1
|
Bohutínská M, Petříková E, Booker TR, Vives Cobo C, Vlček J, Šrámková G, Poupětová A, Hojka J, Marhold K, Yant L, Kolář F, Schmickl R. Polyploids broadly generate novel haplotypes from trans-specific variation in Arabidopsis arenosa and Arabidopsis lyrata. PLoS Genet 2024; 20:e1011521. [PMID: 39715277 PMCID: PMC11706510 DOI: 10.1371/journal.pgen.1011521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content. Here, we deconstruct in detail the origins of haplotypes displaying the strongest selection signals in established, successful autopolyploids, Arabidopsis lyrata and Arabidopsis arenosa. We see strong signatures of selection in 17 genes implied in meiosis, cell cycle, and transcription across all four autotetraploid lineages present in our expanded sampling of 983 sequenced genomes. Most prominent in our results is the finding that the tetraploid-characteristic haplotypes with the most robust signals of selection were completely absent in all diploid sisters. In contrast, the fine-scaled variant 'mosaics' in the tetraploids originated from highly diverse evolutionary sources. These include widespread novel reassortments of trans-specific polymorphism from diploids, new mutations, and tetraploid-specific inter-species hybridization-a pattern that is in line with the broad-scale acquisition and reshuffling of potentially adaptive variation in tetraploids.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Eliška Petříková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tom R. Booker
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cristina Vives Cobo
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Vlček
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Šrámková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alžběta Poupětová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Hojka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Karol Marhold
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Levi Yant
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
2
|
Bray SM, Hämälä T, Zhou M, Busoms S, Fischer S, Desjardins SD, Mandáková T, Moore C, Mathers TC, Cowan L, Monnahan P, Koch J, Wolf EM, Lysak MA, Kolar F, Higgins JD, Koch MA, Yant L. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep 2024; 43:114576. [PMID: 39116207 DOI: 10.1016/j.celrep.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
Collapse
Affiliation(s)
- Sian M Bray
- The University of Nottingham, Nottingham NG7 2RD, UK; The John Innes Centre, Norwich NR4 7UH, UK
| | - Tuomas Hämälä
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Silvia Busoms
- The John Innes Centre, Norwich NR4 7UH, UK; Department of Plant Physiology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sina Fischer
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart D Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Chris Moore
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura Cowan
- The University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | - Eva M Wolf
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Kolar
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic; The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Levi Yant
- The University of Nottingham, Nottingham NG7 2RD, UK; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic.
| |
Collapse
|
3
|
Jiang Z, Wang X, Zhou Z, Peng L, Lin X, Luo X, Song Y, Ning H, Gan C, He X, Zhu C, Ouyang L, Zhou D, Cai Y, Xu J, He H, Liu Y. Functional characterization of D-type cyclins involved in cell division in rice. BMC PLANT BIOLOGY 2024; 24:157. [PMID: 38424498 PMCID: PMC10905880 DOI: 10.1186/s12870-024-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.
Collapse
Affiliation(s)
- Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xin Wang
- Jiangxi Province Forest Resources Protection Center, Nanchang, 330008, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaowei Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huaying Ning
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yantong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Jin HL, Duan S, Zhang P, Yang Z, Zeng Y, Chen Z, Hong L, Li M, Luo L, Chang Z, Hu J, Wang HB. Dual roles for CND1 in maintenance of nuclear and chloroplast genome stability in plants. Cell Rep 2023; 42:112268. [PMID: 36933214 DOI: 10.1016/j.celrep.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The coordination of chloroplast and nuclear genome status is critical for plant cell function. Here, we report that Arabidopsis CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in the chloroplast and the nucleus. CND1 localizes to both compartments, and complete loss of CND1 results in embryo lethality. Partial loss of CND1 disturbs nuclear cell-cycle progression and photosynthetic activity. CND1 binds to nuclear pre-replication complexes and DNA replication origins and regulates nuclear genome stability. In chloroplasts, CND1 interacts with and facilitates binding of the regulator of chloroplast genome stability WHY1 to chloroplast DNA. The defects in nuclear cell-cycle progression and photosynthesis of cnd1 mutants are respectively rescued by compartment-restricted CND1 localization. Light promotes the association of CND1 with HSP90 and its import into chloroplasts. This study provides a paradigm of the convergence of genome status across organelles to coordinately regulate cell cycle to control plant growth and development.
Collapse
Affiliation(s)
- Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 263, Longxi Avenue, Guangzhou, China.
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Pengxiang Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziyue Yang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yunping Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziqi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liu Hong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Mengshu Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lujun Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhenyi Chang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jiliang Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Study on the interaction preference between CYCD subclass and CDK family members at the poplar genome level. Sci Rep 2022; 12:16805. [PMID: 36207355 PMCID: PMC9547009 DOI: 10.1038/s41598-022-20800-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/19/2022] [Indexed: 12/31/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) control the progression of the cell cycle. D-type cyclin (CYCD) is generally believed to form a complex with CDK and control the G1/S transition. In plants, CYCD and CDK gene families can be divided into 6 (D1-D7) and 7 (CDKA-CDKG) subclasses, respectively. Different subclasses in the CYCD and CDK families have different numbers, structures and functions. In some heterologous woody plants, the functions of these subclass family members remain unclear. In this study, 43 CYCD and 27 CDK gene family members were identified in the allodiploid Populus tomentosa Carr. Phylogenetic analysis suggested that these CYCDs and CDKs were divided into 6 and 7 subclasses, respectively, which were the same as other species. The analysis of protein properties, gene structure, motifs, domains, cis-acting elements and tissue-specific expression of all members of these CYCDs and CDKs showed that the differences between members of different subclasses varied widely, but members of the same subclass especially in the CDK gene family were very similar. These findings also demonstrated a strong correlation between CYCD and CDK gene family members in response to hormones and specific expression. The collinear analysis of P. tomentosa, Populus trichocarpa and Arabidopsis thaliana showed that the expansion patterns of CYCD and CDK gene families were predominantly whole genome duplications (WGD). The protein interaction prediction results of different subclasses of CYCD and CDKs showed that the interaction between different subclasses of CYCD and CDKs was significantly different. Our previous study found that transgenic PtoCYCD2;1 and PtoCYCD3;3 poplars exhibited opposite phenotypes. Y2H and BIFC results showed that the interaction between PtoCYCD2;1 and PtoCYCD3;3 was significantly different with CDKs. This finding might suggest that the functional differences of different CYCD subclasses in plant growth and development were closely related to the different interactions between CYCD and CDK. Our results provide a good idea and direction for the functional study of CYCD and CDK proteins in woody plants.
