1
|
Huang L, Jiang L, Zhang Y, Yuan T, Sun Y, Liu C, Lei X, Yuan X, Lian J, Liu S, Huang H. Distribution patterns of reef-building corals in the Northwest Pacific and their environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174429. [PMID: 38960185 DOI: 10.1016/j.scitotenv.2024.174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Understanding species distribution and the related driving processes is a fundamental issue in ecology. However, incomplete data on reef-building corals in the ecoregions of the South China Sea have hindered a comprehensive understanding of coral distribution patterns and their ecological drivers in the Northwest Pacific (NWP). This study investigated the coral species diversity and distribution patterns in the NWP by collecting species presence/absence data from the South China Sea and compiling an extensive species distribution database for the region, and explored their major environmental drivers. Our NWP coral database included 612 recorded coral species across 15 ecoregions. Of these, 536 coral species were recorded in the South China Sea Oceanic Islands after compilation, confirming the extraordinary coral species diversity in this ecoregion. Coral alpha diversity was found to decrease with increasing latitude in the whole NWP, while the influence of the Kuroshio Current on environmental conditions in its path results in a slower decline in species richness with latitude compared to regions within the South China Sea. Beta-diversity decomposition revealed that nestedness patterns mainly occurred between low and high latitude ecoregions, while communities within similar latitudes exhibited a turnover component, particularly pronounced at high latitudes. The impact of environmental factors on coral assemblage structure outweighed the effects of spatial distance. Temperature, especially winter temperature, and light intensity strongly influenced alpha diversity and beta diversity's nestedness component. Additionally, turbidity and winter temperature variations at high latitudes contributed to the turnover pattern observed among communities in the NWP. These findings elucidate the assembly processes and major environmental drivers shaping different coral communities in the NWP, highlighting the significant role of specific environmental filtering in coral distribution patterns and providing valuable insights for coral species conservation efforts.
Collapse
Affiliation(s)
- Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Tao Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Youfang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chengyue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xinming Lei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jiansheng Lian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
2
|
Tian SY, Yasuhara M, Condamine FL, Huang HHM, Fernando AGS, Aguilar YM, Pandita H, Irizuki T, Iwatani H, Shin CP, Renema W, Kase T. Cenozoic history of the tropical marine biodiversity hotspot. Nature 2024; 632:343-349. [PMID: 38926582 PMCID: PMC11306107 DOI: 10.1038/s41586-024-07617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The region with the highest marine biodiversity on our planet is known as the Coral Triangle or Indo-Australian Archipelago (IAA)1,2. Its enormous biodiversity has long attracted the interest of biologists; however, the detailed evolutionary history of the IAA biodiversity hotspot remains poorly understood3. Here we present a high-resolution reconstruction of the Cenozoic diversity history of the IAA by inferring speciation-extinction dynamics using a comprehensive fossil dataset. We found that the IAA has exhibited a unidirectional diversification trend since about 25 million years ago, following a roughly logistic increase until a diversity plateau beginning about 2.6 million years ago. The growth of diversity was primarily controlled by diversity dependency and habitat size, and also facilitated by the alleviation of thermal stress after 13.9 million years ago. Distinct net diversification peaks were recorded at about 25, 20, 16, 12 and 5 million years ago, which were probably related to major tectonic events in addition to climate transitions. Key biogeographic processes had far-reaching effects on the IAA diversity as shown by the long-term waning of the Tethyan descendants versus the waxing of cosmopolitan and IAA taxa. Finally, it seems that the absence of major extinctions and the Cenozoic cooling have been essential in making the IAA the richest marine biodiversity hotspot on Earth.
Collapse
Affiliation(s)
- Skye Yunshu Tian
- School of Biological Sciences, Area of Ecology and Biodiversity, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Bonner Institut für Organismische Biologie, Paläontologie, Universität Bonn, Bonn, Germany.
| | - Moriaki Yasuhara
- School of Biological Sciences, Area of Ecology and Biodiversity, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Allan Gil S Fernando
- National Institute of Geological Sciences, University of the Philippines, Diliman, Quezon City, The Philippines
| | - Yolanda M Aguilar
- Marine Geological Survey, Mines and Geosciences Bureau, Quezon City, The Philippines
| | - Hita Pandita
- Department of Geological Engineering, Faculty of Mineral Technology, Institute Teknologi Nasional Yogyakarta, Yogyakarta, Indonesia
| | - Toshiaki Irizuki
- Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, Matsue, Japan
| | - Hokuto Iwatani
- Division of Earth Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Caren P Shin
- Paleontological Research Institution, Ithaca, NY, USA
- Department of Earth and Atmospheric Sciences, Cornell University, New York, NY, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Leiden, The Netherlands
- IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - Tomoki Kase
- National Museum of Nature and Science, Department of Geology and Paleontology, Tsukuba, Japan
| |
Collapse
|
3
|
Huang YY, Chen TR, Lai KP, Kuo CY, Ho MJ, Hsieh HJ, Hsin YC, Chen CA. Poleward migration of tropical corals inhibited by future trends of seawater temperature and calcium carbonate (CaCO 3) saturation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172562. [PMID: 38641098 DOI: 10.1016/j.scitotenv.2024.172562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Poleward range expansion of marine organisms is commonly attributed to anthropogenic ocean warming. However, the extent to which a single species can migrate poleward remains unclear. In this study, we used molecular data to examine the current distribution of the Pocillopora damicornis species complex in Taiwan waters and applied niche modeling to predict its potential range through the end of the 21st Century. The P. damicornis species complex is widespread across shallow, tropical and subtropical waters of the Indo-Pacific regions. Our results revealed that populations from subtropical nonreefal coral communities are P. damicornis, whose native geographical ranges are approximately between 23°N and 35°N. In contrast, those from tropical reefs are P. acuta. Our analysis of 50 environmental data layers demonstrated that the concentrations of CaCO3 polymorphs had the greatest contributions to the distributions of the two species. Future projections under intermediate shared socioeconomic pathways (SSP) 2-4.5 and very high (SSP5-8.5) scenarios of greenhouse gas emissions showed that while sea surface temperature (SST) isotherms would shift northwards, saturation isolines of two CaCO3 polymorphs, calcite (Ωcal) and aragonite (Ωarag), would shift southwards by 2100. Subsequent predictions of future suitable habitats under those conditions indicated that distinct delimitation of geographical ranges for the two species would persist, and neither would extend beyond its native geographical zones, indicating that tropical Taiwan waters are the northern limit for P. acuta. In contrast, subtropical waters are the southern limit for P. damicornis. We concluded that the decline in CaCO3 saturation would make high latitudes less inhabitable, which could be one of the boundary elements that limit poleward range expansion driven by rising SSTs and preserve the latitudinal diversity gradient (LDG) on Earth. Consequently, poleward migration of tropical reef corals to cope with warming oceans should be reevaluated.
Collapse
Affiliation(s)
- Ya-Yi Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ting-Ru Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kim Phuong Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh, Viet Nam
| | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Jay Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Marine Science Center-Green Island Marine Research Station, Biodiversity Research Center, Academia Sinica, Taitung, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fisheries Research Institute, Penghu, Taiwan
| | - Yi-Chia Hsin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Chaolun A Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
4
|
Antoine PO, Wieringa LN, Adnet S, Aguilera O, Bodin SC, Cairns S, Conejeros-Vargas CA, Cornée JJ, Ežerinskis Ž, Fietzke J, Gribenski NO, Grouard S, Hendy A, Hoorn C, Joannes-Boyau R, Langer MR, Luque J, Marivaux L, Moissette P, Nooren K, Quillévéré F, Šapolaitė J, Sciumbata M, Valla PG, Witteveen NH, Casanova A, Clavier S, Bidgrain P, Gallay M, Rhoné M, Heuret A. A Late Pleistocene coastal ecosystem in French Guiana was hyperdiverse relative to today. Proc Natl Acad Sci U S A 2024; 121:e2311597121. [PMID: 38527199 PMCID: PMC10998618 DOI: 10.1073/pnas.2311597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.
