1
|
Benjamin-Zukerman T, Shimon G, Gaine ME, Dakwar A, Peled N, Aboraya M, Masri-Ismail A, Safadi-Safa R, Solomon M, Lev-Ram V, Rissman RA, Mayrhofer JE, Raffeiner A, Mol MO, Argue BMR, McCool S, Doan B, van Swieten J, Stefan E, Abel T, Ilouz R. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Brain 2024; 147:3890-3905. [PMID: 38743596 PMCID: PMC11531844 DOI: 10.1093/brain/awae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Protein kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer with two catalytic subunits. Recently, the L50R variant in the gene encoding the RIβ subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIβ-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined post-mortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry and behavioural assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIβ is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIβ-L50R mouse model. We define RIβ-L50R as a causal mutation driving an age-dependent behavioural and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIβ dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the catalytic subunit protects the RIβ-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIβ-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gilat Shimon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Anwar Dakwar
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Netta Peled
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Mohammad Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Ashar Masri-Ismail
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Rania Safadi-Safa
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Meir Solomon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Rissman
- Department of Physiology and Neurosciences, Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA 92121, USA
| | - Johanna E Mayrhofer
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Andrea Raffeiner
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Benney M R Argue
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Shaylah McCool
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Binh Doan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - John van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Eduard Stefan
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| |
Collapse
|
2
|
Wilson BAP, Li N, Martinez Fiesco JA, Dalilian M, Wang D, Smith EA, Wamiru A, Shah R, Goncharova EI, Beutler JA, Grkovic T, Zhang P, O’Keefe BR. Biochemical Discovery, Intracellular Evaluation, and Crystallographic Characterization of Synthetic and Natural Product Adenosine 3',5'-Cyclic Monophosphate-Dependent Protein Kinase A (PKA) Inhibitors. ACS Pharmacol Transl Sci 2023; 6:633-650. [PMID: 37082750 PMCID: PMC10111623 DOI: 10.1021/acsptsci.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 04/22/2023]
Abstract
The recent demonstration that adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) plays an oncogenic role in a number of important cancers has led to a renaissance in drug development interest targeting this kinase. We therefore have established a suite of biochemical, cell-based, and structural biology assays for identifying and evaluating new pharmacophores for PKA inhibition. This discovery process started with a 384-well high-throughput screen of more than 200,000 substances, including fractionated natural product extracts. Identified active compounds were further prioritized in biochemical, biophysical, and cell-based assays. Priority lead compounds were assessed in detail to fully characterize several previously unrecognized PKA pharmacophores including the generation of new X-ray crystallography structures demonstrating unique interactions between PKA and bound inhibitor molecules.
Collapse
Affiliation(s)
- Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Juliana A. Martinez Fiesco
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Advanced
Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - John A. Beutler
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tanja Grkovic
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Jia J, Tang S, Yue X, Jing S, Zhu L, Tan C, Gao J, Du Y, Lee I, Qian Y. An A-Kinase Anchoring Protein (ACBD3) Coordinates Traffic-Induced PKA Activation At The Golgi. J Biol Chem 2023; 299:104696. [PMID: 37044218 DOI: 10.1016/j.jbc.2023.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
KDEL receptor (KDELR) is a key protein that recycles escaped ER resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, Acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.
Collapse
Affiliation(s)
- Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuocheng Tang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
4
|
GPCR in Adipose Tissue Function-Focus on Lipolysis. Biomedicines 2023; 11:biomedicines11020588. [PMID: 36831123 PMCID: PMC9953751 DOI: 10.3390/biomedicines11020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as "novel" GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.
Collapse
|
5
|
Overhoff M, Tellkamp F, Hess S, Tolve M, Tutas J, Faerfers M, Ickert L, Mohammadi M, De Bruyckere E, Kallergi E, Delle Vedove A, Nikoletopoulou V, Wirth B, Isensee J, Hucho T, Puchkov D, Isbrandt D, Krueger M, Kloppenburg P, Kononenko NL. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse. EMBO J 2022; 41:e110963. [PMID: 36217825 PMCID: PMC9670194 DOI: 10.15252/embj.2022110963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.
Collapse
Affiliation(s)
- Melina Overhoff
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Frederik Tellkamp
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany
| | - Simon Hess
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of ZoologyUniversity of CologneCologneGermany
| | - Marianna Tolve
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Janine Tutas
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Marcel Faerfers
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Lotte Ickert
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Milad Mohammadi
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Elodie De Bruyckere
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Emmanouela Kallergi
- Département des Neurosciences FondamentalesUniversity of LausanneLausanneSwitzerland
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | | | - Brunhilde Wirth
- Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany,Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Joerg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Dmytro Puchkov
- Leibniz Institute for Molecular Pharmacology (FMP)BerlinGermany
| | - Dirk Isbrandt
- Institute for Molecular and Behavioral Neuroscience, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany,Experimental NeurophysiologyGerman Center for Neurodegenerative DiseasesBonnGermany
| | - Marcus Krueger
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of GeneticsUniversity of CologneCologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Faculty of Mathematics and Natural Sciences, Institute of ZoologyUniversity of CologneCologneGermany
| | - Natalia L Kononenko
- Cologne Excellence Cluster Cellular Stress Response in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany,Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| |
Collapse
|
6
|
Marbach F, Lipska-Ziętkiewicz BS, Knurowska A, Michaud V, Margot H, Lespinasse J, Tran Mau Them F, Coubes C, Park J, Grosch S, Roggia C, Grasshoff U, Kalsner L, Denommé-Pichon AS, Afenjar A, Héron B, Keren B, Caro P, Schaaf CP. Phenotypic characterization of seven individuals with Marbach-Schaaf neurodevelopmental syndrome. Am J Med Genet A 2022; 188:2627-2636. [PMID: 35789103 DOI: 10.1002/ajmg.a.62884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 01/24/2023]
Abstract
We present the phenotypes of seven previously unreported patients with Marbach-Schaaf neurodevelopmental syndrome, all carrying the same recurrent heterozygous missense variant c.1003C>T (p.Arg335Trp) in PRKAR1B. Clinical features of this cohort include global developmental delay and reduced sensitivity to pain, as well as behavioral anomalies. Only one of the seven patients reported here was formally diagnosed with autism spectrum disorder (ASD), while ASD-like features were described in others, overall indicating a lower prevalence of ASD in Marbach-Schaaf neurodevelopmental syndrome than previously assumed. The clinical spectrum of the current cohort is similar to that reported in the initial publication, delineating a complex developmental disorder with behavioral and neurologic features. PRKAR1B encodes the regulatory subunit R1β of the protein kinase A complex (PKA), and is expressed in the adult and embryonal central nervous system in humans. PKA is crucial to a plethora of cellular signaling pathways, and its composition of different regulatory and catalytic subunits is cell-type specific. We discuss potential molecular disease mechanisms underlying the patients' phenotypes with respect to the different known functions of PKA in neurons, and the phenotypes of existing R1β-deficient animal models.