Collapse
|
6
|
Cui K, Qin L, Tang X, Nong J, Chen J, Wu N, Gong X, Yi L, Yang C, Xia S. A Single Amino Acid Substitution in RFC4 Leads to Endoduplication and Compromised Resistance to DNA Damage in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13061037. [PMID: 35741798 PMCID: PMC9223238 DOI: 10.3390/genes13061037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Replication factor C (RFC) is a heteropentameric ATPase associated with the diverse cellular activities (AAA+ATPase) protein complex, which is composed of one large subunit, known as RFC1, and four small subunits, RFC2/3/4/5. Among them, RFC1 and RFC3 were previously reported to mediate genomic stability and resistance to pathogens in Arabidopsis. Here, we generated a viable rfc4e (rfc4-1/RFC4G54E) mutant with a single amino acid substitution by site-directed mutagenesis. Three of six positive T2 mutants with the same amino acid substitution, but different insertion loci, were sequenced to identify homozygotes, and the three homozygote mutants showed dwarfism, early flowering, and a partially sterile phenotype. RNA sequencing revealed that genes related to DNA repair and replication were highly upregulated. Moreover, the frequency of DNA lesions was found to be increased in rfc4e mutants. Consistent with this, the rfc4e mutants were very sensitive to DSB-inducing genotoxic agents. In addition, the G54E amino acid substitution in AtRFC4 delayed cell cycle progression and led to endoduplication. Overall, our study provides evidence supporting the notion that RFC4 plays an important role in resistance to genotoxicity and cell proliferation by regulating DNA damage repair in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kan Cui
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jin Chen
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
- Changsha Technology Innovation Center for Phytoremediation of Heavy Metal Contaminated Soil, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Nan Wu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lixiong Yi
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
- Correspondence:
| |
Collapse
|
7
|
Zhao F, Zhang J, Weng L, Li M, Wang Q, Xiao H. Fruit size control by a zinc finger protein regulating pericarp cell size in tomato. MOLECULAR HORTICULTURE 2021; 1:6. [PMID: 37789485 PMCID: PMC10515234 DOI: 10.1186/s43897-021-00009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 10/05/2023]
Abstract
Fruit size is largely defined by the number and size of cells in the fruit. Endoreduplication - a specialized cell cycle - is highly associated with cell expansion during tomato fruit growth. However, how endoreduplication coupled with cell size is regulated remains poorly understood. In this study, we identified a zinc finger gene SlPZF1 (Solanum lycopersicum PERICARP-ASSOCIATED ZINC FINGER PROTEIN 1) that was highly expressed in the pericarp of developing fruits. Plants with altered SlPZF1 expression produced smaller fruits due to the reduction in cell size associated with weakened endoreduplication. Overexpressing SlPZF1 delayed cell division phase by enhancing early expression of several key cell cycle regulators including SlCYCD3;1 and two plant specific mitotic cyclin-dependent protein kinase (SlCDKB1 and SlCDKB2) in the pericarp tissue. Furthermore, we identified 14 putative SlPZF1 interacting proteins (PZFIs) via yeast two hybrid screening. Several PZFIs, including Pre-mRNA-splicing factor (SlSMP1/PZFI4), PAPA-1-like conserved region family protein (PZFI6), Fanconi anemia complex components (PZFI3 and PZFI10) and bHLH transcription factor LONESOME HIGHWAY (SlLHW/PZFI14), are putatively involved in cell cycle regulation. Our results demonstrate that fruit growth in tomato requires balanced expression of the novel cell size regulator SlPZF1.
Collapse
Affiliation(s)
- Fangfang Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jiajing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Life and Environment Science College, Shanghai Normal University, No.100 Guilin Rd, Shanghai, 200234, China
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Quanhua Wang
- Life and Environment Science College, Shanghai Normal University, No.100 Guilin Rd, Shanghai, 200234, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
8
|
Endopolyploidy Variation in Wild Barley Seeds across Environmental Gradients in Israel. Genes (Basel) 2021; 12:genes12050711. [PMID: 34068721 PMCID: PMC8151103 DOI: 10.3390/genes12050711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Wild barley is abundant, occupying large diversity of sites, ranging from the northern mesic Mediterranean meadows to the southern xeric deserts in Israel. This is also reflected in its wide phenotypic heterogeneity. We investigated the dynamics of DNA content changes in seed tissues in ten wild barley accessions that originated from an environmental gradient in Israel. The flow cytometric measurements were done from the time shortly after pollination up to the dry seeds. We show variation in mitotic cell cycle and endoreduplication dynamics in both diploid seed tissues (represented by seed maternal tissues and embryo) and in the triploid endosperm. We found that wild barley accessions collected at harsher xeric environmental conditions produce higher proportion of endoreduplicated nuclei in endosperm tissues. Also, a comparison of wild and cultivated barley strains revealed a higher endopolyploidy level in the endosperm of wild barley, that is accompanied by temporal changes in the timing of the major developmental phases. In summary, we present a new direction of research focusing on connecting spatiotemporal patterns of endoreduplication in barley seeds and possibly buffering for stress conditions.
Collapse
|
9
|
Yao M, Guan M, Yang Q, Huang L, Xiong X, Jan HU, Voss-Fels KP, Werner CR, He X, Qian W, Snowdon RJ, Guan C, Hua W, Qian L. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1545-1555. [PMID: 33677638 DOI: 10.1007/s00122-021-03788-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions in combination with co-expression analysis reveal candidate genes affecting oil accumulation in Brassica napus. One of the breeding goals in rapeseed production is to enhance the seed oil content to cater to the increased demand for vegetable oils due to a growing global population. To investigate the genetic basis of variation in seed oil content, we used 60 K Brassica Infinium SNP array along with phenotype data of 203 Chinese semi-winter rapeseed accessions to perform a genome-wide analysis of haplotype blocks associated with the oil content. Nine haplotype regions harbouring lipid synthesis/transport-, carbohydrate metabolism- and photosynthesis-related genes were identified as significantly associated with the oil content and were mapped to chromosomes A02, A04, A05, A07, C03, C04, C05, C08 and C09, respectively. Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions combined with transcriptome datasets from 13 accessions was further performed on these nine haplotype regions. This revealed natural variation in the BnTGD3-A02 and BnSSE1-A05 gene regions correlated with the phenotypic variation of the oil content within the A02 and A04 chromosome haplotype regions, respectively. Moreover, co-expression network analysis revealed that BnTGD3-A02 and BnSSE1-A05 were directly linked with fatty acid beta-oxidation-related gene BnKAT2-C04, thus forming a molecular network involved in the potential regulation of seed oil accumulation. The results of this study could be used to combine favourable haplotype alleles for further improvement of the seed oil content in rapeseed.