Collapse
Affiliation(s)
- Pierre-Olivier Antoine
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Linde N. Wieringa
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Sylvain Adnet
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Orangel Aguilera
- Paleoecology and Global Changes Laboratory, Marine Biology Department, Fluminense Federal University, Niterói 24210-201, Rio de Janeiro, Brazil
| | - Stéphanie C. Bodin
- Department of Paleoanthropology, Senckenberg Research Institute, Frankfurt am Main60325, Germany
| | - Stephen Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington D.C.20013-7012
| | - Carlos A. Conejeros-Vargas
- Departamento de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, México
| | - Jean-Jacques Cornée
- Equipe Dynamique de la Lithosphère, Géosciences Montpellier, Univ Montpellier, CNRS, Montpellier34095, France
| | - Žilvinas Ežerinskis
- Mass Spectrometry Laboratory, Center for Physical Sciences and Technology, Vilnius10257, Lithuania
| | - Jan Fietzke
- Geomar, Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Natacha O. Gribenski
- Institute of Geological Sciences, Oeschger Centre for Climate Change Research, University of Bern, Bern3012, Switzerland
| | - Sandrine Grouard
- Archéozoologie et Archéobotanique—Sociétés, Pratiques et Environnements, CNRS, Muséum National d’Histoire Naturelle, Paris75005, France
| | - Austin Hendy
- Invertebrate Paleontology Department, Natural History Museum of Los Angeles County, Los Angeles, CA90007
| | - Carina Hoorn
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group, Southern Cross GeoScience, Southern Cross University, East Lismore, NSW2480, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg2092, South Africa
| | - Martin R. Langer
- Arbeitsgruppe Mikropaläontologie, Institut für Geowissenschaften, Paläontologie, Universität Bonn, Bonn53115, Germany
| | - Javier Luque
- Department of Zoology, Museum of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Laurent Marivaux
- Equipe de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, Univ Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier34095, France
| | - Pierre Moissette
- Department of Historical Geology-Paleontology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens15784, Greece
| | - Kees Nooren
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Frédéric Quillévéré
- Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS, VilleurbanneF-69622, France
| | - Justina Šapolaitė
- Mass Spectrometry Laboratory, Center for Physical Sciences and Technology, Vilnius10257, Lithuania
| | - Matteo Sciumbata
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
- Section Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam1081 BT, The Netherlands
| | - Pierre G. Valla
- Equipe Tectonique, Reliefs et Bassins, Institut des Sciences de la Terre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Université Gustave Eiffel, Grenoble38058, France
| | - Nina H. Witteveen
- Ecosystem & Landscape Dynamics Department, Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Alexandre Casanova
- Département Formation et Recherche Sciences et Technologie, Université de Guyane, Cayenne97300, Guyane
| | | | - Philibert Bidgrain
- Département Formation et Recherche Sciences et Technologie, Université de Guyane, Cayenne97300, Guyane
| | | | | | - Arnauld Heuret
- Equipe Dynamique de la Lithosphère, Géosciences Montpellier, Univ Montpellier, CNRS, Montpellier34095, France
- Département Formation et Recherche Sciences et Technologie, Université de Guyane, Cayenne97300, Guyane
| |
Collapse
|
5
|
Ivkić A, Puff F, Kroh A, Mansour A, Osman M, Hassan M, Ahmed AEH, Zuschin M. Three common sampling techniques in Pleistocene coral reefs of the Red Sea: a comparison. GEOLOGICAL SOCIETY SPECIAL PUBLICATION 2023; 529:223-242. [PMID: 37873493 PMCID: PMC7615226 DOI: 10.1144/sp529-2022-227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/20/2022] [Indexed: 10/25/2023]
Abstract
Line Intercept Transects (LIT), Point Intercept Transects (PIT), and Photoquadrats (PQ) are the most common quantitative sampling techniques in modern and fossil coral reefs. Data from coral reefs obtained by the different methods are generally compared between various reef ages and localities. Quaternary reefs from warmer interglacial periods, which represent climate scenarios projected for the future, are particularly interesting for comparisons with modern reefs. Importantly, fossil reefs differ from modern reefs because they are diagenetically altered and time averaged. While several studies have compared different quantitative methods in modern reefs, very few have dealt with the comparability among fossil and between fossil and modern reefs. Here, we compare LIT, PIT at 10, 20 and 50 cm intervals, and PQ in two Pleistocene reef localities in Egypt. We find that alpha diversity, reef cover and community composition are dependent on the method. Results gained with plotless methods (LIT, PIT) differ strongly from results gained with plot methods (PQ). However, coral cover results are similar between LIT and PIT, and community composition is indistinguishable between the two, but alpha diversity depends on the interval used for PIT. We discuss the implications of our findings for comparing coral reefs of various ages and localities. We recommend surveying Pleistocene reefs with PIT at 20 cm intervals. This is because A) alpha diversity is well captured, B) the amount of time averaging recorded by PIT is reduced compared to PQ, C) the PIT results can be directly compared to reefs analyzed by LIT, and D) the method is less time consuming than LIT and PQ.
Collapse
Affiliation(s)
- Angelina Ivkić
- University of Vienna, Department of Palaeontology, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Felix Puff
- University of Vienna, Department of Palaeontology, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Andreas Kroh
- Natural History Museum Vienna, Geological-Paleontological Department, Vienna, Austria
| | - Abbas Mansour
- South Valley University, Department of Geology, Qena, Egypt
| | - Mohamed Osman
- South Valley University, Department of Geology, Qena, Egypt
| | - Mohamed Hassan
- South Valley University, Department of Geology, Qena, Egypt
| | | | - Martin Zuschin
- University of Vienna, Department of Palaeontology, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
6
|
Kim SW, Sommer B, Beger M, Pandolfi JM. Regional and global climate risks for reef corals: Incorporating species-specific vulnerability and exposure to climate hazards. GLOBAL CHANGE BIOLOGY 2023; 29:4140-4151. [PMID: 37148129 DOI: 10.1111/gcb.16739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/12/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Climate change is driving rapid and widespread erosion of the environmental conditions that formerly supported species persistence. Existing projections of climate change typically focus on forecasts of acute environmental anomalies and global extinction risks. The current projections also frequently consider all species within a broad taxonomic group together without differentiating species-specific patterns. Consequently, we still know little about the explicit dimensions of climate risk (i.e., species-specific vulnerability, exposure and hazard) that are vital for predicting future biodiversity responses (e.g., adaptation, migration) and developing management and conservation strategies. Here, we use reef corals as model organisms (n = 741 species) to project the extent of regional and global climate risks of marine organisms into the future. We characterise species-specific vulnerability based on the global geographic range and historical environmental conditions (1900-1994) of each coral species within their ranges, and quantify the projected exposure to climate hazard beyond the historical conditions as climate risk. We show that many coral species will experience a complete loss of pre-modern climate analogs at the regional scale and across their entire distributional ranges, and such exposure to hazardous conditions are predicted to pose substantial regional and global climate risks to reef corals. Although high-latitude regions may provide climate refugia for some tropical corals until the mid-21st century, they will not become a universal haven for all corals. Notably, high-latitude specialists and species with small geographic ranges remain particularly vulnerable as they tend to possess limited capacities to avoid climate risks (e.g., via adaptive and migratory responses). Predicted climate risks are amplified substantially under the SSP5-8.5 compared with the SSP1-2.6 scenario, highlighting the need for stringent emission controls. Our projections of both regional and global climate risks offer unique opportunities to facilitate climate action at spatial scales relevant to conservation and management.