Collapse
Affiliation(s)
- Felix Marbach
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Beata S Lipska-Ziętkiewicz
- Centre for Rare Diseases, Clinical Genetics Unit, Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Agata Knurowska
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Vincent Michaud
- University of Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Henri Margot
- University of Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | | | - Frédéric Tran Mau Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR1231 Génétique des Anomalies du Développement GAD, Dijon, France
| | - Christine Coubes
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, Montpellier, France
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sarah Grosch
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Louisa Kalsner
- Departments of Neurology and Pediatrics, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR1231 Génétique des Anomalies du Développement GAD, Dijon, France
| | - Alexandra Afenjar
- APHP, Sorbonne Université, Centre de Référence Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Paris, France
| | - Bénédicte Héron
- Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, Hôpital Trousseau AP-HP.SU, FHU I2D2, Paris, France
| | - Boris Keren
- APHP, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| |
Collapse
|
7
|
Thomas R, Hernandez A, Benavides DR, Li W, Tan C, Umfress A, Plattner F, Chakraborti A, Pozzo-Miller L, Taylor SS, Bibb JA. Integrated regulation of PKA by fast and slow neurotransmission in the nucleus accumbens controls plasticity and stress responses. J Biol Chem 2022; 298:102245. [PMID: 35835216 PMCID: PMC9386499 DOI: 10.1016/j.jbc.2022.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ. Using a combination of biochemical, pharmacological, neurophysiological, and behavioral approaches, we find that glutamate-dependent reduction in cyclin-dependent kinase 5 (Cdk5)-dependent RIIβ phosphorylation alters the PKA holoenzyme autoinhibitory state to increase PKA signaling in response to dopamine. Furthermore, we show that disruption of RIIβ phosphorylation by Cdk5 enhances cortico-ventral striatal synaptic plasticity. In addition, we demonstrate that acute and chronic stress in rats inversely modulate RIIβ phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIβ regulation by Cdk5 improves behavioral response to stress. We propose this new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Santiago de Querétaro, Querétaro, México; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alan Umfress
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayanabha Chakraborti
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - James A Bibb
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
Roa JN, Ma Y, Mikulski Z, Xu Q, Ilouz R, Taylor SS, Skowronska-Krawczyk D. Protein Kinase A in Human Retina: Differential Localization of Cβ, Cα, RIIα, and RIIβ in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits. Front Mol Neurosci 2021; 14:782041. [PMID: 34867193 PMCID: PMC8636463 DOI: 10.3389/fnmol.2021.782041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Protein kinase A (PKA) signaling is essential for numerous processes but the subcellular localization of specific PKA regulatory (R) and catalytic (C) subunits has yet to be explored comprehensively. Additionally, the localization of the Cβ subunit has never been spatially mapped in any tissue even though ∼50% of PKA signaling in neuronal tissues is thought to be mediated by Cβ. Here we used human retina with its highly specialized neurons as a window into PKA signaling in the brain and characterized localization of PKA Cα, Cβ, RIIα, and RIIβ subunits. We found that each subunit presented a distinct localization pattern. Cα and Cβ were localized in all cell layers (photoreceptors, interneurons, retinal ganglion cells), while RIIα and RIIβ were selectively enriched in photoreceptor cells where both showed distinct patterns of co-localization with Cα but not Cβ. Only Cα was observed in photoreceptor outer segments and at the base of the connecting cilium. Cβ in turn, was highly enriched in mitochondria and was especially prominent in the ellipsoid of cone cells. Further investigation of Cβ using RNA BaseScope technology showed that two Cβ splice variants (Cβ4 and Cβ4ab) likely code for the mitochondrial Cβ proteins. Overall, our data indicates that PKA Cα, Cβ, RIIα, and RIIβ subunits are differentially localized and are likely functionally non-redundant in the human retina. Furthermore, Cβ is potentially important for mitochondrial-associated neurodegenerative diseases previously linked to PKA dysfunction.
Collapse
Affiliation(s)
- Jinae N Roa
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Yuliang Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Qianlan Xu
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics and Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Marbach F, Stoyanov G, Erger F, Stratakis CA, Settas N, London E, Rosenfeld JA, Torti E, Haldeman-Englert C, Sklirou E, Kessler E, Ceulemans S, Nelson SF, Martinez-Agosto JA, Palmer CGS, Signer RH, Andrews MV, Grange DK, Willaert R, Person R, Telegrafi A, Sievers A, Laugsch M, Theiß S, Cheng Y, Lichtarge O, Katsonis P, Stocco A, Schaaf CP. Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain. Genet Med 2021; 23:1465-1473. [PMID: 33833410 PMCID: PMC8354857 DOI: 10.1038/s41436-021-01152-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1β subunit of the cyclic AMP-dependent protein kinase A (PKA). METHODS Variants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development. RESULTS Recent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs. CONCLUSION Our study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Felix Marbach
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Georgi Stoyanov
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Florian Erger
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | | | | | - Evgenia Sklirou
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena Kessler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sophia Ceulemans
- Genetics/Dysmorphology, Rady Children's Hospital, San Diego, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Christina G S Palmer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA
| | - Rebecca H Signer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marisa V Andrews
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | - Aaron Sievers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - YuZhu Cheng
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Biomedicine West Wing, International Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amber Stocco
- INTEGRIS Pediatric Neurology, Oklahoma City, OK, USA
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
12
|
Bloyd M, Settas N, Faucz FR, Sinaii N, Bathon K, Iben J, Coon S, Caprio S, Stratakis CA, London E. The PRKAR1B p.R115K Variant is Associated with Lipoprotein Profile in African American Youth with Metabolic Challenges. J Endocr Soc 2021; 5:bvab071. [PMID: 34195525 DOI: 10.1210/jendso/bvab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 01/21/2023] Open
Abstract
Context High childhood obesity rates coincide with increased incidence of nonalcoholic fatty liver disease (NAFLD) and other comorbidities. Understanding the genetics of susceptibility to obesity and its comorbidities could guide intervention. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) signaling pathway regulates energy balance, glucose homeostasis, and lipid metabolism. Objective We hypothesized that PKA-related gene variants may be associated with obesity or associated metabolic conditions. Methods We included 457 youths from the Yale Obesity Clinic into the Pathogenesis of Youth-Onset Diabetes cohort (NCT01967849); a variety of clinical tests were performed to characterize NAFLD. Exon sequencing of 54 PKA pathway genes was performed. Variants were confirmed by Sanger sequencing. Clinical data were analyzed, correcting for NAFLD status and body mass index z-score with adjustments for multiple comparisons. Fluorescence resonance energy transfer (FRET) and PKA enzymatic assays were performed in HEK293 cells transfected with the PRKAR1B p.R115K construct. In silico structural analysis for this variant was done. Results We identified the variant PRKAR1B p.R115K in 4 unrelated, African American patients. Analyses compared this variant group to other African American patients in the cohort. PRKAR1B p.R115K was associated with favorable circulating lipoprotein levels. Analysis of FRET and PKA enzymatic assay showed stronger interaction between the R1β mutant and PKA catalytic subunit Cα and decreased basal PKA activity compared with the wildtype (P < .0001). Structural analysis revealed that p.R115K may hinder conformational changes resulting from cAMP binding at cAMP binding domain A. Conclusion Data suggest PRKAR1B p.R115K affects cAMP signaling and may favorably modulate lipoprotein profile in African American youth, protecting them from some adverse metabolic outcomes.
