1
|
Shidlovskii YV, Ulianova YA, Shaposhnikov AV, Kolesnik VV, Pravednikova AE, Stepanov NG, Chetverina D, Saccone G, Lebedeva LA, Chmykhalo VK, Giordano E. Subunits Med12 and Med13 of Mediator Cooperate with Subunits SAYP and Bap170 of SWI/SNF in Active Transcription in Drosophila. Int J Mol Sci 2024; 25:12781. [PMID: 39684492 DOI: 10.3390/ijms252312781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
SAYP and Bap170, subunits of the SWI/SNF remodeling complex, have the ability to support enhancer-dependent transcription when artificially recruited to the promoter on a transgene. We found that the phenomenon critically depends on two subunits of the Mediator kinase module, Med12 and Med13 but does not require the two other subunits of the module (Cdk8 and CycC) or other subunits of the core part of the complex. A cooperation of the above proteins in active transcription was also observed at endogenous loci, but the contribution of the subunits to the activity of a particular gene differed in different loci. The factors SAYP/Bap170 and Med12/Med13 did not form sufficiently stable interactions in the extract, and their cooperation was apparently local at regulatory elements, the presence of SAYP and Bap170 in a locus being necessary for stable recruitment of Med12 and Med13 to the locus. In addition to the above factors, the Nelf-A protein was found to participate in the process. The cooperation of the factors, independent of enzymatic activities of the complexes they are part of, appears to be a novel mechanism that maintains promoter activity and may be used in many loci of the genome. Extended intrinsically disordered regions of the factors were assumed to sustain the mechanism.
Collapse
Affiliation(s)
- Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 119992 Moscow, Russia
| | - Yulia A Ulianova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V Shaposhnikov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Valeria V Kolesnik
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna E Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G Stepanov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 119992 Moscow, Russia
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Lyubov A Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ennio Giordano
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
2
|
Strong A, March ME, Cardinale CJ, Liu Y, Battig MR, Finoti LS, Matsuoka LS, Watson D, Sridhar S, Jarrett JF, Cannon I, Li D, Bhoj E, Zackai EH, Rand EB, Wenger T, Lerman BB, Shikany A, Weaver KN, Hakonarson H. Novel insights into the phenotypic spectrum and pathogenesis of Hardikar syndrome. Genet Med 2024; 26:101222. [PMID: 39045790 PMCID: PMC11456378 DOI: 10.1016/j.gim.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE Hardikar syndrome (HS, MIM #301068) is a female-specific multiple congenital anomaly syndrome characterized by retinopathy, orofacial clefting, aortic coarctation, biliary dysgenesis, genitourinary malformations, and intestinal malrotation. We previously showed that heterozygous nonsense and frameshift variants in MED12 cause HS. The phenotypic spectrum of disease and the mechanism by which MED12 variants cause disease is unknown. We aim to expand the phenotypic and molecular landscape of HS and elucidate the mechanism by which MED12 variants cause disease. METHODS We clinically assembled and molecularly characterized a cohort of 11 previously unreported individuals with HS. Additionally, we studied the effect of MED12 deficiency on ciliary biology, hedgehog, and yes-associated protein (YAP) signaling; pathways implicated in diseases with phenotypic overlap with HS. RESULTS We report novel phenotypes associated with HS, including cardiomyopathy, arrhythmia, and vascular anomalies, and expand the molecular landscape of HS to include splice site variants. We additionally demonstrate that MED12 deficiency causes decreased cell ciliation, and impairs hedgehog and YAP signaling. CONCLUSION Our data support updating HS standard-of-care to include regular cardiac imaging, arrhythmia screening, and vascular imaging. We further propose that dysregulation of ciliogenesis and YAP and hedgehog signaling contributes to the pathogenesis of HS.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mark R Battig
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Livia Sertori Finoti
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leticia S Matsuoka
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deborah Watson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sindura Sridhar
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - James F Jarrett
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - India Cannon
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elizabeth B Rand
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Gastroenterology and Hepatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, WA
| | - Bruce B Lerman
- Department of Medicine, Division of Cardiology, Greenberg Institute for Cardiac Electrophysiology, Cornell University Medical Center, New York, NY
| | - Amy Shikany
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
3
|
Uśpieński T, Niewiadomski P. The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway. Cells 2024; 13:1496. [PMID: 39273066 PMCID: PMC11394618 DOI: 10.3390/cells13171496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Many cellular processes are regulated by proteasome-mediated protein degradation, including regulation of signaling pathways and gene expression. Among the pathways regulated by the ubiquitin-proteasome system is the Hedgehog pathway and its downstream effectors, the Gli transcription factors. Here we provide evidence that proteasomal activity is necessary for maintaining the activation of the Hedgehog pathway, and this crucial event takes place at the level of Gli proteins. We undertook extensive work to demonstrate the specificity of the observed phenomenon by ruling out the involvement of primary cilium, impaired nuclear import, failed dissociation from Sufu, microtubule stabilization, and stabilization of Gli repressor forms. Moreover, we showed that proteasomal-inhibition-mediated Hedgehog pathway downregulation is not restricted to the NIH-3T3 cell line. We demonstrated, using CRISPR/Ca9 mutagenesis, that neither Gli1, Gli2, nor Gli3 are solely responsible for the Hedgehog pathway downregulation upon proteasome inhibitor treatment, and that Cul3 KO renders the same phenotype. Finally, we report two novel E3 ubiquitin ligases, Btbd9 and Kctd3, known Cul3 interactors, as positive Hedgehog pathway regulators. Our data pave the way for a better understanding of the regulation of gene expression and the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Tomasz Uśpieński
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Akula S, Gonzalez CG, Kermet S, Burleson M. Natural compounds solasonine and alisol B23-acetate target GLI3 signaling to block oncogenesis in MED12-altered breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:127-135. [PMID: 38915457 PMCID: PMC11194031 DOI: 10.22099/mbrc.2024.49044.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.