Collapse
Affiliation(s)
- Min Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Yang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Luyao Huang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Xinghua Xiong
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Habib U Jan
- Molecular Biology, Department of Pathology, MTI-LRH, Peshawar, 25000, Pakistan
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Christian R Werner
- The Roslin Institute University of Edinburgh Easter Bush Research Centre Midlothian, Midlothian, EH25 9RG, UK
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Hua
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, 430062, China.
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Wang K, Ndathe RW, Kumar N, Zeringue EA, Kato N, Larkin JC. The CDK Inhibitor SIAMESE Targets Both CDKA;1 and CDKB1 Complexes to Establish Endoreplication in Trichomes. PLANT PHYSIOLOGY 2020; 184:165-175. [PMID: 32694133 PMCID: PMC7479911 DOI: 10.1104/pp.20.00271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Endoreplication, also known as endoreduplication, is a modified cell cycle in which DNA is replicated without subsequent cell division. Endoreplication plays important roles in both normal plant development and in stress responses. The SIAMESE (SIM) gene of Arabidopsis (Arabidopsis thaliana) encodes a cyclin-dependent kinase (CDK) inhibitor that plays a central role in establishing endoreplication, and is the founding member of the SIAMESE-RELATED (SMR) family of plant-specific CDK inhibitor genes. However, there has been conflicting evidence regarding which specific cyclin/CDK complexes are inhibited by SIM in vivo. In this work, we use genetic evidence to show that SIM likely inhibits both CDKA;1- and CDKB1-containing CDK complexes in vivo, thus promoting endoreplication in developing Arabidopsis trichomes. We also show that SIM interacts with CYCA2;3, a binding partner of CDKB1;1, via SIM motif A, which we previously identified as a CDK-binding motif. By contrast, SIM motif C, which has been indicated as a cyclin binding motif in other contexts, appears to be relatively unimportant for interaction between SIM and CYCA2;3. Together with earlier results, our work suggests that SIM and other SMRs likely have a multivalent interaction with CYC/CDK complexes.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Ruth W Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Narender Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Elizabeth A Zeringue
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
11
|
Deja-Muylle A, Parizot B, Motte H, Beeckman T. Exploiting natural variation in root system architecture via genome-wide association studies. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2379-2389. [PMID: 31957786 DOI: 10.1093/jxb/eraa029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 05/26/2023]
Abstract
Root growth and development has become an important research topic for breeders and researchers based on a growing need to adapt plants to changing and more demanding environmental conditions worldwide. Over the last few years, genome-wide association studies (GWASs) became an important tool to identify the link between traits in the field and their genetic background. Here we give an overview of the current literature concerning GWASs performed on root system architecture (RSA) in plants. We summarize which root traits and approaches have been used for GWAS, mentioning their respective success rate towards a successful gene discovery. Furthermore, we zoom in on the current technical hurdles in root phenotyping and GWAS, and discuss future possibilities in this field of research.
Collapse
Affiliation(s)
- Agnieszka Deja-Muylle
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
12
|
Assefa T, Zhang J, Chowda-Reddy RV, Moran Lauter AN, Singh A, O’Rourke JA, Graham MA, Singh AK. Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches. BMC PLANT BIOLOGY 2020; 20:42. [PMID: 31992198 PMCID: PMC6988307 DOI: 10.1186/s12870-020-2237-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/03/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Iron (Fe) is an essential micronutrient for plant growth and development. Iron deficiency chlorosis (IDC), caused by calcareous soils or high soil pH, can limit iron availability, negatively affecting soybean (Glycine max) yield. This study leverages genome-wide association study (GWAS) and a genome-wide epistatic study (GWES) with previous gene expression studies to identify regions of the soybean genome important in iron deficiency tolerance. RESULTS A GWAS and a GWES were performed using 460 diverse soybean PI lines from 27 countries, in field and hydroponic iron stress conditions, using more than 36,000 single nucleotide polymorphism (SNP) markers. Combining this approach with available RNA-sequencing data identified significant markers, genomic regions, and novel genes associated with or responding to iron deficiency. Sixty-nine genomic regions associated with IDC tolerance were identified across 19 chromosomes via the GWAS, including the major-effect quantitative trait locus (QTL) on chromosome Gm03. Cluster analysis of significant SNPs in this region deconstructed this historically prominent QTL into four distinct linkage blocks, enabling the identification of multiple candidate genes for iron chlorosis tolerance. The complementary GWES identified SNPs in this region interacting with nine other genomic regions, providing the first evidence of epistatic interactions impacting iron deficiency tolerance. CONCLUSIONS This study demonstrates that integrating cutting edge genome wide association (GWA), genome wide epistasis (GWE), and gene expression studies is a powerful strategy to identify novel iron tolerance QTL and candidate loci from diverse germplasm. Crops, unlike model species, have undergone selection for thousands of years, constraining and/or enhancing stress responses. Leveraging genomics-enabled approaches to study these adaptations is essential for future crop improvement.