Collapse
Affiliation(s)
- Michelle Bloyd
- Section on Endocrinology & Genetics, Program on Developmental Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nikolaos Settas
- Section on Endocrinology & Genetics, Program on Developmental Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Fabio Rueda Faucz
- Section on Endocrinology & Genetics, Program on Developmental Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, NIH Clinical Center, Bethesda, MD 20892, USA
| | - Kerstin Bathon
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
| | - James Iben
- Molecular Genomics Core, NICHD, Bethesda, MD 20892, USA
| | - Steven Coon
- Molecular Genomics Core, NICHD, Bethesda, MD 20892, USA
| | - Sonia Caprio
- Section on Pediatric Endocrinology and Diabetes, Yale University, New Haven, CT 06511, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics, Program on Developmental Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Section on Endocrinology & Genetics, Program on Developmental Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bardeci NG, Tofolón E, Trajtenberg F, Caramelo J, Larrieux N, Rossi S, Buschiazzo A, Moreno S. The crystal structure of yeast regulatory subunit reveals key evolutionary insights into Protein Kinase A oligomerization. J Struct Biol 2021; 213:107732. [PMID: 33819633 DOI: 10.1016/j.jsb.2021.107732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Protein Kinase A (PKA) is a widespread enzyme that plays a key role in many signaling pathways from lower eukaryotes to metazoans. In mammals, the regulatory (R) subunits sequester and target the catalytic (C) subunits to proper subcellular locations. This targeting is accomplished by the dimerization and docking (D/D) domain of the R subunits. The activation of the holoenzyme depends on the binding of the second messenger cAMP. The only available structures of the D/D domain proceed from mammalian sources. Unlike dimeric mammalian counterparts, the R subunit from Saccharomyces cerevisiae (Bcy1) forms tetramers in solution. Here we describe the first high-resolution structure of a non-mammalian D/D domain. The tetramer in the crystals of the Bcy1 D/D domain is a dimer of dimers that retain the classical D/D domain fold. By using phylogenetic and structural analyses combined with site-directed mutagenesis, we found that fungal R subunits present an insertion of a single amino acid at the D/D domain that shifts the position of a downstream, conserved arginine. This residue participates in intra-dimer interactions in mammalian D/D domains, while due to this insertion it is involved in inter-dimer contacts in Bcy1, which are crucial for the stability of the tetramer. This surprising finding challenges well-established concepts regarding the oligomeric state within the PKAR protein family and provides important insights into the yet unexplored structural diversity of the D/D domains and the molecular determinants of R subunit oligomerization.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| | - Enzo Tofolón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Julio Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Fundación Instituto Leloir, Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires C1405BWE, Argentina
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Moreno
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| |
Collapse
|
14
|
Kim C, Sharma R. Cyclic nucleotide selectivity of protein kinase G isozymes. Protein Sci 2020; 30:316-327. [PMID: 33271627 DOI: 10.1002/pro.4008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The intrinsic activity of the C-terminal catalytic (C) domain of cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKG) is inhibited by interactions with the N-terminal regulatory (R) domain. Selective binding of cGMP to cyclic nucleotide binding (CNB) domains within the R-domain disrupts the inhibitory R-C interaction, leading to the release and activation of the C-domain. Affinity measurements of mammalian and plasmodium PKG CNB domains reveal different degrees of cyclic nucleotide affinity and selectivity; the CNB domains adjacent to the C-domain are more cGMP selective and therefore critical for cGMP-dependent activation. Crystal structures of isolated CNB domains in the presence and absence of cyclic nucleotides reveal isozyme-specific contacts that explain cyclic nucleotide selectivity and conformational changes that accompany CNB. Crystal structures of tandem CNB domains identify two types of CNB-mediated dimeric contacts that indicate cGMP-driven reorganization of domain-domain interfaces that include large conformational changes. Here, we review the available structural and functional information of PKG CNB domains that further advance our understanding of cGMP mediated regulation and activation of PKG isozymes.
Collapse
Affiliation(s)
- Choel Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Lu TW, Aoto PC, Weng JH, Nielsen C, Cash JN, Hall J, Zhang P, Simon SM, Cianfrocco MA, Taylor SS. Structural analyses of the PKA RIIβ holoenzyme containing the oncogenic DnaJB1-PKAc fusion protein reveal protomer asymmetry and fusion-induced allosteric perturbations in fibrolamellar hepatocellular carcinoma. PLoS Biol 2020; 18:e3001018. [PMID: 33370777 PMCID: PMC7793292 DOI: 10.1371/journal.pbio.3001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/08/2021] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
When the J-domain of the heat shock protein DnaJB1 is fused to the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), replacing exon 1, this fusion protein, J-C subunit (J-C), becomes the driver of fibrolamellar hepatocellular carcinoma (FL-HCC). Here, we use cryo-electron microscopy (cryo-EM) to characterize J-C bound to RIIβ, the major PKA regulatory (R) subunit in liver, thus reporting the first cryo-EM structure of any PKA holoenzyme. We report several differences in both structure and dynamics that could not be captured by the conventional crystallography approaches used to obtain prior structures. Most striking is the asymmetry caused by the absence of the second cyclic nucleotide binding (CNB) domain and the J-domain in one of the RIIβ:J-C protomers. Using molecular dynamics (MD) simulations, we discovered that this asymmetry is already present in the wild-type (WT) RIIβ2C2 but had been masked in the previous crystal structure. This asymmetry may link to the intrinsic allosteric regulation of all PKA holoenzymes and could also explain why most disease mutations in PKA regulatory subunits are dominant negative. The cryo-EM structure, combined with small-angle X-ray scattering (SAXS), also allowed us to predict the general position of the Dimerization/Docking (D/D) domain, which is essential for localization and interacting with membrane-anchored A-Kinase-Anchoring Proteins (AKAPs). This position provides a multivalent mechanism for interaction of the RIIβ holoenzyme with membranes and would be perturbed in the oncogenic fusion protein. The J-domain also alters several biochemical properties of the RIIβ holoenzyme: It is easier to activate with cAMP, and the cooperativity is reduced. These results provide new insights into how the finely tuned allosteric PKA signaling network is disrupted by the oncogenic J-C subunit, ultimately leading to the development of FL-HCC.
Collapse
Affiliation(s)
- Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Phillip C. Aoto
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Cole Nielsen
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Jennifer N. Cash
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James Hall
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Ping Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
17
|
Teijeiro JM, Marini PE. Hormone-regulated PKA activity in porcine oviductal epithelial cells. Cell Tissue Res 2020; 380:657-667. [PMID: 32112257 DOI: 10.1007/s00441-020-03180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022]
Abstract
The oviduct is a dynamic organ that suffers changes during the oestrous cycle and modulates gamete and embryo physiology. We analyse the possible existence of Protein kinase A (PKA)-dependent hormone-regulated pathways in porcine ampulla and primary cell cultures by 2D-electrophoresis/Western blot using anti-phospho PKA substrate antibodies. Differential phosphorylation was observed for ten proteins that were identified by mass spectrometry. The results were validated for five of the proteins: Annexin A5, Calumenin, Glyoxalase I and II and Enolase I. Immunofluorescence analyses show that Calumenin, Glyoxalase II and Enolase I change their localisation in the oviductal epithelium through the oestrus cycle. The results demonstrate the existence of PKA hormone-regulated pathways in the ampulla epithelium during the oestrus cycle.
Collapse
Affiliation(s)
- Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, Argentina.,Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Rosario, Argentina
| |
Collapse
|
18
|
Hao Y, England JP, Bellucci L, Paci E, Hodges HC, Taylor SS, Maillard RA. Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains. Nat Commun 2019; 10:3984. [PMID: 31484930 PMCID: PMC6726620 DOI: 10.1038/s41467-019-11930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Cyclic nucleotide-binding (CNB) domains allosterically regulate the activity of proteins with diverse functions, but the mechanisms that enable the cyclic nucleotide-binding signal to regulate distant domains are not well understood. Here we use optical tweezers and molecular dynamics to dissect changes in folding energy landscape associated with cAMP-binding signals transduced between the two CNB domains of protein kinase A (PKA). We find that the response of the energy landscape upon cAMP binding is domain specific, resulting in unique but mutually coordinated tasks: one CNB domain initiates cAMP binding and cooperativity, whereas the other triggers inter-domain interactions that promote the active conformation. Inter-domain interactions occur in a stepwise manner, beginning in intermediate-liganded states between apo and cAMP-bound domains. Moreover, we identify a cAMP-responsive switch, the N3A motif, whose conformation and stability depend on cAMP occupancy. This switch serves as a signaling hub, amplifying cAMP-binding signals during PKA activation.