Collapse
Affiliation(s)
- Shivani Akula
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Cristian G. Gonzalez
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Sophia Kermet
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
5
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
6
|
Duong TM, Araujo Rincon M, Myneni N, Burleson M. Genetic alterations in MED12 promote castration-resistant prostate cancer through modulation of GLI3 signaling. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2023; 12:63-70. [PMID: 37520466 PMCID: PMC10382901 DOI: 10.22099/mbrc.2023.47346.1828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Prostate cancer is a disease that depends on androgenic stimulation and is thus commonly treated with androgen deprivation therapy (ADT). ADT is highly successful initially; however, patients inevitably relapse at which point the cancer grows independently of androgens and is termed castration-resistant prostate cancer (CRPC). CRPC develops through various mechanisms, one of these being crosstalk of the androgen receptor (AR) signaling pathway with other signaling pathways. Congruently, prior work has shown that androgen deprivation induces SHH signaling, which subsequently promotes activation of AR-dependent gene expression to promote cell growth. Mechanistically, this crosstalk involves a physical interaction between AR and components of SHH signaling, specifically proteins of the GLI transcription factor family. These findings thus suggest that activation of SHH signaling could promote the recurrence of cell growth in the absence of androgens to ultimately lead to progression towards CRPC. In this study, we have investigated this mechanism in a subset of prostate cancer that harbors genetic alterations within the Mediator subunit 12 (MED12). We found that loss of MED12 promotes the expression of GLI3 target genes which subsequently drives excessive cell growth in the absence of androgens. Thus, we conclude that genetic alterations within MED12 promote CRPC through hyperactivated GLI3 dependent sonic hedgehog signaling.
Collapse
Affiliation(s)
- Thu Minh Duong
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | | | - Nishanth Myneni
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
7
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|
8
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
9
|
Gonzalez C, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review). Oncol Lett 2022; 23:74. [PMID: 35111243 PMCID: PMC8771631 DOI: 10.3892/ol.2022.13194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and CycC-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.
Collapse
Affiliation(s)
- Cristian Gonzalez
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Shivani Akula
- Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| |
Collapse
|
10
|
Burleson M, Deng JJ, Qin T, Duong TM, Yan Y, Gu X, Das D, Easley A, Liss MA, Yew PR, Bedolla R, Kumar AP, Huang THM, Zou Y, Chen Y, Chen CL, Huang H, Sun LZ, Boyer TG. GLI3 Is Stabilized by SPOP Mutations and Promotes Castration Resistance via Functional Cooperation with Androgen Receptor in Prostate Cancer. Mol Cancer Res 2022; 20:62-76. [PMID: 34610962 PMCID: PMC9258906 DOI: 10.1158/1541-7786.mcr-21-0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.
Collapse
Affiliation(s)
- Marieke Burleson
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Janice J Deng
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Tai Qin
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Thu Minh Duong
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Xiang Gu
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Debodipta Das
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Acarizia Easley
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - P Renee Yew
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Roble Bedolla
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | | | - Tim Hui-Ming Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas.
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas.
| |
Collapse
|
11
|
Barron L, Khadka S, Schenken R, He L, Blenis J, Blagg J, Chen SF, Tsai KL, Boyer TG. Identification and characterization of the mediator kinase-dependent myometrial stem cell phosphoproteome. F&S SCIENCE 2021; 2:383-395. [PMID: 35559861 PMCID: PMC10906282 DOI: 10.1016/j.xfss.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify, in myometrial stem/progenitor cells, the presumptive cell of origin for uterine fibroids, substrates of Mediator-associated cyclin dependent kinase 8/19 (CDK8/19), which is known to be disrupted by uterine fibroid driver mutations in Mediator complex subunit 12 (MED12). DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for uterine fibroids. INTERVENTION(S) Stable isotopic labeling of amino acids in cell culture (SILAC) coupled with chemical inhibition of CDK8/19 and downstream quantitative phosphoproteomics and transcriptomic analyses in myometrial stem/progenitor cells. MAIN OUTCOME MEASURE(S) High-confidence Mediator kinase substrates identified by SILAC-based quantitative phosphoproteomics were determined using an empirical Bayes analysis and validated orthogonally by in vitro kinase assay featuring reconstituted Mediator kinase modules comprising wild-type or G44D mutant MED12 corresponding to the most frequent uterine fibroid driver mutation in MED12. Mediator kinase-regulated transcripts identified by RNA sequencing were linked to Mediator kinase substrates by computational analyses. RESULT(S) A total of 296 unique phosphosites in 166 proteins were significantly decreased (≥ twofold) upon CDK8/19 inhibition, including 118 phosphosites in 71 nuclear proteins representing high-confidence Mediator kinase substrates linked to RNA polymerase II transcription, RNA processing and transport, chromatin modification, cytoskeletal architecture, and DNA replication and repair. Orthogonal validation confirmed a subset of these proteins, including Cut Like Homeobox 1 (CUX1) and Forkhead Box K1 (FOXK1), to be direct targets of MED12-dependent CDK8 phosphorylation in a manner abrogated by the most common uterine fibroid driver mutation (G44D) in MED12, implicating these substrates in disease pathogenesis. Transcriptome-wide profiling of Mediator kinase-inhibited myometrial stem/progenitor cells revealed alterations in cell cycle and myogenic gene expression programs to which Mediator kinase substrates could be linked directly. Among these, CUX1 is an established transcriptional regulator of the cell cycle whose corresponding gene on chromosome 7q is the locus for a recurrent breakpoint in uterine fibroids, linking MED12 and Mediator kinase with CUX1 for the first time in uterine fibroid pathogenesis. FOXK1, a transcriptional regulator of myogenic stem cell fate, was found to be coordinately enriched along with kinase, but not core, Mediator subunits in myometrial stem/progenitor cells compared with differentiated uterine smooth muscle cells. CONCLUSION(S) These studies identify a new catalog of pathologically and biologically relevant Mediator kinase substrates implicated in the pathogenesis of MED12 mutation-positive uterine fibroids, and further uncover a biochemical basis to link Mediator kinase activity with CUX1 and FOXK1 in the regulation of myometrial stem/progenitor cell fate.
Collapse
Affiliation(s)
- Lindsey Barron
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Subash Khadka
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Robert Schenken
- Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Long He
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - John Blenis
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Julian Blagg
- NeoPhore Ltd. and Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas.
| |
Collapse
|
12
|
van de Plassche SR, de Brouwer APM. MED12-Related (Neuro)Developmental Disorders: A Question of Causality. Genes (Basel) 2021; 12:663. [PMID: 33925166 PMCID: PMC8146938 DOI: 10.3390/genes12050663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.