Collapse
Affiliation(s)
- Sun W Kim
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John M Pandolfi
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
7
|
Abstract
Paleontology has provided invaluable basic knowledge on the history of life on Earth. The discipline can also provide substantial knowledge to societal challenges such as climate change. The long-term perspective of climate change impacts on natural systems is both a unique selling point and a major obstacle to becoming more pertinent for policy-relevant bodies like the Intergovernmental Panel on Climate Change (IPCC). Repeated experiments on the impacts of climate change without anthropogenic disturbance facilitate the extraction of climate triggers in biodiversity changes. At the same time, the long timescales over which paleontological changes are usually assessed are beyond the scope of policymakers. Based on first-hand experience with the IPCC and a quantitative analysis of its cited literature, we argue that the differences in temporal scope are less of an issue than inappropriate framing and reporting of most paleontological publications. Accepting that some obstacles will remain, paleontology can quickly improve its relevance by targeting climate change impacts more directly and focusing on effect sizes and relevance for projections, particularly on higher-end climate change scenarios.
Collapse
|
8
|
Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate. Sci Rep 2022; 12:16506. [PMID: 36192580 PMCID: PMC9529976 DOI: 10.1038/s41598-022-20843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 01/26/2023] Open
Abstract
The Oman upwelling zone (OUZ) creates an unfavorable environment and a major biogeographic barrier for many coral reef species, such as giant clams, thus promoting and maintaining faunal differences among reefs on the east and west side of the Arabian Peninsula. We record the former existence of Tridacna in the Gulf of Oman and review its stratigraphic distribution in the Persian Gulf to provide new insights on the connectivity of coral reef habitats around southern Arabia under changing climate and ocean conditions. Fossil shells were carbon-14 dated and employed as sclerochronological proxy archives. This reveals that the Omani population represents a last glacial colonization event during the Marine Isotope Stage 3 interstadial under colder-than-present temperatures and variable upwelling intensity linked to Dansgaard-Oeschger climate oscillations. It was favored by temperatures just above the lower threshold for the habitat-forming reef coral communities and instability of the upwelling barrier. We conclude that the distribution of Tridacna in the northern Arabian Sea is generally limited by either strong upwelling or cool sea surface temperature under gradually changing climate conditions at the interglacial-glacial scale. Opportunities for dispersal and temporary colonization existed only when there was a simultaneous attenuation of both limiting factors due to high-frequency climate variability. The OUZ will unlikely become a future climate change refuge for giant clams because they will be exposed either to thermal stress by rapid anthropogenic Indian Ocean warming or to unfavorable upwelling conditions.
Collapse
|
9
|
Reddin CJ, Aberhan M, Raja NB, Kocsis ÁT. Global warming generates predictable extinctions of warm- and cold-water marine benthic invertebrates via thermal habitat loss. GLOBAL CHANGE BIOLOGY 2022; 28:5793-5807. [PMID: 35851980 DOI: 10.1111/gcb.16333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic global warming is redistributing marine life and may threaten tropical benthic invertebrates with several potential extinction mechanisms. The net impact of climate change on geographical extinction risk nevertheless remains uncertain. Evidence of widespread climate-driven extinctions and of potentially unidentified mechanisms exists in the fossil record. We quantify organism extinction risk across thermal habitats, estimated by paleoclimate reconstructions, over the past 300 million years. Extinction patterns at seven known events of rapid global warming (hyperthermals) differ significantly from typical patterns, resembling those driven by global geometry under simulated global warming. As isotherms move poleward with warming, the interaction between the geometry of the globe and the temperature-latitude relationship causes an uneven loss of thermal habitat and a bimodal latitudinal distribution of extinctions. Genera with thermal optima warmer than ~21°C show raised extinction odds, while extinction odds continually increase for genera with optima below ~11°C. Genera preferring intermediate temperatures generally have no additional extinction risk during hyperthermals, except under extreme conditions as the end-Permian mass extinction. Widespread present-day climate-driven range shifts indicate that occupancy loss is already underway. Given the most-likely projections of modern warming, our model, validated by seven past hyperthermal events, indicates that sustained warming has the potential to annihilate cold-water habitat and its endemic species completely within centuries.
Collapse
Affiliation(s)
- Carl J Reddin
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Nussaïbah B Raja
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ádám T Kocsis
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
- MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary
| |
Collapse
|
10
|
Hammerman NM, Roff G, Lybolt T, Eyal G, Pandolfi JM. Unraveling Moreton Bay reef history: An urban high-latitude setting for coral development. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.884850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-latitude habitats have become increasingly recognized as a potential climate refuge for coral communities, supporting both tropical and sub-tropical corals. Despite the increasing interest in the ecology of high-latitude corals, our current knowledge of their temporal dynamics is limited, especially within urbanized settings. Here, we examined the entire history of a high-latitude coral reef ecosystem in an urbanized setting. We surveyed Holocene fossil and modern coral communities along a water quality gradient in Moreton Bay, southeast Queensland, Australia, representing near-river (Wellington Point), intermediate (Peel Island) and near-oceanic (Myora Reef) environmental conditions. Reef accretion occurred during three discrete episodes from 7,400 to 5,800, 4,900 to 3,000, and 2,100 to 300 years BP, each separated by roughly 1,000-year hiatuses, where conditions were probably not favorable enough for reef accretion to occur. Episodic reef initiation and termination suggests strong environmental controls over reef development. Eastern Australian Holocene reef growth and cessation has been linked previously to sea level fluctuations and climatic regimes (e.g., ENSO). Within each reef building episode, there were few changes in coral assemblages over time. The fast growing and branching Acropora had a relative abundance greater than 90% in ten of the 13 sediment cores and all the submerged terrace excavations. However, substantial modification of adjacent coastal catchments from European colonization in the mid 1800’s resulted in increased sediment and nutrient discharge into the bay. This perturbation coincided with a greater abundance of stress-tolerant coral species (e.g., Dipsastraea, Goniastrea, and Goniopora) and the near extirpation of Acropora in the modern coral communities of near-river and intermediate sites due to poor water quality. In contrast, the modern coral assemblage at the near-oceanic site (Myora Reef) continues to be dominated by Acropora, likely due to the consistent oceanic input, resulting in lower sediment loading and higher water quality. In order for conditions for reef growth to improve, especially within the near-river portions of the bay, further sediment and nutrient runoff from anthropogenic land-use changes need to be mitigated. Given the historical abundance of Acropora, we recommend this genus be used as an indicator of natural resource management success in the bay.
Collapse
|
11
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
12
|
Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat Commun 2022; 13:3120. [PMID: 35701413 PMCID: PMC9198051 DOI: 10.1038/s41467-022-30793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Today, warm-water coral reefs are limited to tropical-to-subtropical latitudes. These diverse ecosystems extended further poleward in the geological past, but the mechanisms driving these past distributions remain uncertain. Here, we test the role of climate and palaeogeography in shaping the distribution of coral reefs over geological timescales. To do so, we combine habitat suitability modelling, Earth System modelling and the ~247-million-year geological record of scleractinian coral reefs. A broader latitudinal distribution of climatically suitable habitat persisted throughout much of the Mesozoic-early Paleogene due to an expanded tropical belt and more equable distribution of shallow marine substrate. The earliest Cretaceous might be an exception, with reduced shallow marine substrate during a 'cold-snap' interval. Climatically suitable habitat area became increasingly skewed towards the tropics from the late Paleogene, likely steepening the latitudinal biodiversity gradient of reef-associated taxa. This was driven by global cooling and increases in tropical shallow marine substrate resulting from the tectonic evolution of the Indo-Australian Archipelago. Although our results suggest global warming might permit long-term poleward range expansions, coral reef ecosystems are unlikely to keep pace with the rapid rate of anthropogenic climate change.