Collapse
Affiliation(s)
- Teshale Assefa
- Department of Agronomy, Iowa State University, Ames, IA USA
| | - Jiaoping Zhang
- Department of Agronomy, Iowa State University, Ames, IA USA
| | | | - Adrienne N. Moran Lauter
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA USA
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA USA
| | - Jamie A. O’Rourke
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA USA
| | - Michelle A. Graham
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA USA
| | | |
Collapse
|
13
|
Du Q, Yang X, Xie J, Quan M, Xiao L, Lu W, Tian J, Gong C, Chen J, Li B, Zhang D. Time-specific and pleiotropic quantitative trait loci coordinately modulate stem growth in Populus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:608-624. [PMID: 30133117 PMCID: PMC6381792 DOI: 10.1111/pbi.13002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/05/2018] [Accepted: 08/18/2018] [Indexed: 05/15/2023]
Abstract
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage-linkage disequilibrium (linkage-LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full-sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole-genome re-sequencing of the 435-member association mapping panel, we identified significant SNPs (P ≤ 9.4 × 10-7 ) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time-specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time-specific effects showed species-specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xiaohui Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxing Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenrui Gong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jinhui Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Bailian Li
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Department of ForestryNorth Carolina State UniversityRaleighNCUSA
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
14
|
Genome-Wide Analysis of the D-type Cyclin Gene Family Reveals Differential Expression Patterns and Stem Development in the Woody Plant Prunus mume. FORESTS 2019. [DOI: 10.3390/f10020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclins, a prominent class of cell division regulators, play an extremely important role in plant growth and development. D-type cyclins (CYCDs) are the rate-limiting components of the G1 phase. In plants, studies of CYCDs are mainly concerned with herbaceous plants, yet little information is available about these genes in perennial woody plants, especially ornamental plants. Here, twelve Prunus mume CYCD (PmCYCDs) genes are identified and characterized. The PmCYCDs were named on the basis of orthologues in Arabidopsis thaliana and Oryza sativa. Gene structure and conserved domains of each subgroup CYCDs was similar to that of their orthologues in A. thaliana and O. sativa. However, PmCYCDs exhibited different tissue-specific expression patterns in root, stem, leaf, bud, and fruit organs. The results of qRT-PCR showed that all PmCYCDs, except PmCYCD5;2 and PmCYCD7;1, were primarily highly expressed in leaf buds, shoots, and stems. In addition, the transcript levels of PmCYCD genes were analyzed in roots under different treatments, including exogenous applications of NAA, 6-BA, GA3, ABA, and sucrose. Interestingly, although PmCYCDs were induced by sucrose, the extent of gene induction among PmCYCD subgroups varied. The induction of PmCYCD1;2 by hormones depended on the presence of sucrose. PmCYCD3;1 was stimulated by NAA, and induction was strengthened when sugar and hormones were applied together. Taken together, our study demonstrates that PmCYCDs are functional in plant stem development and provides a basis for selecting members of the cyclin gene family as candidate genes for ornamental plant breeding.
Collapse
|
15
|
Han SK, Qi X, Sugihara K, Dang JH, Endo TA, Miller KL, Kim ED, Miura T, Torii KU. MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata. Dev Cell 2018; 45:303-315.e5. [PMID: 29738710 DOI: 10.1016/j.devcel.2018.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Precise cell division control is critical for developmental patterning. For the differentiation of a functional stoma, a cellular valve for efficient gas exchange, the single symmetric division of an immediate precursor is absolutely essential. Yet, the mechanism governing this event remains unclear. Here we report comprehensive inventories of gene expression by the Arabidopsis bHLH protein MUTE, a potent inducer of stomatal differentiation. MUTE switches the gene expression program initiated by SPEECHLESS. MUTE directly induces a suite of cell-cycle genes, including CYCD5;1, in which introduced expression triggers the symmetric divisions of arrested precursor cells in mute, and their transcriptional repressors, FAMA and FOUR LIPS. The regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop. Our mathematical modeling and experimental perturbations support a notion that MUTE orchestrates a transcriptional cascade leading to a tightly restricted pulse of cell-cycle gene expression, thereby ensuring the single cell division to create functional stomata.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Xingyun Qi
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Jonathan H Dang
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kristen L Miller
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
16
|
Qian J, Chen Y, Hu Y, Deng Y, Liu Y, Li G, Zou W, Zhao J. Arabidopsis replication factor C4 is critical for DNA replication during the mitotic cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:288-303. [PMID: 29406597 DOI: 10.1111/tpj.13855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Replication factor C (RFC) is a conserved eukaryotic complex consisting of RFC1/2/3/4/5. It plays important roles in DNA replication and the cell cycle in yeast and fruit fly. However, it is not very clear how RFC subunits function in higher plants, except for the Arabidopsis (At) subunits AtRFC1 and AtRFC3. In this study, we investigated the functions of AtRFC4 and found that loss of function of AtRFC4 led to an early sporophyte lethality that initiated as early as the elongated zygote stage, all defective embryos arrested at the two- to four-cell embryo proper stage, and the endosperm possessed six to eight free nuclei. Complementation of rfc4-1/+ with AtRFC4 expression driven through the embryo-specific DD45pro and ABI3pro or the endosperm-specific FIS2pro could not completely restore the defective embryo or endosperm, whereas a combination of these three promoters in rfc4-1/+ enabled the aborted ovules to develop into viable seeds. This suggests that AtRFC4 functions simultaneously in endosperm and embryo and that the proliferation of endosperm is critical for embryo maturation. Assays of DNA content in rfc4-1/+ verified that DNA replication was disrupted in endosperm and embryo, resulting in blocked mitosis. Moreover, we observed a decreased proportion of late S-phase and M-phase cells in the rfc4-1/-FIS2;DD45;ABI3pro::AtRFC4 seedlings, suggesting that incomplete DNA replication triggered cell cycle arrest in cells of the root apical meristem. Therefore, we conclude that AtRFC4 is a crucial gene for DNA replication.
Collapse
Affiliation(s)
- Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yueyue Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC. Lineage- and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development 2018; 145:dev.160671. [PMID: 29467245 DOI: 10.1242/dev.160671] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| | - Farah Patell
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - James A H Murray
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walter Dewitte
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Benya EGF, Leal-Zanchet AM, Hauser J. Polyploidy as a chromosomal component of stochastic noise: variable scalar multiples of the diploid chromosome complement in the invertebrate species Girardia schubarti from Brazil. BRAZ J BIOL 2017; 77:745-751. [DOI: 10.1590/1519-6984.20615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/14/2016] [Indexed: 11/21/2022] Open
Abstract
Abstract Chromosome stoichiometry, a form of genetic plasticity, specifically refers to variation in the standard diploid genomic composition of an individual or species. In the present work, freshwater planarians (Girardia schubarti) were analyzed to recognize variations in chromosomal stoichiometry especially of complete ploidal change between specimens, within specimens and between cells within specimens and any relations they might have with selected components of phenotypic plasticity. Homoploid polyploids for the group reached rational scalar multiples (e.g. tetraploids) or irrational scalar multiples (e.g. triploids). Karyotypic mosaics emerged where individual cells presented polyploid multiples in arithmetic and geometric progressions. Ploidal multiplicity, a chromosomal component of stochastic noise, had positive phenotypic effects (increased dimensions) on morphologic criteria of body length, body width and dorsal surface reflecting a significant genotypic plasticity (GP) and robust phenotypic plasticity (PP). Variable but significant association of genotypic plasticity with robust phenotypic variance suggests kinetics of phenotypic homeostasis that is species-specific permitting phenotypic adaptability to environmental variables by means of GP. That association is diminished, deactivated or lost in more advanced and more complex organisms.