Collapse
Affiliation(s)
- Yuxin Hao
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| | - Jeneffer P England
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| | - Luca Bellucci
- NEST, Istituto Nanoscienze del CNR and Scuola Normale Superiore, Pisa, 56127, Italy
| | - Emanuele Paci
- Astbury Centre & School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas, 77005, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
19
|
Lu TW, Wu J, Aoto PC, Weng JH, Ahuja LG, Sun N, Cheng CY, Zhang P, Taylor SS. Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proc Natl Acad Sci U S A 2019; 116:16347-16356. [PMID: 31363049 PMCID: PMC6697891 DOI: 10.1073/pnas.1906036116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinase A (PKA) holoenzyme, comprised of a cAMP-binding regulatory (R)-subunit dimer and 2 catalytic (C)-subunits, is the master switch for cAMP-mediated signaling. Of the 4 R-subunits (RIα, RIβ, RIIα, RIIβ), RIα is most essential for regulating PKA activity in cells. Our 2 RIα2C2 holoenzyme states, which show different conformations with and without ATP, reveal how ATP/Mg2+ functions as a negative orthosteric modulator. Biochemical studies demonstrate how the removal of ATP primes the holoenzyme for cAMP-mediated activation. The opposing competition between ATP/cAMP is unique to RIα. In RIIβ, ATP serves as a substrate and facilitates cAMP-activation. The isoform-specific RI-holoenzyme dimer interface mediated by N3A-N3A' motifs defines multidomain cross-talk and an allosteric network that creates competing roles for ATP and cAMP. Comparisons to the RIIβ holoenzyme demonstrate isoform-specific holoenzyme interfaces and highlights distinct allosteric mechanisms for activation in addition to the structural diversity of the isoforms.
Collapse
Affiliation(s)
- Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Jian Wu
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Phillip C Aoto
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Jui-Hung Weng
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Lalima G Ahuja
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Nicholas Sun
- Department of Biological Science, University of California San Diego, La Jolla, CA 92093
| | - Cecilia Y Cheng
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Ping Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
20
|
Cao B, Lu TW, Martinez Fiesco JA, Tomasini M, Fan L, Simon SM, Taylor SS, Zhang P. Structures of the PKA RIα Holoenzyme with the FLHCC Driver J-PKAcα or Wild-Type PKAcα. Structure 2019; 27:816-828.e4. [PMID: 30905674 PMCID: PMC6506387 DOI: 10.1016/j.str.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLHCC) is driven by J-PKAcα, a kinase fusion chimera of the J domain of DnaJB1 with PKAcα, the catalytic subunit of protein kinase A (PKA). Here we report the crystal structures of the chimeric fusion RIα2:J-PKAcα2 holoenzyme formed by J-PKAcα and the PKA regulatory (R) subunit RIα, and the wild-type (WT) RIα2:PKAcα2 holoenzyme. The chimeric and WT RIα holoenzymes have quaternary structures different from the previously solved WT RIβ and RIIβ holoenzymes. The WT RIα holoenzyme showed the same configuration as the chimeric RIα2:J-PKAcα2 holoenzyme and a distinct second conformation. The J domains are positioned away from the symmetrical interface between the two RIα:J-PKAcα heterodimers in the chimeric fusion holoenzyme and are highly dynamic. The structural and dynamic features of these holoenzymes enhance our understanding of the fusion chimera protein J-PKAcα that drives FLHCC as well as the isoform specificity of PKA.
Collapse
Affiliation(s)
- Baohua Cao
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Juliana A Martinez Fiesco
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michael Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Lixin Fan
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ping Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
21
|
Taylor SS, Meharena HS, Kornev AP. Evolution of a dynamic molecular switch. IUBMB Life 2019; 71:672-684. [PMID: 31059206 DOI: 10.1002/iub.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein kinases (EPKs) regulate almost every biological process and have evolved to be dynamic molecular switches; this is in stark contrast to metabolic enzymes, which have evolved to be efficient catalysts. In particular, the highly conserved active site of every EPK is dynamically and transiently assembled by a process that is highly regulated and unique for every protein kinase. We review here the essential features of the kinase core, focusing on the conserved motifs and residues that are embedded in every kinase. We explore, in particular, how the hydrophobic core architecture specifically drives the dynamic assembly of the regulatory spine and consequently the organization of the active site where the γ-phosphate of ATP is positioned by a convergence of conserved motifs including a conserved regulatory triad for transfer to a protein substrate. In conclusion, we show how the flanking N- and C-terminal tails often classified as intrinsically disordered regions, as well as flanking domains, contribute in a highly kinase-specific manner to the regulation of the conserved kinase core. Understanding this process as well as how one kinase activates another remains as two of the big challenges for the kinase signaling community. © 2019 IUBMB Life, 71(6):672-684, 2019.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Mendoza E, Bubis J, Pérez-Rojas Y, Montilla AJ, Spencer LM, Bustamante F, Martínez JC. High immunological response against a Trypanosoma equiperdum protein that exhibits homology with the regulatory subunits of mammalian cAMP-dependent protein kinases. J Immunoassay Immunochem 2018; 39:451-469. [DOI: 10.1080/15321819.2018.1506930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emiliana Mendoza
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| | - Yenis Pérez-Rojas
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| | - Alejandro J. Montilla
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Escuela de Biología, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Lilian M. Spencer
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
- Escuela de Ciencias de la Vida, Universidad de Yachay Tech, Hacienda San José, Urcuquí, Ecuador
| | - Floritza Bustamante
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Juan C. Martínez
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| |
Collapse
|
23
|
Haushalter KJ, Casteel DE, Raffeiner A, Stefan E, Patel HH, Taylor SS. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells. J Biol Chem 2018; 293:4411-4421. [PMID: 29378851 PMCID: PMC5868259 DOI: 10.1074/jbc.m117.809988] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/23/2018] [Indexed: 01/26/2023] Open
Abstract
cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro, whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.
Collapse
Affiliation(s)
| | | | - Andrea Raffeiner
- the Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria, and
| | - Eduard Stefan
- the Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria, and
| | - Hemal H Patel
- Anesthesiology, and
- the Veterans Affairs San Diego Healthcare System, San Diego, California 92161
| | - Susan S Taylor
- From the Departments of Chemistry & Biochemistry,
- Pharmacology, University of California, San Diego, La Jolla, California 92093-0654
| |
Collapse
|
24
|
Bubis J, Martínez JC, Calabokis M, Ferreira J, Sanz-Rodríguez CE, Navas V, Escalona JL, Guo Y, Taylor SS. The gene product of a Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase regulatory subunit is a monomeric protein that is not capable of binding cyclic nucleotides. Biochimie 2017; 146:166-180. [PMID: 29288679 DOI: 10.1016/j.biochi.2017.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/23/2017] [Indexed: 02/03/2023]
Abstract
The full gene sequence encoding for the Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase (PKA) regulatory (R) subunits was cloned. A poly-His tagged construct was generated [TeqR-like(His)8], and the protein was expressed in bacteria and purified to homogeneity. The size of the purified TeqR-like(His)8 was determined to be ∼57,000 Da by molecular exclusion chromatography indicating that the parasite protein is a monomer. Limited proteolysis with various proteases showed that the T. equiperdum R-like protein possesses a hinge region very susceptible to proteolysis. The recombinant TeqR-like(His)8 did not bind either [3H] cAMP or [3H] cGMP up to concentrations of 0.40 and 0.65 μM, respectively, and neither the parasite protein nor its proteolytically generated carboxy-terminal large fragments were capable of binding to a cAMP-Sepharose affinity column. Bioinformatics analyses predicted that the carboxy-terminal region of the trypanosomal R-like protein appears to fold similarly to the analogous region of all known PKA R subunits. However, the protein amino-terminal portion seems to be unrelated and shows homology with proteins that contained Leu-rich repeats, a folding motif that is particularly appropriate for protein-protein interactions. In addition, the three-dimensional structure of the T. equiperdum protein was modeled using the crystal structure of the bovine PKA RIα subunit as template. Molecular docking experiments predicted critical changes in the environment of the two putative nucleotide binding clefts of the parasite protein, and the resulting binding energy differences support the lack of cyclic nucleotide binding in the trypanosomal R-like protein.
