1
|
Lin Y, Yang Q, Lin X, Liu X, Qian Y, Xu D, Cao N, Han X, Zhu Y, Hu W, He X, Yu Z, Kong X, Zhu L, Zhong Z, Liu K, Zhou B, Wang Y, Peng J, Zhu W, Wang J. Extracellular Matrix Disorganization Caused by ADAMTS16 Deficiency Leads to Bicuspid Aortic Valve With Raphe Formation. Circulation 2024; 149:605-626. [PMID: 38018454 DOI: 10.1161/circulationaha.123.065458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.
Collapse
Affiliation(s)
- Ying Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Qifan Yang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaoping Lin
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xianbao Liu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Yi Qian
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Dilin Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Naifang Cao
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (X.H.)
| | - Yanqing Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wangxing Hu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiaopeng He
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhengyang Yu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Xiangmin Kong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Lianlian Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Zhiwei Zhong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Kai Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences (B.Z.)
| | - Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Health Science Center, China (Y.W.)
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network (Y.Z., K.L., J.P.), Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| | - Jian'an Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.), Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute (J.W.), Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Y.L., Q.Y., X. Lin, X. Liu, Y.Q., D.X., N.C., W.H., X.H., Z.Y., X.K., L.Z., Z.Z., W.Z., J.W.)
| |
Collapse
|
2
|
Quintard C, Tubbs E, Jonsson G, Jiao J, Wang J, Werschler N, Laporte C, Pitaval A, Bah TS, Pomeranz G, Bissardon C, Kaal J, Leopoldi A, Long DA, Blandin P, Achard JL, Battail C, Hagelkruys A, Navarro F, Fouillet Y, Penninger JM, Gidrol X. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun 2024; 15:1452. [PMID: 38365780 PMCID: PMC10873332 DOI: 10.1038/s41467-024-45710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics.
Collapse
Affiliation(s)
- Clément Quintard
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jie Jiao
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Jun Wang
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Nicolas Werschler
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia (BC), Canada
| | - Camille Laporte
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Amandine Pitaval
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France
| | - Thierno-Sidy Bah
- Univ. Grenoble Alpes, CEA, IRIG, BGE, Gen&Chem, 38000, Grenoble, France
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Joris Kaal
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Alexandra Leopoldi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Pierre Blandin
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Jean-Luc Achard
- Université Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000, Grenoble, France
| | | | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fabrice Navarro
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Yves Fouillet
- Univ. Grenoble Alpes, CEA, LETI, DTBS, 38000, Grenoble, France
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (BC), Canada.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, IMBA, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, IRIG/BGE, BIOMICS, 38000, Grenoble, France.
| |
Collapse
|
3
|
Secreted protease ADAMTS18 in development and disease. Gene 2023; 858:147169. [PMID: 36632911 DOI: 10.1016/j.gene.2023.147169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
ADAMTS18 was identified in 2002 as a member of the ADAMTS family of 19 secreted Zinc-dependent metalloproteinases. Prior to 2016, ADAMTS18 was known as a candidate gene associated with a wide range of pathologies, particularly various malignancies and eye disorders. However, functions and substrates of ADAMTS18 in normal conditions were unknown. Since 2016, with the development of Adamts18 knockout models, many studies had been conducted on the Adamts18 gene in vivo. These studies revealed that ADAMTS18 is essential for the morphology and organogenesis of several epithelial organs (e.g., lung, kidney, breast, salivary glands, and lacrimal glands), vascular and neuronal systems, adipose tissue, and reproductive tracts. In this review, we describe the current understanding of ADAMTS18 and its substrates and regulators. Limitations in translating new findings on ADAMTS18 to clinical practice are also discussed.
Collapse
|
4
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
5
|
A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers. PLoS One 2022; 17:e0270063. [PMID: 36190948 PMCID: PMC9529084 DOI: 10.1371/journal.pone.0270063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellular’, involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.
Collapse
|
6
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
7
|
Bone Marrow Mesenchymal Stem Cell-Derived Exosomal microRNA-29b-3p Promotes Angiogenesis and Ventricular Remodeling in Rats with Myocardial Infarction by Targeting ADAMTS16. Cardiovasc Toxicol 2022; 22:689-700. [PMID: 35699870 DOI: 10.1007/s12012-022-09745-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
An increasing amount of evidence has suggested that microRNA (miR) plays a role in myocardial infarction (MI). Our study aimed to discuss the impact of exosomal miR-29b-3p in MI by regulating A Disintegrin and Metalloproteinase with Thrombospondin Motifs 16 (ADAMTS16). Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). In a rat model of MI, myocardial angiogenesis and ventricular remodeling-related factors, as well as myocardial fibrosis, collagen volume fraction (CVF), capillary density, level of vascular endothelial growth factor (VEGF), and apoptosis of cardiomyocytes, were tested. ADAMTS16 and miR-29b-3p levels in the myocardial tissue of MI rats were tested. miR-29b-3p expression was decreased and ADAMTS16 expression was increased in the myocardial tissue of MI rats. ADAMTS16 was a target gene of miR-29b-3p. Upregulated miR-29b-3p delivered by BMSC-derived exosomes improved myocardial angiogenesis and ventricular remodeling, reduced myocardial fibrosis and CVF, increased capillary density and VEGF expression, and suppressed apoptosis of cardiomyocytes in MI rats. ADAMTS16 overexpression accelerated MI in rats, and ADAMTS16 upregulation reversed the protective effects of miR-29b-3p upregulation on MI rats. Our study provides evidence that upregulated miR-29b-3p delivered by BMSC-secreted exosomes can improve myocardial angiogenesis and ventricular remodeling in rats with MI by targeting ADAMTS16.
Collapse
|
8
|
ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:255-363. [PMID: 35659374 PMCID: PMC9231755 DOI: 10.1016/bs.apha.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are two closely related families of proteolytic enzymes. ADAMs are largely membrane-bound enzymes that act as molecular scissors or sheddases of membrane-bound proteins, growth factors, cytokines, receptors and ligands, whereas ADAMTS are mainly secreted enzymes. ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and transmembrane domain. Similarly, ADAMTS family members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but instead of a transmembrane domain they have thrombospondin motifs. Most ADAMs and ADAMTS are activated by pro-protein convertases, and can be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C. Activated ADAMs and ADAMTS participate in numerous vascular processes including angiogenesis, vascular smooth muscle cell proliferation and migration, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs and ADAMTS also play a role in vascular malfunction and cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, peripheral artery disease, and vascular aneurysm. Decreased ADAMTS13 is involved in thrombotic thrombocytopenic purpura and microangiopathies. The activity of ADAMs and ADAMTS can be regulated by endogenous tissue inhibitors of metalloproteinases and other synthetic small molecule inhibitors. ADAMs and ADAMTS can be used as diagnostic biomarkers and molecular targets in cardiovascular disease, and modulators of ADAMs and ADAMTS activity may provide potential new approaches for the management of cardiovascular disorders.
Collapse
|
9
|
Mougin Z, Huguet Herrero J, Boileau C, Le Goff C. ADAMTS Proteins and Vascular Remodeling in Aortic Aneurysms. Biomolecules 2021; 12:12. [PMID: 35053160 PMCID: PMC8773774 DOI: 10.3390/biom12010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) in the vascular wall is a highly dynamic structure composed of a set of different molecules such as elastins, collagens, fibronectin (Fn), laminins, proteoglycans, and polysaccharides. ECM undergoes remodeling processes to regulate vascular smooth muscle and endothelial cells' proliferation, differentiation, and adhesion. Abnormalities affecting the ECM can lead to alteration in cellular behavior and from this, this can conduce to the development of pathologies. Metalloproteases play a key role in maintaining the homeostasis of ECM by mediating the cleavage of different ECM components. There are different types of metalloproteases: matrix metalloproteinases (MMPs), disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs). ADAMTSs have been found to participate in cardiovascular physiology and diseases and specifically in aortic aneurysms. This review aims to decipher the potential role of ADAMTS proteins in the physiopathologic development of Thoracic Aortic Aneurysms (TAA) and Abdominal Aortic Aneurysms (AAA). This review will focus on what is known on the ADAMTS family involved in human aneurysms from human tissues to mouse models. The recent findings on THSD4 (encoding ADAMTSL6) mutations in TAA give a new insight on the involvement of the ADAMTS family in TAA.