Collapse
Affiliation(s)
| | | | - J. Hauser
- Universidade do Vale do Rio dos Sinos, Brazil
| |
Collapse
|
19
|
Jin JQ, Ma JQ, Yao MZ, Ma CL, Chen L. Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. PLANTA 2017; 245:523-538. [PMID: 27896431 DOI: 10.1007/s00425-016-2620-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 05/21/2023]
Abstract
Functional allelic variants of the flavonoid 3',5'-hydroxylase (F3'5'H) gene provides new information of F3'5'H function of tea plant and its relatives. This insight may serve as the foundation upon which to advance molecular breeding in the tea plant. Catechins are the active components of tea that determine its quality and health attributes. This study established the first integrated genomic strategy for deciphering the genetic basis of catechin traits of tea plant. With the RNA-sequencing analysis of bulked segregants representing the tails of a F1 population segregated for total catechin content, we identified a flavonoid 3',5'-hydroxylase (F3'5'H) gene. F3'5'H had one copy in the genomic DNA of tea plant. Among 202 tea accessions, we identified 120 single nucleotide polymorphisms (SNPs) at F3'5'H locus. Seventeen significant marker-trait associations were identified by association mapping in multiple environments, which were involved in 10 SNP markers, and the traits including the ratio of di/tri-hydroxylated catechins and catechin contents. The associated individual and combination of SNPs explained 4.5-25.2 and 53.0-63.0% phenotypic variations, respectively. In the F1 population (validation population), the catechin trait variation percentages explained by F3'5'H diplotype were 6.9-74.3%. The genotype effects of ten functional SNPs in the F1 population were all consistent with the association population. Furthermore, the function of SNP-711/-655 within F3'5'H was validated by gene expression analysis. Altogether, our work indicated functional SNP allelic variants within F3'5'H governing the ratio of di/tri-hydroxylated catechins and catechin contents. The strong catechin-associated SNPs identified in this study can be used for future marker-assisted selection to improve tea quality.
Collapse
Affiliation(s)
- Ji-Qiang Jin
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Jian-Qiang Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Ming-Zhe Yao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Chun-Lei Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Liang Chen
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
20
|
Winkler AJ, Dominguez-Nuñez JA, Aranaz I, Poza-Carrión C, Ramonell K, Somerville S, Berrocal-Lobo M. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Mar Drugs 2017; 15:md15020040. [PMID: 28212295 PMCID: PMC5334620 DOI: 10.3390/md15020040] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 02/06/2017] [Indexed: 01/10/2023] Open
Abstract
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.
Collapse
Affiliation(s)
- Alexander J Winkler
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Department for Wood Biology, Centre for Wood Science and Technology, Universität Hamburg, Leuschnerstr. 91d, D-2103 Hamburg, Germany.
| | - Jose Alfonso Dominguez-Nuñez
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Inmaculada Aranaz
- Departamento de Físico-Química, Instituto de Estudios Bifuncionales, Facultad de Farmacia, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain.
| | | | - Katrina Ramonell
- Department of Biological Sciences, P.O. Box 870344, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Shauna Somerville
- Plant Biology, Carnegie Institution of Science, 260 Panama St., Stanford, CA 94305, USA.
| | - Marta Berrocal-Lobo
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
21
|
Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1039-1054. [PMID: 28207059 PMCID: PMC5441860 DOI: 10.1093/jxb/erx016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early embryo development from the zygote is an essential stage in the formation of the seed, while seedling development is the beginning of the formation of an individual plant. AtNSE1 and AtNSE3 are subunits of the structural maintenance of chromosomes (SMC) 5/6 complex and have been identified as non-SMC elements, but their functions in Arabidopsis growth and development remain as yet unknown. In this study, we found that loss of function of AtNSE1 and AtNSE3 led to severe defects in early embryo development. Partially complemented mutants showed that the development of mutant seedlings was inhibited, that chromosome fragments occurred during anaphase, and that the cell cycle was delayed at G2/M, which led to the occurrence of endoreduplication. Further, a large number of DNA double-strand breaks (DSBs) occurred in the nse1 and nse3 mutants, and the expression of AtNSE1 and AtNSE3 was up-regulated following treatment of the plants with DSB inducer compounds, suggesting that AtNSE1 and AtNSE3 have a role in DNA damage repair. Therefore, we conclude that AtNSE1 and AtNSE3 facilitate DSB repair and contribute to maintaining genome stability and cell division in mitotic cells. Thus, we think that AtNSE1 and AtNSE3 may be crucial factors for maintaining proper early embryonic and post-embryonic development.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Wu J, Cheng F, Cai C, Zhong Y, Jie X. Association mapping for floral traits in cultivated Paeonia rockii based on SSR markers. Mol Genet Genomics 2016; 292:187-200. [PMID: 27807670 DOI: 10.1007/s00438-016-1266-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023]
Abstract
Tree peony (Paeonia Sect. Moutan) is an economically important ornamental plant, but little is known about the genetic architecture of important ornamental traits. To effectively improve ornamental value, we require a better understanding of genetic architecture in the complex traits of the tree peony. Association mapping is a powerful tool for detection of variation associated with traits. Thus, we examined the genetic diversity and the population structure of 462 unrelated cultivated P. rockii individuals, then performed association mapping to identify simple sequence repeat (SSR) markers associated with 12 floral traits. We observed a moderate level of genetic diversity (PIC = 0.459) and low linkage disequilibrium (LD) between markers, demonstrating that the potential value of an LD approach in elucidating the molecular basis of the quantitative variation in this species. An analysis of population structure revealed three subgroups in the association population. Subsequent single-marker association analysis identified 46 significant associations, involving the 11 traits with 37 SSRs. These loci explained a small proportion of the phenotypic variance, ranging from 2.68 to 23.97% (mean 5.50%). We also validated 15 of the 46 associations in a linkage mapping population of 159 individuals. Finally, five associations were further confirmed in the linkage mapping population, involving the four traits with four SSRs. These results can serve as a foundation for further analyses of the genetic architecture of floral traits, and the SSRs associated in this work have potential applications in marker-assisted breeding in tree peony.
Collapse
Affiliation(s)
- Jing Wu
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Fangyun Cheng
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Changfu Cai
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuan Zhong
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiao Jie
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Song J, Liu Z, Hong H, Ma Y, Tian L, Li X, Li YH, Guan R, Guo Y, Qiu LJ. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean. PLoS One 2016; 11:e0159064. [PMID: 27404272 PMCID: PMC4942065 DOI: 10.1371/journal.pone.0159064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping.