Collapse
|
13
|
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW. Genetic divergence and range expansion in a western North Pacific coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152423. [PMID: 34942242 DOI: 10.1016/j.scitotenv.2021.152423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.
Collapse
Affiliation(s)
- James E Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Nina Yasuda
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan.
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| | - Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
14
|
Abstract
Fossil records from tropical oceans predict biodiversity loss in a warmer world.
Collapse
Affiliation(s)
- Moriaki Yasuhara
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, and State Key Laboratory of Marine Pollution, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China
| | - Curtis A Deutsch
- Department of Geosciences and High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. DIVERSITY 2021. [DOI: 10.3390/d13120632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.
Collapse
|
16
|
The population genomic structure of green turtles (Chelonia mydas) suggests a warm-water corridor for tropical marine fauna between the Atlantic and Indian oceans during the last interglacial. Heredity (Edinb) 2021; 127:510-521. [PMID: 34635850 PMCID: PMC8626443 DOI: 10.1038/s41437-021-00475-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
The occasional westward transport of warm water of the Agulhas Current, "Agulhas leakage", around southern Africa has been suggested to facilitate tropical marine connectivity between the Atlantic and Indian oceans, but the "Agulhas leakage" hypothesis does not explain the signatures of eastward gene flow observed in many tropical marine fauna. We investigated an alternative hypothesis: the establishment of a warm-water corridor during comparatively warm interglacial periods. The "warm-water corridor" hypothesis was investigated by studying the population genomic structure of Atlantic and Southwest Indian Ocean green turtles (N = 27) using 12,035 genome-wide single nucleotide polymorphisms (SNPs) obtained via ddRAD sequencing. Model-based and multivariate clustering suggested a hierarchical population structure with two main Atlantic and Southwest Indian Ocean clusters, and a Caribbean and East Atlantic sub-cluster nested within the Atlantic cluster. Coalescent-based model selection supported a model where Southwest Indian Ocean and Caribbean populations diverged from the East Atlantic population during the transition from the last interglacial period (130-115 thousand years ago; kya) to the last glacial period (115-90 kya). The onset of the last glaciation appeared to isolate Atlantic and Southwest Indian Ocean green turtles into three refugia, which subsequently came into secondary contact in the Caribbean and Southwest Indian Ocean when global temperatures increased after the Last Glacial Maximum. Our findings support the establishment of a warm-water corridor facilitating tropical marine connectivity between the Atlantic and Southwest Indian Ocean during warm interglacials.
Collapse
|
17
|
Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes. Sci Rep 2021; 11:20731. [PMID: 34671048 PMCID: PMC8528860 DOI: 10.1038/s41598-021-00049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/28/2021] [Indexed: 11/11/2022] Open
Abstract
Past environmental changes are expected to have profoundly impacted diversity dynamics through time. While some previous studies showed an association between past climate changes or tectonic events and important shifts in lineage diversification, it is only recently that past environmental changes have been explicitly integrated in diversification models to test their influence on diversification rates. Here, we used a global reconstruction of tropical reef habitat dynamics during the Cenozoic and phylogenetic diversification models to test the influence of (i) major geological events, (ii) reef habitat fragmentation and (iii) reef area on the diversification of 9 major clades of tropical reef fish (Acanthuridae, Balistoidea, Carangoidea, Chaetodontidae, Haemulinae, Holocentridae, Labridae, Pomacentridae and Sparidae). The diversification models revealed a weak association between paleo-habitat changes and diversification dynamics. Specifically, the fragmentation of tropical reef habitats over the Cenozoic was found to be a driver of tropical reef fish diversification for 2 clades. However, overall, our approach did not allow the identification of striking associations between diversification dynamics and paleo-habitat fragmentation in contrast with theoretical model's predictions.
Collapse
|
18
|
Toth LT, Precht WF, Modys AB, Stathakopoulos A, Robbart ML, Hudson JH, Oleinik AE, Riegl BM, Shinn EA, Aronson RB. Climate and the latitudinal limits of subtropical reef development. Sci Rep 2021; 11:13044. [PMID: 34158523 PMCID: PMC8219804 DOI: 10.1038/s41598-021-87883-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Climate plays a central role in coral-reef development, especially in marginal environments. The high-latitude reefs of southeast Florida are currently non-accreting, relict systems with low coral cover. This region also did not support the extensive Late Pleistocene reef development observed in many other locations around the world; however, there is evidence of significant reef building in southeast Florida during the Holocene. Using 146 radiometric ages from reefs extending ~ 120 km along Florida's southeast coast, we test the hypothesis that the latitudinal extent of Holocene reef development in this region was modulated by climatic variability. We demonstrate that although sea-level changes impacted rates of reef accretion and allowed reefs to backstep inshore as new habitats were flooded, sea level was not the ultimate cause of reef demise. Instead, we conclude that climate was the primary driver of the expansion and contraction of Florida's reefs during the Holocene. Reefs grew to 26.7° N in southeast Florida during the relatively warm, stable climate at the beginning of the Holocene Thermal Maximum (HTM) ~ 10,000 years ago, but subsequent cooling and increased frequency of winter cold fronts were associated with the equatorward contraction of reef building. By ~ 7800 years ago, actively accreting reefs only extended to 26.1° N. Reefs further contracted to 25.8° N after 5800 years ago, and by 3000 years ago reef development had terminated throughout southern Florida (24.5-26.7° N). Modern warming is unlikely to simply reverse this trend, however, because the climate of the Anthropocene will be fundamentally different from the HTM. By increasing the frequency and intensity of both warm and cold extreme-weather events, contemporary climate change will instead amplify conditions inimical to reef development in marginal reef environments such as southern Florida, making them more likely to continue to deteriorate than to resume accretion in the future.
Collapse
Affiliation(s)
- Lauren T Toth
- U.S. Geological Survey St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA.
| | - William F Precht
- Marine and Coastal Programs, Dial Cordy & Associates, Inc., Miami, FL, USA
| | - Alexander B Modys
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Martha L Robbart
- Marine and Coastal Programs, Dial Cordy & Associates, Inc., Miami, FL, USA.,Independent Consultant, Glenmont, NY, USA
| | | | - Anton E Oleinik
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Bernhard M Riegl
- Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Eugene A Shinn
- College of Marine Science, University of South Florida, St. Petersburg, FL, 33701, USA
| | - Richard B Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
19
|
Global warming is causing a more pronounced dip in marine species richness around the equator. Proc Natl Acad Sci U S A 2021; 118:2015094118. [PMID: 33876750 DOI: 10.1073/pnas.2015094118] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The latitudinal gradient in species richness, with more species in the tropics and richness declining with latitude, is widely known and has been assumed to be stable over recent centuries. We analyzed data on 48,661 marine animal species since 1955, accounting for sampling variation, to assess whether the global latitudinal gradient in species richness is being impacted by climate change. We confirm recent studies that show a slight dip in species richness at the equator. Moreover, richness across latitudinal bands was sensitive to temperature, reaching a plateau or declining above a mean annual sea surface temperature of 20 °C for most taxa. In response, since the 1970s, species richness has declined at the equator relative to an increase at midlatitudes and has shifted north in the northern hemisphere, particularly among pelagic species. This pattern is consistent with the hypothesis that climate change is impacting the latitudinal gradient in marine biodiversity at a global scale. The intensification of the dip in species richness at the equator, especially for pelagic species, suggests that it is already too warm there for some species to survive.