Collapse
Affiliation(s)
- Zakaria Mougin
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| | - Julia Huguet Herrero
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| | - Catherine Boileau
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
- Département de Génétique, AP-HP, Hôpital Bichat, F-75018 Paris, France
| | - Carine Le Goff
- INSERM U1148, Laboratory of Vascular Translational Science, Université de Paris, Hôpital Bichat, F-75018 Paris, France; (Z.M.); (J.H.H.); (C.B.)
| |
Collapse
|
10
|
Morgan EE, Morran MP, Horen NG, Weaver DA, Nestor-Kalinoski AL. RNO3 QTL Regulates Vascular Structure and Arterial Stiffness in the Spontaneously Hypertensive Rat. Physiol Genomics 2021; 53:534-545. [PMID: 34755572 PMCID: PMC9275012 DOI: 10.1152/physiolgenomics.00038.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased arterial stiffness is an independent risk factor for hypertension, stroke, and cardiovascular morbidity. Thus, understanding the factors contributing to vascular stiffness is of critical importance. Here, we used a rat model containing a known quantitative trait locus (QTL) on chromosome 3 (RNO3) for vasoreactivity to assess potential genetic elements contributing to blood pressure, arterial stiffness, and their downstream effects on cardiac structure and function. Although no differences were found in blood pressure at any time point between parental spontaneously hypertensive rats (SHRs) and congenic SHR.BN3 rats, the SHRs showed a significant increase in arterial stiffness measured by pulse wave velocity. The degree of arterial stiffness increased with age in the SHRs and was associated with compensatory cardiac changes at 16 wk of age, and decompensatory changes at 32 wk, with no change in cardiac structure or function in the SHR.BN3 hearts at these time points. To evaluate the arterial wall structure, we used multiphoton microscopy to quantify cells and collagen content within the adventitia and media of SHR and SHR.BN3 arteries. No difference in cell numbers or proliferation rates was found, although phenotypic diversity was characterized in vascular smooth muscle cells. Herein, significant anatomical and physiological differences related to arterial structure and cardiovascular tone including collagen, pulse wave velocity (PWV), left ventricular (LV) geometry and function, and vascular smooth muscle cell (VSMC) contractile apparatus proteins were associated with the RNO3 QTL, thus providing a novel platform for studying arterial stiffness. Future studies delimiting the RNO3 QTL could aid in identifying genetic elements responsible for arterial structure and function.
Collapse
Affiliation(s)
- Eric E Morgan
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States.,Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Michael P Morran
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States
| | - Nicholas G Horen
- Department of Medicine, University of Toledo, Toledo, Ohio, United States
| | - David A Weaver
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States
| | - Andrea L Nestor-Kalinoski
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States
| |
Collapse
|
11
|
Lin X, Wu T, Wang L, Dang S, Zhang W. ADAMTS18 deficiency leads to preputial gland hypoplasia and fibrosis in male mice. Reprod Biol 2021; 21:100542. [PMID: 34388417 DOI: 10.1016/j.repbio.2021.100542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
ADAMTSs (A disintegrin and metalloproteinase with thrombospondin motifs) are a family of 19 secreted zinc metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM) during development, morphogenesis, tissue repair, and remodeling. ADAMTS18 is a poorly characterized member of the ADAMTS family. Previously, ADAMTS18 was found to participate in the development of female reproductive tract in mice. However, whether ADAMTS18 also plays a role in the development of male reproductive system remains unclear. In this study, Adamts18 mRNA was found to be highly expressed in the basal cells of the developing preputial gland. Male Adamts18 knockout (Adamts18-/-) mice exhibit abnormal preputial gland morphogenesis, including reduced size and sharp outline. Histological analyses of preputial gland from 2-week-old male Adamts18-/- mice showed significant atrophy of the whole gland. Preputial glands from 7 months and older Adamts18-/- mice appeared macroscopic swelling on their surface. Histologically, preputial gland swelling is characterized by tissue fibrosis and thicker keratinized squamous cell layer. Preputial gland lesions in age-matched male Adamts18+/+ mice were barely detected. ADAMTS18 deficiency does not lead to significant changes in morphogenesis of prostate and testis in male mice. These results indicate that ADAMTS18 is required for normal morphogenesis and homeostasis of the preputial gland in male mice.
Collapse
Affiliation(s)
- Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
12
|
Yang N, Zhang Q, Ye S, Lu T, Sun M, Wang L, Wang M, Pan YH, Dang S, Zhang W. Adamts18 Deficiency Causes Spontaneous SMG Fibrogenesis in Adult Mice. J Dent Res 2021; 101:226-234. [PMID: 34323105 DOI: 10.1177/00220345211029270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic sclerosing sialadenitis of the submandibular gland (also known as Küttner tumor) is characterized by concomitant swelling of the submandibular glands secondary to strong lymphocytic infiltration and fibrosis. The pathogenesis of this disease has been unclear, but it is associated with immune disorders. ADAMTS18 is a member of the ADAMTS superfamily of extracellular proteinases. In this study, we showed that Adamts18 is highly expressed in submandibular salivary gland (SMG) during embryonic development and decreases but is retained in adult SMG tissue in mice. Adamts18 deficiency led to reduced cleft formation and epithelial branching in embryonic SMG before embryonic day 15.5 in mice. No significant histologic changes in the later stages of branching or the morphology of SMG were detected in Adamts18-/- mice. However, Adamts18 deficiency causes spontaneous SMG fibrogenesis and fibrosis in adult mice. At 8 wk of age, Adamts18-/- mice began to manifest the first signs of pathologic changes of mild fibrosis and CD11b+ cell infiltration in SMG tissues. At ≥8 mo, all male and female Adamts18-/- mice developed unilateral or bilateral SMG scleroma that is similar to patients with chronic sclerosing sialadenitis of the submandibular gland. Adamts18-/- mice also showed secretory dysfunction and severe dental caries. Histologically, SMG scleroma is characterized by progressive periductal fibrosis, acinar atrophy, irregular duct ectasis, and dense infiltration of IgG-positive plasma cells. A significant infiltration of CD4+ T lymphocytes and CD11b+ monocytes and macrophages was also detected in the SMG scleroma of Adamts18-/- mice. The levels of TGF-β1, IL-6, and IL-33 were significantly increased in Adamts18-/- SMGs, which induces chronic inflammation and myofibroblast activation, ultimately leading to fibrosis. This study indicates that Adamts18 regulates the early branching morphogenesis of embryonic SMG and plays a role in protecting from spontaneous SMG fibrogenesis via modulating local inflammation, autoimmune reaction, and myofibroblast activation in adult mice.
Collapse
Affiliation(s)
- N Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Q Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - S Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - T Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - M Sun
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - L Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - M Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Y H Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - S Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
14
|
Wiegand A, Kreifelts B, Munk MHJ, Geiselhart N, Ramadori KE, MacIsaac JL, Fallgatter AJ, Kobor MS, Nieratschker V. DNA methylation differences associated with social anxiety disorder and early life adversity. Transl Psychiatry 2021; 11:104. [PMID: 33542190 PMCID: PMC7862482 DOI: 10.1038/s41398-021-01225-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Social anxiety disorder (SAD) is a psychiatric disorder characterized by extensive fear in social situations. Multiple genetic and environmental factors are known to contribute to its pathogenesis. One of the main environmental risk factors is early life adversity (ELA). Evidence is emerging that epigenetic mechanisms such as DNA methylation might play an important role in the biological mechanisms underlying SAD and ELA. To investigate the relationship between ELA, DNA methylation, and SAD, we performed an epigenome-wide association study for SAD and ELA examining DNA from whole blood of a cohort of 143 individuals using DNA methylation arrays. We identified two differentially methylated regions (DMRs) associated with SAD located within the genes SLC43A2 and TNXB. As this was the first epigenome-wide association study for SAD, it is worth noting that both genes have previously been associated with panic disorder. Further, we identified two DMRs associated with ELA within the SLC17A3 promoter region and the SIAH3 gene and several DMRs that were associated with the interaction of SAD and ELA. Of these, the regions within C2CD2L and MRPL28 showed the largest difference in DNA methylation. Lastly, we found that two DMRs were associated with both the severity of social anxiety and ELA, however, neither of them was found to mediate the contribution of ELA to SAD later in life. Future studies are needed to replicate our findings in independent cohorts and to investigate the biological pathways underlying these effects.
