond to tolerance induction. A 2-week course of 2DG and metformin, when combined with tolerance-inducing therapy anti-CD45RB, prevented renal deposition of autoantibodies for 6 months after initial treatment and restored tolerance induction to allografts in lupus-prone mice. The restoration of durable immune tolerance was linked to changes in T cell surface glycosylation patterns, illustrating a role for glycoregulation in immune tolerance. These findings indicate that metabolic therapy may be applied as a powerful preconditioning to reinvigorate tolerance mechanisms in autoimmune and transplant settings that resist current immune therapies.
Collapse
Affiliation(s)
| | | | - Emilee M. Hoopes
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics
| | | | | | - Amy S. Major
- Department of Pathology, Microbiology, and Immunology; and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J. Moore
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics
- Department of Pathology, Microbiology, and Immunology; and
| |
Collapse
|
43
|
Endo M, Kim JI, Shioi NA, Iwai S, Kuraoka I. Arabidopsis thaliana endonuclease V is a ribonuclease specific for inosine-containing single-stranded RNA. Open Biol 2021; 11:210148. [PMID: 34665969 PMCID: PMC8526164 DOI: 10.1098/rsob.210148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endonuclease V is highly conserved, both structurally and functionally, from bacteria to humans, and it cleaves the deoxyinosine-containing double-stranded DNA in Escherichia coli, whereas in Homo sapiens it catalyses the inosine-containing single-stranded RNA. Thus, deoxyinosine and inosine are unexpectedly produced by the deamination reactions of adenine in DNA and RNA, respectively. Moreover, adenosine-to-inosine (A-to-I) RNA editing is carried out by adenosine deaminase acting on dsRNA (ADARs). We focused on Arabidopsis thaliana endonuclease V (AtEndoV) activity exhibiting variations in DNA or RNA substrate specificities. Since no ADAR was observed for A-to-I editing in A. thaliana, the possibility of inosine generation by A-to-I editing can be ruled out. Purified AtEndoV protein cleaved the second and third phosphodiester bonds, 3' to inosine in single-strand RNA, at a low reaction temperature of 20-25°C, whereas the AtEndoV (Y100A) protein bearing a mutation in substrate recognition sites did not cleave these bonds. Furthermore, AtEndoV, similar to human EndoV, prefers RNA substrates over DNA substrates, and it could not cleave the inosine-containing double-stranded RNA. Thus, we propose the possibility that AtEndoV functions as an RNA substrate containing inosine induced by RNA damage, and not by A-to-I RNA editing in vivo.
Collapse
Affiliation(s)
- Megumi Endo
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jung In Kim
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Narumi Aoki Shioi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
44
|
Sen A, Gaded V, Jayapal P, Rajaraman G, Anand R. Insights into the Dual Shuttle Catalytic Mechanism of Guanine Deaminase. J Phys Chem B 2021; 125:8814-8826. [PMID: 34324362 DOI: 10.1021/acs.jpcb.1c06127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanine deaminases (GD) are essential enzymes that help in regulating the nucleobase pool. Since the deamination reaction can result in the accumulation of mutagenic bases that can lead to genomic instability, these enzymes are tightly regulated and are nonpromiscuous. Here, we delineate the basis of their substrate fidelity via entailing the reaction mechanism of deamination by employing density functional theory (DFT) calculations on NE0047, a GD from Nitrosomonas europaea. The results show that, unlike pyrimidine deaminases, which require a single glutamic acid as a proton shuttle, GDs involve two amino acids, E79 and E143 (numbering in NE0047), which control its reactivity. The hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have shown that the first Zn-bound proton transfer to the N3 atom of the substrate is mediated by the E79 residue, and the second proton is transferred to the amine nitrogen of substrate via E143. Moreover, cluster models reveal that the crystallographic water molecules near the active site control the reactivity. A comparison with human GD reveals that the proposed catalytic mechanism is generic, and the knowledge generated here can be effectively applied to design selective inhibitors.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Vandana Gaded
- Department of Chemistry, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Prabha Jayapal
- Department of Chemistry, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology-Bombay, Mumbai 400076, India
| |
Collapse
|
45
|
Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects of occupational exposure to nanoparticles (NPs) were studied by NMR metabolomics. Exhaled breath condensate (EBC) and blood plasma samples were obtained from a research nanoparticles-processing unit at a national research university. The samples were taken from three groups of subjects: samples from workers exposed to nanoparticles collected before and after shift, and from controls not exposed to NPs. Altogether, 60 1H NMR spectra of exhaled breath condensate (EBC) samples and 60 1H NMR spectra of blood plasma samples were analysed, 20 in each group. The metabolites identified together with binning data were subjected to multivariate statistical analysis, which provided clear discrimination of the groups studied. Statistically significant metabolites responsible for group separation served as a foundation for analysis of impaired metabolic pathways. It was found that the acute effect of NPs exposure is mainly reflected in the pathways related to the production of antioxidants and other protective species, while the chronic effect is manifested mainly in the alteration of glutamine and glutamate metabolism, and the purine metabolism pathway.