Collapse
Affiliation(s)
- Jian Song
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhangxiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yansong Ma
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Long Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xinxiu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
24
|
Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJB. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:2187-203. [PMID: 26869705 PMCID: PMC4825126 DOI: 10.1104/pp.15.00997] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/11/2016] [Indexed: 05/05/2023]
Abstract
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Willem Kruijer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Frank Becker
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - André Kuhn
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Henri van de Geest
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Jaap Buntjer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Timo Doeswijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - José Guerra
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Joost J B Keurentjes
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| |
Collapse
|
25
|
Albert E, Gricourt J, Bertin N, Bonnefoi J, Pateyron S, Tamby JP, Bitton F, Causse M. Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:395-418. [PMID: 26582510 DOI: 10.1007/s00122-015-2635-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/04/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE In tomato, genotype by watering interaction resulted from genotype re-ranking more than scale changes. Interactive QTLs according to watering regime were detected. Differentially expressed genes were identified in some intervals. ABSTRACT As a result of climate change, drought will increasingly limit crop production in the future. Studying genotype by watering regime interactions is necessary to improve plant adaptation to low water availability. In cultivated tomato (Solanum lycopersicum L.), extensively grown in dry areas, well-mastered water deficits can stimulate metabolite production, increasing plant defenses and concentration of compounds involved in fruit quality, at the same time. However, few tomato Quantitative Trait Loci (QTLs) and genes involved in response to drought are identified or only in wild species. In this study, we phenotyped a population of 119 recombinant inbred lines derived from a cross between a cherry tomato and a large fruit tomato, grown in greenhouse under two watering regimes, in two locations. A large genetic variability was measured for 19 plant and fruit traits, under the two watering treatments. Highly significant genotype by watering regime interactions were detected and resulted from re-ranking more than scale changes. The population was genotyped for 679 SNP markers to develop a genetic map. In total, 56 QTLs were identified among which 11 were interactive between watering regimes. These later mainly exhibited antagonist effects according to watering treatment. Variation in gene expression in leaves of parental accessions revealed 2259 differentially expressed genes, among which candidate genes presenting sequence polymorphisms were identified under two main interactive QTLs. Our results provide knowledge about the genetic control of genotype by watering regime interactions in cultivated tomato and the possible use of deficit irrigation to improve tomato quality.
Collapse
Affiliation(s)
- Elise Albert
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Justine Gricourt
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Nadia Bertin
- INRA, UR 1115, Plante et Système de cultures Horticoles, 228 Route de l'aérodrome, Centre de Recherche PACA, Domaine Saint Paul, CS40509, 84914, Avignon Cedex 9, France
| | | | - Stéphanie Pateyron
- INRA, Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Jean-Philippe Tamby
- INRA, Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Frédérique Bitton
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France.
| |
Collapse
|
26
|
Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. THE NEW PHYTOLOGIST 2016; 209:1067-82. [PMID: 26499329 DOI: 10.1111/nph.13695] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/02/2015] [Indexed: 05/08/2023]
Abstract
Deciphering the genetic architecture underlying polygenic traits in perennial species can inform molecular marker-assisted breeding. Recent advances in high-throughput sequencing have enabled strategies that integrate linkage-linkage disequilibrium (LD) mapping in Populus. We used an integrated method of quantitative trait locus (QTL) dissection with a high-resolution linkage map and multi-gene association mapping to decipher the nature of genetic architecture (additive, dominant, and epistatic effects) of potential QTLs for growth traits in a Populus linkage population (1200 progeny) and a natural population (435 individuals). Seventeen QTLs for tree height, diameter at breast height, and stem volume mapped to 11 linkage groups (logarithm of odds (LOD) ≥ 2.5), and explained 2.7-18.5% of the phenotypic variance. After comparative mapping and transcriptome analysis, 187 expressed genes (10 046 common single nucleotide polymorphisms (SNPs)) were selected from the segmental homology regions (SHRs) of 13 QTLs. Using multi-gene association models, we observed 202 significant SNPs in 63 promising genes from 10 QTLs (P ≤ 0.0001; FDR ≤ 0.10) that exhibited reproducible associations with additive/dominant effects, and further determined 11 top-ranked genes tightly linked to the QTLs. Epistasis analysis uncovered a uniquely interconnected gene-gene network for each trait. This study opens up opportunities to uncover the causal networks of interacting genes in plants using an integrated linkage-LD mapping approach.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chenrui Gong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Daling Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Haijiao Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Department of Forestry, North Carolina State University, Raleigh, NC, 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
27
|
El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts MGM. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. PLANT, CELL & ENVIRONMENT 2015; 38:585-99. [PMID: 25074022 DOI: 10.1111/pce.12418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 05/21/2023]
Abstract
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short-day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome-wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co-located with a QTL mapped in the RIL population.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Wageningen, 6708PB, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Ye J, Liu P, Zhu C, Qu J, Wang X, Sun Y, Sun F, Jiang Y, Yue G, Wang C. Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genomics 2014; 14:757-66. [PMID: 25228410 DOI: 10.1007/s10142-014-0400-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 11/25/2022]
Abstract
Jatropha curcas is a new promising bioenergy crop due to the high oil content in its seeds that can be converted into biodiesel. Seed size, a major determinant of Jatropha oil yield, is a target trait for Jatropha breeding. Due to the vital roles of phytohormone auxin in controlling seed and fruit development, we screened key genes in auxin pathway including ARF and IAA families and downstream effectors to identify candidate genes controlling seed size in Jatropha. As a result, JcARF19 was mapped in the major quantitative trait locus (QTL) region and significantly associated with seed length. By using expression QTL (eQTL) analysis to link variants with functional candidate genes, we provided evidences that seed traits were affected by the interaction of JcARF19 and JcIAA9. ARF19 and IAA9, involved in auxin signal transduction, were conserved in higher plants. These data including the single-nucleotide polymorphisms (SNPs) in the two genes could lead to utilization of the genes by integrating favored alleles into elite varieties through marker-assisted selection.
Collapse
Affiliation(s)
- Jian Ye
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review, written from a personal perspective, traces firstly the development of plant cell cycle research from the 1970s onwards, with some focus on the work of the author and of Dr Dennis Francis. Secondly there is a discussion of the support for and discussion of plant cell cycle research in the SEB, especially through the activities of the Cell Cycle Group within the Society's Cell Biology Section. In the main part of the review, selected aspects of DNA replication that have of been of special interest to the author are discussed. These are DNA polymerases and associated proteins, pre-replication events, regulation of enzymes and other proteins, nature and activation of DNA replication origins, and DNA endoreduplication. For all these topics, there is mention of the author's own work, followed by a brief synthesis of current understanding and a look to possible future developments.