Collapse
|
20
|
Zacaï A, Monnet C, Pohl A, Beaugrand G, Mullins G, Kroeck DM, Servais T. Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. SCIENCE ADVANCES 2021; 7:eabd6709. [PMID: 33827811 PMCID: PMC8026127 DOI: 10.1126/sciadv.abd6709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The latitudinal diversity gradient (LDG)-the decline in species richness from the equator to the poles-is classically considered as the most pervasive macroecological pattern on Earth, but the timing of its establishment, its ubiquity in the geological past, and explanatory mechanisms remain uncertain. By combining empirical and modeling approaches, we show that the first representatives of marine phytoplankton exhibited an LDG from the beginning of the Cambrian, when most major phyla appeared. However, this LDG showed a single peak of diversity centered on the Southern Hemisphere, in contrast to the equatorial peak classically observed for most modern taxa. We find that this LDG most likely corresponds to a truncated bimodal gradient, which probably results from an uneven sediment preservation, smaller sampling effort, and/or lower initial diversity in the Northern Hemisphere. Variation of the documented LDG through time resulted primarily from fluctuations in annual sea-surface temperature and long-term climate changes.
Collapse
Affiliation(s)
- Axelle Zacaï
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France.
- PALEVOPRIM, UMR 7262, CNRS, Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - Claude Monnet
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Alexandre Pohl
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, CA, USA
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
| | - Grégory Beaugrand
- Laboratoire d'Océanologie et de Géosciences, UMR 8187, CNRS, Univ. Lille, F-59000 Lille, France
| | | | - David M Kroeck
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Thomas Servais
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Jones LA, Dean CD, Mannion PD, Farnsworth A, Allison PA. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc Biol Sci 2021; 288:20202762. [PMID: 33622126 PMCID: PMC7934898 DOI: 10.1098/rspb.2020.2762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The latitudinal biodiversity gradient (LBG), in which species richness decreases from tropical to polar regions, is a pervasive pattern of the modern biosphere. Although the distribution of fossil occurrences suggests this pattern has varied through deep time, the recognition of palaeobiogeographic patterns is hampered by geological and anthropogenic biases. In particular, spatial sampling heterogeneity has the capacity to impact upon the reconstruction of deep time LBGs. Here we use a simulation framework to test the detectability of three different types of LBG (flat, unimodal and bimodal) over the last 300 Myr. We show that heterogeneity in spatial sampling significantly impacts upon the detectability of genuine LBGs, with known biodiversity patterns regularly obscured after applying the spatial sampling window of fossil collections. Sampling-standardization aids the reconstruction of relative biodiversity gradients, but cannot account for artefactual absences introduced by geological and anthropogenic biases. Therefore, we argue that some previous studies might have failed to recover the ‘true’ LBG type owing to incomplete and heterogeneous sampling, particularly between 200 and 20 Ma. Furthermore, these issues also have the potential to bias global estimates of past biodiversity, as well as inhibit the recognition of extinction and radiation events.
Collapse
Affiliation(s)
- Lewis A Jones
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Christopher D Dean
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| | | | - Peter A Allison
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
22
|
Cybulski JD, Husa SM, Duprey NN, Mamo BL, Tsang TPN, Yasuhara M, Xie JY, Qiu JW, Yokoyama Y, Baker DM. Coral reef diversity losses in China's Greater Bay Area were driven by regional stressors. SCIENCE ADVANCES 2020; 6:eabb1046. [PMID: 33008908 PMCID: PMC7852383 DOI: 10.1126/sciadv.abb1046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/19/2020] [Indexed: 05/12/2023]
Abstract
Observations of coral reef losses to climate change far exceed our understanding of historical degradation before anthropogenic warming. This is a critical gap to fill as conservation efforts simultaneously work to reverse climate change while restoring coral reef diversity and function. Here, we focused on southern China's Greater Bay Area, where coral communities persist despite centuries of coral mining, fishing, dredging, development, and pollution. We compared subfossil assemblages with modern-day communities and revealed a 40% decrease in generic diversity, concomitant to a shift from competitive to stress-tolerant species dominance since the mid-Holocene. Regions with characteristically poor water quality-high chl-a, dissolved inorganic nitrogen, and turbidity-had lower contemporary diversity and the greatest community composition shift observed in the past, driven by the near extirpation of Acropora These observations highlight the urgent need to mitigate local stressors from development in concert with curbing greenhouse gas emissions.
Collapse
Affiliation(s)
- Jonathan D Cybulski
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D'Aguilar Road, Shek O, Hong Kong SAR, China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Stefan M Husa
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D'Aguilar Road, Shek O, Hong Kong SAR, China
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Nicolas N Duprey
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D'Aguilar Road, Shek O, Hong Kong SAR, China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Max Planck Institute for Chemistry (Otto Hahn Institute) Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Briony L Mamo
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D'Aguilar Road, Shek O, Hong Kong SAR, China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Toby P N Tsang
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Moriaki Yasuhara
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D'Aguilar Road, Shek O, Hong Kong SAR, China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yusuke Yokoyama
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 113-0033, Japan
- Graduate Program on Environmental Sciences, The University of Tokyo, Meguro 153-0041, Japan
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - David M Baker
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D'Aguilar Road, Shek O, Hong Kong SAR, China.
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
23
|
Abstract
A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.
Collapse
|
24
|
Denis V, Fan T, Hsiao WV, Hwang S, Lin YV, Nozawa Y. Idea Paper: Tracking the distribution of accretive reef communities across the Kuroshio region. Ecol Res 2020. [DOI: 10.1111/1440-1703.12128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vianney Denis
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Tung‐Yung Fan
- Graduate Institute of Marine Biology National Dong Hwa University Pingtung Taiwan
- National Museum of Marine Biology and Aquarium Pingtung Taiwan
| | | | - Sung‐Jin Hwang
- Department of Life Science Woosuk University Jincheon Republic of Korea
| | - Yuting Vicky Lin
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Yoko Nozawa
- Biodiversity Research Center Academia Sinica Taipei Taiwan
| |
Collapse
|
25
|
Reuter M, Bosellini FR, Budd AF, Ćorić S, Piller WE, Harzhauser M. High coral reef connectivity across the Indian Ocean is revealed 6-7 Ma ago by a turbid-water scleractinian assemblage from Tanzania (Eastern Africa). CORAL REEFS (ONLINE) 2019; 38:1023-1037. [PMID: 31632191 PMCID: PMC6775041 DOI: 10.1007/s00338-019-01830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
The present centre of coral diversity in the Western Indian Ocean is defined by the northern Mozambique Channel with an extension northward to Mafia Island in Tanzania (Eastern Africa). The geological and evolutionary history of this hotspot of marine biodiversity remains so far completely obscure, because Cenozoic fossil reef communities of this area are not well known. This study presents a new fossil scleractinian fauna from the Mikindani Formation in southern Tanzania. It comprises 16 symbiotic coral taxa of which nine could be identified to the species and five to the genus level. Coral habitat consisted of low-relief biostromes that developed in shallow water at the front of the Rovuma Delta under conditions of variable sediment input. The biostromes are dated to be Messinian based on associated calcareous nannoplankton and planktic foraminifers. The studied coral assemblage shows close affinities with the Recent Western Indian Ocean biogeographic province and Central Indo-West Pacific biogeographic region as well as with the Miocene of Indonesia. Faunistic relations with the Oligocene-early Miocene of Somalia and Iran do not exist. The patterns of species distribution document a major palaeobiogeographic change in the Indian Ocean that correlates with the onset of the Miocene Indian Ocean Equatorial Jet during the middle Miocene. The clear Indonesian affinity of the Messinian coral fauna from southern Tanzania implies that this westerly oceanic surface current provided high biogeographic connectivity across the Indian Ocean during the late Miocene. Today, the coastal waters of Indonesia are located in the Coral Triangle. Diversification of this global epicentre of marine biodiversity started in the early Miocene and it was established already during the middle Miocene. Our results indicate that the East African hotspot of coral biodiversity originated as an offshoot of the Coral Triangle in the middle to late Miocene.