Collapse
Affiliation(s)
- José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1081-A, Venezuela.
| | - Juan Carlos Martínez
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas 1015-A, Venezuela.
| | - Maritza Calabokis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1081-A, Venezuela.
| | - Joilyneth Ferreira
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas 1015-A, Venezuela; Postgrado en Ciencias Biológicas, Universidad Simón Bolívar, Caracas 1081-A, Venezuela.
| | | | - Victoria Navas
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1081-A, Venezuela; Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas 1015-A, Venezuela; Escuela de Biología, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
| | | | - Yurong Guo
- Department of Chemistry, Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA 92093-0654, USA.
| | - Susan S Taylor
- Department of Chemistry, Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA 92093-0654, USA.
| |
Collapse
|
25
|
Lorenz R, Bertinetti D, Herberg FW. cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handb Exp Pharmacol 2017; 238:105-122. [PMID: 27885524 DOI: 10.1007/164_2015_36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cAMP-dependent protein kinase (PKA) and the cGMP-dependent protein kinase (PKG) are homologous enzymes with different binding and activation specificities for cyclic nucleotides. Both enzymes harbor conserved cyclic nucleotide-binding (CNB) domains. Differences in amino acid composition of these CNB domains mediate cyclic nucleotide selectivity in PKA and PKG, respectively. Recently, the presence of the noncanonical cyclic nucleotides cCMP and cUMP in eukaryotic cells has been proven, while the existence of cellular cIMP and cXMP remains unclear. It was shown that the main effectors of cyclic nucleotide signaling, PKA and PKG, can be activated by each of these noncanonical cyclic nucleotides. With unique effector proteins still missing, such cross-activation effects might have physiological relevance. Therefore, we approach PKA and PKG as cyclic nucleotide effectors in this chapter. The focus of this chapter is the general cyclic nucleotide-binding properties of both kinases as well as the selectivity for cAMP or cGMP, respectively. Furthermore, we discuss the binding affinities and activation potencies of noncanonical cyclic nucleotides.
Collapse
Affiliation(s)
- Robin Lorenz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| |
Collapse
|
26
|
Campbell JC, Henning P, Franz E, Sankaran B, Herberg FW, Kim C. Structural Basis of Analog Specificity in PKG I and II. ACS Chem Biol 2017; 12:2388-2398. [PMID: 28793191 PMCID: PMC5896746 DOI: 10.1021/acschembio.7b00369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyclic GMP analogs, 8-Br, 8-pCPT, and PET-cGMP, have been widely used for characterizing cellular functions of cGMP-dependent protein kinase (PKG) I and II isotypes. However, interpreting results obtained using these analogs has been difficult due to their low isotype specificity. Additionally, each isotype has two binding sites with different cGMP affinities and analog selectivities, making understanding the molecular basis for isotype specificity of these compounds even more challenging. To determine isotype specificity of cGMP analogs and their structural basis, we generated the full-length regulatory domains of PKG I and II isotypes with each binding site disabled, determined their affinities for these analogs, and obtained cocrystal structures of both isotypes bound with cGMP analogs. Our affinity and activation measurements show that PET-cGMP is most selective for PKG I, whereas 8-pCPT-cGMP is most selective for PKG II. Our structures of cyclic nucleotide binding (CNB) domains reveal that the B site of PKG I is more open and forms a unique π/π interaction through Arg285 at β4 with the PET moiety, whereas the A site of PKG II has a larger β5/β6 pocket that can better accommodate the bulky 8-pCPT moiety. Our structural and functional results explain the selectivity of these analogs for each PKG isotype and provide a starting point for the rational design of isotype selective activators.
Collapse
Affiliation(s)
- James C. Campbell
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Philipp Henning
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Eugen Franz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | | | - Choel Kim
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
27
|
Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross-linking approaches. Proc Natl Acad Sci U S A 2017; 114:10414-10419. [PMID: 28893983 DOI: 10.1073/pnas.1701782114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein phosphorylation by cyclic AMP-dependent protein kinase (PKA) underlies key cellular processes, including sympathetic stimulation of heart cells, and potentiation of synaptic strength in neurons. Unrestrained PKA activity is pathological, and an enduring challenge is to understand how the activity of PKA catalytic subunits is directed in cells. We developed a light-activated cross-linking approach to monitor PKA subunit interactions with temporal precision in living cells. This enabled us to refute the recently proposed theory that PKA catalytic subunits remain tethered to regulatory subunits during cAMP elevation. Instead, we have identified other features of PKA signaling for reducing catalytic subunit diffusion and increasing recapture rate. Comprehensive quantitative immunoblotting of protein extracts from human embryonic kidney cells and rat organs reveals that regulatory subunits are always in large molar excess of catalytic subunits (average ∼17-fold). In the majority of organs tested, type II regulatory (RII) subunits were found to be the predominant PKA subunit. We also examined the architecture of PKA complexes containing RII subunits using cross-linking coupled to mass spectrometry. Quantitative comparison of cross-linking within a complex of RIIβ and Cβ, with or without the prototypical anchoring protein AKAP18α, revealed that the dimerization and docking domain of RIIβ is between its second cAMP binding domains. This architecture is compatible with anchored RII subunits directing the myristylated N terminus of catalytic subunits toward the membrane for release and recapture within the plane of the membrane.
Collapse
|
28
|
t-Darpp stimulates protein kinase A activity by forming a complex with its RI regulatory subunit. Cell Signal 2017; 40:53-61. [PMID: 28867659 DOI: 10.1016/j.cellsig.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/05/2023]
Abstract
t-Darpp is the truncated form of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (Darpp-32) and has been demonstrated to confer resistance to trastuzumab, a Her2-targeted anticancer agent, via sustained signaling through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt pathway and activation of protein kinase A (PKA). The mechanism of t-Darpp-mediated PKA activation is poorly understood. In the PKA holoenzyme, when the catalytic subunits are bound to regulatory subunits RI or RII, kinase activity is inhibited. We investigated PKA activity and holoenzyme composition in cell lines overexpressing t-Darpp (SK.tDp) or a T39A phosphorylation mutant (SK.tDpT39A), as well as an empty vector control cell line (SK.empty). We also evaluated protein-protein interactions between t-Darpp and PKA catalytic (PKAc) or regulatory subunits RI and RII in those cell lines. SK.tDp cells had elevated PKA activity and showed diminished association of RI with PKAc, whereas SK.tDpT39A cells did not have these properties. Moreover, wild type t-Darpp associates with RI. Concurrent expression of Darpp-32 reversed t-Darrp's effects on PKA holoenzyme state, consistent with earlier observations that Darpp-32 reverses t-Darpp's activation of PKA. Together, t-Darpp phosphorylation at T39 seems to be crucial for t-Darpp-mediated PKA activation and this activation appears to occur through an association with RI and sequestering of RI away from PKAc. The t-Darpp-RI interaction could be a druggable target to reduce PKA activity in drug-resistant cancer.
Collapse
|
29
|
P Barros E, Malmstrom RD, Nourbakhsh K, Del Rio JC, Kornev AP, Taylor SS, Amaro RE. Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα. Biochemistry 2017; 56:1536-1545. [PMID: 28221775 DOI: 10.1021/acs.biochem.6b01152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.