Collapse
Affiliation(s)
| | - Arjan P. M. de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
13
|
Agrawal R, Jiří F, Thakur JK. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:224-240. [PMID: 32945869 DOI: 10.1093/jxb/eraa439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Fajkus Jiří
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
14
|
Li X, Liu M, Ren X, Loncle N, Wang Q, Hemba-Waduge RUS, Yu SH, Boube M, Bourbon HMG, Ni JQ, Ji JY. The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription. PLoS Genet 2020; 16:e1008832. [PMID: 32463833 PMCID: PMC7282676 DOI: 10.1371/journal.pgen.1008832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. Thus, it is essential to understand the regulatory network modulating the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-specific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led us to identify genetic interactions between the CDK8-CycC pair and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFβ, or Transforming Growth Factor-β) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFβ signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the MED complex have revealed six additional subunits that are required for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and CycC, together with a few other subunits of the MED complex, may coordinate with other transcription cofactors in regulating Mad-dependent transcription during wing development in Drosophila.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Xingjie Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Nicolas Loncle
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Qun Wang
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Stephen H. Yu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Muriel Boube
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Henri-Marc G. Bourbon
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Jian-Quan Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Rubinato E, Rondeau S, Giuliano F, Kossorotoff M, Parodi M, Gherbi S, Steffan J, Jonard L, Marlin S. MED12 missense mutation in a three-generation family. Clinical characterization of MED12-related disorders and literature review. Eur J Med Genet 2020; 63:103768. [DOI: 10.1016/j.ejmg.2019.103768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/23/2019] [Accepted: 09/15/2019] [Indexed: 10/26/2022]
|
16
|
Wang C, Lin L, Xue Y, Wang Y, Liu Z, Ou Z, Wu S, Lan X, Zhang Y, Yuan F, Luo X, Wang C, Xi J, Sun X, Chen Y. MED12-Related Disease in a Chinese Girl: Clinical Characteristics and Underlying Mechanism. Front Genet 2020; 11:129. [PMID: 32174975 PMCID: PMC7056888 DOI: 10.3389/fgene.2020.00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
The RNA polymerase II transcription subunit 12 homolog (MED12) is a member of the mediator complex, which plays a critical role in RNA transcription. Mutations in MED12 cause X-linked intellectual disability and other anomalies collectively grouped as MED12-related disorders. While MED12 mutations have been most commonly reported in male patients, we present the case of a 1-year-old girl with clinical characteristics similar to MED12-related disorders. To explore the clinical characteristics of the condition and its possible pathogenesis, we analyzed the patient's clinical data; genetic testing by whole-exome sequencing revealed a de novo heterozygous mutation (c.1249-1G > C) in MED12. Further cDNA experiments revealed that the patient had an abnormal splicing at the skipping of exon9, which may have produced a truncated protein. qPCR showed decreased MED12 gene expression level in the patient, and an X-chromosome inactivation test confirmed a skewed inactivation of the X-chromosome. The lymphoblast transcription levels of the genes involved in the Gli3-dependent sonic hedgehog (SHH) signaling pathway, namely, CREB5, BMP4, and NEUROG2, were found to be significantly elevated compared with those of her parents and sex- and age-matched controls. Our results support the view that MED12 mutations may dysregulate the SHH signaling pathway, which may have accounted for the aberrant craniofacial morphology of our patient.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Longlong Lin
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xue
- Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Wang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Liu
- Division of Pediatric Neurology, Department of Pediatrics, University of Illinois and Children's Hospital of Illinois, Peoria, IL, United States
| | - Zicheng Ou
- Department of Pediatrics, JianNing General Hospital, Fujian, China
| | - Shengnan Wu
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Lan
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanfeng Zhang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Yuan
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaona Luo
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunmei Wang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaming Xi
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomin Sun
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Chen
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Tejada MI, Ibarluzea N. Non-syndromic X linked intellectual disability: Current knowledge in light of the recent advances in molecular and functional studies. Clin Genet 2020; 97:677-687. [PMID: 31898314 DOI: 10.1111/cge.13698] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022]
Abstract
Since the discovery of the FMR1 gene and the clinical and molecular characterization of Fragile X Syndrome in 1991, more than 141 genes have been identified in the X-chromosome in these 28 years thanks to applying continuously evolving molecular techniques to X-linked intellectual disability (XLID) families. In the past decade, array comparative genomic hybridization and next generation sequencing technologies have accelerated gene discovery exponentially. Classically, XLID has been subdivided in syndromic intellectual disability (S-XLID)-where intellectual disability (ID) is always associated with other recognizable physical and/or neurological features-and non-specific or non-syndromic intellectual disability (NS-XLID) where the only common feature is ID. Nevertheless, new advances on the study of these entities have showed that this classification is not always clear-cut because distinct variants in several of these XLID genes can result in S-XLID as well as in NS-XLID. This review focuses on the current knowledge on the XLID genes involved in non-syndromic forms, with the emphasis on their pathogenic mechanism, thus allowing the possibility to elucidate why some of them can give both syndromic and non-syndromic phenotypes.