Collapse
Affiliation(s)
- Ariane Wiegand
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Benjamin Kreifelts
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.6546.10000 0001 0940 1669Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nadja Geiselhart
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katia E. Ramadori
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Julia L. MacIsaac
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Andreas J. Fallgatter
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael S. Kobor
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany. .,Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
15
|
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rens de Groot
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
16
|
Failler M, Giro-Perafita A, Owa M, Srivastava S, Yun C, Kahler DJ, Unutmaz D, Esteva FJ, Sánchez I, Dynlacht BD. Whole-genome screen identifies diverse pathways that negatively regulate ciliogenesis. Mol Biol Cell 2020; 32:169-185. [PMID: 33206585 PMCID: PMC8120696 DOI: 10.1091/mbc.e20-02-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving “outside-in” and “inside-out” signaling that restrain cilium assembly.
Collapse
Affiliation(s)
- Marion Failler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Ariadna Giro-Perafita
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Mikito Owa
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shalini Srivastava
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Chi Yun
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - David J Kahler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, Farmington, CT 06031
| | - Francisco J Esteva
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Irma Sánchez
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Brian D Dynlacht
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
17
|
Yao Y, Hu C, Song Q, Li Y, Da X, Yu Y, Li H, Clark IM, Chen Q, Wang QK. ADAMTS16 activates latent TGF-β, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovasc Res 2020; 116:956-969. [PMID: 31297506 DOI: 10.1093/cvr/cvz187] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Cardiac fibrosis is a major cause of heart failure (HF), and mediated by the differentiation of cardiac fibroblasts into myofibroblasts. However, limited tools are available to block cardiac fibrosis. ADAMTS16 is a member of the ADAMTS superfamily of extracellular protease enzymes involved in extracellular matrix (ECM) degradation and remodelling. In this study, we aimed to establish ADAMTS16 as a key regulator of cardiac fibrosis. METHODS AND RESULTS Western blot and qRT-PCR analyses demonstrated that ADAMTS16 was significantly up-regulated in mice with transverse aortic constriction (TAC) associated with left ventricular hypertrophy and HF, which was correlated with increased expression of Mmp2, Mmp9, Col1a1, and Col3a1. Overexpression of ADAMTS16 accelerated the AngII-induced activation of cardiac fibroblasts into myofibroblasts. Protein structural analysis and co-immunoprecipitation revealed that ADAMTS16 interacted with the latency-associated peptide (LAP)-transforming growth factor (TGF)-β via a RRFR motif. Overexpression of ADAMTS16 induced the activation of TGF-β in cardiac fibroblasts; however, the effects were blocked by a mutation of the RRFR motif to IIFI, knockdown of Adamts16 expression, or a TGF-β-neutralizing antibody (ΝAb). The RRFR tetrapeptide, but not control IIFI peptide, blocked the interaction between ADAMTS16 and LAP-TGF-β, and accelerated the activation of TGF-β in cardiac fibroblasts. In TAC mice, the RRFR tetrapeptide aggravated cardiac fibrosis and hypertrophy by up-regulation of ECM proteins, activation of TGF-β, and increased SMAD2/SMAD3 signalling, however, the effects were blocked by TGF-β-NAb. CONCLUSION ADAMTS16 promotes cardiac fibrosis, cardiac hypertrophy, and HF by facilitating cardiac fibroblasts activation via interacting with and activating LAP-TGF-β signalling. The RRFR motif of ADAMTS16 disrupts the interaction between ADAMTS16 and LAP-TGF-β, activates TGF-β, and aggravated cardiac fibrosis and hypertrophy. This study identifies a novel regulator of TGF-β signalling and cardiac fibrosis, and provides a new target for the development of therapeutic treatment of cardiac fibrosis and HF.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Xingwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Yubin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, PR China.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Sarila G, Bao T, Abeydeera SA, Li R, Mell B, Joe B, Catubig A, Hutson J. Interplay between collagenase and undescended testes in Adamts16 knockout rats. J Pediatr Surg 2020; 55:1952-1958. [PMID: 32037220 DOI: 10.1016/j.jpedsurg.2019.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND The inguinoscrotal stage of testicular descent is characterized by an increase in cell density and collagen fibers as the gubernaculum undergoes cell division and increases Extracellular Matrix (ECM) activity. Rats that lack the enzyme Adamts16, a known ECM proteinase, develop cryptorchidism postnatally and are infertile. Therefore, this study aims to investigate the link between the Adamts16 enzyme and congenital undescended testes (UDT) in Adamts16 knockout (KO) rats during postnatal development. METHODS Formalin-fixed specimens of Wild-Type, Adamts16 heterozygous and Adamts16 homozygous KO rats post birth were sectioned and used for standard H&E histology and Masson's trichrome staining. A quantitative analysis on image J was performed to determine the intensity of collagen fibers within the inguinoscrotal fat pad (IFP) (n = 3 age/genotype). RESULTS The migration of the gubernaculum within the Adamts16 heterozygous and Adamts16 KO rat was considerably disrupted. Furthermore, the Masson's trichrome staining demonstrated a significant increase in collagen fibers around the gubernaculum of rats that lacked Adamts16 enzyme at day 8. CONCLUSION This study reports a failure of gubernacular migration leading to UDT in Adamts16 KO rats during development, suggesting that the expression of Adamts16 gene is critical for normal gubernacular migration through the breakdown of collagen fibers within the IFP.
Collapse
Affiliation(s)
- Gulcan Sarila
- Douglas Stephens Surgical Research Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Tuya Bao
- Douglas Stephens Surgical Research Unit, Murdoch Children's Research Institute, Melbourne, Australia; School of Basic Medical Science, Inner Mongolia Medical University, Jinshan Street, Jinshan Development Zone Huhhot, Inner Mongolia 010110, PR China
| | - Sanduni Amaya Abeydeera
- Douglas Stephens Surgical Research Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ruili Li
- Douglas Stephens Surgical Research Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Blair Mell
- Centre for hypertension and precision medicine and program in physiological genomics, department of physiology and pharmacology, University of Toledo college of medicine and life sciences, Toledo, OH, USA
| | - Bina Joe
- Centre for hypertension and precision medicine and program in physiological genomics, department of physiology and pharmacology, University of Toledo college of medicine and life sciences, Toledo, OH, USA
| | - Angelique Catubig
- Douglas Stephens Surgical Research Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - John Hutson
- Douglas Stephens Surgical Research Unit, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Urology, The Royal Children's Hospital, Melbourne, Australia.
| |
Collapse
|
19
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
20
|
Ataca D, Aouad P, Constantin C, Laszlo C, Beleut M, Shamseddin M, Rajaram RD, Jeitziner R, Mead TJ, Caikovski M, Bucher P, Ambrosini G, Apte SS, Brisken C. The secreted protease Adamts18 links hormone action to activation of the mammary stem cell niche. Nat Commun 2020; 11:1571. [PMID: 32218432 PMCID: PMC7099066 DOI: 10.1038/s41467-020-15357-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Estrogens and progesterone control breast development and carcinogenesis via their cognate receptors expressed in a subset of luminal cells in the mammary epithelium. How they control the extracellular matrix, important to breast physiology and tumorigenesis, remains unclear. Here we report that both hormones induce the secreted protease Adamts18 in myoepithelial cells by controlling Wnt4 expression with consequent paracrine canonical Wnt signaling activation. Adamts18 is required for stem cell activation, has multiple binding partners in the basement membrane and interacts genetically with the basal membrane-specific proteoglycan, Col18a1, pointing to the basement membrane as part of the stem cell niche. In vitro, ADAMTS18 cleaves fibronectin; in vivo, Adamts18 deletion causes increased collagen deposition during puberty, which results in impaired Hippo signaling and reduced Fgfr2 expression both of which control stem cell function. Thus, Adamts18 links luminal hormone receptor signaling to basement membrane remodeling and stem cell activation. How hormonal signaling in the mammary epithelium controls the surrounding extracellular matrix is unclear. Here, the authors show that a secreted protease, Adamts18, induced by upstream estrogen-progesterone activated Wnt4 in myoepithelial cells, remodels the basement membrane and contributes to mammary epithelial stemness.