Collapse
Affiliation(s)
- Markus Reuter
- Institute of Geophysics and Geology, University of Leipzig, Talstraße 35, 04103 Leipzig, Germany
| | - Francesca R. Bosellini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Ann F. Budd
- Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, 1A 52242 USA
| | - Stjepan Ćorić
- Geological Survey of Austria, Neulinggasse 38, 1030 Vienna, Austria
| | - Werner E. Piller
- Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
| | - Mathias Harzhauser
- Department of Geology and Palaeontology, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| |
Collapse
|
26
|
Kocsis ÁT, Reddin CJ, Kiessling W. The biogeographical imprint of mass extinctions. Proc Biol Sci 2019; 285:rspb.2018.0232. [PMID: 29720415 DOI: 10.1098/rspb.2018.0232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 11/12/2022] Open
Abstract
Mass extinctions are defined by extinction rates significantly above background levels and have had substantial consequences for the evolution of life. Geographically selective extinctions, subsequent originations and species redistributions may have changed global biogeographical structure, but quantification of this change is lacking. In order to assess quantitatively the biogeographical impact of mass extinctions, we outline time-traceable bioregions for benthic marine species across the Phanerozoic using a compositional network. Mass extinction events are visually recognizable in the geographical depiction of bioregions. The end-Permian extinction stands out with a severe reduction of provinciality. Time series of biogeographical turnover represent a novel aspect of the analysis of mass extinctions, confirming concentration of changes in the geographical distribution of benthic marine life.
Collapse
Affiliation(s)
- Ádám T Kocsis
- GeoZentrum Nordbayern, Department of Geography and Geosciences, University of Erlangen-Nuremberg, Loewenichstraße 28, 91054 Erlangen, Germany .,MTA-MTM-ELTE Research Group for Paleontology, POB 137, 1431 Budapest, Hungary
| | - Carl J Reddin
- GeoZentrum Nordbayern, Department of Geography and Geosciences, University of Erlangen-Nuremberg, Loewenichstraße 28, 91054 Erlangen, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Department of Geography and Geosciences, University of Erlangen-Nuremberg, Loewenichstraße 28, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Jones LA, Mannion PD, Farnsworth A, Valdes PJ, Kelland SJ, Allison PA. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182111. [PMID: 31183138 PMCID: PMC6502368 DOI: 10.1098/rsos.182111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Reef corals are currently undergoing climatically driven poleward range expansions, with some evidence for equatorial range retractions. Predicting their response to future climate scenarios is critical to their conservation, but ecological models are based only on short-term observations. The fossil record provides the only empirical evidence for the long-term response of organisms under perturbed climate states. The palaeontological record from the Last Interglacial (LIG; 125 000 years ago), a time of global warming, suggests that reef corals experienced poleward range shifts and an equatorial decline relative to their modern distribution. However, this record is spatio-temporally biased, and existing methods cannot account for data absence. Here, we use ecological niche modelling to estimate reef corals' realized niche and LIG distribution, based on modern and fossil occurrences. We then make inferences about modelled habitability under two future climate change scenarios (RCP4.5 and RCP8.5). Reef coral ranges during the LIG were comparable to the present, with no prominent equatorial decrease in habitability. Reef corals are likely to experience poleward range expansion and large equatorial declines under RCP4.5 and RCP8.5. However, this range expansion is probably optimistic in the face of anthropogenic climate change. Incorporation of fossil data in niche models improves forecasts of biodiversity responses under global climatic change.
Collapse
Affiliation(s)
- Lewis A. Jones
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | | | - Peter A. Allison
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
28
|
Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ, Johnson CR, Leis JM, Ling SD, Marshall D, Pandolfi JM, Pecl G, Rodgers GG, Booth DJ, Munday PL. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180186. [PMID: 30966966 PMCID: PMC6365866 DOI: 10.1098/rstb.2018.0186] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | | | - Will F. Figueira
- University of Sydney, School of Life and Environmental Sciences, Sydney 2006, Australia
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Craig R. Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeffrey M. Leis
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
- Australian Museum Research Institute, Sydney, New South Wales 2001, Australia
| | - Scott D. Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Dustin Marshall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John M. Pandolfi
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gretta Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Giverny G. Rodgers
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David J. Booth
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| |
Collapse
|
29
|
Huang D, Goldberg EE, Chou LM, Roy K. The origin and evolution of coral species richness in a marine biodiversity hotspot. Evolution 2017; 72:288-302. [PMID: 29178128 DOI: 10.1111/evo.13402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/30/2017] [Accepted: 11/12/2017] [Indexed: 12/25/2022]
Abstract
The Coral Triangle (CT) region of the Indo-Pacific realm harbors an extraordinary number of species, with richness decreasing away from this biodiversity hotspot. Despite multiple competing hypotheses, the dynamics underlying this regional diversity pattern remain poorly understood. Here, we use a time-calibrated evolutionary tree of living reef coral species, their current geographic ranges, and model-based estimates of regional rates of speciation, extinction, and geographic range shifts to show that origination rates within the CT are lower than in surrounding regions, a result inconsistent with the long-standing center of origin hypothesis. Furthermore, endemism of coral species in the CT is low, and the CT endemics are older than relatives found outside this region. Overall, our model results suggest that the high diversity of reef corals in the CT is largely due to range expansions into this region of species that evolved elsewhere. These findings strongly support the notion that geographic range shifts play a critical role in generating species diversity gradients. They also show that preserving the processes that gave rise to the striking diversity of corals in the CT requires protecting not just reefs within the hotspot, but also those in the surrounding areas.
Collapse
Affiliation(s)
- Danwei Huang
- Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore
| | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108
| | - Loke Ming Chou
- Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
30
|
Lauchstedt A, Pandolfi JM, Kiessling W. Towards a new paleotemperature proxy from reef coral occurrences. Sci Rep 2017; 7:10461. [PMID: 28874812 PMCID: PMC5585234 DOI: 10.1038/s41598-017-10961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Global mean temperature is thought to have exceeded that of today during the last interglacial episode (LIG, ~ 125,000 yrs b.p.) but robust paleoclimate data are still rare in low latitudes. Occurrence data of tropical reef corals may provide new proxies of low latitude sea-surface temperatures. Using modern reef coral distributions we developed a geographically explicit model of sea surface temperatures. Applying this model to coral occurrence data of the LIG provides a latitudinal U-shaped pattern of temperature anomalies with cooler than modern temperatures around the equator and warmer subtropical climes. Our results agree with previously published estimates of LIG temperatures and suggest a poleward broadening of the habitable zone for reef corals during the LIG.
Collapse
Affiliation(s)
| | - John M Pandolfi
- The University of Queensland, ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
31
|
Weiss A, Martindale RC. Crustose coralline algae increased framework and diversity on ancient coral reefs. PLoS One 2017; 12:e0181637. [PMID: 28783733 PMCID: PMC5544230 DOI: 10.1371/journal.pone.0181637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
Crustose coralline algae (CCA) are key producers of carbonate sediment on reefs today. Despite their importance in modern reef ecosystems, the long-term relationship of CCA with reef development has not been quantitatively assessed in the fossil record. This study includes data from 128 Cenozoic coral reefs collected from the Paleobiology Database, the Paleoreefs Database, as well as the original literature and assesses the correlation of CCA abundance with taxonomic diversity (both corals and reef dwellers) and framework of fossil coral reefs. Chi-squared tests show reef type is significantly correlated with CCA abundance and post-hoc tests indicate higher involvement of CCA is associated with stronger reef structure. Additionally, general linear models show coral reefs with higher amounts of CCA had a higher diversity of reef-dwelling organisms. These data have important implications for paleoecology as they demonstrate that CCA increased building capacity, structural integrity, and diversity of ancient coral reefs. The analyses presented here demonstrate that the function of CCA on modern coral reefs is similar to their function on Cenozoic reefs; thus, studies of ancient coral reef collapse are even more meaningful as modern analogues.