Collapse
Affiliation(s)
- John Bryant
- School of Biosciences, CLES, University of Exeter, Exeter EX4 4PS, UK
| |
Collapse
|
30
|
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. TRENDS IN PLANT SCIENCE 2014; 19:390-8. [PMID: 24491827 DOI: 10.1016/j.tplants.2014.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
Plant growth and development are influenced by the genetic composition of the plant (G), the environment (E), and the interaction between them (G×E). To produce suitable genotypes for multiple environments, G×E should be accounted for and assessed in plant-breeding programs. Here, we review the genetic basis of G×E and its consequence for quantitative trait loci (QTL) mapping in biparental and genome-wide association (GWA) mapping populations. We also consider the implications of G×E for understanding plant fitness trade-offs and evolutionary ecology.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marcos Malosetti
- Biometris - Applied Statistics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
31
|
Blomme J, Inzé D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2715-30. [PMID: 24298000 DOI: 10.1093/jxb/ert388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
32
|
Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2757-66. [PMID: 24470468 PMCID: PMC4047990 DOI: 10.1093/jxb/ert473] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.
Collapse
Affiliation(s)
- Vasilis C Gegas
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jason J Wargent
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Edouard Pesquet
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Emma Granqvist
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - John H Doonan
- IBERS, Aberystwyth University, Aberystwyth SY23 2AX, UK
| |
Collapse
|
33
|
Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene. Proc Natl Acad Sci U S A 2014; 111:8305-10. [PMID: 24850864 DOI: 10.1073/pnas.1404978111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
De novo shoot organogenesis (i.e., the regeneration of shoots on nonmeristematic tissue) is widely applied in plant biotechnology. However, the capacity to regenerate shoots varies highly among plant species and cultivars, and the factors underlying it are still poorly understood. Here, we evaluated the shoot regeneration capacity of 88 Arabidopsis thaliana accessions and found that the process is blocked at different stages in different accessions. We show that the variation in regeneration capacity between the Arabidopsis accessions Nok-3 and Ga-0 is determined by five quantitative trait loci (QTL): REG-1 to REG-5. Fine mapping by local association analysis identified RECEPTOR-LIKE PROTEIN KINASE1 (RPK1), an abscisic acid-related receptor, as the most likely gene underlying REG-1, which was confirmed by quantitative failure of an RPK1 mutation to complement the high and low REG-1 QTL alleles. The importance of RPK1 in regeneration was further corroborated by mutant and expression analysis. Altogether, our results show that association mapping combined with linkage mapping is a powerful method to discover important genes implicated in a biological process as complex as shoot regeneration.
Collapse
|
34
|
Breuer C, Braidwood L, Sugimoto K. Endocycling in the path of plant development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:78-85. [PMID: 24507498 DOI: 10.1016/j.pbi.2013.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/29/2023]
Abstract
Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.
Collapse
Affiliation(s)
- Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
35
|
Dante RA, Sabelli PA, Nguyen HN, Leiva-Neto JT, Tao Y, Lowe KS, Hoerster GJ, Gordon-Kamm WJ, Jung R, Larkins BA. Cyclin-dependent kinase complexes in developing maize endosperm: evidence for differential expression and functional specialization. PLANTA 2014; 239:493-509. [PMID: 24240479 PMCID: PMC3902077 DOI: 10.1007/s00425-013-1990-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ricardo A. Dante
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
- Present Address: Embrapa Agricultural Informatics, Av. André Tosello 209, Campinas, SP 13083-886 Brazil
| | - Paolo A. Sabelli
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - Hong N. Nguyen
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - João T. Leiva-Neto
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| | - Yumin Tao
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | - Keith S. Lowe
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | | | | | - Rudolf Jung
- Pioneer Hi-Bred International, Inc., Johnston, IO 50131 USA
| | - Brian A. Larkins
- School of Plant Sciences, University of Arizona, 303 Forbes, Tucson, AZ 85721 USA
| |
Collapse
|
36
|
Du Q, Xu B, Pan W, Gong C, Wang Q, Tian J, Li B, Zhang D. Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa. G3 (BETHESDA, MD.) 2013; 3:2069-84. [PMID: 24048648 PMCID: PMC3815066 DOI: 10.1534/g3.113.007724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Lignocellulosic biomass from trees provides a renewable feedstock for biofuels, lumber, pulp, paper, and other uses. Dissecting the mechanism underlying natural variation of the complex traits controlling growth and lignocellulose biosynthesis in trees can enable marker-assisted breeding to improve wood quality and yield. Here, we combined linkage disequilibrium (LD)-based association analysis with traditional linkage analysis to detect the genetic effect of a Populus tomentosa cellulose synthase gene, PtoCesA4. PtoCesA4 is strongly expressed in developing xylem and leaves. Nucleotide diversity and LD in PtoCesA4, sampled from the P. tomentosa natural distribution, revealed that PtoCesA4 harbors high single nucleotide polymorphism (SNP) diversity (πT = 0.0080 and θw = 0.0098) and low LD (r(2) ≥ 0.1, within 1400 bp), demonstrating that the potential of a candidate-gene-based LD approach in understanding the molecular basis underlying quantitative variation in this species. By combining single SNP, multi-SNP, and haplotype-based associations in an association population of 460 individuals with single SNP linkage analysis in a family-based linkage populations (1200 individuals), we identified three strong associations (false discovery rate Q < 0.05) in both populations. These include two nonsynonymous markers (SNP49 associated with α-cellulose content and SNP59 associated with fiber width) and a noncoding marker (SNP18 associated with α-cellulose content). Variation in RNA transcript abundance among genotypic classes of SNP49 was confirmed in these two populations. Therefore, combining different methods allowed us to examine functional PtoCesA4 allelic variation underlying natural variation in complex quantitative traits related to growth and lignocellulosic biosynthesis.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Chenrui Gong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8203
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
37
|
Triviño M, Martín-Trillo M, Ballesteros I, Delgado D, de Marcos A, Desvoyes B, Gutiérrez C, Mena M, Fenoll C. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:808-22. [PMID: 23662679 DOI: 10.1111/tpj.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2013] [Indexed: 05/07/2023]
Abstract
Epidermal differentiation in Arabidopsis thaliana aerial organs involves stomatal lineage development. Lineages derive from meristemoids, which arise from asymmetric divisions of protodermal cells. Each meristemoid divides repeatedly in an inward spiral before it transits to a guard mother cell (GMC) that produces the stoma, leaving a trail of surrounding stomatal lineage ground cells (SLGCs) that eventually differentiate into endoreplicated pavement cells. MUTE is a bHLH transcription factor that is expressed in late meristemoids and drives their transition to GMCs. Loss-of-function mute mutants are stomata-less dwarf plants with arrested lineages, in which stunted putative SLGCs surround a halted meristemoid. We analysed MUTE functions using a chemically inducible system for mute-3 complementation based on conditional MUTE expression in its normal domain. Continuous induction from germination produced stomata-bearing, normal-sized plants with viable mute-3 seeds. In 2-week-old mute-3 cotyledons, meristemoids appeared to retain their identity and synchronously formed stomata in response to induced MUTE expression. However, arrested SLGCs were not complemented: many produced stomata, leading to stomatal clusters, and others remained unexpanded and diploid. In contrast, non-lineage pavement cells, which are under-endoreplicated in mute-3, expanded and increased their ploidy level upon induction, showing that the lack of response of SLGCs is specific to this arrested cell type. Leaf phenotypic mosaics include wild-type lineages and adjacent mute-3 lineages, whose meristemoids and putative SLGCs remained arrested, indicating that the role of MUTE in SLGC fate is strictly lineage-autonomous. These results show that timely MUTE expression is essential to prevent stomatal fate in SLGCs and to promote their differentiation as pavement cells.