Collapse
Affiliation(s)
- Dalya Ataca
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Patrick Aouad
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Céline Constantin
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Csaba Laszlo
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Manfred Beleut
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland.,Medoderm GmbH, Robert Koch-Straße 50 D, 55129, Mainz, Germany
| | - Marie Shamseddin
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Renuga Devi Rajaram
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Rachel Jeitziner
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Agora Swiss Cancer Center Leman, Rue du Bugnon 25a, 1015, Lausanne, Switzerland
| | - Timothy J Mead
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Marian Caikovski
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Agora Swiss Cancer Center Leman, Rue du Bugnon 25a, 1015, Lausanne, Switzerland
| | - Philipp Bucher
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland
| | - Suneel S Apte
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Cathrin Brisken
- Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
21
|
Deng AY. Modularity/non-cumulativity of quantitative trait loci on blood pressure. J Hum Hypertens 2020; 34:432-439. [PMID: 32123286 DOI: 10.1038/s41371-020-0319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/09/2022]
Abstract
Large numbers of quantitative trait loci (QTLs) for blood pressure (BP) exist and have long been thought to function by accumulating their individual miniscule effects. Recent experimental evidence in the functional biology of BP control has tested this intuitive assumption. A new paradigm has emerged that BP is biologically determined in modularity by multiple QTLs. Functionally, when a master regulator is taken out, distinct epistatic modules organize biological 'blocks' into a genetic architecture, and serve as basic functional cores from which numerous QTLs act together to physiologically formulate BP. An epistatic module refers to the grouping of QTLs that perform their functions epistatically to one another and influence BP as a group. The modularity mechanism framework indicates that BP as a quantitatively-measured trait is not cumulatively determined and implies that the QTLs in the same epistatic module may participate in the same pathway leading to the BP control, and the QTLs from separate epistatic modules may act in divergent but parallel pathways. This mechanistic conceptualization and subsequent validations synergize with anticipated demands from current human epidemiological studies, since the outcome from them primarily implicates single nucleotide polymorphisms with unknown functions. Eventually, functional understandings of the human results have to be realized by their pathogenic directionality and mechanisms biologically controlling BP.
Collapse
Affiliation(s)
- Alan Y Deng
- Research Centre-Centre hospitalier de l'Université de Montréal (CRCHUM), Department de medicine, Faculty of medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
22
|
Biological convergence of three human and animal model quantitative trait loci for blood pressure. J Hypertens 2020; 38:322-331. [DOI: 10.1097/hjh.0000000000002267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Livermore C, Warr N, Chalon N, Siggers P, Mianné J, Codner G, Teboul L, Wells S, Greenfield A. Male mice lacking ADAMTS-16 are fertile but exhibit testes of reduced weight. Sci Rep 2019; 9:17195. [PMID: 31748609 PMCID: PMC6868159 DOI: 10.1038/s41598-019-53900-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/06/2019] [Indexed: 01/04/2023] Open
Abstract
Adamts16 encodes a disintegrin-like and metalloproteinase with thrombospondin motifs, 16, a member of a family of multi-domain, zinc-binding proteinases. ADAMTS-16 is implicated in a number of pathological conditions, including hypertension, cancer and osteoarthritis. A large number of observations, including a recent report of human ADAMTS16 variants in cases of 46,XY disorders/differences of sex development (DSD), also implicate this gene in human testis determination. We used CRISPR/Cas9 genome editing to generate a loss-of-function allele in the mouse in order to examine whether ADAMTS-16 functions in mouse testis determination or testicular function. Male mice lacking Adamts16 on the C57BL/6N background undergo normal testis determination in the fetal period. However, adult homozygotes have an average testis weight that is around 10% lower than age-matched controls. Cohorts of mutant males tested at 3-months and 6-months of age were fertile. We conclude that ADAMTS-16 is not required for testis determination or male fertility in mice. We discuss these phenotypic data and their significance for our understanding of ADAMTS-16 function.
Collapse
Affiliation(s)
- Catherine Livermore
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Nicolas Chalon
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Joffrey Mianné
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK.,Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Gemma Codner
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Lydia Teboul
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
24
|
Rutledge EA, Parvez RK, Short KM, Smyth IM, McMahon AP. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev Biol 2019; 454:156-169. [PMID: 31242448 DOI: 10.1016/j.ydbio.2019.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Adamts18 encodes a secreted metalloprotease restricted to branch-tip progenitor pools directing the morphogenesis of multiple mammalian organs. Adamts18 was targeted to explore a potential role in branching morphogenesis. In the kidney, an arborized collecting system develops through extensive branching morphogenesis of an initial epithelial outgrowth of the mesonephric duct, the ureteric bud. Adamts18 mutants displayed a weakly penetrant phenotype: duplicated ureteric outgrowths forming enlarged, bi-lobed kidneys with an increased nephron endowment. In contrast, Adamts18 mutants showed a fully penetrant lung phenotype: epithelial growth was markedly reduced and early secondary branching scaled to the reduced length of the primary airways. Furthermore, there was a pronounced delay in the appearance of differentiated cell types in both proximal and distally positions of the developing airways. Adamts18 is closely related to Adamts16. In the kidney but not the lung, broad epithelial Adamts16 expression overlaps Adamts18 in branch tips. However, compound Adamts16/18 mutants displayed a comparable low penetrance duplicated ureteric phenotype, ruling out a possible role for Adamts16 as a functional modifier of the Adamts18 kidney phenotype. Given the predicted action of secreted Adamts18 metalloprotease, and broad expression of Adamts18 in branching organ systems, these findings suggest distinct requirements for matrix modelling in the morphogenesis of epithelial networks.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Kieran M Short
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
25
|
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS. Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 2019; 10:953. [PMID: 30814516 PMCID: PMC6393521 DOI: 10.1038/s41467-019-08520-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis. Ciliogenesis is a complex process requiring hundreds of molecules, although few secreted proteins have been implicated. Here, the authors show that the secreted metalloproteases ADAMTS9 and ADAMTS20 intracellularly regulate ciliogenesis from unique periciliary vesicles with proteolytic activity.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Caroline M Kraft
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Anna O'Donnell
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Rushabh Patel
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, South Korea
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.,Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 E 25th St, Kansas City, MO, 64108, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Suneel S Apte
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
26
|
Deyarmin JS, McCormley MC, Champagne CD, Stephan AP, Busqueta LP, Crocker DE, Houser DS, Khudyakov JI. Blubber transcriptome responses to repeated ACTH administration in a marine mammal. Sci Rep 2019; 9:2718. [PMID: 30804370 PMCID: PMC6390094 DOI: 10.1038/s41598-019-39089-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/16/2019] [Indexed: 01/03/2023] Open
Abstract
Chronic physiological stress impacts animal fitness by catabolizing metabolic stores and suppressing reproduction. This can be especially deleterious for capital breeding carnivores such as marine mammals, with potential for ecosystem-wide effects. However, the impacts and indicators of chronic stress in animals are currently poorly understood. To identify downstream mediators of repeated stress responses in marine mammals, we administered adrenocorticotropic hormone (ACTH) once daily for four days to free-ranging juvenile northern elephant seals (Mirounga angustirostris) to stimulate endogenous corticosteroid release, and compared blubber tissue transcriptome responses to the first and fourth ACTH administrations. Gene expression profiles were distinct between blubber responses to single and repeated ACTH administration, despite similarities in circulating cortisol profiles. We identified 61 and 12 genes that were differentially expressed (DEGs) in response to the first ACTH and fourth administrations, respectively, 24 DEGs between the first and fourth pre-ACTH samples, and 12 DEGs between ACTH response samples from the first and fourth days. Annotated DEGs were associated with functions in redox and lipid homeostasis, suggesting potential negative impacts of repeated stress on capital breeding, diving mammals. DEGs identified in this study are potential markers of repeated stress in marine mammals, which may not be detectable by endocrine profiles alone.