Collapse
Affiliation(s)
- María Isabel Tejada
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group, Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Nekane Ibarluzea
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group, Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
18
|
Poot M. Mutations in Mediator Complex Genes CDK8, MED12, MED13, and MEDL13 Mediate Overlapping Developmental Syndromes. Mol Syndromol 2019; 10:239-242. [PMID: 32021594 DOI: 10.1159/000502346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
|
19
|
Calpena E, Hervieu A, Kaserer T, Swagemakers SM, Goos JA, Popoola O, Ortiz-Ruiz MJ, Barbaro-Dieber T, Bownass L, Brilstra EH, Brimble E, Foulds N, Grebe TA, Harder AV, Lees MM, Monaghan KG, Newbury-Ecob RA, Ong KR, Osio D, Reynoso Santos FJ, Ruzhnikov MR, Telegrafi A, van Binsbergen E, van Dooren MF, van der Spek PJ, Blagg J, Twigg SR, Mathijssen IM, Clarke PA, Wilkie AO, Wilkie AOM. De Novo Missense Substitutions in the Gene Encoding CDK8, a Regulator of the Mediator Complex, Cause a Syndromic Developmental Disorder. Am J Hum Genet 2019; 104:709-720. [PMID: 30905399 PMCID: PMC6451695 DOI: 10.1016/j.ajhg.2019.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
20
|
Srivastava S, Niranjan T, May MM, Tarpey P, Allen W, Hackett A, Jouk P, Raymond L, Briault S, Skinner C, Toutain A, Gecz J, Heath W, Stevenson RE, Schwartz CE, Wang T. Dysregulations of sonic hedgehog signaling in MED12-related X-linked intellectual disability disorders. Mol Genet Genomic Med 2019; 7:e00569. [PMID: 30729724 PMCID: PMC6465656 DOI: 10.1002/mgg3.569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mutations in mediator of RNA polymerase II transcription subunit 12 homolog (MED12, OMIM 300188) cause X-linked intellectual disability (XLID) disorders including FG, Lujan, and Ohdo syndromes. The Gli3-dependent Sonic Hedgehog (SHH) signaling pathway has been implicated in the original FG syndrome and Lujan syndrome. How are SHH-signaling defects related to the complex clinical phenotype of MED12-associated XLID syndromes are not fully understood. METHODS Quantitative RT-PCR was used to study expression levels of three SHH-signaling genes in lymophoblast cell lines carrying four MED12 mutations from four unrelated XLID families. Genotype and phenotype correlation studies were performed on these mutations. RESULTS Three newly identified and one novel MED12 mutations in six affected males from four unrelated XLID families were studied. Three mutations (c.2692A>G; p.N898D, c.3640C>T; p.R1214C, and c.3884G>A; p.R1295H) are located in the LS domain and one (c.617G>A; p.R206Q) is in the L domain of MED12. These mutations involve highly conserved amino acid residues and segregate with ID and related congenital malformations in respective probands families. Patients with the LS-domain mutations share many features of FG syndrome and some features of Lujan syndrome. The patient with the L-domain mutation presented with ID and predominant neuropsychiatric features but little dysmorphic features of either FG or Lujan syndrome. Transcript levels of three Gli3-dependent SHH-signaling genes, CREB5, BMP4, and NEUROG2, were determined by quantitative RT-PCR and found to be significantly elevated in lymphoblasts from patients with three mutations in the MED12-LS domain. CONCLUSIONS These results support a critical role of MED12 in regulating Gli3-dependent SHH signaling and in developing ID and related congenital malformations in XLID syndromes. Differences in the expression profile of SHH-signaling genes potentially contribute to variability in clinical phenotypes in patients with MED12-related XLID disorders.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Institute of Genetic Medicine and Department of PediatricsJohns Hopkins UniversityBaltimoreMaryland
| | - Tejasvi Niranjan
- Institute of Genetic Medicine and Department of PediatricsJohns Hopkins UniversityBaltimoreMaryland
| | | | | | | | - Anna Hackett
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNSWAustralia
| | | | - Lucy Raymond
- Cambridge Institute of Medical ResearchCambridgeUK
| | | | | | - Annick Toutain
- Service de Génétique Clinique, Hôpital BretonneauToursFrance
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research InstituteThe University of AdelaideAdelaideAustralia
| | - William Heath
- J.I. Riddle Developmental CenterMorgantonNorth Carolina
| | | | | | - Tao Wang
- Institute of Genetic Medicine and Department of PediatricsJohns Hopkins UniversityBaltimoreMaryland
| |
Collapse
|
21
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
22
|
Wang X, Mittal P, Castro CA, Rajkovic G, Rajkovic A. Med12 regulates ovarian steroidogenesis, uterine development and maternal effects in the mammalian egg. Biol Reprod 2019; 97:822-834. [PMID: 29126187 DOI: 10.1093/biolre/iox143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
The transcriptional factor MED12 is part of the essential mediator transcriptional complex that acts as a transcriptional coactivator in all eukaryotes. Missense gain-of-function mutations in human MED12 are associated with uterine leiomyomas, yet the role of MED12 deficiency in tumorigenesis and reproductive biology has not been fully explored. We generated a Med12 reproductive conditional knockout mouse model to evaluate its role in uterine mesenchyme, granulosa cells, and oocytes. Mice heterozygous for Med12 deficiency in granulosa cells and uterus (Med12fl/+ Amhr2-Cre) were subfertile, while mice homozygous for Med12 deficiency in granulosa cells and uterus (Med12fl/fl Amhr2-Cre) were infertile. Morphological and histological analysis of the Med12fl/fl Amhr2-Cre reproductive tract revealed atrophic uteri and hyperchromatic granulosa cells with disrupted expression of Lhcgr, Esr1, and Esr2. Med12fl/fl Amhr2-Cre mice estrous cycle was disrupted, and serum analysis showed blunted rise in estradiol in response to pregnant mare serum gonadotropin. Uterine atrophy was partially rescued by exogenous steroid supplementation with dysregulation of Notch1 and Smo expression in steroid supplemented Med12fl/fl Amhr2-Cre uteri, indicating intrinsic uterine defects. Oocyte-specific ablation of Med12 caused infertility without disrupting normal folliculogenesis and ovulation, consistent with maternal effects of Med12 in early embryo development. These results show the critical importance of Med12 in reproductive tract development and that Med12 loss of function does not cause tumorigenesis in reproductive tissues.
Collapse
Affiliation(s)
- Xinye Wang
- Tsinghua MD Program, Tsinghua University School of Medicine, Beijing, China.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Priya Mittal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Gabriel Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Carullo NVN, Day JJ. Genomic Enhancers in Brain Health and Disease. Genes (Basel) 2019; 10:E43. [PMID: 30646598 PMCID: PMC6357130 DOI: 10.3390/genes10010043] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Enhancers are non-coding DNA elements that function in cis to regulate transcription from nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate regulation of these intricate expression programs across different neuronal classes gives rise to an incredible cellular and functional diversity. Newly developed technologies have recently allowed more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid progress in our understanding of enhancer biology. Furthermore, identification of disease-linked genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain health and disease. This review outlines the key role of enhancers as transcriptional regulators, reviews the current understanding of enhancer regulation in neuronal development, function and dysfunction and provides our thoughts on how enhancers can be targeted for technological and therapeutic goals.