Collapse
Affiliation(s)
- Anna Weiss
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Rowan C. Martindale
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
32
|
Tomašových A, Kennedy JD, Betzner TJ, Kuehnle NB, Edie S, Kim S, Supriya K, White AE, Rahbek C, Huang S, Price TD, Jablonski D. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proc Biol Sci 2017; 283:rspb.2015.3027. [PMID: 27147094 DOI: 10.1098/rspb.2015.3027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/08/2016] [Indexed: 11/12/2022] Open
Abstract
Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size-on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification.
Collapse
Affiliation(s)
- Adam Tomašových
- Earth Science Institute, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Jonathan D Kennedy
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tristan J Betzner
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | | | - Stewart Edie
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Sora Kim
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - K Supriya
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander E White
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, West Berkshire SL5 7PY, UK
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Center (BiK-F), 60325 Frankfurt am Main, Germany
| | - Trevor D Price
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - David Jablonski
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Rodríguez-Rey GT, Carvalho Filho A, De Araújo ME, Solé-Cava AM. Evolutionary history of Bathygobius (Perciformes: Gobiidae) in the Atlantic biogeographic provinces: a new endemic species and old mitochondrial lineages. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ghennie T Rodríguez-Rey
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Elisabeth De Araújo
- Grupo de Ictiologia Marinha Tropical, Departamento de Oceanografia, Universidade Federal de Pernambuco, Brazil
| | - Antonio M Solé-Cava
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Bonebrake TC, Brown CJ, Bell JD, Blanchard JL, Chauvenet A, Champion C, Chen IC, Clark TD, Colwell RK, Danielsen F, Dell AI, Donelson JM, Evengård B, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Jarzyna MA, Lee E, Lenoir J, Linnetved H, Martin VY, McCormack PC, McDonald J, McDonald-Madden E, Mitchell N, Mustonen T, Pandolfi JM, Pettorelli N, Possingham H, Pulsifer P, Reynolds M, Scheffers BR, Sorte CJB, Strugnell JM, Tuanmu MN, Twiname S, Vergés A, Villanueva C, Wapstra E, Wernberg T, Pecl GT. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol Rev Camb Philos Soc 2017; 93:284-305. [PMID: 28568902 DOI: 10.1111/brv.12344] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.
Collapse
Affiliation(s)
- Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
| | | | - Johann D Bell
- Australian National Centre for Ocean Resources and Security, University of Wollongong, Wollongong, NSW 2522, Australia.,Conservation International, Arlington, VA, 22202, U.S.A
| | - Julia L Blanchard
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia.,Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alienor Chauvenet
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, 4072, Australia.,ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Curtis Champion
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Republic of China
| | - Timothy D Clark
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia.,CSIRO Agriculture and Food, Hobart, 7000, Australia
| | - Robert K Colwell
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Natural History Museum of Denmark, 2100, Copenhagen, Denmark.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, U.S.A.,University of Colorado Museum of Natural History, Boulder, CO, 80309, U.S.A.,Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970, Goiânia, Brazil
| | - Finn Danielsen
- Nordic Foundation for Development and Ecology (NORDECO), Copenhagen, DK-1159, Denmark
| | - Anthony I Dell
- National Great Rivers Research and Education Center (NGRREC), East Alton, IL, 62024, U.S.A.,Department of Biology, Washington University in St. Louis, St. Louis, MO, 631303, USA
| | - Jennifer M Donelson
- School of Life Sciences, University of Technology, Sydney, 2007, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia
| | - Birgitta Evengård
- Division of Infectious Diseases, Department of Clinical Microbiology, Umea University, 90187, Umea, Sweden
| | | | - Stewart Frusher
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia.,Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Raquel A Garcia
- Department of Statistical Sciences, Centre for Statistics in Ecology, the Environment and Conservation, University of Cape Town, Rondebosch, 7701, South Africa.,Faculty of Science, Department of Botany and Zoology, Centre for Invasion Biology, Stellenbosch University, Matieland, 7602, South Africa
| | - Roger B Griffis
- NOAA National Marine Fisheries Service, Office of Science and Technology, Silver Spring, MD, 20910, U.S.A
| | - Alistair J Hobday
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001, Australia.,CSIRO, Oceans and Atmosphere, Hobart, 7000, Australia
| | - Marta A Jarzyna
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, U.S.A
| | - Emma Lee
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jonathan Lenoir
- UR « Ecologie et dynamique des systèmes anthropisés » (EDYSAN, FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, FR-80037, Amiens Cedex 1, France
| | - Hlif Linnetved
- Faculty of Science, Institute of Food and Resource Economics, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Victoria Y Martin
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| | | | - Jan McDonald
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001, Australia.,Faculty of Law, University of Tasmania, Hobart, 7001, Australia
| | - Eve McDonald-Madden
- ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.,School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane, 4072, Australia
| | - Nicola Mitchell
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia
| | - Tero Mustonen
- Snowchange Cooperative, University of Eastern Finland, 80130, Joensuu, Finland
| | - John M Pandolfi
- School of Biological Sciences, ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, 4072, Australia
| | | | - Hugh Possingham
- ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.,Grand Challenges in Ecosystems and the Environment, Silwood Park, Imperial College, London, SW7 2AZ, UK
| | - Peter Pulsifer
- National Snow and Ice Data Center, University of Colorado Boulder, Boulder, CO, 80309, U.S.A
| | - Mark Reynolds
- The Nature Conservancy, San Francisco, CA, 94105, U.S.A
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, FL, 32611, U.S.A
| | - Cascade J B Sorte
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, U.S.A
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Mao-Ning Tuanmu
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Republic of China
| | - Samantha Twiname
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Adriana Vergés
- Centre for Marine Bio-Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Cecilia Villanueva
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Tasmania, 7001, Australia
| | - Thomas Wernberg
- School of Biological Sciences, University of Western Australia, Crawley, 6009, Australia.,UWA Oceans Institute, University of Western Australia, Perth, 6009, Australia
| | - Gretta T Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia.,Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
35
|
Stauffer FW, Ouattara DN, Roguet D, da Giau S, Michon L, Bakayoko A, Ekpe P. An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/00837792.2017.1313381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fred W. Stauffer
- Laboratoire de systématique végétale et biodiversité, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, Switzerland
| | - Doudjo N. Ouattara
- UFR des Sciences de la Nature (SN), Université Nangui Abrogoua, Abidjan, Ivory Coast
- Direction de Recherche et Développement (DRD), Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Ivory Coast
| | - Didier Roguet
- Laboratoire de systématique végétale et biodiversité, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, Switzerland
| | - Simona da Giau
- Laboratoire de systématique végétale et biodiversité, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, Switzerland
| | - Loïc Michon
- Laboratoire de systématique végétale et biodiversité, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, Switzerland
| | - Adama Bakayoko
- UFR des Sciences de la Nature (SN), Université Nangui Abrogoua, Abidjan, Ivory Coast
- Direction de Recherche et Développement (DRD), Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Ivory Coast
| | - Patrick Ekpe
- Department of Botany, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
36
|
|
37
|
Pandolfi JM. Incorporating Uncertainty in Predicting the Future Response of Coral Reefs to Climate Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091811] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John M. Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia;
| |
Collapse
|
38
|
Descombes P, Wisz MS, Leprieur F, Parravicini V, Heine C, Olsen SM, Swingedouw D, Kulbicki M, Mouillot D, Pellissier L. Forecasted coral reef decline in marine biodiversity hotspots under climate change. GLOBAL CHANGE BIOLOGY 2015; 21:2479-2487. [PMID: 25611594 DOI: 10.1111/gcb.12868] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low-latitude climatic conditions have no present-day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo-Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.