Collapse
Affiliation(s)
- Emília P Barros
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| | - Robert D Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| | - Kimya Nourbakhsh
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Jason C Del Rio
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| |
Collapse
|
30
|
Ilouz R, Lev-Ram V, Bushong EA, Stiles TL, Friedmann-Morvinski D, Douglas C, Goldberg JL, Ellisman MH, Taylor SS. Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain. eLife 2017; 6:17681. [PMID: 28079521 PMCID: PMC5300705 DOI: 10.7554/elife.17681] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/03/2017] [Indexed: 01/26/2023] Open
Abstract
Protein kinase A (PKA) plays critical roles in neuronal function that are mediated by different regulatory (R) subunits. Deficiency in either the RIβ or the RIIβ subunit results in distinct neuronal phenotypes. Although RIβ contributes to synaptic plasticity, it is the least studied isoform. Using isoform-specific antibodies, we generated high-resolution large-scale immunohistochemical mosaic images of mouse brain that provided global views of several brain regions, including the hippocampus and cerebellum. The isoforms concentrate in discrete brain regions, and we were able to zoom-in to show distinct patterns of subcellular localization. RIβ is enriched in dendrites and co-localizes with MAP2, whereas RIIβ is concentrated in axons. Using correlated light and electron microscopy, we confirmed the mitochondrial and nuclear localization of RIβ in cultured neurons. To show the functional significance of nuclear localization, we demonstrated that downregulation of RIβ, but not of RIIβ, decreased CREB phosphorylation. Our study reveals how PKA isoform specificity is defined by precise localization. DOI:http://dx.doi.org/10.7554/eLife.17681.001
Collapse
Affiliation(s)
- Ronit Ilouz
- Department of Pharmacology, University of California, San Diego, La Jolla, United States
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, United States
| | - Eric A Bushong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, United States
| | - Travis L Stiles
- Department of Ophthalmology, Shiley Eye Center, University of California, San Diego, La Jolla, United States
| | - Dinorah Friedmann-Morvinski
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, United States.,Department of Biochemistry and Molecular Biology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Christopher Douglas
- Department of Ophthalmology, Shiley Eye Center, University of California, San Diego, La Jolla, United States
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Shiley Eye Center, University of California, San Diego, La Jolla, United States
| | - Mark H Ellisman
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, United States.,Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, United States
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, United States
| |
Collapse
|
31
|
Xiao LY, Kan WM. Cyclic AMP (cAMP) confers drug resistance against DNA damaging agents via PKAIA in CML cells. Eur J Pharmacol 2016; 794:201-208. [PMID: 27894809 DOI: 10.1016/j.ejphar.2016.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) regulates many vital functions such as metabolism, proliferation, differentiation and death. Depending on cell types and stimulators, cAMP could either promote or attenuate cell death. cAMP signal can be transduced by protein kinase A (PKA) and/or exchange protein directly activated by cAMP (EPAC). In CML cells, cAMP may suppress their proliferation and enhance their differentiation. However, the role of cAMP on DNA damaging agent toxicity and the mechanism involved has not been studied. In this study, we studied the effect of cAMP on the sensitivity of CML cells to DNA damaging agents. We observed that forskolin (FSK) and dibutyryl-cAMP (DBcAMP) decreased cisplatin and etoposide-induced cell death in K562 cells. Moreover, PKA activator prevented K562 cells from DNA damaging agent-induced cell death while EPAC activator had no effect. Furthermore, we found that the PKA subtype, PKAIA, was involved in cAMP-attenuated resistance in K562 cells. Taken together, our results suggest that increased cAMP level confers CML cells to acquire a novel mechanism against DNA damaging agent toxicity via PKAIA. Thus, PKAIA inhibitor may be helpful in overcoming the resistance to DNA damaging agents in CML cells.
Collapse
Affiliation(s)
- Ling-Yi Xiao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wai-Ming Kan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
32
|
Littler DR, Bullen HE, Harvey KL, Beddoe T, Crabb BS, Rossjohn J, Gilson PR. Disrupting the Allosteric Interaction between the Plasmodium falciparum cAMP-dependent Kinase and Its Regulatory Subunit. J Biol Chem 2016; 291:25375-25386. [PMID: 27738107 DOI: 10.1074/jbc.m116.750174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous second messenger cAMP mediates signal transduction processes in the malarial parasite that regulate host erythrocyte invasion and the proliferation of merozoites. In Plasmodium falciparum, the central receptor for cAMP is the single regulatory subunit (R) of protein kinase A (PKA). To aid the development of compounds that can selectively dysregulate parasite PKA signaling, we solved the structure of the PKA regulatory subunit in complex with cAMP and a related analogue that displays antimalarial activity, (Sp)-2-Cl-cAMPS. Prior to signaling, PKA-R holds the kinase's catalytic subunit (C) in an inactive state by exerting an allosteric inhibitory effect. When two cAMP molecules bind to PKA-R, they stabilize a structural conformation that facilitates its dissociation, freeing PKA-C to phosphorylate downstream substrates such as apical membrane antigen 1. Although PKA activity was known to be necessary for erythrocytic proliferation, we show that uncontrolled induction of PKA activity using membrane-permeable agonists is equally disruptive to growth.
Collapse
Affiliation(s)
- Dene R Littler
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and
| | | | - Katherine L Harvey
- the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Travis Beddoe
- the Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia, and
| | - Brendan S Crabb
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jamie Rossjohn
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN Wales, United Kingdom.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Paul R Gilson
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and .,the Burnet Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
33
|
García-Bermúdez J, Cuezva JM. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1167-1182. [PMID: 26876430 DOI: 10.1016/j.bbabio.2016.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
In this contribution we summarize most of the findings reported for the molecular and cellular biology of the physiological inhibitor of the mitochondrial H(+)-ATP synthase, the engine of oxidative phosphorylation (OXPHOS) and gate of cell death. We first describe the structure and major mechanisms and molecules that regulate the activity of the ATP synthase placing the ATPase Inhibitory Factor 1 (IF1) as a major determinant in the regulation of the activity of the ATP synthase and hence of OXPHOS. Next, we summarize the post-transcriptional mechanisms that regulate the expression of IF1 and emphasize, in addition to the regulation afforded by the protonation state of histidine residues, that the activity of IF1 as an inhibitor of the ATP synthase is also regulated by phosphorylation of a serine residue. Phosphorylation of S39 in IF1 by the action of a mitochondrial cAMP-dependent protein kinase A hampers its interaction with the ATP synthase, i.e., only dephosphorylated IF1 interacts with the enzyme. Upon IF1 interaction with the ATP synthase both the synthetic and hydrolytic activities of the engine of OXPHOS are inhibited. These findings are further placed into the physiological context to stress the emerging roles played by IF1 in metabolic reprogramming in cancer, in hypoxia and in cellular differentiation. We review also the implication of IF1 in other cellular situations that involve the malfunctioning of mitochondria. Special emphasis is given to the role of IF1 as driver of the generation of a reactive oxygen species signal that, emanating from mitochondria, is able to reprogram the nucleus of the cell to confer by various signaling pathways a cell-death resistant phenotype against oxidative stress. Overall, our intention is to highlight the urgent need of further investigations in the molecular and cellular biology of IF1 and of its target, the ATP synthase, to unveil new therapeutic strategies in human pathology. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Javier García-Bermúdez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Kim JJ, Lorenz R, Arold ST, Reger AS, Sankaran B, Casteel DE, Herberg FW, Kim C. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation. Structure 2016; 24:710-720. [PMID: 27066748 DOI: 10.1016/j.str.2016.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 01/21/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Albert S Reger
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
35
|
An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes. Structure 2015; 23:1563-1572. [PMID: 26278174 PMCID: PMC4558360 DOI: 10.1016/j.str.2015.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 01/07/2023]
Abstract
Cyclic AMP-dependent protein kinase (PKA) is regulated in part by N-terminal myristylation of its catalytic (C) subunit. Structural information about the role of myristylation in membrane targeting of PKA has been limited. In mammalian cells there are four functionally non-redundant PKA regulatory subunits (RIα, RIβ, RIIα, and RIIβ). PKA is assembled as an inactive R2C2 holoenzyme in cells. To explore the role of N-myristylation in membrane targeting of PKA holoenzymes, we solved crystal structures of RIα:myrC and RIIβ2:myrC2, and showed that the N-terminal myristylation site in the myrC serves as a flexible "switch" that can potentially be mobilized for membrane anchoring of RII, but not RI, holoenzymes. Furthermore, we synthesized nanodiscs and showed by electron microscopy that membrane targeting through the myristic acid is specific for the RII holoenzyme. This membrane-anchoring myristylation switch is independent of A Kinase Anchoring Proteins (AKAPs) that target PKA to membranes by other mechanisms.