Collapse
Affiliation(s)
- Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
24
|
Ježek J, Smethurst DGJ, Stieg DC, Kiss ZAC, Hanley SE, Ganesan V, Chang KT, Cooper KF, Strich R. Cyclin C: The Story of a Non-Cycling Cyclin. BIOLOGY 2019; 8:biology8010003. [PMID: 30621145 PMCID: PMC6466611 DOI: 10.3390/biology8010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which primarily act as transcription factors and whose expression remains constant throughout the cell cycle, is less well understood. As a classic example of a transcriptional cyclin, cyclin C forms a regulatory sub-complex with its partner kinase Cdk8 and two accessory subunits Med12 and Med13 called the Cdk8-dependent kinase module (CKM). The CKM reversibly associates with the multi-subunit transcriptional coactivator complex, the Mediator, to modulate RNA polymerase II-dependent transcription. Apart from its transcriptional regulatory function, recent research has revealed a novel signaling role for cyclin C at the mitochondria. Upon oxidative stress, cyclin C leaves the nucleus and directly activates the guanosine 5’-triphosphatase (GTPase) Drp1, or Dnm1 in yeast, to induce mitochondrial fragmentation. Importantly, cyclin C-induced mitochondrial fission was found to increase sensitivity of both mammalian and yeast cells to apoptosis. Here, we review and discuss the biology of cyclin C, focusing mainly on its transcriptional and non-transcriptional roles in tumor promotion or suppression.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Daniel G J Smethurst
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - David C Stieg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Z A C Kiss
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Sara E Hanley
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Vidyaramanan Ganesan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Kai-Ti Chang
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
25
|
Chen C, Chen D, Xue H, Liu X, Zhang T, Tang S, Li W, Xu X. IDGenetics: a comprehensive database for genes and mutations of intellectual disability related disorders. Neurosci Lett 2018; 685:96-101. [PMID: 30144540 DOI: 10.1016/j.neulet.2018.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/22/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022]
Abstract
Intellectual disability (ID) is one of the most prevalent chronic developmental brain disorders or phenotype of syndromic ID, affecting nearly 1-2% of the general population worldwide. Over recent decades, tremendous effort and high-throughput platforms have been devised to explore the complex heterogeneity, numerous genes and variants have been associated with the ID, especially de novo mutations and copy number variants. An organized resource containing the increasing genetic data is imperative to assist ID research. In this study, the integrative and annotated intellectual disability database has been developed, named 'IDGenetics', which contains known information about ID, including 815 genes and 17102 variants associated with 918 clinical diseases (3001 clinical phenotype) collected from 3822 publications and ID-related databases. Furthermore, in-depth data mining was performed to obtain an understanding of each entry, including functional annotation, gene/disease/phenotype network establishment and overlap analysis focusing on comorbidity. 1478 candidate genes (483 high-confidence and 995 low-confidence) were collected and prioritized by adopting the annotations of 12 functional prediction tools and algorithm. In addition, IDGenetics database provides concise search methods, convenient browsing functions, intuitive graphical displays and constantly updated features. IDGenetics will be a valuable and integrative resource for deciphering the genetic and functional architecture of ID and the improvement of clinical diagnosis, intervention and treatment.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Denghui Chen
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huangqi Xue
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinting Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, 325000, China; Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Li
- Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xueqin Xu
- Key Laboratory of Birth Defects, Department of Genetics, Wenzhou Central Hospital, Wenzhou, 325000, China.
| |
Collapse
|
26
|
Beadle EP, Straub JA, Bunnell BA, Newman JJ. MED31 involved in regulating self-renewal and adipogenesis of human mesenchymal stem cells. Mol Biol Rep 2018; 45:1545-1550. [PMID: 30006772 DOI: 10.1007/s11033-018-4241-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
Regulation of gene expression is critical for the maintenance of cell state and homeostasis. Aberrant regulation of genes can lead to unwanted cell proliferation or misdirected differentiation. Here we investigate the role of MED31, a highly conserved subunit of the Mediator complex, to determine the role this subunit plays in the maintenance of human mesenchymal stem cell (hMSC) state. Using siRNA-mediated knockdown of MED31 we demonstrate a decrease in self-renewal based on cell assays and monitoring of gene expression. In addition, in the absence of MED31, hMSCs also displayed a reduction in adipogenesis as evidenced by diminished lipid vesicle formation and expression of specific adipogenic markers. These data present evidence for a significant role for MED31 in maintaining adult stem cell homeostasis, thereby introducing potential novel targets for future investigation and use in better understanding stem cell behavior and adipogenesis.
Collapse
Affiliation(s)
- Erik P Beadle
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Joseph A Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Departments of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Regenerative Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
27
|
Putlyaev EV, Ibragimov AN, Lebedeva LA, Georgiev PG, Shidlovskii YV. Structure and Functions of the Mediator Complex. BIOCHEMISTRY (MOSCOW) 2018; 83:423-436. [PMID: 29626929 DOI: 10.1134/s0006297918040132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mediator is a key factor in the regulation of expression of RNA polymerase II-transcribed genes. Recent studies have shown that Mediator acts as a coordinator of transcription activation and participates in maintaining chromatin architecture in the cell nucleus. In this review, we present current concepts on the structure and functions of Mediator.
Collapse
Affiliation(s)
- E V Putlyaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | |
Collapse
|
28
|
Park MJ, Shen H, Spaeth JM, Tolvanen JH, Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE, Al-Hendy A, Schenken RS, Aaltonen LA, Boyer TG. Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem 2018; 293:4870-4882. [PMID: 29440396 DOI: 10.1074/jbc.ra118.001725] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/28/2018] [Indexed: 01/26/2023] Open
Abstract
Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs.
Collapse
Affiliation(s)
- Min Ju Park
- Departments of Molecular Medicine, San Antonio, Texas 78229
| | - Hailian Shen
- Departments of Molecular Medicine, San Antonio, Texas 78229
| | - Jason M Spaeth
- Departments of Molecular Medicine, San Antonio, Texas 78229
| | - Jaana H Tolvanen
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Courtney Failor
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jennifer F Knudtson
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jessica McLaughlin
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Sunil K Halder
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia 30912
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia 30912
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia 30912
| | - Robert S Schenken
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Lauri A Aaltonen
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Thomas G Boyer
- Departments of Molecular Medicine, San Antonio, Texas 78229.