Collapse
|
46
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
47
|
Singh J, Gaded V, Bitra A, Anand R. Structure guided mutagenesis reveals the substrate determinants of guanine deaminase. J Struct Biol 2021; 213:107747. [PMID: 34010666 DOI: 10.1016/j.jsb.2021.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Guanine deaminases (GDs) are essential enzymes that regulate the overall nucleobase pool. Since the deamination of guanine to xanthine results in the production of a mutagenic base, these enzymes have evolved to be very specific in nature. Surprisingly, they accept structurally distinct triazine ammeline, an intermediate in the melamine pathway, as one of the moonlighting substrates. Here, by employing NE0047 (a GD from Nitrosomonas europaea), we delineate the nuance in the catalytic mechanism that allows these two distinct substrates to be catalyzed. A combination of enzyme kinetics, X-ray crystallographic, and calorimetric studies reveal that GDs operate via a dual proton shuttle mechanism with two glutamates, E79 and E143, crucial for deamination. Additionally, N66 appears to be central for substrate anchoring and participates in catalysis. The study highlights the importance of closure of the catalytic loop and of maintenance of the hydrophobic core by capping residues like F141 and F48 for the creation of an apt environment for activation of the zinc-assisted catalysis. This study also analyzes evolutionarily distinct GDs and asserts that GDs incorporate subtle variations in the active site architectures while keeping the most critical active site determinants conserved.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Vandana Gaded
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Aruna Bitra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
48
|
Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in Biology and Disease. Genes (Basel) 2021; 12:600. [PMID: 33921764 PMCID: PMC8072771 DOI: 10.3390/genes12040600] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
49
|
Martínez-Matías N, Chorna N, González-Crespo S, Villanueva L, Montes-Rodríguez I, Melendez-Aponte LM, Roche-Lima A, Carrasquillo-Carrión K, Santiago-Cartagena E, Rymond BC, Babu M, Stagljar I, Rodríguez-Medina JR. Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi-OMICs analysis. Sci Rep 2021; 11:7411. [PMID: 33795741 PMCID: PMC8016984 DOI: 10.1038/s41598-021-86671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino acids, with enhanced expression of mitochondrial respirasome proteins. These observations support the idea that Mtl1 protein controls the suppression of a non-lethal heat stress response under normal conditions while it plays an important role in metabolic regulatory mechanisms linked to TORC1 signaling that are required to maintain cellular homeostasis and optimal mitochondrial function.
Collapse
Affiliation(s)
- Nelson Martínez-Matías
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Nataliya Chorna
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Sahily González-Crespo
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Lilliam Villanueva
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Ingrid Montes-Rodríguez
- Comprehensive Cancer Center, University of Puerto Rico, Puerto Rico Medical Center, Rio Piedras, PR 00936-3027 USA
| | - Loyda M. Melendez-Aponte
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Abiel Roche-Lima
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Kelvin Carrasquillo-Carrión
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Ednalise Santiago-Cartagena
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Brian C. Rymond
- grid.266539.d0000 0004 1936 8438Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | - Mohan Babu
- grid.57926.3f0000 0004 1936 9131Department of Biochemistry, University of Regina, Regina, SK S4S 0A2 Canada
| | - Igor Stagljar
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.482535.d0000 0004 4663 8413Mediterranean Institute for Life Sciences, Split, Croatia
| | - José R. Rodríguez-Medina
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| |
Collapse
|
50
|
James AM, Seal SE, Bailey AM, Foster GD. Viral inosine triphosphatase: A mysterious enzyme with typical activity, but an atypical function. MOLECULAR PLANT PATHOLOGY 2021; 22:382-389. [PMID: 33471956 PMCID: PMC7865087 DOI: 10.1111/mpp.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
Plant viruses typically have highly condensed genomes, yet the plant-pathogenic viruses Cassava brown streak virus, Ugandan cassava brown streak virus, and Euphorbia ringspot virus are unusual in encoding an enzyme not yet found in any other virus, the "house-cleaning" enzyme inosine triphosphatase. Inosine triphosphatases (ITPases) are highly conserved enzymes that occur in all kingdoms of life and perform a house-cleaning function by hydrolysing the noncanonical nucleotide inosine triphosphate to inosine monophosphate. The ITPases encoded by cassava brown streak virus and Ugandan cassava brown streak virus have been characterized biochemically and are shown to have typical ITPase activity. However, their biological role in virus infection has yet to be elucidated. Here we review what is known of viral-encoded ITPases and speculate on potential roles in infection with the aim of generating a greater understanding of cassava brown streak viruses, a group of the world's most devastating viruses.
Collapse
Affiliation(s)
- Amy M. James
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| | - Susan E. Seal
- Natural Resources Institute, Chatham MaritimeGillinghamUK
| | - Andy M. Bailey
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| | - Gary D. Foster
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|