Collapse
Affiliation(s)
- Jared S Deyarmin
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Molly C McCormley
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Cory D Champagne
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Alicia P Stephan
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Laura Pujade Busqueta
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Daniel E Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Dorian S Houser
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA.
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, 92106, USA.
| |
Collapse
|
27
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
28
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
29
|
Schnellmann R, Sack R, Hess D, Annis DS, Mosher DF, Apte SS, Chiquet-Ehrismann R. A Selective Extracellular Matrix Proteomics Approach Identifies Fibronectin Proteolysis by A Disintegrin-like and Metalloprotease Domain with Thrombospondin Type 1 Motifs (ADAMTS16) and Its Impact on Spheroid Morphogenesis. Mol Cell Proteomics 2018; 17:1410-1425. [PMID: 29669734 PMCID: PMC6030725 DOI: 10.1074/mcp.ra118.000676] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
Secreted and cell-surface proteases are major mediators of extracellular matrix (ECM) turnover, but their mechanisms and regulatory impact are poorly understood. We developed a mass spectrometry approach using a cell-free ECM produced in vitro to identify fibronectin (FN) as a novel substrate of the secreted metalloprotease ADAMTS16. ADAMTS16 cleaves FN between its (I)5 and (I)6 modules, releasing the N-terminal 30 kDa heparin-binding domain essential for FN self-assembly. ADAMTS16 impairs FN fibrillogenesis as well as fibrillin-1 and tenascin-C assembly, thus inhibiting formation of a mature ECM by cultured fibroblasts. Furthermore ADAMTS16 has a marked morphogenetic impact on spheroid formation by renal tubule-derived MDCKI cells. The N-terminal FN domain released by ADAMTS16 up-regulates MMP3, which cleaves the (I)5-(I)6 linker of FN similar to ADAMTS16, therefore creating a proteolytic feed-forward mechanism. Thus, FN proteolysis not only regulates FN turnover, but also FN assembly, with potential long-term consequences for ECM assembly and morphogenesis.
Collapse
Affiliation(s)
- Rahel Schnellmann
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- §Faculty of Science, University of Basel, Basel, Switzerland
- ¶Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Ragna Sack
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Douglas S Annis
- ‖Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Deane F Mosher
- ‖Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Suneel S Apte
- ¶Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195;
| | - Ruth Chiquet-Ehrismann
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- §Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Luu VZ, Chowdhury B, Al-Omran M, Hess DA, Verma S. Role of endothelial primary cilia as fluid mechanosensors on vascular health. Atherosclerosis 2018; 275:196-204. [PMID: 29945035 DOI: 10.1016/j.atherosclerosis.2018.06.818] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Primary cilia are microtubule-based organelles that protrude from the cell surface of many mammalian cell types, including endothelial and epithelial cells, osteoblasts, and neurons. These antennal-like projections enable cells to detect extracellular stimuli and elicit responses via intracellular signaling mechanisms. Primary cilia on endothelial cells lining blood vessels function as calcium-dependent mechanosensors that sense blood flow. In doing so, they facilitate the regulation of hemodynamic parameters within the vascular system. Defects in endothelial primary cilia result in inappropriate blood flow-induced responses and contribute to the development of vascular dysfunctions, including atherosclerosis, hypertension, and aneurysms. This review examines the current understanding of vascular endothelial cilia structure and function and their role in the vascular system. Future directions for primary cilia research and treatments for ciliary-based pathologies are discussed.
Collapse
Affiliation(s)
- Vincent Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - David A Hess
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Teixeira SK, Pereira AC, Krieger JE. Genetics of Resistant Hypertension: the Missing Heritability and Opportunities. Curr Hypertens Rep 2018; 20:48. [PMID: 29779058 DOI: 10.1007/s11906-018-0852-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE REVIEW Blood pressure regulation in humans has long been known to be a genetically determined trait. The identification of causal genetic modulators for this trait has been unfulfilling at the least. Despite the recent advances of genome-wide genetic studies, loci associated with hypertension or blood pressure still explain a very low percentage of the overall variation of blood pressure in the general population. This has precluded the translation of discoveries in the genetics of human hypertension to clinical use. Here, we propose the combined use of resistant hypertension as a trait for mapping genetic determinants in humans and the integration of new large-scale technologies to approach in model systems the multidimensional nature of the problem. RECENT FINDINGS New large-scale efforts in the genetic and genomic arenas are paving the way for an increased and granular understanding of genetic determinants of hypertension. New technologies for whole genome sequence and large-scale forward genetic screens can help prioritize gene and gene-pathways for downstream characterization and large-scale population studies, and guided pharmacological design can be used to drive discoveries to the translational application through better risk stratification and new therapeutic approaches. Although significant challenges remain in the mapping and identification of genetic determinants of hypertension, new large-scale technological approaches have been proposed to surpass some of the shortcomings that have limited progress in the area for the last three decades. The incorporation of these technologies to hypertension research may significantly help in the understanding of inter-individual blood pressure variation and the deployment of new phenotyping and treatment approaches for the condition.
Collapse
Affiliation(s)
- Samantha K Teixeira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Jose E Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
32
|
Fava M, Barallobre-Barreiro J, Mayr U, Lu R, Didangelos A, Baig F, Lynch M, Catibog N, Joshi A, Barwari T, Yin X, Jahangiri M, Mayr M. Role of ADAMTS-5 in Aortic Dilatation and Extracellular Matrix Remodeling. Arterioscler Thromb Vasc Biol 2018; 38:1537-1548. [PMID: 29622560 PMCID: PMC6026471 DOI: 10.1161/atvbaha.117.310562] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Thoracic aortic aneurysm (TAA), a degenerative disease of the aortic wall, is accompanied by changes in the structure and composition of the aortic ECM (extracellular matrix). The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases has recently been implicated in TAA formation. This study aimed to investigate the contribution of ADAMTS-5 to TAA development. Approach and Results— A model of aortic dilatation by AngII (angiotensin II) infusion was adopted in mice lacking the catalytic domain of ADAMTS-5 (Adamts5Δcat). Adamts5Δcat mice showed an attenuated rise in blood pressure while displaying increased dilatation of the ascending aorta (AsAo). Interestingly, a proteomic comparison of the aortic ECM from AngII-treated wild-type and Adamts5Δcat mice revealed versican as the most upregulated ECM protein in Adamts5Δcat mice. This was accompanied by a marked reduction of ADAMTS-specific versican cleavage products (versikine) and a decrease of LRP1 (low-density lipoprotein-related protein 1). Silencing LRP1 expression in human aortic smooth muscle cells reduced the expression of ADAMTS5, attenuated the generation of versikine, but increased soluble ADAMTS-1. A similar increase in ADAMTS-1 was observed in aortas of AngII-treated Adamts5Δcat mice but was not sufficient to maintain versican processing and prevent aortic dilatation. Conclusions— Our results support the emerging role of ADAMTS proteases in TAA. ADAMTS-5 rather than ADAMTS-1 is the key protease for versican regulation in murine aortas. Further studies are needed to define the ECM substrates of the different ADAMTS proteases and their contribution to TAA formation.
Collapse
MESH Headings
- ADAMTS1 Protein/metabolism
- ADAMTS5 Protein/deficiency
- ADAMTS5 Protein/genetics
- ADAMTS5 Protein/metabolism
- Angiotensin II
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/enzymology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Extracellular Matrix/enzymology
- Extracellular Matrix/pathology
- Humans
- Low Density Lipoprotein Receptor-Related Protein-1/genetics
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle
- Receptors, LDL/metabolism
- Tumor Suppressor Proteins/metabolism
- Vascular Remodeling
- Versicans/metabolism
Collapse
Affiliation(s)
- Marika Fava
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
- St George's University of London, NHS Trust, United Kingdom (M.F., M.J.)