| |
Collapse
|
29
|
Overexpression of p54 nrb/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth. Oncotarget 2018. [PMID: 29535823 PMCID: PMC5828187 DOI: 10.18632/oncotarget.24063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The non-POU domain-containing octamer binding protein p54nrb/NONO is a multifunctional nuclear protein involved in RNA splicing, processing, and transcriptional regulation of nuclear hormone receptors. Through chromosome copy number analysis via whole-exome sequencing, we revealed amplification of the chromosome Xq11.22-q21.33 locus containing the androgen receptor (AR) and NONO genes in androgen-independent, castration-resistant prostate cancer (CRPC)-like LNCaP-SF cells. Moreover, NONO was frequently amplified and overexpressed in patients with CRPC. RNA sequencing data revealed that a truncated ephrin type-A receptor 6 (EPHA6) splice variant (EPHA6-001) was overexpressed in LNCaP-SF cells, and knockdown of NONO or EPHA6-001 prevented EPHA6-001 expression and reduced proliferation and invasion by LNCaP-SF cells grown under androgen deprivation conditions. Growth inhibition and differential splicing of EPHA6 mRNA by p54nrb/NONO were confirmed in gene silencing experiments in 22Rv1 PCa cells. Importantly, NONO knockdown in LNCaP-SF cells led to reduced tumor growth in castrated mice. These findings indicate that p54nrb/NONO is amplified and overexpressed in CRPC cells and clinical samples, and facilitates CRPC growth by mediating aberrant EPHA6 splicing. We therefore propose that p54nrb/NONO constitutes a novel and attractive therapeutic target for CRPC.
Collapse
|
30
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
31
|
Two male sibs with severe micrognathia and a missense variant in MED12. Eur J Med Genet 2016; 59:367-72. [DOI: 10.1016/j.ejmg.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 01/18/2023]
|
32
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
33
|
Kim NH, Livi CB, Yew PR, Boyer TG. Mediator subunit Med12 contributes to the maintenance of neural stem cell identity. BMC DEVELOPMENTAL BIOLOGY 2016; 16:17. [PMID: 27188461 PMCID: PMC4869265 DOI: 10.1186/s12861-016-0114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/08/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The RNA polymerase II transcriptional Mediator subunit Med12 is broadly implicated in vertebrate brain development, and genetic variation in human MED12 is associated with X-linked intellectual disability and neuropsychiatric disorders. Although prior studies have begun to elaborate the functional contribution of Med12 within key neurodevelopmental pathways, a more complete description of Med12 function in the developing nervous system, including the specific biological networks and cellular processes under its regulatory influence, remains to be established. Herein, we sought to clarify the global contribution of Med12 to neural stem cell (NSC) biology through unbiased transcriptome profiling of mouse embryonic stem (ES) cell-derived NSCs following RNAi-mediated Med12 depletion. RESULTS A total of 240 genes (177 up, 73 down) were differentially expressed in Med12-knockdown versus control mouse NS-5 (mNS-5) NSCs. Gene set enrichment analysis revealed Med12 to be prominently linked with "cell-to-cell interaction" and "cell cycle" networks, and subsequent functional studies confirmed these associations. Targeted depletion of Med12 led to enhanced NSC adhesion and upregulation of cell adhesion genes, including Syndecan 2 (Sdc2). Concomitant depletion of both Sdc2 and Med12 reversed enhanced cell adhesion triggered by Med12 knockdown alone, confirming that Med12 negatively regulates NSC cell adhesion by suppressing the expression of cell adhesion molecules. Med12-mediated suppression of NSC adhesion is a dynamically regulated process in vitro, enforced in self-renewing NSCs and alleviated during the course of neuronal differentiation. Accordingly, Med12 depletion enhanced adhesion and prolonged survival of mNS-5 NSCs induced to differentiate on gelatin, effects that were bypassed completely by growth on laminin. On the other hand, Med12 depletion in mNS-5 NSCs led to reduced expression of G1/S phase cell cycle regulators and a concordant G1/S phase cell cycle block without evidence of apoptosis, resulting in a severe proliferation defect. CONCLUSIONS Med12 contributes to the maintenance of NSC identity through a functionally bipartite role in suppression and activation of gene expression programs dedicated to cell adhesion and G1/S phase cell cycle progression, respectively. Med12 may thus contribute to the regulatory apparatus that controls the balance between NSC self-renewal and differentiation, with important implications for MED12-linked neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Carolina B Livi
- Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Agilent Technologies, Portland, OR, 97224-7154, USA
| | - P Renee Yew
- Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Thomas G Boyer
- Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
34
|
Mei S, Zhu H. Multi-label multi-instance transfer learning for simultaneous reconstruction and cross-talk modeling of multiple human signaling pathways. BMC Bioinformatics 2015; 16:417. [PMID: 26718335 PMCID: PMC4697333 DOI: 10.1186/s12859-015-0841-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signaling pathways play important roles in the life processes of cell growth, cell apoptosis and organism development. At present the signal transduction networks are far from complete. As an effective complement to experimental methods, computational modeling is suited to rapidly reconstruct the signaling pathways at low cost. To our knowledge, the existing computational methods seldom simultaneously exploit more than three signaling pathways into one predictive model for the discovery of novel signaling components and the cross-talk modeling between signaling pathways. RESULTS In this work, we propose a multi-label multi-instance transfer learning method to simultaneously reconstruct 27 human signaling pathways and model their cross-talks. Computational results show that the proposed method demonstrates satisfactory multi-label learning performance and rational proteome-wide predictions. Some predicted signaling components or pathway targeted proteins have been validated by recent literature. The predicted signaling components are further linked to pathways using the experimentally derived PPIs (protein-protein interactions) to reconstruct the human signaling pathways. Thus the map of the cross-talks via common signaling components and common signaling PPIs is conveniently inferred to provide valuable insights into the regulatory and cooperative relationships between signaling pathways. Lastly, gene ontology enrichment analysis is conducted to gain statistical knowledge about the reconstructed human signaling pathways. CONCLUSIONS Multi-label learning framework has been demonstrated effective in this work to model the phenomena that a signaling protein belongs to more than one signaling pathway. As results, novel signaling components and pathways targeted proteins are predicted to simultaneously reconstruct multiple human signaling pathways and the static map of their cross-talks for further biomedical research.
Collapse
Affiliation(s)
- Suyu Mei
- Software College, Shenyang Normal University, Shenyang, China. .,Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans. Genetics 2015; 202:583-99. [PMID: 26715664 DOI: 10.1534/genetics.115.180265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/18/2015] [Indexed: 12/27/2022] Open
Abstract
Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.