Collapse
Affiliation(s)
- Patrice Descombes
- Unit of Ecology & Evolution, University of Fribourg, Ch. du Musée 10, CH-1700, Fribourg, Switzerland
| | - Mary S Wisz
- Department of Ecology and Environment, DHI-Group, Hørsholm, Denmark
| | - Fabien Leprieur
- Laboratoire Ecologie des Systèmes Marins Côtiers UMR 5119, CNRS, IRD, IFREMER, UM2, UM1, cc 093, Place E. Bataillon, FR-34095, Montpellier Cedex 5, France
| | - Valerianio Parravicini
- CRIOBE, USR 3278 CNRS-EPHE-UPVD, LABEX 'CORAIL', University of Perpignan, 66860, Perpignan, France
- CESAB-FRB, Immeuble Henri Poincaré, Domaine du Petit Arbois, FR-13857, Aix-en-Provence Cedex 3, France
| | - Christian Heine
- EarthByte Group, The University of Sydney, Sydney, NSW, Australia
- Shell International Exploration & Production, The Hague, The Netherlands
| | - Steffen M Olsen
- Center for Ocean and Ice Danish Meteorological Institute, Lyngbyvej 100, 2100, Copenhagen, Denmark
| | - Didier Swingedouw
- EPOC, CNRS, Université de Bordeaux, Allée Geoffroy St Hilaire, 33615, Pessac cedex, France
| | - Michel Kulbicki
- Laboratoire Arago, UR "CoReUs", Institut pour la Recherche en Développement, Labex Corail, B.P. 44, 66651, Banyuls/mer, France
| | - David Mouillot
- Laboratoire Ecologie des Systèmes Marins Côtiers UMR 5119, CNRS, IRD, IFREMER, UM2, UM1, cc 093, Place E. Bataillon, FR-34095, Montpellier Cedex 5, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| | - Loïc Pellissier
- Unit of Ecology & Evolution, University of Fribourg, Ch. du Musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
39
|
Storch D, Menzel L, Frickenhaus S, Pörtner HO. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. GLOBAL CHANGE BIOLOGY 2014; 20:3059-3067. [PMID: 24890266 DOI: 10.1111/gcb.12645] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.
Collapse
Affiliation(s)
- Daniela Storch
- Department of Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Center for Polar- and Marine Research, Bremerhaven, 27570, Germany
| | | | | | | |
Collapse
|
40
|
Pellissier L, Leprieur F, Parravicini V, Cowman PF, Kulbicki M, Litsios G, Olsen SM, Wisz MS, Bellwood DR, Mouillot D. Quaternary coral reef refugia preserved fish diversity. Science 2014; 344:1016-9. [DOI: 10.1126/science.1249853] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Couce E, Ridgwell A, Hendy EJ. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. GLOBAL CHANGE BIOLOGY 2013; 19:3592-606. [PMID: 23893550 PMCID: PMC4028991 DOI: 10.1111/gcb.12335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 05/12/2023]
Abstract
Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate.
Collapse
Affiliation(s)
- Elena Couce
- School of Geographical Sciences, University of BristolBristol, BS8 1SS, UK
- School of Earth Sciences, University of BristolBristol, BS8 1RJ, UK
| | - Andy Ridgwell
- School of Geographical Sciences, University of BristolBristol, BS8 1SS, UK
| | - Erica J Hendy
- School of Earth Sciences, University of BristolBristol, BS8 1RJ, UK
- School of Biological Sciences, University of BristolBristol, BS8 1UG, UK
| |
Collapse
|
42
|
Mannion PD, Upchurch P, Benson RBJ, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol Evol 2013; 29:42-50. [PMID: 24139126 DOI: 10.1016/j.tree.2013.09.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Today, biodiversity decreases from equatorial to polar regions. This is a fundamental pattern governing the distribution of extant organisms, the understanding of which is critical to predicting climatically driven biodiversity loss. However, its causes remain unresolved. The fossil record offers a unique perspective on the evolution of this latitudinal biodiversity gradient (LBG), providing a dynamic system in which to explore spatiotemporal diversity fluctuations. Deep-time studies indicate that a tropical peak and poleward decline in species diversity has not been a persistent pattern throughout the Phanerozoic, but is restricted to intervals of the Palaeozoic and the past 30 million years. A tropical peak might characterise cold icehouse climatic regimes, whereas warmer greenhouse regimes display temperate diversity peaks or flattened gradients.
Collapse
Affiliation(s)
- Philip D Mannion
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Anjali Goswami
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK; Research Department of Genetics, Evolution and Environment, University College London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| |
Collapse
|
43
|
Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ. Predicting evolutionary responses to climate change in the sea. Ecol Lett 2013; 16:1488-500. [PMID: 24119205 DOI: 10.1111/ele.12185] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/29/2013] [Indexed: 01/17/2023]
Abstract
An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change.
Collapse
Affiliation(s)
- Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
| | | | | | | | | |
Collapse
|
44
|
Dalton SJ, Roff G. Spatial and temporal patterns of eastern Australia subtropical coral communities. PLoS One 2013; 8:e75873. [PMID: 24058705 PMCID: PMC3772894 DOI: 10.1371/journal.pone.0075873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
Despite increases in the frequency and intensity of disturbances on coral reefs over the past few decades, the response of subtropical coral assemblages to climate change is poorly understood. To address this knowledge gap on Australian reefs and provide a baseline for future comparisons, we quantified spatial (10-100's of kilometres) and temporal (decadal) patterns of benthic assemblages across a latitudinal gradient along the east Australian coastline (23.5° S to 31.5° S). Benthic community composition was quantified at six locations from the southern Great Barrier Reef, Queensland (Heron Reef, 23.5° S, 152° E) to northern New South Wales (31° S, 153.1° E) and at Lord Howe Island (31.5° S, 159.1° E). Our results indicate significant latitudinal differences in benthic assemblages, while community composition at some sites was more similar to those hundreds of kilometres away than to that of neighbouring reefs. A general trend was observed with decreasing cover of Acroporidae with increasing latitude, corresponding with an increasing cover of Pocilloporidae and Dendrophylliidae. Heron Reef comprised a high proportion of Acropora corals (43% total coral cover) and coralline algae (44%). In contrast, high-latitude reefs were dominated by mixed coral assemblages (0-52%) and high macroalgal cover (16-27%). Decadal comparisons of high-latitude reefs showed regional stability of benthic assemblages (9 out of 11 assemblages remained stable at > 75% similarity), during a period of warming oceans (0.15-0.24°C per decade). Such temporal stability suggests that eastern Australian subtropical communities may be more resistant than tropical reef communities that have experienced assembly shifts caused by perturbations associated with recent global climate change. Despite the clear differences in the structure of coral assemblages evident in our spatial surveys, we suggest that the temporal stability of high-latitude reefs may provide a limited refuge for tropical coral populations in an increasingly uncertain future.
Collapse
Affiliation(s)
- Steven J. Dalton
- Marine Ecology Research Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- * E-mail:
| | - George Roff
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
45
|
Keith SA, Baird AH, Hughes TP, Madin JS, Connolly SR. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proc Biol Sci 2013; 280:20130818. [PMID: 23698011 DOI: 10.1098/rspb.2013.0818] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions.
Collapse
Affiliation(s)
- S A Keith
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | | | |
Collapse
|