- Cardiovascular Institute, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (M.F., M.M.)
| | - Javier Barallobre-Barreiro
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Ursula Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Athanasios Didangelos
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Ferheen Baig
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Marc Lynch
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Norman Catibog
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Abhishek Joshi
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Temo Barwari
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Xiaoke Yin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Marjan Jahangiri
- St George's University of London, NHS Trust, United Kingdom (M.F., M.J.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
- Cardiovascular Institute, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (M.F., M.M.)
| |
Collapse
|
33
|
Kumarasamy S, Waghulde H, Cheng X, Haller ST, Mell B, Abhijith B, Ashraf UM, Atari E, Joe B. Targeted disruption of regulated endocrine-specific protein ( Resp18) in Dahl SS/Mcw rats aggravates salt-induced hypertension and renal injury. Physiol Genomics 2018; 50:369-375. [PMID: 29570433 DOI: 10.1152/physiolgenomics.00008.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a classic example of a complex polygenic trait, impacted by quantitative trait loci (QTL) containing candidate genes thought to be responsible for blood pressure (BP) control in mammals. One such mapped locus is on rat chromosome 9, wherein the proof for a positional candidate gene, regulated endocrine-specific protein-18 ( Resp18) is currently inadequate. To ascertain the status of Resp18 as a BP QTL, a custom targeted gene disruption model of Resp18 was developed on the Dahl salt-sensitive (SS) background. As a result of this zinc-finger nuclease (ZFN)-mediated disruption, a 7 bp deletion occurred within exon 3 of the Resp18 locus. Targeted disruption of Resp18 gene locus in SS rats decreases its gene expression in both heart and kidney tissues regardless of their dietary salt level. Under a high-salt dietary regimen, both systolic and diastolic BP of Resp18mutant rats were significantly increased compared with SS rats. Resp18mutant rats demonstrated increased renal damage, as evidenced by higher proteinuria and increased renal fibrosis compared with SS rats. Furthermore, under a high-salt diet regimen, the mean survival time of Resp18mutant rats was significantly reduced compared with SS rats. These findings serve as evidence in support of Resp18 as a gene associated with the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Xi Cheng
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Steven T Haller
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio.,Department of Medicine, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Basrur Abhijith
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio.,Department of Food, Agricultural and Biological Engineering, The Ohio State University , Columbus, Ohio
| | - Usman M Ashraf
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Ealla Atari
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| |
Collapse
|
34
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
35
|
Haller ST, Kumarasamy S, Folt DA, Wuescher LM, Stepkowski S, Karamchandani M, Waghulde H, Mell B, Chaudhry M, Maxwell K, Upadhyaya S, Drummond CA, Tian J, Filipiak WE, Saunders TL, Shapiro JI, Joe B, Cooper CJ. Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney Int 2017; 91:365-374. [PMID: 27692815 PMCID: PMC5237403 DOI: 10.1016/j.kint.2016.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
High blood pressure is a common cause of chronic kidney disease. Because CD40, a member of the tumor necrosis factor receptor family, has been linked to the progression of kidney disease in ischemic nephropathy, we studied the role of Cd40 in the development of hypertensive renal disease. The Cd40 gene was mutated in the Dahl S genetically hypertensive rat with renal disease by targeted-gene disruption using zinc-finger nuclease technology. These rats were then given low (0.3%) and high (2%) salt diets and compared. The resultant Cd40 mutants had significantly reduced levels of both urinary protein excretion (41.8 ± 3.1 mg/24 h vs. 103.7 ± 4.3 mg/24 h) and plasma creatinine (0.36 ± 0.05 mg/dl vs. 1.15 ± 0.19 mg/dl), with significantly higher creatinine clearance compared with the control S rats (3.04 ± 0.48 ml/min vs. 0.93 ± 0.15 ml/min), indicating renoprotection was conferred by mutation of the Cd40 locus. Furthermore, the Cd40 mutants had a significant attenuation in renal fibrosis, which persisted on the high salt diet. However, there was no difference in systolic blood pressure between the control and Cd40 mutant rats. Thus, these data serve as the first evidence for a direct link between Cd40 and hypertensive nephropathy. Hence, renal fibrosis is one of the underlying mechanisms by which Cd40 plays a crucial role in the development of hypertensive renal disease.
Collapse
Affiliation(s)
- Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - David A Folt
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Manish Karamchandani
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Muhammad Chaudhry
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Kyle Maxwell
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Siddhi Upadhyaya
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher A Drummond
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Wanda E Filipiak
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joseph I Shapiro
- Department of Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
36
|
Pereira A, Palma dos Reis R, Rodrigues R, Sousa AC, Gomes S, Borges S, Ornelas I, Freitas AI, Guerra G, Henriques E, Rodrigues M, Freitas S, Freitas C, Brehm A, Pereira D, Mendonça MI. Association of ADAMTS7 gene polymorphism with cardiovascular survival in coronary artery disease. Physiol Genomics 2016; 48:810-815. [DOI: 10.1152/physiolgenomics.00059.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Recent genetic studies have revealed an association between polymorphisms at the ADAMTS7 gene locus and coronary artery disease (CAD) risk. Functional studies have shown that a CAD-associated polymorphism (rs3825807) affects ADAMTS7 maturation and vascular smooth muscular cell (VSMC) migration. Here, we tested whether ADAMTS7 (A/G) SNP is associated with cardiovascular (CV) survival in patients with established CAD. A cohort of 1,128 patients with angiographic proven CAD, who were followed up prospectively for a mean follow-up period of 63 (range 6–182) mo, were genotyped for rs3825807 A/G. Survival statistics (Cox regression) compared heterozygous (AG) and wild-type (AA) with the reference homozygous GG. Kaplan-Meier (K-M) survival curves were performed according to ADAMTS7 genotypes for CV mortality. Results showed that 47.3% of patients were heterozygous (AG), 36.5% were homozygous for the wild-type allele (AA) and only 16.2% were homozygous for the GG genotype. During the follow-up period, 109 (9.7%) patients died, 77 (6.8%) of CV causes. Survival analysis showed that AA genotype was an independent risk factor for CV mortality compared with reference genotype GG (HR = 2.7, P = 0.025). At the end of follow-up, the estimated survival probability (K-M) was 89.8% for GG genotype, 82.2% for AG and 72.3% for AA genotype ( P = 0.039). Carriage of the mutant G allele of the ADAMTS7 gene was associated with improved CV survival in patients with documented CAD. The native overfunctional ADAMTS7 allele (A) may accelerate VSMC migration and lead to neointimal thickening, atherosclerosis progression and acute plaque events. ADAMTS7 gene should be further explored in CAD for risk prediction, mechanistic and therapeutic goals.