Collapse
|
36
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
37
|
Bouazzi H, Lesca G, Trujillo C, Alwasiyah MK, Munnich A. Nonsyndromic X-linked intellectual deficiency in three brothers with a novel MED12 missense mutation [c.5922G>T (p.Glu1974His)]. Clin Case Rep 2015; 3:604-9. [PMID: 26273451 PMCID: PMC4527805 DOI: 10.1002/ccr3.301] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022] Open
Abstract
X-linked intellectual deficiency (XLID) is a large group of genetic disorders. MED12 gene causes syndromic and nonsyndromic forms of XLID. Only seven pathological mutations have been identified in this gene. Here, we report a novel mutation segregating with XLID phenotype. This mutation could be in favor of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Habib Bouazzi
- Hôpital Necker - Enfants Malades INSERM U781, Laboratoire de génétique médicale. Tour Lavoisier - 3 étage149 rue de Sèvres – 75743, Paris Cedex 15, France
| | - Gaetan Lesca
- Service de Cytogénétique constitutionnelle, Groupement Hospitalier Est.59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Carlos Trujillo
- Genetics Unit, Erfan & Bagedo HospitalP.O. Box 6519, Jeddah, 21452, Saudi Arabia
| | | | - Arnold Munnich
- Hôpital Necker - Enfants Malades, Unité INSERM 781, Laboratoire de génétique moléculaireTour Lavoisier - 2ème étage, 149 rue de Sèvres – 75743, Paris Cedex 15, France
| |
Collapse
|
38
|
Hunter JM, Kiefer J, Balak CD, Jooma S, Ahearn ME, Hall JG, Baumbach-Reardon L. Review of X-linked syndromes with arthrogryposis or early contractures-aid to diagnosis and pathway identification. Am J Med Genet A 2015; 167A:931-73. [DOI: 10.1002/ajmg.a.36934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Jesse M. Hunter
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Jeff Kiefer
- Knowledge Mining; Translational Genomics Research Institute; Phoenix Arizona
| | - Christopher D. Balak
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Sonya Jooma
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Mary Ellen Ahearn
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Judith G. Hall
- Departments of Medical Genetics and Pediatrics; University of British Columbia and BC Children's Hospital Vancouver; British Columbia Canada
| | - Lisa Baumbach-Reardon
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| |
Collapse
|
39
|
Grants JM, Goh GYS, Taubert S. The Mediator complex of Caenorhabditis elegans: insights into the developmental and physiological roles of a conserved transcriptional coregulator. Nucleic Acids Res 2015; 43:2442-53. [PMID: 25634893 PMCID: PMC4344494 DOI: 10.1093/nar/gkv037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Mediator multiprotein complex (‘Mediator’) is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways.
Collapse
Affiliation(s)
- Jennifer M Grants
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Grace Y S Goh
- Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
40
|
Huang KC, Yang KC, Lin H, Tsao TTH, Lee SA. Transcriptome alterations of mitochondrial and coagulation function in schizophrenia by cortical sequencing analysis. BMC Genomics 2014; 15 Suppl 9:S6. [PMID: 25522158 PMCID: PMC4290619 DOI: 10.1186/1471-2164-15-s9-s6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Transcriptome sequencing of brain samples provides detailed enrichment analysis of differential expression and genetic interactions for evaluation of mitochondrial and coagulation function of schizophrenia. It is implicated that schizophrenia genetic and protein interactions may give rise to biological dysfunction of energy metabolism and hemostasis. These findings may explain the biological mechanisms responsible for negative and withdraw symptoms of schizophrenia and antipsychotic-induced venous thromboembolism. We conducted a comparison of schizophrenic candidate genes from literature reviews and constructed the schizophrenia-mediator network (SCZMN) which consists of schizophrenic candidate genes and associated mediator genes by applying differential expression analysis to BA22 RNA-Seq brain data. The network was searched against pathway databases such as PID, Reactome, HumanCyc, and Cell-Map. The candidate complexes were identified by MCL clustering using CORUM for potential pathogenesis of schizophrenia. Results Published BA22 RNA-Seq brain data of 9 schizophrenic patients and 9 controls samples were analyzed. The differentially expressed genes in the BA22 brain samples of schizophrenia are proposed as schizophrenia candidate marker genes (SCZCGs). The genetic interactions between mitochondrial genes and many under-expressed SCZCGs indicate the genetic predisposition of mitochondria dysfunction in schizophrenia. The biological functions of SCZCGs, as listed in the Pathway Interaction Database (PID), indicate that these genes have roles in DNA binding transcription factor, signal and cancer-related pathways, coagulation and cell cycle regulation and differentiation pathways. In the query-query protein-protein interaction (QQPPI) network of SCZCGs, TP53, PRKACA, STAT3 and SP1 were identified as the central "hub" genes. Mitochondrial function was modulated by dopamine inhibition of respiratory complex I activity. The genetic interaction between mitochondria function and schizophrenia may be revealed by DRD2 linked to NDUFS7 through protein-protein interactions of FLNA and ARRB2. The biological mechanism of signaling pathway of coagulation cascade was illustrated by the PPI network of the SCZCGs and the coagulation-associated genes. The relationship between antipsychotic target genes (DRD2/3 and HTR2A) and coagulation factor genes (F3, F7 and F10) appeared to cascade the following hemostatic process implicating the bottleneck of coagulation genetic network by the bridging of actin-binding protein (FLNA). Conclusions It is implicated that the energy metabolism and hemostatic process have important roles in the pathogenesis for schizophrenia. The cross-talk of genetic interaction by these co-expressed genes and reached candidate genes may address the key network in disease pathology. The accuracy of candidate genes evaluated from different quantification tools could be improved by crosstalk analysis of overlapping genes in genetic networks.
Collapse
|
41
|
Kuuluvainen E, Hakala H, Havula E, Sahal Estimé M, Rämet M, Hietakangas V, Mäkelä TP. Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila. J Biol Chem 2014; 289:16252-61. [PMID: 24778181 DOI: 10.1074/jbc.m113.541904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity.