Collapse
|
36
|
Zhang P, Knape MJ, Ahuja LG, Keshwani MM, King CC, Sastri M, Herberg FW, Taylor SS. Single Turnover Autophosphorylation Cycle of the PKA RIIβ Holoenzyme. PLoS Biol 2015; 13:e1002192. [PMID: 26158466 PMCID: PMC4497662 DOI: 10.1371/journal.pbio.1002192] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/01/2015] [Indexed: 01/10/2023] Open
Abstract
To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RIIβ holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RIIβ subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RIIβ holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RIIβ holoenzyme since the RIIβ holoenzyme is located close to ion channels. The 2.8Å structure of an RIIβp2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-(β,γ-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRIIβ subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RIIβ signaling cycle, we show that release of pRIIβ in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RIIβ holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Lalima G. Ahuja
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Malik M. Keshwani
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Charles C. King
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Mira Sastri
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Kassel, Germany
- * E-mail: (FWH); (SST)
| | - Susan S. Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (FWH); (SST)
| |
Collapse
|
37
|
Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10:1502-10. [PMID: 25765284 DOI: 10.1021/acschembio.5b00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | | | - F. Donelson Smith
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Heidi Hehnly
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Jessica L. Esseltine
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Laura E. Hanold
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mandi M. Murph
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - John D. Scott
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
38
|
Abstract
cAMP-dependent protein kinase (PKA) was the second protein kinase to be discovered and the PKA catalytic (C) subunit serves as a prototype for the large protein kinase superfamily that contains over 500 gene products. The protein kinases regulate much of biology in eukaryotic cells and they are now also a major therapeutic target. Although PKA was discovered nearly 50 years ago and the subsequent discovery of the regulatory subunits that bind cAMP and release the catalytic activity from the holoenzyme followed quickly. Thus in PKA we see the convergence of two major signaling mechanisms - protein phosphorylation and second messenger signaling through cAMP. Crystallography provides a foundation for understanding function, and the structure of the isolated regulatory (R) and C-subunits have been extremely informative. Yet it is the R2C2 holoenzyme that predominates in cells, and one can only appreciate the allosteric features of PKA signaling by seeing the full length protein. The symmetry and the quaternary constraints that one R:C hetero-dimer exerts on the other in the holoenzyme simply are not present in the isolated subunits or even in the R:C hetero-dimer.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Jian Wu
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093 ; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
39
|
Structural insights into mis-regulation of protein kinase A in human tumors. Proc Natl Acad Sci U S A 2015; 112:1374-9. [PMID: 25605907 DOI: 10.1073/pnas.1424206112] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The extensively studied cAMP-dependent protein kinase A (PKA) is involved in the regulation of critical cell processes, including metabolism, gene expression, and cell proliferation; consequentially, mis-regulation of PKA signaling is implicated in tumorigenesis. Recent genomic studies have identified recurrent mutations in the catalytic subunit of PKA in tumors associated with Cushing's syndrome, a kidney disorder leading to excessive cortisol production, and also in tumors associated with fibrolamellar hepatocellular carcinoma (FL-HCC), a rare liver cancer. Expression of a L205R point mutant and a DnaJ-PKA fusion protein were found to be linked to Cushing's syndrome and FL-HCC, respectively. Here we reveal contrasting mechanisms for increased PKA signaling at the molecular level through structural determination and biochemical characterization of the aberrant enzymes. In the Cushing's syndrome disorder, we find that the L205R mutation abolishes regulatory-subunit binding, leading to constitutive, cAMP-independent signaling. In FL-HCC, the DnaJ-PKA chimera remains under regulatory subunit control; however, its overexpression from the DnaJ promoter leads to enhanced cAMP-dependent signaling. Our findings provide a structural understanding of the two distinct disease mechanisms and they offer a basis for designing effective drugs for their treatment.
Collapse
|
40
|
Abstract
Protein kinases are dynamically regulated signaling proteins that act as switches in the cell by phosphorylating target proteins. To establish a framework for analyzing linkages between structure, function, dynamics, and allostery in protein kinases, we carried out multiple microsecond-scale molecular-dynamics simulations of protein kinase A (PKA), an exemplar active kinase. We identified residue-residue correlated motions based on the concept of mutual information and used the Girvan-Newman method to partition PKA into structurally contiguous "communities." Most of these communities included 40-60 residues and were associated with a particular protein kinase function or a regulatory mechanism, and well-known motifs based on sequence and secondary structure were often split into different communities. The observed community maps were sensitive to the presence of different ligands and provide a new framework for interpreting long-distance allosteric coupling. Communication between different communities was also in agreement with the previously defined architecture of the protein kinase core based on the "hydrophobic spine" network. This finding gives us confidence in suggesting that community analyses can be used for other protein kinases and will provide an efficient tool for structural biologists. The communities also allow us to think about allosteric consequences of mutations that are linked to disease.
Collapse
|
41
|
Boras BW, Kornev A, Taylor SS, McCulloch AD. Using Markov state models to develop a mechanistic understanding of protein kinase A regulatory subunit RIα activation in response to cAMP binding. J Biol Chem 2014; 289:30040-51. [PMID: 25202018 DOI: 10.1074/jbc.m114.568907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein kinase A (PKA) holoenzyme consists of two catalytic (C) subunits and a regulatory (R) subunit dimer (R(2)C(2)). The kinase is activated by the binding of cAMPs to the two cyclic nucleotide binding domains (CBDs), A and B, on each R-subunit. Despite extensive study, details of the allosteric mechanisms underlying the cooperativity of holoenzyme activation remain unclear. Several Markov state models of PKA-RIα were developed to test competing theories of activation for the R(2)C(2) complex. We found that CBD-B plays an essential role in R-C interaction and promotes the release of the first C-subunit prior to the binding to CBD-A. This favors a conformational selection mechanism for release of the first C-subunit of PKA. However, the release of the second C-subunit requires all four cAMP sites to be occupied. These analyses elucidate R-C heterodimer interactions in the cooperative activation of PKA and cAMP binding and represent a new mechanistic model of R(2)C(2) PKA-RIα activation.
Collapse
Affiliation(s)
| | | | | | - Andrew D McCulloch
- From the Departments of Bioengineering, Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
42
|
Blumenthal DK, Copps J, Smith-Nguyen EV, Zhang P, Heller WT, Taylor SS. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study. J Biol Chem 2014; 289:28505-12. [PMID: 25112875 DOI: 10.1074/jbc.m114.584177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.
Collapse
Affiliation(s)
- Donald K Blumenthal
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112,
| | - Jeffrey Copps
- the Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654
| | - Eric V Smith-Nguyen
- the Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654
| | - Ping Zhang
- the Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654
| | - William T Heller
- the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, and
| | - Susan S Taylor
- the Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654, the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0654
| |
Collapse
|
43
|
Akimoto M, Zhang Z, Boulton S, Selvaratnam R, VanSchouwen B, Gloyd M, Accili EA, Lange OF, Melacini G. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP. J Biol Chem 2014; 289:22205-20. [PMID: 24878962 DOI: 10.1074/jbc.m114.572164] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.