Collapse
Affiliation(s)
- A. Pereira
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - R. Palma dos Reis
- Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal; and
| | - R. Rodrigues
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - A. C. Sousa
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - S. Gomes
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - S. Borges
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - I. Ornelas
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - A. I. Freitas
- Laboratory of Human Genetics, Madeira University, Campus da Penteada, Funchal, Madeira, Portugal
| | - G. Guerra
- Laboratory of Human Genetics, Madeira University, Campus da Penteada, Funchal, Madeira, Portugal
| | - E. Henriques
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - M. Rodrigues
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - S. Freitas
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - C. Freitas
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - A. Brehm
- Laboratory of Human Genetics, Madeira University, Campus da Penteada, Funchal, Madeira, Portugal
| | - D. Pereira
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - M. I. Mendonça
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| |
Collapse
|
37
|
Heckt T, Keller J, Peters S, Streichert T, Chalaris A, Rose-John S, Mell B, Joe B, Amling M, Schinke T. Parathyroid hormone induces expression and proteolytic processing of Rankl in primary murine osteoblasts. Bone 2016; 92:85-93. [PMID: 27554428 DOI: 10.1016/j.bone.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
Abstract
Rankl, the major pro-osteoclastogenic cytokine, is synthesized as a transmembrane protein that can be cleaved by specific endopeptidases to release a soluble form (sRankl). We have previously reported that interleukin-33 (IL-33) induces expression of Tnfsf11, the Rankl-encoding gene, in primary osteoblasts, but we failed to detect sRankl in the medium. Since we also found that PTH treatment caused sRankl release in a similar experimental setting, we directly compared the influence of the two molecules. Here we show that treatment of primary murine osteoblasts with PTH causes sRankl release into the medium, whereas IL-33 only induces Tnfsf11 expression. This difference was not explainable by alternative splicing or by PTH-specific induction of endopeptidases previously shown to facilitate Rankl processing. Since sRankl release after PTH administration was blocked in the presence a broad-spectrum matrix metalloprotease inhibitor, we applied genome-wide expression analyses to identify transcriptional targets of PTH in osteoblasts. We thereby confirmed some of the effects of PTH established in other systems, but additionally identified few PTH-induced genes encoding metalloproteases. By comparing expression of these genes following administration of IL-33, PTH and various other Tnfsf11-inducing molecules, we observed that PTH was the only molecule simultaneously inducing sRankl release and Adamts1 expression. The functional relevance of the putative influence of PTH on Rankl processing was further confirmed in vivo, as we found that daily injection of PTH into wildtype mice did not only increase bone formation, but also osteoclastogenesis and sRankl concentrations in the serum. Taken together, our findings demonstrate that transcriptional effects on Tnfsf11 expression do not generally trigger sRankl release and that PTH has a unique activity to promote the proteolytic processing of Rankl.
Collapse
Affiliation(s)
- Timo Heckt
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Stephanie Peters
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany; Department of Clinical Chemistry, University Hospital Cologne, Cologne 50937, Germany
| | - Athena Chalaris
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
38
|
Yasukawa M, Liu Y, Hu L, Cogdell D, Gharpure KM, Pradeep S, Nagaraja AS, Sood AK, Zhang W. ADAMTS16 mutations sensitize ovarian cancer cells to platinum-based chemotherapy. Oncotarget 2016; 8:88410-88420. [PMID: 29179445 PMCID: PMC5687615 DOI: 10.18632/oncotarget.11120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignant tumors in women. The prognosis of ovarian cancer patients depends, in part, on their response to platinum-based chemotherapy. Our recent analysis of genomics and clinical data from the Cancer Genome Atlas demonstrated that somatic mutations of ADAMTS 1, 6, 8, 9, 15, 16, 18 and L1 genes were associated with higher sensitivity to platinum and longer progression-free survival, overall survival, and platinum-free survival duration in 512 patients with high-grade serous ovarian carcinoma. Among the ADAMTS mutations, ADAMTS16 is the most commonly affected gene in ovarian cancer. However, the functional role of these mutations in ovarian cancer cells is largely unknown. We performed in vitro studies to compare the functional effects of the six identified ADAMTS missense mutations on the platinum sensitivity of ovarian cancer cells. We also used a well-characterized in vivo mouse model to evaluate the response of ovarian cancer cells with ADAMTS16 mutations to platinum-based therapy. Our results showed that exogenously expressed ADAMTS16 missense mutations inhibited cell growth or sensitized tumor cells to cisplatin and inhibited tumor growth in vivo. Orthotopic xenograft experiments showed that mice injected with ovarian cancer cells that exogenously expressed ADAMTS16 mutations had a better response to cisplatin treatment. Thus, these functional studies provide evidence that mutations of ADAMTS16 actively contribute to therapeutic response in ovarian cancer.
Collapse
Affiliation(s)
- Maya Yasukawa
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yuexin Liu
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Limei Hu
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Cogdell
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kshipra M Gharpure
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunila Pradeep
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Archana S Nagaraja
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K Sood
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhang
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
39
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Liu Y, Yasukawa M, Chen K, Hu L, Broaddus RR, Ding L, Mardis ER, Spellman P, Levine DA, Mills GB, Shmulevich I, Sood AK, Zhang W. Association of Somatic Mutations of ADAMTS Genes With Chemotherapy Sensitivity and Survival in High-Grade Serous Ovarian Carcinoma. JAMA Oncol 2016; 1:486-94. [PMID: 26181259 DOI: 10.1001/jamaoncol.2015.1432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE Chemotherapy response in the majority of patients with ovarian cancer remains unpredictable. OBJECTIVE To identify novel molecular markers for predicting chemotherapy response in patients with ovarian cancer. DESIGN, SETTING, AND PARTICIPANTS Observational study of genomics and clinical data of high-grade serous ovarian cancer cases with genomic and clinical data made public between 2009 and 2014 via the Cancer Genome Atlas project. MAIN OUTCOMES AND MEASURES Chemotherapy response (primary outcome) and overall survival (OS), progression-free survival (PFS), and platinum-free duration (secondary outcome). RESULTS In 512 patients with ovarian cancer with available whole-exome sequencing data, mutations from 8 members of the ADAMTS family (ADAMTS mutations) with an overall mutation rate of approximately 10.4% were associated with a significantly higher chemotherapy sensitivity (100% for ADAMTS-mutated vs 64% for ADAMTS wild-type cases; P < .001) and longer platinum-free duration (median platinum-free duration, 21.7 months for ADAMTS-mutated vs 10.1 months for ADAMTS wild-type cases; P = .001). Moreover, ADAMTS mutations were associated with significantly better OS (hazard ratio [HR], 0.54 [95% CI, 0.42-0.89]; P = .01 and median OS, 58.0 months for ADAMTS-mutated vs 41.3 months for ADAMTS wild-type cases) and PFS (HR, 0.42 [95% CI, 0.38-0.70]; P < .001 and median PFS, 31.8 for ADAMTS-mutated vs 15.3 months for ADAMTS wild-type cases). After adjustment by BRCA1 or BRCA2 mutation, surgical stage, residual tumor, and patient age, ADAMTS mutations were significantly associated with better OS (HR, 0.53 [95% CI, 0.32-0.87]; P = .01), PFS (HR, 0.40 [95% CI, 0.25-0.62]; P < .001), and platinum-free survival (HR, 0.45 [95% CI, 0.28-0.73]; P = .001). ADAMTS-mutated cases exhibited a distinct mutation spectrum and were significantly associated with tumors with a higher genome-wide mutation rate than ADAMTS wild-type cases across the whole exome (median mutation number per sample, 121 for ADAMTS-mutated vs 69 for ADAMTS wild-type cases; P < .001). CONCLUSIONS AND RELEVANCE ADAMTS mutations may contribute to outcomes in ovarian cancer cases without BRCA1 or BRCA2 mutations and may have important clinical implications.
Collapse
Affiliation(s)
- Yuexin Liu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston2Institute for Systems Biology/MD Anderson Cancer Center Genome Data Analysis Center, The Cancer Genome Atlas, Bethesda, Maryland
| | - Maya Yasukawa
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston3Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Hospital and Institute, Tianjin, PR China
| | - Limei Hu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Russell R Broaddus
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Li Ding
- Genome Institute, Washington University, St Louis, Missouri
| | | | - Paul Spellman
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland
| | - Douglas A Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston
| | - Ilya Shmulevich
- Institute for Systems Biology/MD Anderson Cancer Center Genome Data Analysis Center, The Cancer Genome Atlas, Bethesda, Maryland9Institute for Systems Biology, Seattle, Washington
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston11Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston
| | - Wei Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston2Institute for Systems Biology/MD Anderson Cancer Center Genome Data Analysis Center, The Cancer Genome Atlas, Bethesda, Maryland
| |
Collapse
|
41
|
Abstract
Heart failure accounts for a significant portion of heart diseases. Molecular mechanisms gradually emerge that participate in pathways leading to left ventricular dysfunction in common systolic heart failure (SHF) and diastolic heart failure (DHF). A human genome-wide association study (GWAS) identified two markers for SHF and no GWAS on DHF has been documented. However, genetic analyses in rat models of SHF and DHF have begun to unravel the genetic components known as quantitative trait loci (QTLs) initiating systolic and diastolic function. A QTL for systolic function was detected and the gene responsible for it is identified to be that encoding the soluble epoxide hydrolase. Diastolic function is determined by multiple QTLs and the Ccl2/monocyte chemotactic protein gene is the strongest candidate. An amelioration on diastolic dysfunction is merely transient from changing such a single QTL accompanied by a blood pressure reduction. A long-term protection can be achieved only via combining alleles of several QTLs. Thus, distinct genes in synergy are involved in physiological mechanisms durably ameliorating or reversing diastolic dysfunction. These data lay the foundation for identifying causal genes responsible for individual diastolic function QTLs and the essential combination of them to attain a permanent protection against diastolic dysfunction, and consequently will facilitate the elucidation of pathophysiological mechanisms underlying hypertensive diastolic dysfunction. Novel pathways triggering systolic and diastolic dysfunction have emerged that will likely provide new diagnostic tools, innovative therapeutic targets and strategies in reducing, curing and even reversing SHF and DHF.