Collapse
Affiliation(s)
- Emilia Kuuluvainen
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Heini Hakala
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Essi Havula
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Michelle Sahal Estimé
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Mika Rämet
- the Institute of Biomedical Technology, and BioMediTech, University of Tampere, 33014 Tampere, the Department of Pediatrics, Tampere University Hospital, 22521 Tampere, the Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, 90014 Oulu, and the Department of Children and Adolescents, Oulu University Hospital, 90029 Oulu, Finland
| | - Ville Hietakangas
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Tomi P Mäkelä
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki,
| |
Collapse
|
42
|
Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, Mäkinen N, Gao F, Palin K, Nurkkala H, Vähärautio A, Aavikko M, Kämpjärvi K, Vahteristo P, Kim CA, Aaltonen LA, Varjosalo M, Taipale J, Boyer TG. Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep 2014; 7:654-60. [PMID: 24746821 DOI: 10.1016/j.celrep.2014.03.047] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/23/2014] [Accepted: 03/18/2014] [Indexed: 12/15/2022] Open
Abstract
Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at very high frequency (∼70%) in uterine leiomyomas. However, the influence of these mutations on Mediator function and the molecular basis for their tumorigenic potential remain unknown. To clarify the impact of these mutations, we used affinity-purification mass spectrometry to establish the global protein-protein interaction profiles for both wild-type and mutant MED12. We found that uterine leiomyoma-linked mutations in MED12 led to a highly specific decrease in its association with Cyclin C-CDK8/CDK19 and loss of Mediator-associated CDK activity. Mechanistically, this occurs through disruption of a MED12-Cyclin C binding interface that we also show is required for MED12-mediated stimulation of Cyclin C-dependent CDK8 kinase activity. These findings indicate that uterine leiomyoma-linked mutations in MED12 uncouple Cyclin C-CDK8/19 from core Mediator and further identify the MED12/Cyclin C interface as a prospective therapeutic target in CDK8-driven cancers.
Collapse
Affiliation(s)
- Mikko Turunen
- Genome-Scale Biology Program and Department of Pathology, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Jason M Spaeth
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 8257, STRF, San Antonio, TX 78229-3900, USA
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Min Ju Park
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 8257, STRF, San Antonio, TX 78229-3900, USA
| | - Teemu Kivioja
- Genome-Scale Biology Program and Department of Pathology, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland; Department of Computer Science, University of Helsinki, P.O. Box 68, Helsinki FIN-00014, Finland
| | - Alison D Clark
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 8257, STRF, San Antonio, TX 78229-3900, USA
| | - Netta Mäkinen
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Fangjian Gao
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 8257, STRF, San Antonio, TX 78229-3900, USA
| | - Kimmo Palin
- Genome-Scale Biology Program and Department of Pathology, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Helka Nurkkala
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Anna Vähärautio
- Genome-Scale Biology Program and Department of Pathology, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland; Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm 14183, Sweden
| | - Mervi Aavikko
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Kati Kämpjärvi
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Pia Vahteristo
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Chongwoo A Kim
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Lauri A Aaltonen
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki FIN-00014, Finland.
| | - Jussi Taipale
- Genome-Scale Biology Program and Department of Pathology, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland; Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm 14183, Sweden.
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 8257, STRF, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
43
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
44
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
45
|
Graham JM, Schwartz CE. MED12 related disorders. Am J Med Genet A 2013; 161A:2734-40. [PMID: 24123922 DOI: 10.1002/ajmg.a.36183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/20/2013] [Indexed: 11/05/2022]
Abstract
MED12: is a member of the large Mediator complex, which has a critical and central role in RNA polymerase II transcription. As a multiprotien complex, Mediator regulates signals involved in cell growth, development, and differentiation, and it is involved in a protein network required for extraneuronal gene silencing and also functions as a direct suppressor of Gli3-dependent Sonic hedgehog signaling. This may explain its role in several different X-linked intellectual disability syndromes that share some overlapping clinical features. This review will compare and contrast four different clinical conditions that have been associated with different mutations in MED12, which is located at Xq13. To date, these conditions include Opitz-Kaveggia (FG) syndrome, Lujan syndrome, Ohdo syndrome (Maat-Kievit-Brunner type, or OSMKB), and one large family with profound X-linked intellectual disability due to a novel c.5898insC frameshift mutation that unlike the other three syndromes, resulted in affected female carriers and truncation of the MED12 protein. It is likely that more MED12 mutations will be detected in sporadic patients and X-linked families with intellectual disability and dysmorphic features as exome sequencing becomes more commonly utilized, and this overview of MED12-related disorders may help to correlate MED12 genotypes with clinical findings.
Collapse
Affiliation(s)
- John M Graham
- Department of Pediatrics, Medical Genetics Institute, Cedars Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|
46
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
47
|
Carlsten JOP, Zhu X, Gustafsson CM. The multitalented Mediator complex. Trends Biochem Sci 2013; 38:531-7. [PMID: 24074826 DOI: 10.1016/j.tibs.2013.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription.
Collapse
Affiliation(s)
- Jonas O P Carlsten
- University of Gothenburg, Institute of Biomedicine, PO Box 440, 40530 Gothenburg, Sweden
| | | | | |
Collapse
|
48
|
Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 2013; 4:30. [PMID: 24007566 PMCID: PMC3846739 DOI: 10.1186/2040-2392-4-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Collapse
Affiliation(s)
- Boryana S Stamova
- MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sox10 cooperates with the mediator subunit 12 during terminal differentiation of myelinating glia. J Neurosci 2013; 33:6679-90. [PMID: 23575864 DOI: 10.1523/jneurosci.5178-12.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several transcription factors are essential for terminal differentiation of myelinating glia, among them the high-mobility-group-domain-containing protein Sox10. To better understand how these factors exert their effects and shape glial expression programs, we identified and characterized a physical and functional link between Sox10 and the Med12 subunit of the Mediator complex that serves as a conserved multiprotein interphase between transcription factors and the general transcription machinery. We found that Sox10 bound with two of its conserved domains to the C-terminal region of Med12 and its close relative, Med12-like. In contrast to Med12-like, substantial amounts of Med12 were detected in both Schwann cells and oligodendrocytes. Its conditional glia-specific deletion in mice led to terminal differentiation defects that were highly reminiscent of those obtained after Sox10 deletion. In support of a functional cooperation, both proteins were jointly required for Krox20 induction and were physically associated with the critical regulatory region of the Krox20 gene in myelinating Schwann cells. We conclude that Sox10 functions during terminal differentiation of myelinating glia, at least in part by Med12-dependent recruitment of the Mediator complex.
Collapse
|
50
|
Grueter CE. Mediator complex dependent regulation of cardiac development and disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:151-7. [PMID: 23727265 PMCID: PMC4357813 DOI: 10.1016/j.gpb.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD.
Collapse
Affiliation(s)
- Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|