Collapse
Affiliation(s)
- Madoka Akimoto
- From the Departments of Chemistry and Chemical Biology and
| | - Zaiyong Zhang
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stephen Boulton
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | - Melanie Gloyd
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Eric A Accili
- the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Oliver F Lange
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada,
| |
Collapse
|
44
|
Wong TH, Chiu WZ, Breedveld GJ, Li KW, Verkerk AJMH, Hondius D, Hukema RK, Seelaar H, Frick P, Severijnen LA, Lammers GJ, Lebbink JHG, van Duinen SG, Kamphorst W, Rozemuller AJ, Bakker EB, Neumann M, Willemsen R, Bonifati V, Smit AB, van Swieten J. PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. ACTA ACUST UNITED AC 2014; 137:1361-73. [PMID: 24722252 DOI: 10.1093/brain/awu067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Pathological accumulation of intermediate filaments can be observed in neurodegenerative disorders, such as Alzheimer's disease, frontotemporal dementia and Parkinson's disease, and is also characteristic of neuronal intermediate filament inclusion disease. Intermediate filaments type IV include three neurofilament proteins (light, medium and heavy molecular weight neurofilament subunits) and α-internexin. The phosphorylation of intermediate filament proteins contributes to axonal growth, and is regulated by protein kinase A. Here we describe a family with a novel late-onset neurodegenerative disorder presenting with dementia and/or parkinsonism in 12 affected individuals. The disorder is characterized by a unique neuropathological phenotype displaying abundant neuronal inclusions by haematoxylin and eosin staining throughout the brain with immunoreactivity for intermediate filaments. Combining linkage analysis, exome sequencing and proteomics analysis, we identified a heterozygous c.149T>G (p.Leu50Arg) missense mutation in the gene encoding the protein kinase A type I-beta regulatory subunit (PRKAR1B). The pathogenicity of the mutation is supported by segregation in the family, absence in variant databases, and the specific accumulation of PRKAR1B in the inclusions in our cases associated with a specific biochemical pattern of PRKAR1B. Screening of PRKAR1B in 138 patients with Parkinson's disease and 56 patients with frontotemporal dementia did not identify additional novel pathogenic mutations. Our findings link a pathogenic PRKAR1B mutation to a novel hereditary neurodegenerative disorder and suggest an altered protein kinase A function through a reduced binding of the regulatory subunit to the A-kinase anchoring protein and the catalytic subunit of protein kinase A, which might result in subcellular dislocalization of the catalytic subunit and hyperphosphorylation of intermediate filaments.
Collapse
Affiliation(s)
- Tsz Hang Wong
- 1 Department of Neurology, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
PKA RIα homodimer structure reveals an intermolecular interface with implications for cooperative cAMP binding and Carney complex disease. Structure 2013; 22:59-69. [PMID: 24316401 DOI: 10.1016/j.str.2013.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022]
Abstract
The regulatory (R) subunit is the cAMP receptor of protein kinase A. Following cAMP binding, the inactive PKA holoenzyme complex separates into two active catalytic (C) subunits and a cAMP-bound R dimer. Thus far, only monomeric R structures have been solved, which fell short in explaining differences of cAMP binding for the full-length protein as compared to the truncated R subunits. Here we solved a full-length R-dimer structure that reflects the biologically relevant conformation, and this structure agrees well with small angle X-ray scattering. An isoform-specific interface is revealed between the protomers. This interface acts as an intermolecular sensor for cAMP and explains the cooperative character of cAMP binding to the RIα dimer. Mutagenesis of residues on this interface not only leads to structural and biochemical changes, but is also linked to Carney complex disease.
Collapse
|
46
|
Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol 2013; 3:292. [PMID: 24350057 PMCID: PMC3844930 DOI: 10.3389/fonc.2013.00292] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Michelle L Boland
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Molecular Metabolism and Nutrition, The University of Chicago , Chicago, IL , USA
| | - Aparajita H Chourasia
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, The University of Chicago , Chicago, IL , USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Molecular Metabolism and Nutrition, The University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, The University of Chicago , Chicago, IL , USA
| |
Collapse
|
47
|
Han YS, Arroyo J, Ogut O. Human heart failure is accompanied by altered protein kinase A subunit expression and post-translational state. Arch Biochem Biophys 2013; 538:25-33. [PMID: 23942052 DOI: 10.1016/j.abb.2013.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
Abstract
β-Adrenergic receptor blockade reduces total mortality and all-cause hospitalizations in patients with heart failure (HF). Nonetheless, β-blockade does not halt disease progression, suggesting that cAMP-dependent protein kinase (PKA) signaling downstream of β-adrenergic receptor activation may persist through unique post-translational states. In this study, human myocardial tissue was used to examine the state of PKA subunits. As expected, total myosin binding protein-C phosphorylation and Ser23/24 troponin I phosphorylation significantly decreased in HF. Examination of PKA subunits demonstrated no change in type II regulatory (RIIα) or catalytic (Cα) subunit expression, although site specific RIIα (Ser96) and Cα (Thr197) phosphorylation were increased in HF. Further, the expression of type I regulatory subunit (RI) was increased in HF. Isoelectric focusing of RIα demonstrated up to three variants, consistent with reports that Ser77 and Ser83 are in vivo phosphorylation sites. Western blots with site-specific monoclonal antibodies showed increased Ser83 phosphorylation in HF. 8-fluo-cAMP binding by wild type and phosphomimic Ser77 and Ser83 mutant RIα proteins demonstrated reduced Kd for the double mutant as compared to WT RIα. Therefore, failing myocardium displays altered expression and post-translational modification of PKA subunits that may impact downstream signaling.
Collapse
Affiliation(s)
- Young Soo Han
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
48
|
Moon TM, Osborne BW, Dostmann WR. The switch helix: a putative combinatorial relay for interprotomer communication in cGMP-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1346-51. [PMID: 23416533 DOI: 10.1016/j.bbapap.2013.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
For over three decades the isozymes of cGMP-dependent protein kinase (PKG) have been studied using an array of biochemical and biophysical techniques. When compared to its closest cousin, cAMP-dependent protein kinase (PKA), these studies revealed a set of identical domain types, yet containing distinct, sequence-specific features. The recently solved structure of the PKG regulatory domain showed the presence of the switch helix (SW), a novel motif that promotes the formation of a domain-swapped dimer in the asymmetric unit. This dimer is mediated by the interaction of a knob motif on the C-terminal locus of the SW, with a hydrophobic nest on the opposing protomer. This nest sits adjacent to the cGMP binding pocket of the B-site. Priming of this site by cGMP may influence the geometry of the hydrophobic nest. Moreover, this unique interaction may have wide implications for the architecture of the inactive and active forms of PKG. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Thomas M Moon
- Department of Pharmacology, The University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
49
|
Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 2012; 13:646-58. [PMID: 22992589 DOI: 10.1038/nrm3432] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein kinases are dynamic molecular switches that have evolved to be only transiently activated. Kinase activity is embedded within a conserved kinase core, which is typically regulated by associated domains, linkers and interacting proteins. Moreover, protein kinases are often tethered to large macromolecular complexes to provide tighter spatiotemporal control. Thus, structural characterization of kinase domains alone is insufficient to explain protein kinase function and regulation in vivo. Recent progress in structural characterization of cyclic AMP-dependent protein kinase (PKA) exemplifies how our knowledge of kinase signalling has evolved by shifting the focus of structural studies from single kinase subunits to macromolecular complexes.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, 92093-90654, USA.
| | | | | | | |
Collapse
|