Collapse
Affiliation(s)
- Magdalena Triviño
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Avenida Carlos III s/n, Toledo, 45071, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jiménez-Gómez JM, Peng J, Maloof JN, Sinha NR. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. THE PLANT CELL 2013; 25:2465-81. [PMID: 23872539 PMCID: PMC3753377 DOI: 10.1105/tpc.113.112391] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/27/2013] [Accepted: 07/05/2013] [Indexed: 05/18/2023]
Abstract
Introgression lines (ILs), in which genetic material from wild tomato species is introgressed into a domesticated background, have been used extensively in tomato (Solanum lycopersicum) improvement. Here, we genotype an IL population derived from the wild desert tomato Solanum pennellii at ultrahigh density, providing the exact gene content harbored by each line. To take advantage of this information, we determine IL phenotypes for a suite of vegetative traits, ranging from leaf complexity, shape, and size to cellular traits, such as stomatal density and epidermal cell phenotypes. Elliptical Fourier descriptors on leaflet outlines provide a global analysis of highly heritable, intricate aspects of leaf morphology. We also demonstrate constraints between leaflet size and leaf complexity, pavement cell size, and stomatal density and show independent segregation of traits previously assumed to be genetically coregulated. Meta-analysis of previously measured traits in the ILs shows an unexpected relationship between leaf morphology and fruit sugar levels, which RNA-Seq data suggest may be attributable to genetically coregulated changes in fruit morphology or the impact of leaf shape on photosynthesis. Together, our results both improve upon the utility of an important genetic resource and attest to a complex, genetic basis for differences in leaf morphology between natural populations.
Collapse
Affiliation(s)
- Daniel H. Chitwood
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ravi Kumar
- Department of Plant Biology, University of California, Davis, California 95616
| | - Lauren R. Headland
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Daniel Fulop
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Jie Peng
- Department of Statistics, University of California, Davis, California 95616
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, California 95616
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
39
|
Hisanaga T, Ferjani A, Horiguchi G, Ishikawa N, Fujikura U, Kubo M, Demura T, Fukuda H, Ishida T, Sugimoto K, Tsukaya H. The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. PLANT PHYSIOLOGY 2013; 162:831-41. [PMID: 23616603 PMCID: PMC3668073 DOI: 10.1104/pp.113.216796] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
During leaf development, a decrease in cell number often triggers an increase in cell size. This phenomenon, called compensation, suggests that some system coordinates cell proliferation and cell expansion, but how this is mediated at the molecular level is still unclear. The fugu2 mutants in Arabidopsis (Arabidopsis thaliana) exhibit typical compensation phenotypes. Here, we report that the FUGU2 gene encodes FASCIATA1 (FAS1), the p150 subunit of Chromatin Assembly Factor1. To uncover how the fas1 mutation induces compensation, we performed microarray analyses and found that many genes involved in the DNA damage response are up-regulated in fas1. Our genetic analysis further showed that activation of the DNA damage response and the accompanying decrease of cell number in fas1 depend on ATAXIA TELANGIECTASIA MUTATED (ATM) but not on ATM AND RAD3 RELATED. Kinematic analysis suggested that the delay in the cell cycle leads to a decrease in cell number in fas1 and that loss of ATM partially restores this phenotype. Consistently, both cell size phenotypes and high ploidy phenotypes of fas1 are also suppressed by atm, supporting that the ATM-dependent DNA damage response leads to these phenotypes. Altogether, these data suggest that the ATM-dependent DNA damage response acts as an upstream trigger in fas1 to delay the cell cycle and promote entry into the endocycle, resulting in compensated cell expansion.
Collapse
|
40
|
Lièvre M, Wuyts N, Cookson SJ, Bresson J, Dapp M, Vasseur F, Massonnet C, Tisné S, Bettembourg M, Balsera C, Bédiée A, Bouvery F, Dauzat M, Rolland G, Vile D, Granier C. Phenotyping the kinematics of leaf development in flowering plants: recommendations and pitfalls. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:809-21. [PMID: 24123939 DOI: 10.1002/wdev.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype.
Collapse
Affiliation(s)
- Maryline Lièvre
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chitwood DH, Sinha NR. A census of cells in time: quantitative genetics meets developmental biology. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:92-9. [PMID: 23218243 DOI: 10.1016/j.pbi.2012.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 05/09/2023]
Abstract
Quantitative genetics has become a popular method for determining the genetic basis of natural variation. Combined with genomic methods, it provides a tool for discerning the genetic basis of gene expression. So-called genetical genomics approaches yield a wealth of genomic information, but by necessity, because of cost and time, fail to resolve the differences between organs, tissues, and/or cell types. Similarly, quantitative approaches in development that might potentially address these issues are seldom applied to quantitative genetics. We discuss recent advances in cell type-specific isolation methods, the quantitative analysis of phenotype, and developmental modeling that are compatible with quantitative genetics and, with time, promise to bridge the gap between these two powerful disciplines yielding unprecedented biological insight.
Collapse
Affiliation(s)
- Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, Davis, CA 95616, United States
| | | |
Collapse
|
42
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|