Collapse
|
42
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
43
|
Joe B. Dr Lewis Kitchener Dahl, the Dahl rats, and the "inconvenient truth" about the genetics of hypertension. Hypertension 2015; 65:963-9. [PMID: 25646295 PMCID: PMC4393342 DOI: 10.1161/hypertensionaha.114.04368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022]
Abstract
Lewis K. Dahl is regarded as an iconic figure in the field of hypertension research. During the 1960s and 1970s he published several seminal articles in the field that shed light on the relationship between salt and hypertension. Further, the Dahl rat models of hypertension that he developed by a selective breeding strategy are among the most widely used models for hypertension research. To this day, genetic studies using this model are ongoing in our laboratory. While Dr. Dahl is known for his contributions to the field of hypertension, very little, if any, of his personal history is documented. This article details a short biography of Dr. Lewis Dahl, the history behind the development of the Dahl rats and presents an overview of the results obtained through the genetic analysis of the Dahl rat as an experimental model to study the inheritance of hypertension.
Collapse
Affiliation(s)
- Bina Joe
- From the Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine and Program in Physiological Genomics, University of Toledo College of Medicine and Life Sciences, OH.
| |
Collapse
|
44
|
Rudemiller NP, Mattson DL. Candidate genes for hypertension: insights from the Dahl S rat. Am J Physiol Renal Physiol 2015; 309:F993-5. [PMID: 25877508 DOI: 10.1152/ajprenal.00092.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human genetic linkage and association studies have nominated many genes as possible contributors to disease. Mutating or deleting these genes in a relevant disease model can validate their association with disease and potentially uncover novel mechanisms of pathogenesis. Targeted genetic mutagenesis has only recently been developed in the rat, and this technique has been applied in the Dahl salt-sensitive (S) rat to investigate human candidate genes associated with hypertension. This mini-review communicates the findings of these studies and displays how targeted genetic mutagenesis may contribute to the discovery of novel therapies for patients.
Collapse
Affiliation(s)
- Nathan P Rudemiller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
45
|
|
46
|
Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 2015; 47:187-97. [PMID: 25829393 DOI: 10.1152/physiolgenomics.00136.2014] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota plays a critical role in maintaining physiological homeostasis. This study was designed to evaluate whether gut microbial composition affects hypertension. 16S rRNA genes obtained from cecal samples of Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats were sequenced. Bacteria of the phylum Bacteroidetes were higher in the S rats compared with the R rats. Furthermore, the family S24-7 of the phylum Bacteroidetes and the family Veillonellaceae of the phylum Firmicutes were higher in the S rats compared with the R rats. Analyses of the various phylogenetic groups of cecal microbiota revealed significant differences between S and R rats. Both strains were maintained on a high-salt diet, administered antibiotics for ablation of microbiota, transplanted with S or R rat cecal contents, and monitored for blood pressure (BP). Systolic BP of the R rats remained unaltered irrespective of S or R rat cecal transplantation. Surprisingly, compared with the S rats given S rat cecal content, systolic BP of the S rats given a single bolus of cecal content from R rats was consistently and significantly elevated during the rest of their life, and they had a shorter lifespan. A lower level of fecal bacteria of the family Veillonellaceae and increased plasma acetate and heptanoate were features associated with the increased BP observed in the S rats given R rat microbiota compared with the S rats given S rat microbiota. These data demonstrate a link between microbial content and BP regulation and, because the S and R rats differ in their genomic composition, provide the necessary basis to further examine the relationship between the host genome and microbiome in the context of BP regulation in the Dahl rats.
Collapse
Affiliation(s)
- Blair Mell
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Venkatakrishna R Jala
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Anna V Mathew
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Youjie Zhang
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio;
| |
Collapse
|
47
|
Dubail J, Apte SS. Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 2015; 44-46:24-37. [PMID: 25770910 DOI: 10.1016/j.matbio.2015.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell-matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.
Collapse
Affiliation(s)
- Johanne Dubail
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
48
|
Abstract
Large-scale genome-wide association studies (GWAS) have identified 46 loci that are associated with coronary heart disease (CHD). Additionally, 104 independent candidate variants (false discovery rate of 5 %) have been identified (Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H et al. Nat Genet 43:333-8, 2011; Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR et al. Nat Genet 45:25-33, 2012; C4D Genetics Consortium. Nat Genet 43:339-44, 2011). The majority of the causal genes in these loci function independently of conventional risk factors. It is postulated that a number of the CHD-associated genes regulate basic processes in the vascular cells involved in atherosclerosis, and that study of the signaling pathways that are modulated in this cell type by causal regulatory variation will provide critical new insights for targeting the initiation and progression of disease. In this review, we will discuss the types of experimental approaches and data that are critical to understanding the molecular processes that underlie the disease risk at 9p21.3, TCF21, SORT1, and other CHD-associated loci.
Collapse
|
49
|
Characteristics of long non-coding RNAs in the Brown Norway rat and alterations in the Dahl salt-sensitive rat. Sci Rep 2014; 4:7146. [PMID: 25413633 PMCID: PMC4894415 DOI: 10.1038/srep07146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/31/2014] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are potentially important mediators of genomic regulation. lncRNAs, however, remain poorly characterized in the rat model organism widely used in biomedical research. Using poly(A)-independent and strand-specific RNA-seq, we identified 1,500 to 1,800 lncRNAs expressed in each of the following tissues of Brown Norway rats: the renal cortex, renal outer medulla, liver, cardiac left ventricle, adrenal gland, and hypothalamus. Expression and the binding of histone H3K4me3 to promoter regions were confirmed for several lncRNAs. Rat lncRNA expression appeared to be more tissue-specific than mRNA. Rat lncRNAs had 4.5 times fewer exons and 29% shorter transcripts than mRNA. The median cumulative abundance of rat lncRNAs was 53% of that of mRNA. Approximately 28% of the lncRNAs identified in the renal outer medulla appeared to lack a poly(A) tail. Differential expression of 74 lncRNAs was detected in the renal outer medulla between Dahl SS rats, a model of salt-sensitive hypertension, and salt-insensitive, congenic SS.13BN26 rats fed a high-salt diet. Two of the differentially expressed lncRNAs, which were confirmed, were located within the congenic region and contained several sequence variants. The study identified genome-wide characteristics of lncRNAs in the rat model and suggested a role of lncRNAs in hypertension.
Collapse
|
50
|
Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One 2014; 9:e110520. [PMID: 25329542 PMCID: PMC4201535 DOI: 10.1371/journal.pone.0110520] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023] Open
Abstract
High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP) that is well adapted to the high altitude and Dahe pig (DHP) that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP) as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19) for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG) for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16) were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9) were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.
Collapse
Affiliation(s)
- Kunzhe Dong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yizhao Luan
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, Guangdong Medical College, Dongguan, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoqi Rao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, Guangdong Medical College, Dongguan, China
- * E-mail: (YHM); (SQR)
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YHM); (SQR)
| |
Collapse
|